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COMPUTING GROUND STATES OF SPIN-1 BOSE–EINSTEIN
CONDENSATES BY THE NORMALIZED GRADIENT FLOW∗

WEIZHU BAO† AND FONG YIN LIM†

Abstract. In this paper, we propose an efficient and accurate numerical method for computing
the ground state of spin-1 Bose–Einstein condensates (BECs) by using the normalized gradient flow
or imaginary time method. The key idea is to find a third projection or normalization condition based
on the relation between the chemical potentials so that the three projection parameters used in the
projection step of the normalized gradient flow are uniquely determined by this condition as well as
the other two physical conditions given by the conservation of total mass and total magnetization.
This allows us to successfully extend the most popular and powerful normalized gradient flow or
imaginary time method for computing the ground state of a single-component BEC to compute the
ground state of spin-1 BECs. An efficient and accurate discretization scheme, the backward-forward
Euler sine-pseudospectral method, is proposed to discretize the normalized gradient flow. Extensive
numerical results on ground states of spin-1 BECs with ferromagnetic/antiferromagnetic interaction
and harmonic/optical lattice potential in one/three dimensions are reported to demonstrate the
efficiency of our new numerical method.
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1. Introduction. Research in low temperature dilute atomic quantum gases
remains active for more than ten years after the experimental realizations of Bose–
Einstein condensation (BEC) in alkali atomic gases in 1995 [2, 12, 19]. Extensive the-
oretical and experimental studies have been carried out to investigate various novel
phenomena of the condensates. In earlier BEC experiments, the atoms were confined
in a magnetic trap [2, 12, 19], in which the spin degrees of freedom are frozen. The
particles are described by a scalar model, and the wave function of the particles is gov-
erned by the Gross–Pitaevskii equation (GPE) within the mean-field approximation
[18, 21, 26]. In recent years, the experimental achievement of spin-1 and spin-2 con-
densates [11, 20, 24, 29, 31] offers new regimes to study various quantum phenomena
that are generally absent in a single-component condensate. The spinor condensate
is achieved experimentally when an optical trap, instead of a magnetic trap, is used
to provide equal confinement for all hyperfine states.

The theoretical studies of the spinor condensate have been carried out in several
papers since the achievement of it in experiments [22, 23, 25, 30]. In contrast to a
single-component condensate, a spin-F (F ∈ N) condensate is described by a general-
ized coupled GPE, which consists of 2F+1 equations, each governing one of the 2F+1
hyperfine states (mF = −F,−F + 1, . . . , F − 1, F ) within the mean-field approxima-
tion. For a spin-1 condensate, at a temperature much lower than the critical tempera-
ture Tc, the three-component wave functions Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t)
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are well described by the following coupled GPEs [30, 32, 33, 34, 17]:

i� ∂tψ1(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ0|2

)
+ (c0 − c2)|ψ−1|2

]
ψ1

+ c2 ψ̄−1 ψ
2
0 ,(1.1)

i� ∂tψ0(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ−1|2

)
+ c0|ψ0|2

]
ψ0

+ 2c2 ψ−1 ψ̄0 ψ1,(1.2)

i� ∂tψ−1(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ−1|2 + |ψ0|2

)
+ (c0 − c2)|ψ1|2

]
ψ−1

+ c2 ψ
2
0 ψ̄1.(1.3)

Here x = (x, y, z)T is the Cartesian coordinate vector, t is the time, � is the Planck
constant, m is the atomic mass, and V (x) is the external trapping potential. When
a harmonic trap potential is considered,

(1.4) V (x) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),

with ωx, ωy, and ωz being the trap frequencies in the x-, y-, and z-direction, respec-
tively. f̄ and Re(f) denote the conjugate and real part of the function f , respectively.

There are two atomic collision terms c0 = 4π�
2

3m (a0 + 2a2) and c2 = 4π�
2

3m (a2 − a0)
expressed in terms of the s-wave scattering lengths a0 and a2 for a scattering channel
of total hyperfine spin 0 (antiparallel spin collision) and spin 2 (parallel spin collision),
respectively. The usual mean-field interaction c0 is positive for repulsive interaction
and negative for attractive interaction. The spin-exchange interaction c2 is positive for
antiferromagnetic interaction and negative for ferromagnetic interaction. The wave
function is normalized according to

(1.5) ‖Ψ‖2 :=

∫
R3

|Ψ(x, t)|2 dx =

∫
R3

1∑
l=−1

|ψl(x, t)|2 dx :=

1∑
l=−1

‖ψl‖2 = N,

where N is the total number of particles in the condensate.
By introducing the dimensionless variables: t → t/ωm, with ωm = min{ωx, ωy, ωz},

x → x as, with as =
√

�

mωm
, and ψl →

√
Nψl/a

3/2
s (l = −1, 0, 1), we get the dimen-

sionless coupled GPEs from (1.1)–(1.3) as [33, 35, 10]:

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ0|2

)
+ (βn − βs)|ψ−1|2

]
ψ1

+βs ψ̄−1 ψ
2
0 ,(1.6)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ−1|2

)
+ βn|ψ0|2

]
ψ0

+ 2βs ψ−1 ψ̄0 ψ1,(1.7)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ−1|2 + |ψ0|2

