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In this paper, we propose efficient numerical methods for computing ground states of
spin-1 Bose–Einstein condensates (BECs) with/without the Ioffe–Pritchard magnetic field
B(x). When B(x) �= 0, a numerical method is introduced to compute the ground states and
it is also applied to study properties of ground states. Numerical results suggest that the
densities of mF = ±1 components in ground states are identical for any nonzero B(x).
In particular, if B(x) ≡ B �= 0 is a constant, the ground states satisfy the single-mode
approximation. When B(x) ≡ 0, efficient and simpler numerical methods are presented
to solve the ground states of spin-1 BECs based on their ferromagnetic/antiferromagnetic
characterizations. Numerical simulations show that our methods are more efficient than
those in the literature. In addition, some conjectures are made from our numerical
observations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Since its first realization in 1995, Bose–Einstein condensation (BEC) has become an important tool to investigate behav-
iors of quantum many-body system. In earlier BEC experiments, atoms were confined in a magnetic trap, where their spin
degree of freedom was frozen [1,12]. Recently, the development of optical trapping techniques has enabled to confine atoms
independently of their spin orientation and thus result in so-called spinor condensates. The spinor BEC has revealed nu-
merous exciting new phenomena which are not possessed by single-component (spin-frozen) condensates. It has provided
a unique possibility of exploring fundamental concepts of quantum mechanics in a remarkably controllable and tunable
environment [32,33,31].

In the mean-field approximation, a spin-F (F ∈ N) condensate can be described by coupled Gross–Pitaevskii equations
(CGPEs) consisting of 2F + 1 equations, and each of them governs one of the 2F + 1 Zeeman states (mF = −F ,−F + 1,

. . . , F − 1, F ). For example, a spin-1 BEC is described by the following dimensionless CGPEs [14,27,8,6,7,32]:
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∂t
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H + βs
(|ψ−1|2 + |ψ0|2 − |ψ1|2

)]
ψ−1 + βsψ

2
0 ψ∗

1 + B∗ψ0, (1.1)

where x ∈ R
d (for d = 1,2 or 3) is the Cartesian coordinate vector, t � 0 is time and ψ j(x, t) is the complex-valued wave

function of the j-th ( j = 1,0,−1) component. The operator H is defined by

H = −1

2
∇2 + Vd(x) + βn

1∑
j=−1

|ψ j|2, (1.2)

where Vd(x) represents a d-dimensional external trapping potential and it is determined by the type of system under
investigation. For instance, if a three-dimensional (3D) harmonic potential is considered, it takes the form V 3(x) = 1

2 (γ 2
x x2 +

γ 2
y y2 + γ 2

z z2) with γx , γy and γz being the dimensionless trapping frequencies in x-, y- and z-directions, respectively. The
constants βn and βs describe the spin-independent interaction and spin-exchange interaction, respectively, and they are
proportional to the total number of atoms N . If βn > 0 (resp. < 0), the spin-independent interaction is repulsive (resp.
attractive), while when βs > 0 (resp. < 0), the spin-exchange interaction is antiferromagnetic (resp. ferromagnetic). The
dimensionless function B(x) ∈ C represents the external Ioffe–Pritchard magnetic field [13,16,18]. In addition, f ∗ represents
the complex conjugate of a function f .

There are two important invariants of (1.1): the normalization of the wave functions, i.e.,

∥∥Ψ (·, t)
∥∥2 =

1∑
j=−1

∥∥ψ j(·, t)
∥∥2 :=

1∑
j=−1

∫
Rd

∣∣ψ j(x, t)
∣∣2

dx ≡ ∥∥Ψ (·,0)
∥∥2 = 1, t � 0, (1.3)

with Ψ (x, t) = (ψ1(x, t),ψ0(x, t),ψ−1(x, t))T , and the energy

E
(
Ψ (·, t)

) := E0
(
Ψ (·, t)

) + 2 Re

(∫
Rd

B
(
ψ∗

1 ψ0 + ψ∗
0 ψ−1

)
dx

)
≡ E

(
Ψ (·,0)

)
, t � 0, (1.4)

with Re( f ) denoting the real part of a function f and

E0
(
Ψ (·, t)

) :=
∫
Rd

[
1∑

j=−1

(
1

2
|∇ψ j|2 + Vd(x)|ψ j|2

)
+ βn

2

(|ψ1|2 + |ψ0|2 + |ψ−1|2
)2

+ βs

2

(|ψ1|2 − |ψ−1|2
)2 + βs|ψ0|2

(|ψ1|2 + |ψ−1|2
) + 2βs Re

(
ψ∗

1 ψ2
0 ψ∗−1

)]
dx, (1.5)

for t � 0, i.e., E0(Ψ (·, t)) represents the energy when B(x) ≡ 0. In the case of B(x) ≡ 0, the energy E0(Ψ (·, t)) is also
conserved, i.e.,

E0
(
Ψ (·, t)

) ≡ E0
(
Ψ (·,0)

)
, t � 0, when B(x) ≡ 0. (1.6)

Furthermore, the total magnetization is conserved when B(x) ≡ 0, i.e.,

M
(
Ψ (·, t)

) :=
∫
Rd

(∣∣ψ1(x, t)
∣∣2 − ∣∣ψ−1(x, t)

∣∣2)
dx ≡ M

(
Ψ (·,0)

) = M, t � 0, (1.7)

with −1 � M � 1.
Ground state, a stationary state with the lowest energy, plays an important role in understanding the properties of BECs.

There have been many experimental and mathematical studies on ground states of spin-1 condensates. In [30], the phase
diagram of the ground states of spin-1 BECs was first reported in the Thomas–Fermi regimes. The phenomena of broken
axisymmetry phase were observed in [26] for spin-1 ferromagnetic condensates. Recently, Matuszewski et al. compared
the phase separation of the ground states in the ferromagnetic and antiferromagnetic systems [22,23]. Cao et al. proved
the existence of the ground states in one-dimensional condensates [9]. On the other hand, some numerical methods have
been proposed in recent literature to compute ground states of spin-1 BECs in the absence of the external Ioffe–Pritchard
magnetic field (i.e., B(x) ≡ 0 in (1.1)). For instance, Bao and Wang proposed in [6] a continuous normalized gradient flow
(CNGF) and constructed a Crank–Nicolson finite difference scheme to discretize it. In [7,19], Bao and Lim introduced a
gradient flow with discrete normalization (GFDN) and they used the sine pseudo-spectral method to discretize it. It has
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been pointed out in [7] that GFDN type method is computationally more efficient than CNGF in [6]. Chen et al. proposed a
pseudo-arclength continuation method to compute the ground states of spin-1 BECs [10]. To the best of our knowledge, all
these methods focus on computing the ground states of spin-1 BECs where B(x) = 0 and so far there are still no numerical
reports about the ground states when B(x) �= 0. In addition, to obtain the ground states in the cases of B(x) = 0, all the
available methods solve three-component CGPE type equations, which makes the simulations very costly. We notice that
when B(x) = 0, the ground states of spin-1 BECs can be simplified to a single-mode (resp. two-component) reduction for
ferromagnetic (resp. antiferromagnetic) systems [17,34,20]. Thus, the ground states in this case can be effectively found by
solving the reduced single or two-component systems instead of the original three-component one.