)
+ (βn − βs)|ψ1|2

]
ψ−1

+βs ψ
2
0 ψ̄1,(1.8)

where βn = N c0
a3
s�ωm

= 4πN(a0+2a2)
3as

, βs = N c2
a3
s�ωm

= 4πN(a2−a0)
3as

, and V (x) = 1
2 (γ2

xx
2 +

γ2
yy

2 +γ2
zz

2), with γx = ωx

ωm
, γy =

ωy

ωm
, and γz = ωz

ωm
. Similar to those in a single-com-
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ponent BEC [27, 9, 3, 7], in a disk-shaped condensation, i.e., ωx ≈ ωy and ωz � ωx

(⇐⇒ γx = 1, γy ≈ 1, and γz � 1, with ωm = ωx), the three-dimensional (3D)
coupled GPEs (1.6)–(1.8) can be reduced to a 2D coupled GPE; and in a cigar-shaped
condensation, i.e., ωy � ωx and ωz � ωx (⇐⇒ γx = 1, γy � 1, and γz � 1, with
ωm = ωx), the 3D coupled GPE (1.6)–(1.8) can be reduced to a 1D coupled GPE.
Thus here we consider the dimensionless coupled GPEs in d-dimensions (d = 1, 2, 3):

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ0|2

)
+ (βn − βs)|ψ−1|2

]
ψ1

+βs ψ̄−1 ψ
2
0 ,(1.9)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ−1|2

)
+ βn|ψ0|2

]
ψ0

+ 2βs ψ−1 ψ̄0 ψ1,(1.10)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ−1|2 + |ψ0|2

)
+ (βn − βs)|ψ1|2

]
ψ−1

+βs ψ
2
0 ψ̄1.(1.11)

In the equations above, V (x) is a real-valued potential whose shape is determined by
the type of system under investigation, and βn ∝ N and βs ∝ N correspond to the
dimensionless mean-field (spin-independent) and spin-exchange interaction, respec-
tively. Three important invariants of (1.9)–(1.11) are the mass (or normalization) of
the wave function

(1.12)

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 :=

∫
Rd

1∑
l=−1

|ψl(x, t)|2 dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0,

the magnetization (with −1 ≤ M ≤ 1)

(1.13) M(Ψ(·, t)) :=

∫
Rd

[
|ψ1(x, t)|2 − |ψ−1(x, t)|2

]
dx ≡ M(Ψ(·, 0)) = M,

and the energy per particle

E(Ψ(·, t)) =

∫
Rd

{
1∑

l=−1

(
1

2
|∇ψl|2 + V (x)|ψl|2

)
+ (βn − βs)|ψ1|2|ψ−1|2

+
βn

2
|ψ0|4 +

βn + βs

2

[
|ψ1|4 + |ψ−1|4 + 2|ψ0|2

(
|ψ1|2 + |ψ−1|2

)]

+βs

(
ψ̄−1ψ

2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)}
dx ≡ E(Ψ(·, 0)), t ≥ 0.(1.14)

A fundamental problem in studying BEC is to find the condensate stationary
states Φ(x), in particular the ground state which is the lowest energy stationary
state. In other words, the ground state Φg(x) is obtained from the minimization of
the energy functional subject to the conservation of total mass and magnetization:

Find (Φg ∈ S) such that

(1.15) Eg := E (Φg) = min
Φ∈S

E (Φ) ,
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where the nonconvex set S is defined as

(1.16)

S =

{
Φ = (φ1, φ0, φ−1)

T | ‖Φ‖ = 1,

∫
Rd

[
|φ1(x)|2 − |φ−1(x)|2

]
= M, E(Φ) < ∞

}
.

This is a nonconvex minimization problem. When βn ≥ 0, βn ≥ |βs|, and
lim|x|→∞ V (x) = ∞, the existence of a minimizer of the nonconvex minimization
problem (1.15) follows from the standard theory [28]. For understanding the unique-
ness question, note that E(α · Φg) = E(Φg) for all α = (eiθ1 , eiθ0 , eiθ−1)T , with
θ1 + θ−1 = 2θ0. Thus additional constraints have to be introduced to show the
uniqueness.

As derived in [10], by defining the Lagrangian

(1.17)
L(Φ, μ, λ) := E(Φ) − μ

(
‖φ1‖2 + ‖φ0‖2 + ‖φ−1‖2 − 1

)
− λ

(
‖φ1‖2 − ‖φ−1‖2 −M

)
,

we get the Euler–Lagrange equations associated to the minimization problem (1.15):

(μ + λ) φ1(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ1|2 + |φ0|2

)
+ (βn − βs)|φ−1|2

]
φ1

+βs φ̄−1 φ
2
0 := H1 φ1,(1.18)

μ φ0(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ1|2 + |φ−1|2

)
+ βn|φ0|2

]
φ0

+ 2βs φ−1 φ̄0 φ1 := H0 φ0,(1.19)

(μ− λ) φ−1(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ−1|2 + |φ0|2

)
+ (βn − βs)|φ1|2

]
φ−1

+βs φ
2
0 φ̄1 := H−1 φ−1.(1.20)

Here μ and λ are the Lagrange multipliers (or chemical potentials) of the coupled
GPEs (1.9)–(1.11). In addition, (1.18)–(1.20) is also a nonlinear eigenvalue problem
with two constraints

‖Φ‖2 :=

∫
Rd

|Φ(x)|2 dx =

∫
Rd

1∑
l=−1

|φl(x)|2 dx :=

1∑
l=−1

‖φl‖2 = 1,(1.21)

‖φ1‖2 − ‖φ−1‖2 :=

∫
Rd

[
|φ1(x)|2 − |φ−1(x)|2

]
dx = M.(1.22)

In fact, the nonlinear eigenvalue problem (1.18)–(1.20) can also be obtained from the
coupled GPEs (1.9)–(1.11) by plugging in ψl(x, t) = e−iμltφl(x) (l = 1, 0,−1), with

(1.23) μ1 = μ + λ, μ0 = μ, μ−1 = μ− λ ⇐⇒ μ1 + μ−1 = 2μ0.