In this paper, we propose (i) a numerical method for computing ground states of spin-1 BECs when B(x) �= 0; (ii) effi-
cient and simpler methods for the case when B(x) ≡ 0, by taking into account their ferromagnetic and antiferromagnetic
characterizations. It is organized as follows. In Section 2, we propose a numerical method to compute the ground states
when the Ioffe–Pritchard magnetic field B(x) �= 0. While when B(x) ≡ 0, the ground states of the three-component system
(1.1) are characterized by those of the corresponding reduced systems, i.e., the single-mode and two-component reductions
for the ferromagnetic and antiferromagnetic condensates, respectively. The reductions of the ground states for ferromagnetic
and antiferromagnetic spin-1 BECs are discussed in Section 3, followed by their numerical discretizations. Numerical results
of ground states as well as comparison between different methods are presented in Section 4. In Section 5, we draw some
conclusions and conjectures based on our numerical observations.

2. Numerical methods for ground states with nonzero B

Some numerical methods have been recently proposed in the literature [6,7,19,10] to compute ground states of spin-1
BECs in the absence of the Ioffe–Pritchard magnetic field B(x). However, there is still no numerical report on the ground
states when B(x) �= 0. In this section, we propose a numerical method for computing ground states of spin-1 BECs with
nonzero B(x).

When B(x) �= 0, the ground state Φg(x) = (φ1,g(x), φ0,g(x), φ−1,g(x))T is defined by minimizing the energy functional E
in (1.4) subject to the normalization of wave functions in (1.3), i.e.,

Find (Φg ∈ S), such that

E g := E(Φg) = min
Φ∈S

E(Φ), (2.1)

where the set S is defined by

S := {
Φ = (φ1, φ0, φ−1)

T
∣∣ ‖Φ‖2 = 1, E(Φ) < ∞}

.

It is easy to see that the ground state Φg defined in (2.1) satisfies the following Euler–Lagrange equations

μφ1(x) = [
H + βs

(|φ1|2 + |φ0|2 − |φ−1|2
)]

φ1 + βsφ
2
0φ∗−1 + Bφ0,

μφ0(x) = [
H + βs

(|φ1|2 + |φ−1|2
)]

φ0 + 2βsφ1φ
∗
0φ−1 + B∗φ1 + Bφ−1, x ∈R

d,

μφ−1(x) = [
H + βs

(|φ−1|2 + |φ0|2 − |φ1|2
)]

φ−1 + βsφ
2
0φ∗

1 + B∗φ0, (2.2)

with the constraint of normalization∥∥Φ(·)∥∥2 =
∫
Rd

(∣∣φ1(x)
∣∣2 + ∣∣φ0(x)

∣∣2 + ∣∣φ−1(x)
∣∣2)

dx = 1, (2.3)

where the operator H is defined in (1.2). The eigenvalue μ is the Lagrange multiplier (or called chemical potential) corre-
sponding to the constraint in (2.3), which can be computed from its eigenfunction Φ by

μ := μ(Φ) = E(Φ) +
∫
Rd

[
βn

2

(|φ1|2 + |φ0|2 + |φ−1|2
)2 + βs

2

(|φ1|2 − |φ−1|2
)2

+ βs|φ0|2
(|φ1|2 + |φ−1|2

) + 2βs Re
(
φ∗

1φ2
0φ∗−1

)]
dx.

In fact, the Euler–Lagrange equations in (2.2) can also be obtained from the time-dependent GPEs in (1.1) by substituting
the ansatz

ψ j(x, t) = e−iμtφ j(x), j = 1,0,−1. (2.4)

The eigenfunctions Φ of the constrained nonlinear eigenvalue problem (2.2)–(2.3) are usually called stationary states of
spin-1 BECs. Among all stationary states, the eigenfunctions with minimum energy is called the ground state and those with
larger energies are usually called excited states.
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Various algorithms have been proposed in the literature to find minimizers of the energy functional under constraints.
While the imaginary time method (i.e., replacing t with −iτ in (1.1)) is one of the most popular approaches in studying
the ground states of BECs. It can be mathematically justified by the normalized gradient flow [11,3]. In this paper, we
will develop our numerical methods for computing ground states of spin-1 BECs based on the gradient flow with discrete
normalization; see more information in [3]. Choose a time step 
t > 0 and define the time sequence as tn = n
t for
n = 0,1, . . . . Then in each time interval [tn, tn+1], the gradient flow with discrete normalization (GFDN) is given by

∂φ1(x, t)

∂t
= −[

H + βs
(|φ1|2 + |φ0|2 − |φ−1|2

)]
φ1 − βsφ

2
0φ∗−1 − Bφ0,

∂φ0(x, t)

∂t
= −[

H + βs
(|φ1|2 + |φ−1|2

)]
φ0 − 2βsφ1φ

∗
0φ−1 − B∗φ1 − Bφ−1,

∂φ−1(x, t)

∂t
= −[

H + βs
(|φ−1|2 + |φ0|2 − |φ1|2

)]
φ−1 − βsφ

2
0φ∗

1 − B∗φ0, (2.5)

followed by a projection step as

φ j
(
x, t+

n+1

) := φ j(x, t−
n+1)

‖Φ(·, t−
n+1)‖

, j = 1,0,−1, (2.6)

where φ j(x, t±
n+1) = limt→t±n+1

φ j(x, t) ( j = 1,0,−1). The gradient flow in (2.5)–(2.6) can be viewed as first applying the

steepest descent method to the energy functional in (1.4) without constraint and then projecting the solution back to the
unit sphere to satisfy the normalization constraint in (2.3).

In order to solve the GFDN numerically, we discretize (2.5) by using the sine pseudo-spectral method for spatial deriva-
tives and the backward/forward Euler scheme for linear/nonlinear terms of temporal derivatives [4,35]. In the following, we
will give a detailed description of our numerical method. Notice that because of the confinement of the external trapping
potentials, the wave function Φ in (2.5) decays to zero exponentially fast when |x| → ∞. Thus, in practical computations
we can truncate the problem into a bounded computational domain Ω with homogeneous Dirichlet boundary conditions,
i.e.,

φ j(x, t)|∂Ω = 0, t � 0, j = 1,0,−1. (2.7)

For simplicity of notations, we will only present the scheme in one-dimensional (1D) cases with a bounded computa-
tional domain Ω = [a,b]. Generalizations to higher dimensions are straightforward for tensor product grids. For an even
integer K > 0, define the spatial mesh size 
x = (b − a)/K > 0 and grid points xk = a + k
x for 0 � k � K . Let φn

j,k be the
numerical approximation of φ j(xk, tn) and Φn

j be a vector consisting of φn
j,k for the j-th component. Denote Φn a vector

with sub-vectors Φn
j for j = 1,0,−1. Then over each time interval [tn, tn+1], we discretize (2.5) as

φ
(1)

j,k − φn
j,k


t
= 1

2
Ds

xxΦ
(1)
j

∣∣
x=xk

− αn
j

(
φ

(1)

j,k − φn
j,k

) + Pn
j,k, 1 � k � K − 1, (2.8)

for j = 1,0,−1, where Pn
j,k ( j = 1,0,−1) are defined by

Pn
1,k := −

[
V 1(xk) + βn

1∑
j=−1

∣∣φn
j,k

∣∣2 + βs
(∣∣φn

1,k

∣∣2 + ∣∣φn
0,k

∣∣2 − ∣∣φn
−1,k

∣∣2)]
φn

1,k − βs
(
φn

0,k

)2(
φn

−1,k

)∗ − B(xk)φ
n
0,k,

Pn
0,k := −

[
V 1(xk) + βn

1∑
j=−1

∣∣φn
j,k

∣∣2 + βs
(∣∣φn

1,k

∣∣2 + ∣∣φn
−1,k

∣∣2)]
φn

0,k − 2βsφ
n
1,k

(
φn

0,k

)∗
φn

−1,k − B∗(xk)φ
n
1,k − B(xk)φ

n
−1,k,

Pn
−1,k := −

[
V 1(xk) + βn

1∑
j=−1

∣∣φn
j,k

∣∣2 + βs
(∣∣φn

−1,k

∣∣2 + ∣∣φn
0,k

∣∣2 − ∣∣φn
1,k

∣∣2)]
φn

−1,k − βs
(
φn

0,k

)2(
φn

1,k

)∗ − B∗(xk)φ
n
0,k.

Ds
xx is a sine pseudo-spectral differential operator approximating ∂xx , which is defined by

Ds
xxU

∣∣
x=xk

=
K−1∑
l=1

(−μ2
l Ûl

)
sin

(
μl(xk − a)

)
, 1 � k � K − 1, (2.9)

where Ûl denotes the l-th coefficient of the discrete sine transform of the vector U = (U1, U2, . . . , U K−1)
T , i.e.,

Ûl = 2

K

K−1∑
Uk sin

(
μl(xk − a)

)
and μl = lπ

b − a
, 1 � l � K − 1.
k=1
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The constant αn
j � 0 ( j = 1,0,−1) is a stabilization parameter, which is chosen in the “optimal” form (such as the time step

can be chosen as large as possible) (see, e.g., [35,7,19]).
The projection step in (2.6) is discretized as

φn+1
j,k = φ

(1)

j,k

‖Φ(1)‖ with
∥∥Φ(1)

∥∥ =

√√√√√
x
1∑

j=−1

K−1∑
k=1

∣∣φ(1)

j,k

∣∣2
, (2.10)

for −1 � j � 1 and 1 � k � K − 1. In addition, the initial condition is discretized as

φ0
j,k = φ j(xk,0), 0 � k � K , j = 1,0,−1, (2.11)

and the boundary conditions are

φn
j,0 = φn

j,K = 0, n = 0,1, . . . , j = 1,0,−1. (2.12)

The discrete system (2.8), (2.11) and (2.12) can be efficiently solved by the discrete sine transform. In fact, taking the
discrete sine transform at both sides of (2.8), we obtain

φ̂
(1)

j,l − φ̂n
j,l


t
= −1

2
μ2

l φ̂
(1)

j,l − αn
j

(
φ̂

(1)

j,l − φ̂n
j,l

) + P̂ n
j,l, l = 1,2, . . . , K − 1, j = 1,0,−1, (2.13)

which immediately gives that

φ̂
(1)

j,l = (1 + αn
j 
t)φ̂n

j,l + 
t P̂n
j,l

1 + (αn
j + μ2

l /2)
t
, j = 1,0,−1 (2.14)

for l = 1,2, . . . , K − 1 and n = 0,1, . . . . Since the discrete sine transform is used, the memory required to solve the above
system is O (K ) and computational cost per time step is O (K ln(K )). The simulation is stopped by requiring that

max
−1� j�1

max
1�k�K−1

|φn+1
j,k − φn

j,k|

t

< ε, (2.15)

where ε is a chosen small tolerance. The resulting solution Φ := limn→∞ Φn+1 is the ground state of the spin-1 BECs.

3. Numerical methods for ground states with B = 0

In Section 2, we present a numerical method to compute ground states of spin-1 BECs when B(x) �= 0, while in this
section we will study the ground states when B(x) ≡ 0. In the former case, ground states are minimizers of the energy E in
(1.4) under the constraints of normalization in (1.3). However, when B(x) ≡ 0, they also need to satisfy the conservation of
magnetization defined in (1.7). In detail, the ground state Φ0,g(x) when B(x) ≡ 0 is defined by

Find (Φ0,g ∈ S0) such that

E0,g := E0(Φ0,g) = min
Φ∈S0

E0(Φ), (3.1)

where E0 is the energy functional defined in (1.5) and S0 is a nonconvex set defined as

S0 := {
Φ = (φ1, φ0, φ−1)

T
∣∣ ∥∥Φ(·)∥∥2 = 1,

∥∥φ1(·)
∥∥2 − ∥∥φ−1(·)

∥∥2 = M, E0(Φ) < ∞}
,

with −1 � M � 1 a given fixed total magnetization. Note that when βn > 0, |βs| � βn and lim|x|→∞ Vd(x) = ∞, the existence
of a minimizer of the nonconvex minimization problem (3.1) follows from the standard theory [9,21]. In fact, E0(α · Φ0,g) =
E0(Φ0,g) for all constant vector α = (eiθ1 , eiθ0 , eiθ−1 )T with θ1 + θ−1 − 2θ0 = ±mπ for any integer m.

Similarly, the ground state Φ0,g(x) defined in (3.1) also satisfies the following Euler–Lagrange equations:

(μ + λ)φ1(x) = [
H + βs

(|φ1|2 + |φ0|2 − |φ−1|2
)]

φ1 + βsφ
2
0φ∗−1,

μφ0(x) = [
H + βs

(|φ1|2 + |φ−1|2
)]

φ0 + 2βsφ1φ
∗
0φ−1, x ∈R

d,

(μ − λ)φ−1(x) = [
H + βs

(|φ−1|2 + |φ0|2 − |φ1|2
)]

φ−1 + βsφ
2
0φ∗

1 , (3.2)

with the constraints

∥∥Φ(·)∥∥2 :=
1∑

j=−1

∫
d

∣∣φ j(x)
∣∣2

dx = 1,

∫
d

(∣∣φ1(x)
∣∣2 − ∣∣φ−1(x)

∣∣2)
dx = M, (3.3)
R R
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where μ and λ are the Lagrange multipliers (or chemical potentials) of the time-independent CGPEs (3.2)–(3.3). The CGPEs
in (3.2) can be also obtained from its time-dependent counterpart (1.1) with B(x) ≡ 0 by substituting the ansatz

ψ±1(x, t) = e−i(μ±λ)tφ±1(x), ψ0(x, t) = e−iμtφ0(x). (3.4)

Recently, there have been some numerical methods proposed in the literature (see, e.g., [6,7,19,10]) to compute ground
states of spin-1 BECs when B(x) = 0 and all of them directly solve the system of three-component equations. However, we
notice that when B(x) = 0, the ground states of spin-1 BECs in fact can be described by a single-mode or two-component
reduction based on their ferromagnetic or antiferromagnetic characterizations [20]. As a result, we can introduce numerical
methods based on the characterization of spin-1 BECs so as to reduce the computational costs in computing ground states of
spin-1 BECs. In the following, we will discuss the ferromagnetic and antiferromagnetic system separately. For each system,
we will start with reviewing its characterization properties and then propose numerical methods to solve the reduced
system.