Thus it is also called time-independent coupled GPEs. In the literature, any eigen-
fucntion Φ of the nonlinear eigenvalue problem (1.18)–(1.20) under constraints (1.21)
and (1.22) whose energy is larger than the energy of the ground state is called an
excited state of the coupled GPEs (1.9)–(1.11).

Different numerical methods were proposed in the literature for computing the
ground state of a BEC [18, 16, 1, 6, 3, 5, 9, 10, 13, 15, 14, 4]. Among them, a widely
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used numerical method is the imaginary time method followed by an appropriate
discretization scheme [16, 6, 3] to evolve the resulting gradient flow equation under
normalization of the wave function, which is mathematically justified by using the
normalized gradient flow [6, 3]. However, it is not obvious that this most popular
and powerful normalized gradient flow (or imaginary time method) could be directly
extended to compute the ground state of a spin-1 BEC. The reason is that we have
only two normalization conditions (i.e., the two constraints: conservation of total mass
and magnetization) which are insufficient to determine the three projection constants
for the three components of the wave function used in the normalization step. In
the literature, the imaginary time method is still applied to compute the ground
state of a spin-1 BEC through the introduction of a random variable to choose the
three projection parameters in the projection step [33, 35]. Of course, this is not
a determinate and efficient way to compute the ground state of a spin-1 BEC due
to the choice of the random variable. Recently, Bao and Wang [10] have proposed
a continuous normalized gradient flow (CNGF) for computing the ground state of a
spin-1 BEC. The CNGF is discretized by the Crank–Nicolson finite difference method
with a proper and very special way to deal with the nonlinear terms, and thus the
discretization scheme can be proved to be mass- and magnetization-conservative and
energy-diminishing in the discretized level [10]. However, at each time step, a fully
nonlinear system must be solved which is a little tedious from a computational point of
view since the CNGF is an integral-differential equation (see details in (A.1)–(A.9))
which involves implicitly the Lagrange multipliers in the normalized gradient flow
evolution [10]. The aim of this paper is to introduce a third normalization condition
based on the relation between the chemical potentials of a spin-1 BEC, in addition to
the two existing normalization conditions given by the conservation of the total mass
and magnetization. Thus we can completely determine the three projection constants
used in the normalization step for the normalized gradient flow. This allows us to
develop the most popular and powerful normalized gradient flow or imaginary time
method to compute the ground state of a spin-1 BEC.

The paper is organized as follows. In section 2, the normalized gradient flow
is constructed by introducing the third projection or normalization condition for
computing the ground state of a spin-1 BEC. In section 3, the backward-forward
Euler sine-pseudospectral method (BESP) is presented to discretize the normalized
gradient flow. In section 4, ground states of a spin-1 BEC are reported with fer-
romagnetic/antiferromagnetic interaction and a harmonic/optical lattice potential in
one/three dimensions, respectively. Finally, some conclusions are drawn in section 5.

2. The normalized gradient flow. In this section, we will construct the nor-
malized gradient flow for computing the ground state of a spin-1 BEC by introducing
the third normalization condition.

Various algorithms for computing the minimizer of the nonconvex minimization
problem (1.15) have been studied in the literature. For instance, a CNGF and its dis-
cretization that preserve the total mass- and magnetization-conservation and energy-
diminishing properties were presented in [10]. Perhaps one of the most popular and
efficient techniques for dealing with the normalization constraints in (1.16) is through
the following construction: choose a time step k = Δt > 0, and denote time steps as
tn = n k for n = 0, 1, 2, . . . . To adapt an efficient algorithm for the solution of the
usual gradient flow to the minimization problem under constraints, it is natural to
consider the following splitting (or projection) scheme, which was widely used in the
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literature for computing the ground state of BECs:

∂tφ1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ0|2

)
− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ
2
0,(2.1)

∂tφ0(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ−1|2

)
− βn|φ0|2

]
φ0

− 2βs φ−1 φ̄0 φ1, x ∈ R
d, tn−1 ≤ t < tn, n ≥ 1,(2.2)

∂tφ−1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ−1|2 + |φ0|2

)
− (βn − βs)|φ1|2

]
φ−1

−βs φ
2
0 φ̄1,(2.3)

followed by a projection step as

φ1(x, tn) := φ1(x, t
+
n ) = σn

1 φ1(x, t
−
n ),(2.4)

φ0(x, tn) := φ0(x, t
+
n ) = σn

0 φ0(x, t
−
n ), x ∈ R

d, n ≥ 1,(2.5)

φ−1(x, tn) := φ−1(x, t
+
n ) = σn

−1 φ−1(x, t
−
n ),(2.6)

where φl(x, t
±
n ) = limt→t±n

φl(x, t) (l = −1, 0, 1) and σn
l (l = −1, 0, 1) are projection

constants, and they are chosen such that

(2.7) ‖Φ(·, tn)‖2 =

1∑
l=−1

‖φl(·, tn)‖2 = 1, ‖φ1(·, tn)‖2 − ‖φ−1(·, tn)‖2 = M.

In fact, the gradient flow (2.1)–(2.3) can be viewed as applying the steepest descent
method to the energy functional E(Φ) in (1.14) without constraints, and (2.4)–(2.6)
project the solution back to the unit sphere S in order to satisfy the constraints in
(1.16). In addition, (2.1)–(2.3) can also be obtained from the coupled GPEs (1.9)–
(1.11) by the change of variable t → −i t, which is why the algorithm is usually called
the imaginary time method in the literature [16, 6, 3].

By plugging (2.4)–(2.6) into (2.7), we obtain

1∑
l=−1

(σn
l )

2 ‖φl(·, t−n )‖2 = 1,(2.8)

(σn
1 )

2 ‖φ1(·, t−n )‖2 −
(
σn
−1

)2 ‖φ−1(·, t−n )‖2 = M.(2.9)

There are three unknowns and only two equations in the above nonlinear system,
so the solution is undetermined! In order to determine the projection constants σn

l

(l = −1, 0, 1), we need to find an additional equation. Based on the relation between
the chemical potentials in (1.23) and the continuous normalized gradient flow proposed
in [10] for computing the ground state of a spin-1 BEC (see details in Appendix A)
we propose to use the following equation as the third normalization condition:

(2.10) σn
1 σn

−1 = (σn
0 )

2
.

By solving the nonlinear system (2.8), (2.9), and (2.10) (see details in Appendix B),
we get explicitly the projection constants

(2.11)

σn
0 =

√
1 −M2[

‖φ0(·, t−n )‖2 +
√

4(1 −M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4

]1/2
,
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(2.12)

σn
1 =

√
1 + M − (σn

0 )2‖φ0(·, t−n )‖2

√
2 ‖φ1(·, t−n )‖

, σn
−1 =

√
1 −M − (σn

0 )2‖φ0(·, t−n )‖2

√
2 ‖φ−1(·, t−n )‖

.

From the numerical point of view, the gradient flow (2.1)–(2.3) can be solved via
traditional techniques, and the normalization of the gradient flow is simply achieved
by a projection at the end of each time step.

3. Backward-forward Euler sine-pseudospectral method. In this section,
we will present the BESP to discretize the normalized gradient flow (2.1)–(2.3), (2.4)–
(2.6), and (2.11)–(2.12).

Due to the trapping potential V (x) given by (1.4), the solution Φ(x, t) decays to
zero exponentially fast when |x| → ∞. Thus in practical computation, we truncate
the problem into a bounded computational domain Ωx (chosen as an interval (a, b) in
1D, a rectangle (a, b)× (c, d) in 2D, and a box (a, b)× (c, d)× (e, f) in 3D, with |a|, |c|,
|e|, b, d, and f sufficiently large) with homogeneous Dirichlet boundary conditions.

For simplicity of notation we introduce the method for the case of one spatial di-
mension (d = 1) defined over the interval (a, b) with homogeneous Dirichlet boundary
conditions. Generalization to higher dimensions is straightforward for tensor product
grids, and the results remain valid without modifications. For d = 1, we choose the
spatial mesh size h = Δx > 0, with h = (b− a)/L for L an even positive integer, and
let the grid points be

xj := a + j h, j = 0, 1, . . . , L.

Let Φn
j = (φn

1,j , φ
n
0,j , φ

n
−1,j)

T be the approximation of Φ(xj , tn) = (φ1(xj , tn), φ0(xj , tn),

φ−1(xj , tn))T and Φn be the solution vector with component Φn
j . In the discretiza-

tion, we use the sine-pseudospectral method for spatial derivatives and the backward-
forward Euler scheme for linear/nonlinear terms in time discretization. The gradient
flow (2.1)–(2.3) is discretized, for j = 1, 2, . . . , L− 1 and n ≥ 1, as

φ∗
1,j − φn−1

1,j

Δt
=

1

2
Ds

xxφ
∗
1|x=xj

− α1φ
∗
1,j + Gn−1

1,j ,(3.1)

φ∗
0,j − φn−1

0,j

Δt
=

1

2
Ds

xxφ
∗
0|x=xj − α0φ

∗
0,j + Gn−1

0,j ,(3.2)

φ∗
−1,j − φn−1

−1,j

Δt
=

1

2
Ds

xxφ
∗
−1|x=xj − α−1φ

∗
−1,j + Gn−1

−1,j ,(3.3)

where

Gn−1
1,j =

[
α1 − V (xj) −−(βn + βs)

(
|φn−1

1,j |2 + |φn−1
0,j |2

)
− (βn − βs)|φn−1

−1,j |2
]
φn−1

1,j

−βs φ̄
n−1
−1,j

(
φn−1

0,j

)2
,(3.4)

Gn−1
0,j =

[
α0 − V (xj) − (βn + βs)

(
|φn−1

1,j |2 + |φn−1
−1,j |2

)
− βn|φn−1

0,j |2
]
φn−1

0,j

− 2βs φ
n−1
−1,j φ̄

n−1
0,j φn−1

1,j ,(3.5)

Gn−1
−1,j =

[
α−1 − V (xj) − (βn + βs)

(
|φn−1

−1,j |2 + |φn−1
0,j |2

)
− (βn − βs)|φn−1

1,j |2
]
φn−1
−1,j

−βs

(
φn−1

0,j

)2
φ̄n−1

1,j .(3.6)
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Here Ds
xx, a pseudospectral differential operator approximation of ∂xx, is defined as

Ds
xxU |x=xj

= −
L−1∑
m=1

μ2
m(Û)m sin(μm(xj − a)), j = 1, 2, . . . , L− 1,

where (Û)m (m = 1, 2, . . . , L − 1), the sine transform coefficients of the vector U =
(U0, U1, . . . , UL)T satisfying U0 = UL = 0, are defined as