3.1. Ferromagnetic system

Experimental observations [17,28,15] and numerical simulations [34,6,7,19] suggest that in ferromagnetic (βs < 0) spin-1
BECs, each component of the ground state is a multiple of one single density function. This is so-called the single-mode
approximation (SMA) in the literature, which has been justified rigorously in mathematics by Lin and Chern in [20]. As a
result, in this case one can compute just one density function instead of three. To show it, we denote ρ(x) � 0, for x ∈ R

d ,
as a scalar real-valued density function and require it satisfy the normalization condition∥∥ρ(·)∥∥2 =

∫
Rd

ρ2(x)dx = 1. (3.5)

Let1 Φg(x) = (φ1,g, φ0,g, φ−1,g)
T be the ground state of a ferromagnetic spin-1 BECs. Based on the single-mode approxima-

tion, we can set

φ j,g(x) = ∣∣φ j,g(x)
∣∣ = γ jρ(x), x ∈ R

d, j = 1,0,−1 (3.6)

with constants γ j � 0 (for j = 1,0,−1). Noticing that the ground state Φg(x) is defined under the constraints of normaliza-
tion and magnetization described in (3.3), we obtain

γ 2
1 + γ 2

0 + γ 2−1 = 1, γ 2
1 − γ 2−1 = M. (3.7)

Substituting (3.6) into (1.5) and taking (3.7) into account, we obtain

E0(Φg) =
∫
Rd

[
1

2

∣∣∇ρ(x)
∣∣2 + Vd(x)ρ2(x) + βn

2
ρ4(x) + βs

2

(
M2 + 2γ 2

0 (γ1 + γ−1)
2)ρ4(x)

]
dx. (3.8)

Notice that the minimization of (3.8) over ρ and (γ1, γ0, γ−1) is separable [20]. Thus, we can take minimization of (3.8)
first over (γ1, γ0, γ−1) and then over ρ . Since βs < 0, minimizing (3.8) over (γ1, γ0, γ−1) is equivalent to

max
γ1,γ0,γ−1

{
M2 + 2γ 2

0 (γ1 + γ−1)
2}, subject to (3.7),

which gives the constants

γ0 =
√

1

2

(
1 − M2

)
, γ±1 = 1

2
(1 ± M). (3.9)

Taking (3.9) into account, we define the SMA energy

Esma(ρ) := E0(Φg) =
∫
Rd

[
1

2

∣∣∇ρ(x)
∣∣2 + Vd(x)ρ2(x) + κ

2
ρ4(x)

]
dx, (3.10)

where the constant κ = βn + βs . It is obvious that minimizing E0(Φg) in (3.8) with constraints (3.3) is equivalent to mini-
mizing Esma(ρ) with the normalization in (3.5) [20].

From the above, we know that for a ferromagnetic system, we can in fact solve for the density function ρ and then
obtain the ground state of the corresponding spin-1 BECs by combining (3.6) and (3.9). In detail, we solve the following
single-component minimization problem:

1 For simplicity of notation, in the following sections we will also use Φg (x) to represent the ground state of spin-1 BECs with B(x) ≡ 0. To distinguish
it from those when B(x) �= 0, the readers should refer to the context of the discussion.
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Find (ρg(x) ∈ Ssma) such that

Esma,g := Esma(ρg) = min
ρ∈Ssma

Esma(ρ) (3.11)

over the set

Ssma =
{
ρ(x) ∈R

∣∣∣ ∫
Rd

ρ2(x)dx = 1, Esma(ρ) < ∞
}
.

The Euler–Lagrange equation corresponding to (3.11) is given by

μsmaρ(x) = −1

2
∇2ρ(x) + Vd(x)ρ(x) + κρ3(x), (3.12)

with the constraint ‖ρ(·)‖2 = 1. This is a nonlinear eigenvalue problem with the normalization constraint and the eigenvalue
μsma can be computed from

μsma(ρ) =
∫
Rd

[
1

2

∣∣∇ρ(x)
∣∣2 + Vd(x)ρ2(x) + κρ4(x)

]
dx. (3.13)

Similar to that in Section 2, to find the minimizer of (3.11) we solve a gradient flow with discrete normalization and
its discretization will be presented for 1D case for simplicity. Generalizations of the method to higher dimensions are
straightforward. For t ∈ [tn, tn+1], the 1D GFDN corresponding to (3.11) is given by

∂ρ(x, t)

∂t
= 1

2
∇2ρ − V 1(x)ρ − κρ3, x ∈ [a,b], t ∈ [tn, tn+1], (3.14)

ρ
(
x, t+

n+1

) := ρ(x, t−
n+1)

‖ρ(·, t−
n+1)‖

, x ∈ [a,b], (3.15)

where the computational domain [a,b] is chosen to be sufficiently large and homogeneous Dirichlet boundary conditions
ρ(a, t) = ρ(b, t) = 0 are imposed. At t = 0, the initial condition is given by

ρ(x,0) = ρ0(x), x ∈ [a,b], with
∥∥ρ0(·)∥∥ = 1. (3.16)

To discretize (3.14)–(3.16), we use the sine pseudo-spectral method for spatial derivatives and the backward/forward
Euler scheme for linear/nonlinear terms of the time derivative. The detailed scheme is given as below:

ρ
(1)

k − ρn
k


t
= 1

2
Ds

xxρ
(1)

∣∣
x=xk

− αn(ρ(1)

k − ρn
k

) + F n
k , k = 1,2, . . . , K − 1, (3.17)

ρn+1
k = ρ

(1)

k

‖ρ(1)‖ , k = 1,2, . . . , K − 1, n = 0,1, . . . , (3.18)

where ρn
k is the numerical approximation of ρ(xk, tn), ρn is a vector with components ρn

k and ‖ρ(1)‖ =
√


x
∑K−1

k=1 (ρ
(1)

k )2.
The term

F n
k := F

(
ρn

k

) = −[
V 1(xk)ρ

n
k + κ

(
ρn

k

)3]
, k = 1,2, . . . , K − 1, n = 0,1, . . . . (3.19)

The operator Ds
xx is defined in (2.9). The stabilization parameter αn � 0 is chosen as [35,5,2]

αn = 1

2

[
max

1�k�K−1

(
V 1(xk) + κ

(
ρn

k

)2) + min
1�k�K−1

(
V 1(xk) + κ

(
ρn

k

)2)]
.

The initial and boundary conditions are discretized as

ρ0
k = ρ0(xk), k = 0,1, . . . , K ; ρn

0 = ρn
K = 0, n = 0,1, . . . , (3.20)

respectively. This discrete system can be efficiently solved in the same manner as that for (2.8), (2.11) and (2.12).
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3.2. Antiferromagnetic system

In an antiferromagnetic (βs > 0) system, the density distribution of atoms in ground states highly depends on the total
magnetization M . It was shown in [20] that if M �= 0, the ground states have vanishing zeroth mF = 0 component, i.e.,
φ0,g(x) ≡ 0. As a result, the original three-component system is indeed characterized by a two-component reduction. How-
ever, if M = 0, the ground states of three components satisfy the SMA as given in (3.6). But different from ferromagnetic
systems, in this case the constants γ j are not unique and they are given by γ1 = γ−1 = ξ and γ0 = √

1 − 2ξ2 for any
constant ξ ∈ [0,1/

√
2]. For the detailed mathematical proof, we refer the readers to [20]. In the following, we review the

two-component reduction and discretize it for computing ground state of antiferromagnetic spin-1 BECs when B = 0 and
M �= 0. For the case of M = 0, the numerical method is identical to that we described in Section 3.1 and thus it is omitted
here for brevity.