μm =
πm

b− a
, (Û)m =

2

L

L−1∑
j=1

Uj sin(μm(xj − a)), m = 1, 2, . . . , L− 1,

and αl (l = −1, 0, 1) are the stabilization parameters which are chosen in the “optimal”
form (such that the time step can be chosen as large as possible) as [5]

(3.7) α1 =
1

2

(
bmax
1 + bmin

1

)
, α0 =

1

2

(
bmax
0 + bmin

0

)
, α−1 =

1

2

(
bmax
−1 + bmin

−1

)
,

with

bmax
1 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

1,j |2 + |φn−1
0,j |2

)
+ (βn − βs)|φn−1

−1,j |2
]
,

bmin
1 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

1,j |2 + |φn−1
0,j |2

)
+ (βn − βs)|φn−1

−1,j |2
]
,

bmax
0 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

1,j |2 + |φn−1
−1,j |2

)
+ βn|φn−1

0,j |2
]
,

bmin
0 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

1,j |2 + |φn−1
−1,j |2

)
+ βn|φn−1

0,j |2
]
,

bmax
−1 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

−1,j |2 + |φn−1
0,j |2

)
+ (βn − βs)|φn−1

1,j |2
]
,

bmin
−1 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(
|φn−1

−1,j |2 + |φn−1
0,j |2

)
+ (βn − βs)|φn−1

1,j |2
]
.

The homogeneous Dirichlet boundary conditions are discretized as

(3.8) φ∗
1,0 = φ∗

1,L = φ∗
0,0 = φ∗

0,L = φ∗
−1,0 = φ∗

−1,L = 0.

The projection step (2.4)–(2.6) is discretized, for 0 ≤ j ≤ L and n ≥ 1, as

φn
1,j = σn

1 φ∗
1,j , φn

0,j = σn
0 φ∗

0,j , φn
−1,j = σn

−1 φ∗
−1,j ,(3.9)

where

(3.10) σn
0 =

√
1 −M2[

‖φ∗
0‖2 +

√
4(1 −M2)‖φ∗

1‖2‖φ∗
−1‖2 + M2‖φ∗

0‖4
]1/2 ,

(3.11) σn
1 =

√
1 + M − α2

0‖φ∗
0‖2

√
2 ‖φ∗

1‖
, σn

−1 =

√
1 −M − α2

0‖φ∗
0‖2

√
2 ‖φ∗

−1‖
,

with

‖φ∗
1‖2 = h

L−1∑
j=1

|φ∗
1,j |2, ‖φ∗

0‖2 = h

L−1∑
j=1

|φ∗
0,j |2, ‖φ∗

−1‖2 = h

L−1∑
j=1

|φ∗
−1,j |2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING GROUND STATES OF SPIN-1 BECs 1933

The initial data (A.10) are discretized as

φ0
l,j = φl(xj , 0), j = 0, 1, 2, . . . , L, l = −1, 0, 1.

The linear system (3.1)–(3.3) can be solved very efficiently by using the fast sine
transform. In fact, by taking the discrete sine transform at both sides, we get

1

Δt

[
(φ̂∗

1)m − (φ̂n−1
1 )m

]
= −

[
1

2
μ2
m + α1

]
(φ̂∗

1)m + (Ĝn−1
1 )m,(3.12)

1

Δt

[
(φ̂∗

0)m − (φ̂n−1
0 )m

]
= −

[
1

2
μ2
m + α0

]
(φ̂∗

0)m + (Ĝn−1
0 )m, 1 ≤ m < L,(3.13)

1

Δt

[
(φ̂∗

−1)m − (φ̂n−1
−1 )m

]
= −

[
1

2
μ2
m + α−1

]
(φ̂∗

−1)m + (Ĝn−1
−1 )m.(3.14)

By solving the above system in the phase space, we obtain

(φ̂∗
1)m =

1

1 + Δt [α1 + μ2
m/2]

[
(φ̂n−1

1 )m + (Ĝn−1
1 )m

]
,(3.15)

(φ̂∗
0)m =

1

1 + Δt [α0 + μ2
m/2]

[
(φ̂n−1

0 )m + (Ĝn−1
0 )m

]
, 1 ≤ m < L,(3.16)

(φ̂∗
−1)m =

1

1 + Δt [α−1 + μ2
m/2]

[
(φ̂n−1

−1 )m + (Ĝn−1
−1 )m

]
.(3.17)

Remark 3.1. The gradient flow (2.1)–(2.3) can also be discretized by using the
backward Euler finite difference method proposed in [6] or the backward Euler sine-
pseudospectral method proposed in [5] for computing the ground state of a one-
component BEC.

4. Numerical results. In this section, we first show that the ground states
computed by our new numerical method are independent of the choice of the initial
data in (A.10) and verify numerically the energy-diminishing property of the method.
Finally, we apply the method to compute the ground state of a spin-1 BEC with
different interactions and trapping potentials. In our computations, the ground state
is reached by using the numerical method (3.1)–(3.3) and (3.9)–(3.11) when ‖Φn+1

h −
Φn

h‖ ≤ ε := 10−7. In addition, in the ground state of a spin-1 BEC, we have M ↔
−M ⇐⇒ φ1 ↔ φ−1, and thus we present only results for 0 ≤ M ≤ 1.

4.1. Choice of initial data. In our tests, two typical physical experiments are
considered:

• Case I. With ferromagnetic interaction, e.g., 87Rb confined in a cigar-shaped
trapping potential with parameters: m = 1.443 × 10−25 [kg], a0 = 5.387
[nm], a2 = 5.313 [nm], ωx = 2π × 20 [Hz], and ωy = ωz = 2π × 400 [Hz].
This suggests to us to use dimensionless quantities in (1.9)–(1.11) for our

computations as: d = 1, V (x) = x2/2, βn ≈ 4π(a0+2a2)N
3as

√
ωyωz

2πωx
= 0.0885N ,

and βs ≈ 4π(a2−a0)N
3as

√
ωyωz

2πωx
= −0.00041N , with N the total number of atoms

in the condensate and the dimensionless length unit as =
√

�/mωx = 2.4116×
10−6 [m] and time unit ts = 1/ωx = 0.007958 [s].

• Case II. With antiferromagnetic interaction, e.g., 23Na confined in a cigar-
shaped trapping potential with parameters: m = 3.816 × 10−26 [kg], a0 =
2.646 [nm], a2 = 2.911 [nm], ωx = 2π×20 [Hz], and ωy = ωz = 2π×400 [Hz].
Again, this suggests to us to use the following dimensionless quantities in
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Fig. 1. Time evolution of N1 = ‖φ1(·, t)‖2 (left), N0 = ‖φ0(·, t)‖2 (middle), and N−1 =
‖φ−1(·, t)‖2 (right) by our method (2.4)–(2.6) for 87Rb in case I with M = 0.5 and N = 104 to
analyze the convergence of different initial data in (4.4) (solid line) and (4.1)–(4.3) with κ = 0.1
(dotted line), κ = 0.2 (dashed-dotted line), and κ = 0.4 (dashed line), respectively.

our computations: d = 1, V (x) = x2/2, βn ≈ 0.0241N , and βs ≈ 0.00075N
with the dimensionless length unit as = 4.6896 × 10−6 [m] and time unit
ts = 0.007958 [s].

We first test that the converged solution is independent of different choices of the
initial data in (A.10) and the energy-diminishing property of the normalized gradient
flow. In order to do so, we choose the initial data in (A.10) as

• Gaussian profiles satisfying the constraints in (1.16) initially, i.e.,

φ1(x, 0) =

√
0.5(1 + M − κ)

π1/4
e−x2/2,(4.1)

φ0(x, 0) =

√
κ

π1/4
e−x2/2, −∞ < x < ∞,(4.2)

φ−1(x, 0) =

√
0.5(1 −M − κ)

π1/4
e−x2/2,(4.3)

where κ is a constant satisfying 0 < κ < 1 − |M |;
• unnormalized Gaussian profiles, i.e.,

(4.4) φ1(x, 0) = φ0(x, 0) = φ−1(x, 0) = e−x2/2, −∞ < x < ∞.

We solve the problem (1.15) by our method on [−16, 16] with time step Δt = 0.005
and mesh size h = 1/64 for different values of κ in (4.1)–(4.3). Figure 1 plots the
time evolution of Nl(t) := ‖φl(·, t)‖2 (l = 1, 0,−1) for 87Rb in case I with M = 0.5
and N = 104 for different choices of the initial data in (4.4) and (4.1)–(4.3), and
Figure 2 shows similar results for 23Na in case II. In addition, Figure 3 depicts the
time evolution of the energy for the two cases with M = 0.5 and N = 104 for different
choices of the initial data in (4.4).

From Figures 1 and 2, we can see that the converged ground states are independent
of the choice of initial data. In fact, based on our extensive numerical experiments
on other types of initial data (not shown here for brevity), our numerical method
always gives the ground state if all three components in the initial data are chosen
as nonnegative functions. In addition, Figure 3 demonstrates the energy-diminishing
property of the normalized gradient flow and its full discretization when time step Δt
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Fig. 2. Time evolution of N1 = ‖φ1(·, t)‖2 (left), N0 = ‖φ0(·, t)‖2 (middle), and N−1 =
‖φ−1(·, t)‖2 (right) by our method (2.4)–(2.6) for 23Na in case II with M = 0.5 and N = 104 to
analyze the convergence of different initial data in (4.4) (solid line) and (4.1)–(4.3) with κ = 0.1
(dotted line), κ = 0.2 (dashed-dotted line), and κ = 0.4 (dashed line), respectively.
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Fig. 3. Time evolution of the energy by our method (2.4)–(2.6) with M = 0.5 and N = 104

for (a) 87Rb in case I and (b) 23Na in case II with different initial data in (4.4) (solid line) and
(4.1)–(4.3) with κ = 0.1 (dotted line), κ = 0.2 (dashed-dotted line), and κ = 0.4 (dashed line),
respectively.

is small. Based on our numerical experiments, for 0 ≤ M ≤ 1, we suggest the initial
data in (A.10) be chosen as: (i) with ferromagnetic interaction, i.e., βs ≤ 0,

φ1(x) =
1

2

√
1 + 3Mφap

g (x), φ0(x) =

√
1 −M

2
φap
g (x), φ1(x) =

1

2

√
1 −Mφap

g (x);

and (ii) with antiferromagnetic interaction, i.e., βs > 0,

φ1(x) =

√
1 + M

2
φap
g (x), φ0(x) = 0, φ1(x) =

√
1 −M

2
φap
g (x),

where φap
g (x) can be chosen as the approximate ground state solution of a single-

component BEC, e.g., the harmonic oscillator approximation when βn is small and
the Thomas–Fermi approximation when βn � 1 [6, 9, 8]. Based on these choices of
initial data, we report the ground states computed by our numerical method.