Let Φg(x) be the ground state of an antiferromagnetic spin-1 BEC with B = 0 and M �= 0. Since φ0,g(x) ≡ 0 in this case,
the ground state energy E0,g reduces to

E0(Φg) =
∫
Rd

[
1

2

(|∇φ1,g |2 + |∇φ−1,g |2
) + Vd(x)

(|φ1,g |2 + |φ−1,g |2
)

+ χ

2

(|φ1,g |4 + |φ−1,g |4
) + ν|φ1,g |2|φ−1,g |2

]
dx, (3.21)

where the constants χ = βn + βs and ν = βn − βs . From the constraints of normalization and magnetization in (3.3), it is
easy to obtain∫

Rd

∣∣φ1,g(x)
∣∣2

dx = 1 + M

2
,

∫
Rd

∣∣φ−1,g(x)
∣∣2

dx = 1 − M

2
. (3.22)

On the other hand, we define a two-component energy

Etca(u1, u2) :=
∫
Rd

[
2∑

j=1

(
1

2
|∇u j|2 + Vd(x)|u j|2

)
+ χ

2

(|u1|4 + |u2|4
) + ν|u1|2|u2|2

]
dx. (3.23)

It is easy to verify that the ground state (φ1,g, φ−1,g) minimizes the energy Etca under the constraints (3.22). Hence, the
minimization problem defined in (3.1) to find the ground state of an antiferromagnetic spin-1 condensate can be reduced
to the following two-component minimization problem:

Find ((u1,g, u2,g) ∈ Stca), such that

Etca,g := Etca(u1,g, u2,g) = min
(u1,u2)∈Stca

Etca(u1, u2) (3.24)

over the set

Stca = {
(u1, u2)

∣∣ ‖u1‖2 = (1 + M)/2,‖u2‖2 = (1 − M)/2, Etca(u1, u2) < ∞}
.

The ground state of the associated antiferromagnetic spin-1 BECs can be obtained by

φ1,g(x) = u1,g(x), φ0,g(x) ≡ 0, φ−1,g(x) = u2,g(x). (3.25)

The Euler–Lagrange equations corresponding to the minimization problem in (3.24) are given by

μtca
1 u1(x) =

[
−1

2
∇2 + Vd(x) + χ

∣∣u1(x)
∣∣2 + ν

∣∣u2(x)
∣∣2

]
u1(x),

μtca
2 u2(x) =

[
−1

2
∇2 + Vd(x) + ν

∣∣u1(x)
∣∣2 + χ

∣∣u2(x)
∣∣2

]
u2(x), x ∈R

d (3.26)

with the constraints ‖u1‖2 = (1 + M)/2 and ‖u2‖2 = (1 − M)/2, where the two-component chemical potentials are defined
by

μtca
j =

∫
Rd

[
1

2
|∇u j|2 + Vd(x)|u j|2 + χ |u j|4 + ν|u j|2|u(3− j)|2

]
dx, j = 1,2. (3.27)

To find the ground states defined in (3.24), a gradient flow with discrete normalization for two-component system is
solved, i.e., over each time interval [tn, tn+1] (for n = 0,1, . . .), we solve
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∂u j(x, t)

∂t
=

[
1

2
∇2 − Vd(x) − χ |u j|2 − ν|u(3− j)|2

]
u j(x, t), j = 1,2, (3.28)

u1(x, tn+1) =
√

1 + M

2

u1(x, t−
n+1)

‖u1(·, t−
n+1)‖

, u2(x, tn+1) =
√

1 − M

2

u2(x, t−
n+1)

‖u2(·, t−
n+1)‖

, (3.29)

and at time t = 0, the initial conditions are given by

u j(x,0) = u0
j (x), j = 1,2 with

∥∥u0
1(·)

∥∥ =
√

1 + M

2
,

∥∥u0
2(·)

∥∥ =
√

1 − M

2
. (3.30)

In practice, the above gradient flow can be solved in a bounded domain Ω with homogeneous Dirichlet boundary conditions

u1(x, t) = u2(x, t) = 0, x ∈ ∂Ω, t � 0, (3.31)

due to the confinement of the external trapping potentials.
Next we will give the discretization of (3.28)–(3.31) in the 1D case with Ω = [a,b]. Let un

j,k be the numerical approxi-
mation of u j(xk, tn) for j = 1,2 and un

j be a vector with component un
j,k . Then we have

u(1)

j,k − un
j,k


t
= 1

2
Ds

xxu(1)
j

∣∣
x=xk

− αn
j

(
u(1)

j,k − un
j,k

) + Gn
j,k, j = 1,2, (3.32)

un+1
1,k =

√
1 + M

2

u(1)

1,k

‖u(1)
1 ‖

, un+1
2,k =

√
1 − M

2

u(1)

2,k

‖u(1)
2 ‖

, 1 � k � K − 1, (3.33)

where ‖u(1)
j ‖ =

√

x

∑K−1
k=1 |u(1)

j,k|2 for j = 1,2, and

Gn
j,k = −[

V 1(xk) + χ
∣∣un

j,k

∣∣2 + ν
∣∣un

(3− j),k

∣∣2]
un

j,k, 1 � k � K − 1, j = 1,2.

The stabilization parameters αn
j ( j = 1,2) are chosen as

αn
j = 1

2

[
max

1�k�K−1

(
V 1(xk) + χ

∣∣un
j,k

∣∣2 + ν
∣∣un

(3− j),k

∣∣2) + min
1�k�K−1

(
V 1(xk) + χ

∣∣un
j,k

∣∣2 + ν
∣∣un

(3− j),k

∣∣2)]
.

The operator Ds
xx is defined in (2.9). The homogeneous Dirichlet boundary conditions are discretized as

un
1,0 = un

1,K = un
2,0 = un

2,K = 0, n = 0,1, . . . , (3.34)

and the initial conditions are discretized as

u0
1,k = u0

1(xk), u0
2,k = u0

2(xk), k = 0,1, . . . , K . (3.35)

For each time step, the discrete system (3.32)–(3.35) can be solved in the same manner as that for (2.8), (2.11) and (2.12).

3.3. Relation between different minimization problems

As we have seen, the ground states of spin-1 BECs are always defined by constrained minimization problems, e.g., (2.1)
for B �= 0 and (3.1) for B ≡ 0. In the following, we will describe the relation between different minimization problems.

When B = 0, the ground state can be obtained by minimizing the energy functional E0 subject to the conservation of
both normalization and magnetization. While when B �= 0, the energy E is minimized by requiring only the conservation of
normalization. To see the relation between these two minimization problems, we introduce ΦM

g defined by

Find (ΦM
g ∈ S M ), such that

E M
g := E

(
ΦM

g

) = min
Φ∈S M

E(Φ), (3.36)

where for a given M ∈ [−1,1], the set S M is defined as

S M := {
Φ = (φ1, φ0, φ−1)

T
∣∣ ∥∥Φ(·)∥∥2 = 1,

∥∥φ1(·)
∥∥2 − ∥∥φ−1(·)

∥∥2 = M, E(Φ) < ∞}
.

That is, ΦM
g is a minimizer of the energy functional E subject to the conservation of both normalization and magnetization

M , where M is a given fixed constant. To obtain the minimizer of the energy E with only the constraint of normalization,
one needs to further minimizer E M

g in (3.36) with respect to −1 � M � 1. Thus, the minimization problem in (2.1) is
equivalent to

Find (Φg ∈ S), such that
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E(Φg) = min
M∈[−1,1] E

(
ΦM

g

) = min
M∈[−1,1] min

Φ∈S M
E(Φ), (3.37)

which decomposes (2.1) into two minimization problems. The inner minimization problem is similar to that defined in (3.1)
but with different energy functional, while the outer minimization only involves one variable M ∈ [−1,1]. In the form of
(3.37), one can see the effect of the magnetization M on the ground states when B �= 0.