Figure 4 shows the ground state solutions of 87Rb in case I with N = 104 for
different magnetizations M , and Table 1 lists the corresponding ground state energies
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Fig. 4. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line), and
φ−1(x) (dotted line), of 87Rb in case I with a fixed number of particles N = 104 for different
magnetizations M = 0, 0.2, 0.5, 0.9.

Table 1

Ground state energy E and their chemical potentials μ and λ for 87Rb in case I with N = 104

for different magnetizations M .

M E μ λ(×10−5)
0 36.1365 60.2139 0

0.1 36.1365 60.2139 1.574
0.2 36.1365 60.2139 1.621
0.3 36.1365 60.2139 1.702
0.4 36.1365 60.2139 1.827
0.5 36.1365 60.2139 2.014
0.6 36.1365 60.2139 2.218
0.7 36.1365 60.2139 2.062
0.8 36.1365 60.2139 2.081
0.9 36.1365 60.2139 2.521

and their Lagrange multipliers (see their detailed formulation in Appendix C). In
addition, Figure 5 shows similar ground state solutions with M = 0.5 for different
particle numbers N .

Similarly, Figure 6 shows the ground state solutions of 23Na in case II with N =
104 for different magnetizations M , and Table 2 lists the corresponding ground state
energies and their Lagrange multipliers. In addition, Figure 7 shows similar ground
state solutions with M = 0.5 for different particle numbers N .
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Fig. 5. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line), and
φ−1(x) (dotted line), of 87Rb in case I with magnetization M = 0.5 for different numbers of parti-
cles N .

Figure 8 plots the mass of the three components in the spin-1 BEC ground states
with N = 104 for different magnetizations M , and Figure 9 depicts the energy and
chemical potentials with M = 0.5 for different particle numbers N .

From Figures 4–6 as well as Tables 1–2, we can draw the following conclusions: (i)
For ferromagnetic interaction in the spin-1 BEC, i.e., βs ≤ 0, the three components
in the ground state solutions are all positive functions (cf. Figures 4 and 5), while
for antiferromagnetic interaction, i.e., βs ≥ 0, φ1 and φ−1 are positive functions and
φ0 ≡ 0 (cf. Figures 6 and 7). (ii) For ferromagnetic interaction in the spin-1 BEC, i.e.,
βs ≤ 0, for a fixed number of particles N in the condensate, when the magnetization
M increases from 0 to 1, the mass N1 increases from 0.25 to 1, the mass N−1 decreases
from 0.25 to 0, and the mass N0 decreases from 0.5 to 0 (cf. Figure 9(a)), while for
antiferromagnetic interaction, i.e., βs ≥ 0, N1 increases from 0.5 to 1, N−1 decreases
from 0.5 to 0, and N0 = 0 (cf. Figure 9(b)). (iii) For ferromagnetic interaction in
the spin-1 BEC, i.e., βs ≤ 0, for a fixed number of particles N in the condensate,
the energy and chemical potentials are independent of the magnetization (cf. Table
1; see [32] for detailed physical reasons), while for antiferromagnetic interaction, i.e.,
βs ≥ 0, when the magnetization M increases from 0 to 1, the energy E increases, the
main chemical potential μ decreases, and the second chemical potential λ increases
(cf. Table 2). In both cases, for fixed magnetization M , when the number of parti-
cles N increases, the energy and chemical potentials increase (cf. Figure 8). These
observations agree with those obtained in [10] and [33] by different numerical methods.
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Fig. 6. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line), and
φ−1(x) (dotted line), of 23Na in case II with a fixed number of particles N = 104 for different
magnetizations M = 0, 0.2, 0.5, 0.9.

Table 2

Ground state energy E and their chemical potentials μ and λ for 23Na in case II with N = 104

for different magnetizations M .

M E μ λ
0 15.2485 25.3857 0

0.1 15.2514 25.3847 0.0569
0.2 15.2599 25.3815 0.1142
0.3 15.2743 25.3762 0.1725
0.4 15.2945 25.3682 0.2325
0.5 15.3209 25.3572 0.2950
0.6 15.3537 25.3423 0.3611
0.7 15.3933 25.3220 0.4326
0.8 15.4405 25.2939 0.5121
0.9 15.4962 25.2527 0.6049

4.2. Application in 1D with optical lattice potential. In this subsection,
our method is applied to compute the ground state of a spin-1 BEC in one dimension
(1D) with an optical lattice potential. Again, two different kinds of interaction are
considered:

• Case I. For 87Rb with dimensionless quantities in (1.9)–(1.11) used as: d = 1,
V (x) = x2/2+25 sin2

(
πx
4

)
, βn = 0.0885N , and βs = −0.00041N , with N the

total number of atoms in the condensate and the dimensionless length unit
as = 2.4116 × 10−6 [m] and time unit ts = 0.007958 [s].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING GROUND STATES OF SPIN-1 BECs 1939

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6
N=102

φ
1

φ
0

φ
−1

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6
N=103

−10 −5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6
N=104

x
−20 −10 0 10 20

0

0.1

0.2

0.3

0.4

0.5

0.6
N=105

x

Fig. 7. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line), and
φ−1(x) (dotted line), of 23Na in case II with magnetization M = 0.5 for different numbers of
particles N .

• Case II. For 23Na with dimensionless quantities in (1.9)–(1.11) used as: d = 1,
V (x) = x2/2 + 25 sin2

(
πx
4

)
, βn = 0.0241N , and βs = 0.00075N , with N the

total number of atoms in the condensate and the dimensionless length unit
as = 4.6896 × 10−6 [m] and time unit ts = 0.007958 [s].