On the other hand, the minimization problem in (3.1) is over three wave functions φ j (for j = 1,0,−1) subject to two
constraints. These constraints specify the normalization and total magnetization of the ground states. However, to better
understand each component in the ground state, we want to know the norm of individual component. To this end, we
define Φα

0,g(x) as the minimizer of the following nonconvex minimization problem:
Find (Φα

0,g ∈ Sα
0 ), such that

Eα
0,g := E0

(
Φα

0,g

) = min
Φ∈Sα

0

E0(Φ), (3.38)

where α ∈ [0,1] is a given constant and Sα
0 is a nonconvex set defined as

Sα
0 :=

{
Φ = (φ1, φ0, φ−1)

T
∣∣∣ ∥∥φ0(·)

∥∥2 = α,
∥∥φ±1(·)

∥∥2 = 1 − α ± M

2
, E0(Φ) < ∞

}
.

The minimization problem (3.38) has three unknowns φα
j ( j = 1,0,−1) and the same number of constraints, which is

much easier than the problem in (3.1). In fact, the minimizer Φα
0,g can be viewed as a ground state which satisfies the

conservation of the total normalization and magnetization as described in (3.3) and also the conservation of the norm for
each component.

It is easy to see that to find the ground states Φ0,g in (3.1), one can first fix α and obtain Φα
0,g by minimizing (3.38),

and then minimize Eα
0,g over α ∈ [0,1]. Thus, the problem in (3.1) can be decomposed into two minimizing processes, i.e.,

Find (Φ0,g ∈ S0), such that

E0(Φ0,g) = min
α∈[0,1] E0

(
Φα

0,g

) = min
α∈[0,1] min

Φ∈Sα
0

E0(Φ). (3.39)

By minimizing Eα
0,g over 0 � α � 1, one can easily obtain the relation between three components in the ground states.

4. Numerical results

In this section, we first test the accuracy of spatial discretization in our numerical methods and then apply them to
compute ground states of spin-1 condensates. We remark here that the ground states computed numerically, in general, are
independent of time step and time discretization. The ground states are studied when B(x) �= 0 and some conjectures are
made from our numerical observations. In the case of B(x) ≡ 0, we first compare the performance of our methods with those
proposed in the literature [6,7,19]. Then we apply our efficient methods to study the ground states of the ferromagnetic and
antiferromagnetic spin-1 BECs. In all simulations, the ground states are obtained by setting the tolerance ε = 10−6.

4.1. Numerical accuracy

In order to test the accuracy of the spatial discretization of our methods in different cases, we take d = 1, V 1(x) =
x2/2 and βn = 100 in (1.1) and M = 0.5 in (1.7) for the cases when B = 0. The ground state is computed on a bounded
computational domain chosen as Ω = [−32,32]. Let Φg represent the ‘exact’ ground state which is obtained numerically
by using a very fine mesh h = 
x = 1/64, and its energy is denoted as E0,g = E0(Φg) and E g = E(Φg) when B(x) = 0 and
B(x) �= 0, respectively. Similarly, let Φh

g be the ground states computed by using the mesh size h and its energy is denoted

as Eh
0,g = E0(Φ

h
g ) and Eh

g = E(Φh
g ) when B(x) = 0 and B(x) �= 0, respectively. Table 1 lists the errors in terms of the ground

state, i.e., ‖Φg − Φh
g‖, and the ground state energy, i.e., |E0,g − Eh

0,g | or |E g − Eh
g |, under different mesh size h for three

different cases: (i) ferromagnetic case with B = 0 and βs = −10
√

2; (ii) antiferromagnetic case with B = 0 and βs = 10
√

2;
and (iii) nonzero external magnetic field with B = 1 + 2i and βs = −10

√
2.

From Table 1 and additional results not shown here for brevity, it is easy to see that our numerical methods are spectral
order accurate in space for computing the ground states and its energy. Therefore when the solution changes rapidly with
optical lattice potential and/or high accuracy is required, in general, our methods need much less grid points than those
low-order finite difference or finite element methods, and thus the memory cost and/or computational cost will be saved
significantly, especially in 2D and 3D.

4.2. Numerical results for B �= 0

In the following, we study ground states of spin-1 BECs when B(x) �= 0. We start with 1D condensates and both the
ferromagnetic and antiferromagnetic systems are considered. Then the ground states of 2D spin-1 BECs are studied for
different Ioffe–Pritchard magnetic field B .
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Table 1
Spatial accuracy analysis of our methods for computing ground states of spin-1 BECs under different cases.

Mesh size B = 0, βs = −10
√

2 B = 0, βs = 10
√

2 B = 1 + 2i, βs = −10
√

2

‖Φg − Φh
g ‖ |E0,g − Eh

0,g | ‖Φg − Φh
g ‖ |E0,g − Eh

0,g | ‖Φg − Φh
g ‖ |E g − Eh

g |
h = 2 6.4057E-3 1.3476E-2 1.5939E-2 2.6943E-2 7.0229E-3 6.9005E-3
h = 1 1.7707E-3 5.5643E-4 2.2937E-3 3.9818E-6 2.6652E-3 1.1460E-3
h = 1/2 2.7409E-5 6.7342E-7 3.4688E-5 9.5812E-7 2.9747E-5 4.7819E-6
h = 1/4 2.7159E-9 5.6843E-14 3.7193E-8 2.5224E-13 7.8498E-8 6.9473E-8

Fig. 1. Ground states of spin-1 BECs in ferromagnetic (left) and antiferromagnetic (right) systems, where B(x) = cos(x) + i cos(x) (top) and B(x) = cos(x) +
i sin(x) (bottom). Dash line: |φ1,g |; solid line: |φ0,g |; dash-dot line: |φ−1,g |. Notice that the graphs of |φ1,g | and |φ−1,g | are identical.

Example 1. We study ground states of 1D spin-1 condensates confined in a harmonic potential V 1(x) = x2/2. In our sim-
ulations, we choose computational domain [−32,32], mesh size 
x = 0.03125 and time step 
t = 0.001. The parameters
βn = 400, and βs = ∓250 for ferromagnetic and antiferromagnetic cases, respectively. Then we study the following two
cases:

Case I. B(x) ∈ C is a periodic function of x ∈ R. Fig. 1 shows the ground states in both ferromagnetic and antiferromagnetic
systems, where B(x) = cos(x) + i cos(x) or B(x) = cos(x) + i sin(x). We see that the density functions of ground states are
always symmetric with respect to x = 0 which is the center of external trap V 1(x). In addition, the mF = ±1 components
have the same density, which implies that when B(x) is nonzero, the stationary states with total magnetization M = 0 have
the lowest energy.

Case II. B(x) ≡ B ∈ C is a constant. Fig. 2 shows the ground states for the constant field B = 3 + 4i. From it and our exten-
sive simulations (not shown here for brevity), we find that when B(x) is a constant, the ground states satisfy exactly the
single-mode approximation defined in (3.6), which is independent of ferromagnetic or antiferromagnetic characterizations.

Furthermore, our numerical results suggest that here (i) the SMA constants are γ1 = γ−1 = 1
2 and γ0 =

√
2

2 ; (ii) the SMA
density function depends only on interaction parameters βn and βs but not on constant B; (iii) the SMA ground state energy
depends on the modules of B , i.e., |B|, instead of B .

To further study the SMA energies in Case II, we compute the ground states with respect to different parameters βn ,
βs and B . Figs. 3–4 present the ground state energy for ferromagnetic and antiferromagnetic cases, respectively. We see
that if the constant |B| is fixed, the larger the constant βn + βs , the higher the ground state energy, which holds for
both ferromagnetic (cf. Fig. 3 left) and antiferromagnetic (cf. Fig. 4 left) cases. On the other hand, for fixed βn + βs , the
ground state energy depends on |B| instead of B; see Fig. 3 right and Fig. 4 right for ferromagnetic and antiferromagnetic
cases, respectively, where real-valued constants B are chosen. For fixed βn + βs , the energy in ferromagnetic system linearly
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Fig. 2. Ground states of spin-1 BECs in ferromagnetic (left) and antiferromagnetic (right) systems, where B(x) ≡ B = 3 + 4i. Dash line: |φ1,g |; solid line:
|φ0,g |; dash-dot line: |φ−1,g |. Notice that the graphs of |φ1,g | and |φ−1,g | are identical.

Fig. 3. Energy versus the interaction parameter βn with |B| = 5 fixed (left) and versus the constant B (right) in ferromagnetic cases.

Fig. 4. Energy versus the interaction parameter βn with |B| = 5 fixed (left) and versus the real-valued constant B (right) in antiferromagnetic cases.

depends on |B|. However, in antiferromagnetic case, the same constants βn +βs and |B| may result in different ground state
energy (cf. Fig. 4 right).

Example 2. We study ground states of 2D spin-1 BECs in an isotropic harmonic potential V 2(x) = (x2 + y2)/2. Figs. 5–7 show
the density functions of the ground states for B(x, y) = sin(x) + sin(y), sin(x) + i sin(y) and 1 + 2i, respectively. Similar to
the 1D case, the densities of mF = ±1 components are identical, which is true for both ferromagnetic and antiferromagnetic
condensates. Furthermore, if the complex-valued B(x, y) is space-dependent, then quantum vortices appear in the ground
states; see Fig. 6. However, if B(x, y) ≡ B is a constant, no vortex is observed; furthermore, the ground states in this case

satisfy the SMA and the SMA constants γ j are always γ±1 = 1
2 and γ0 =

√
2

2 for any constant B .



W. Bao et al. / Journal of Computational Physics 253 (2013) 189–208 201
Fig. 5. Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1 BECs with B(x, y) = sin(x) + sin(y). From left to right: |φ1,g |, |φ0,g | and
|φ−1,g |.

Fig. 6. Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1 BECs with B(x, y) = sin(x) + i sin(y). From left to right: |φ1,g |, |φ0,g | and
|φ−1,g |.

4.3. Numerical results for B = 0

Next, we first compare our methods in Section 3 with those proposed in the literature [6,7,19,10]. Then we apply our
methods to study ground states in ferromagnetic and antiferromagnetic systems when B(x) = 0.

4.3.1. Comparison of different methods
Numerical methods presented in [6,7,19,10] for computing ground states of spin-1 BECs are computationally intensive

because they solve a coupled three-component system. However, our methods introduced in Section 3 take into account
the ferromagnetic or antiferromagnetic characterizations of the corresponding ground states and thus provide more efficient
approaches for simulating the ground states in the case of B(x) ≡ 0. To show the effectiveness of our methods, we compare
them with that proposed in [7], which we will refer to as Bao–Lim’s method for simplicity. We remark here that it has
been pointed out in [7] that Bao–Lim’s method is more efficient than other methods proposed for computing ground states
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Fig. 7. Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1 BECs with B(x, y) = 1 + 2i. From left to right: |φ1,g |, |φ0,g | and |φ−1,g |.

Table 2
Ground state energy and computing time (i.e., CPU time in seconds) by Bao–Lim’s method [7] and our method in
Section 3.1 for ferromagnetic condensates with different magnetizations 0 � M � 1.

M Bao–Lim’s method (in seconds) Our method (in seconds)

0 132.90 6.65
0.1 145.18 6.65
0.2 223.50 6.65
0.3 271.15 6.65
0.4 288.82 6.65
0.5 282.16 6.65
0.6 259.82 6.65
0.7 239.03 6.65
0.8 166.89 6.65
0.9 119.05 6.65
Energy E0(Φg ) = 35.4007 Esma(ug ) = 35.4007

of spin-1 BECs in the literature, and hence in the following we will only compare our method with Bao–Lim’s method.
Different methods are compared in terms of the ground state energy and the computing time.

In the following, we consider 1D cases, i.e., d = 1, and the external potential is chosen as V 1(x) = x2/2. The problem is
solved in a computational domain [−32,32] with K = 2048, i.e., the mesh size 
x = 0.03125. The time step is 
t = 0.001
in our simulations. We denote N as the total number of atoms and choose N = 10 000 in the following examples. Since in
ground states we have M ↔ −M ⇔ φ1 ↔ φ−1, here we will only present the results for 0 � M � 1.

Example 3. We consider a ferromagnetic spin-1 condensate with βn = 0.08716N and βs = −0.001748N . The values of the
interaction parameters βn and βs correspond to the experimental setup of 87Rb confined in a cigar-shaped trapping potential
with parameters used in [24,25,29]. Correspondingly, the constant κ in the SMA formulation (3.10) is κ = 0.085412N .

For different magnetization 0 � M � 1, we compare the ground states computed by our method based on the single-
mode approximation in (3.6) and (3.9) and by Bao–Lim’s method [7]. Fig. 8 shows the density of each component in the
ground states. Table 2 shows the ground state energy and computing time (in seconds) used by different methods. Note
that here our motivation is to compare the speed of two methods in computing the ground states, and the programs by
different methods are run on the same computer. We understand that the computing time can be shortened if one uses an
advanced computer or does parallel computations, which however is beyond our interest here.

It shows in Fig. 8 that the ground states computed by our method are consistent with those by Bao–Lim’s method for
different magnetization M , where lines represent the results by our method and symbols represent those from Bao–Lim’s
method [7]. From Table 2, we see that the ground state energies obtained from both methods are the same; furthermore, in
this case the energy is independent of magnetization M . However, the computing time used by our method is much shorter
(less than 6%) than that of Bao–Lim’s method [7]. In addition, the computing time by Bao–Lim’s method [7] depends
variously on the magnetization M .



W. Bao et al. / Journal of Computational Physics 253 (2013) 189–208 203
Fig. 8. Ground states of the ferromagnetic spin-1 BECs in Example 3 computed by Bao–Lim’s method (‘+’: |φ1,g |, ‘o’: |φ0,g |; ‘*’: |φ−1,g |) and our method
based on SMA (solid line: ug (x); dash line: |φ1,g | = γ1ug ; dot line: |φ0,g | = γ0ug ; dash-dot line: |φ−1,g | = γ−1ug with γ j given in (3.9)). From (a) to (f):
M = 0,0.1,0.2,0.5,0.8,1.

Example 4. We consider an antiferromagnetic spin-1 condensate with βn = 0.0241N and βs = 0.00075N in (1.1), which
corresponds to χ = 0.02485N and ν = 0.02335N in the two-component reduction when M �= 0. The values of these param-
eters correspond to the experimental setup of 23Na confined in a cigar-shaped trapping potential with parameters used in
[24,25,29].

Similarly, we compare the ground states computed by these two methods in Fig. 9 and the ground state energies and
computing time (in seconds) for different magnetization 0 � M � 1 are listed in Table 3. We see that for a fixed magnetiza-
tion M �= 0, the two methods obtain the identical ground states with φ0,g(x) ≡ 0. In addition, the ground state energy is also
the same. However, Table 2 suggests that our method based on the two-component reduction is much faster than Bao–Lim’s
method [7] which solves a three-component system. Furthermore, even though our method solves a two-component GFDN,
its computing time is much less (between 10% and 50%) than that used by Bao–Lim’s method. We remark again that our
motivation here is to compare the speed of these two methods. For this purpose, we run the programs of both methods on
the same computer and their computing time might be reduced if an advanced computer is used.

The above one-dimensional examples have shown that our methods based on the ferromagnetic and antiferromagnetic
characterization are much faster than Bao–Lim’s method. For problems in 2D and 3D, the saving in the computational time
is much more apparent. For example, the computational time used by Bao–Lim’s method in 2D or 3D cases can different
from severals hours to days, but our methods usually take several minutes or hours.
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Fig. 9. Ground states of the antiferromagnetic spin-1 BECs in Example 4 computed by Bao–Lim’s method (‘+’: |φ1,g |, ‘o’: |φ0,g |; ‘*’: |φ−1,g |) and our method
based on the two-component reduction (solid line: |φ1,g | = |u1,g |; dot line: |φ0,g |; dash-dot line: |φ−1,g | = |u2,g |). From (a) to (f): M = 0,0.1,0.2,0.5,0.8,1.

4.3.2. Applications of our methods
In Section 4.3.1, we showed that our methods, based on the ferromagnetic or antiferromagnetic characterization of

spin-1 BECs, obtain the same ground states as those by Bao–Lim’s method [7]. However, the computing time consumed by
our methods is much less, which makes them more efficient in computing the ground states of spin-1 condensates when
B(x) = 0. In the following, we will apply our methods to study the ground states in different cases.

Example 5. We test the dependence of ground state energies on the interaction parameters βn and βs as well as on the
magnetization M . To do this, 1D spin-1 BECs with a harmonic external potential V 1(x) = x2/2 are considered. The compu-
tational domain is [−32,32] which is sufficiently large so that the truncation errors can be neglected. We choose the mesh
size and time step as 
x = 0.03125 and 
t = 0.001, respectively. Then we consider the following two cases:

Case I. Ferromagnetic system with βs < 0. Fig. 10 (top) shows the ground state energy with respect to different interaction
constants βn and βs and different magnetization M . It suggests that the energy monotonically increases with βn + βs in-
creasing, but it is independent of the magnetization M . Furthermore when βn + βs is large, the ground state energy of a
ferromagnetic spin-1 condensate can be approximated by the Thomas–Fermi energy of its SMA counterpart, i.e.,
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Table 3
Ground state energy and computing time (i.e., CPU time in seconds) by Bao–Lim’s method [7] and our method in Section 3.2 for antiferromagnetic conden-
sates with different magnetization 0 � M � 1.

M Bao–Lim’s method Our method

Energy E0(Φg ) Computing time (in seconds) Energy Etca(ug ) Computing time (in seconds)

0 15.2485 177.1892 15.2485 15.1419
0.1 15.2513 177.0494 15.2513 42.0558
0.2 15.2599 176.9190 15.2599 47.3362
0.3 15.2743 176.8998 15.2743 51.9579
0.4 15.2945 176.2563 15.2945 56.6422
0.5 15.3209 174.9268 15.3209 61.6046
0.6 15.3537 172.9923 15.3537 66.4197
0.7 15.3933 168.8066 15.3933 70.8586
0.8 15.4405 163.0863 15.4405 74.9606
0.9 15.4962 158.1879 15.4962 79.2583

Fig. 10. Energy versus the interaction constants βn and βs (left) and the magnetization M (right) in ferromagnetic (top) and antiferromagnetic (bottom)
spin-1 condensates.

E0,g ≈ ETF
sma,g = 3

10

(
3κγx

2

) 2
3

, (4.1)

where γx is the trapping frequency in x-direction and in this example, we use γx = 1.

Case II. Antiferromagnetic system with βs > 0. Fig. 10 (bottom) shows the ground state energy for different parameters βn ,
βs and M . Different from that in ferromagnetic cases, the ground state energy in an antiferromagnetic system depends on
the constants βn + βs , βn − βs and the magnetization M . For fixed βn ± βs , the ground state energy increases when the
magnitude of M , i.e., |M|, increases, and the energy reaches its minimizer at M = 0; see Fig. 10 (bottom, right).

Example 6. We apply our methods to study ground states of 2D spin-1 condensates. The following two types of external
potentials are considered: (i) harmonic potential V 2(x) = (γ 2

x x2 + γ 2
y y2)/2; (ii) isotropic harmonic potential plus an optical

lattice, i.e.,
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Fig. 11. Ground states of 2D ferromagnetic spin-1 BECs in Example 6 with a harmonic trap (top: γx = γy = 1 (left); γx = 1 and γy = 1.5 (right)) and a
harmonic plus optical lattice potential (bottom: κx = κy = π

2 (left); κx = π
2 and κy = π

3 (right)).

V 2(x) = 1

2

(
x2 + y2) + 10

[
sin2(κxx) + sin2(κy y)

]
, (4.2)

where κx, κy > 0 are two constants. Then we study the ground states of

Case I. Ferromagnetic system with βn = 560 and βs = −100 and M = 0.5.

Case II. Antiferromagnetic system with βn = 300, βs = 100 and M = 0.5.

Fig. 11 presents the density of ground states calculated from the single-mode reduction for ferromagnetic cases, and
the ground states of the corresponding spin-1 BECs can be obtained by using (3.6) and (3.9) with M = 0.5. Fig. 12 shows
the ground states of antiferromagnetic spin-1 condensates, where only |φ1,g | = |u1,g | and |φ−1,g | = |u2,g | are presented
since |φ0,g | ≡ 0 in this case. Numerical simulations show that our methods based on the single-mode and two-component
reduction are dramatically faster than the Bao–Lim’s method [7] in higher dimensional cases.

5. Conclusions

We proposed efficient and simpler numerical methods for computing ground states of spin-1 BEC with/without the
Ioffe–Pritchard magnetic field B(x). Noticing that there have been no numerical studies on the ground state of spin-1 BECs
with B(x) �= 0, we first introduced a numerical method for it. Then our methods were applied to study the ground states
in both 1D and 2D cases. Our numerical results suggested that when B(x) �= 0, the mF = ±1 components in the ground
states always have the same density functions, which implies that the stationary states with the magnetization M = 0 have
the minimum energy. In particular, if B(x) ≡ B �= 0 is a constant, the ground states satisfy the single-mode reduction given

in (3.6) with the constants γ±1 = 1
2 and γ0 =

√
2

2 exactly. We will leave its rigorous mathematical justifications for future
work.

On the other hand, when B(x) = 0, we took into account the ferromagnetic or antiferromagnetic characterizations of
the ground states [20], which results in efficient numerical methods for computing the ground state. In the ferromagnetic
cases, the ground state can be always described exactly by the single-mode approximation. While in the antiferromagnetic
systems, the situations can be classified into two types: (i) when M �= 0, the mF = 0 component becomes zero in the
ground states so that the spin-1 BECs can be characterized by a two-component reduction; (ii) if M = 0, the ground states
satisfy the SMA as in the ferromagnetic systems, but the constants are not unique. Considering these properties of the
ground states, we proposed numerical methods to compute the ground state of the reduced single-mode or two-component
systems. Then the ground states of the original spin-1 condensates can be obtained from those of the reduced systems.
Numerical results suggested that our methods give the same results as those by Bao–Lim’s method in [7,19]. However, the
computing time used by our methods is much shorter and the implementation is much easier and simpler. In addition, we
apply our methods to study the relation between the ground state energy and the interaction parameters βn , βs as well as
the magnetization M .
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Fig. 12. Ground states of 2D antiferromagnetic spin-1 BECs in Example 6 with a harmonic trap (top: γx = γy = 1 (a); γx = 1 and γy = 1.5 (b)) and a
harmonic plus optical lattice potential (bottom: κx = κy = π

2 (c); κx = π
2 and κy = π

3 (d)).
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