Figure 10 shows the ground state solutions of 87Rb in case I with N = 104 for
different magnetizations M , and Table 3 lists the corresponding ground state energies
and their Lagrange multipliers. Figure 11 and Table 4 show similar results for 23Na
in case II.

From Figures 10 and 11 and Tables 3 and 4, it can be seen that our method can
be used in computing the ground state of a spin-1 BEC with general potential. In
addition to that, similar conclusions as those in the end of the previous subsection
can also be observed in this case.

4.3. Applications in 3D with optical lattice potential. In this subsection,
our method is applied to compute the ground state of a spin-1 BEC in three dimensions
(3D) with an optical lattice potential. Again, two different kinds of interaction are
considered:

• Case I. For 87Rb with dimensionless quantities in (1.9)–(1.11) used as: d =
3, V (x) = 1

2

(
x2 + y2 + z2

)
+ 100

[
sin2

(
πx
2

)
+ sin2

(
πy
2

)
+ sin2

(
πz
2

)]
, βn =

0.0880N , and βs = −0.00041N , with N the total number of atoms in the con-
densate and the dimensionless length unit as =

√
�/mωx = 7.6262×10−7 [m]
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Fig. 8. Mass of the three components of the ground state, i.e., Nl = ‖φl‖2 (l = 1, 0,−1), of a
spin-1 BEC with a fixed number of particles N = 104 for different magnetizations 0 ≤ M < 1. (a)
For 87Rb in case I and (b) for 23Na in case II.
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Fig. 9. Energy E and chemical potentials μ and λ of a spin-1 BEC with fixed magnetization
M = 0.5 for different numbers of particles N . (a) For 87Rb in case I and (b) for 23Na in case II.

and time unit ts = 1/ωx = 7.9577 × 10−4 [s] (corresponding to physical
trapping frequencies ωx = ωy = ωz = 2π × 200 [Hz]).

• Case II. For 23Na with dimensionless quantities in (1.9)–(1.11) used as: d =
3, V (x) = 1

2

(
x2 + y2 + z2

)
+ 100

[
sin2

(
πx
2

)
+ sin2

(
πy
2

)
+ sin2

(
πz
2

)]
, βn =

0.0239N , and βs = 0.00075N , with N the total number of atoms in the
condensate and the dimensionless length unit as = 1.4830 × 10−6 [m] and
time unit ts = 7.9577×10−4 [s](corresponding to physical trapping frequencies
ωx = ωy = ωz = 2π × 200 [Hz]).

Figure 12 shows the ground state solutions with N = 104 and M = 0.5 for the
two cases.

From Figure 12, we can see that our method can be used to compute the ground
state of a spin-1 BEC in 3D with general trapping potential.
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Fig. 10. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line),
and φ−1(x) (dotted line), of 87Rb in case I with a fixed number of particles N = 104 for different
magnetizations M = 0, 0.2, 0.5, 0.9 in an optical lattice potential.

Table 3

Ground state energy E and their chemical potentials μ and λ for 87Rb in case I with N = 104

for different magnetizations M in an optical lattice potential.

M E μ λ(×10−4)
0 47.6944 73.0199 0

0.1 47.6944 73.0199 0.711
0.2 47.6944 73.0199 0.788
0.3 47.6944 73.0199 0.859
0.4 47.6944 73.0199 0.948
0.5 47.6944 73.0199 1.072
0.6 47.6944 73.0199 1.178
0.7 47.6944 73.0199 1.164
0.8 47.6944 73.0199 1.200
0.9 47.6944 73.0199 1.477

5. Conclusions. We have proposed an efficient and accurate normalized gra-
dient flow or imaginary time method to compute the ground state of spin-1 Bose–
Einstein condensates by introducing a third normalization condition, in addition to
the conservation of total particle number and the conservation of total magnetization.
The condition is derived from the relation between the chemical potentials of the three
spinor components together with a splitting scheme applied to the continuous nor-
malized gradient flows proposed to compute the ground state of a spin-1 BEC. The
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Fig. 11. Wave functions of the ground state, i.e., φ1(x) (dashed line), φ0(x) (solid line), and
φ−1(x) (dotted line), of 23Na in case II with N = 104 for different magnetizations M = 0, 0.2, 0.5, 0.9
in an optical lattice potential.

Table 4

Ground state energy E and their chemical potentials μ and λ for 23Na in case II with N = 104

for different magnetizations M in an optical lattice potential.

M E μ λ
0 25.6480 37.4489 0

0.1 25.6509 37.4476 0.0593
0.2 25.6597 37.4400 0.1197
0.3 25.6753 37.4248 0.1931
0.4 25.6983 37.4025 0.2687
0.5 25.7291 37.3775 0.3458
0.6 25.7676 37.3492 0.4252
0.7 25.8144 37.3167 0.5079
0.8 25.8696 37.2305 0.6920
0.9 25.9340 37.2305 0.6920

backward-forward sine-pseudospectral method is applied to discretize the normalized
gradient flow for practical computation. The ground state solutions and fraction of
each component are reported for both ferromagnetic and antiferromagnetic interac-
tion cases. The energy and chemical potentials of the condensate are also reported.
In addition, the method may be further extended to other spinor condensates with a
higher degree of freedom as well as spinor condensates in the presence of an external
magnetic field, which will be our future study.
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Fig. 12. Contour plots for the wave functions of the ground state, i.e., φ1(x, y, 0) (top row),
φ0(x, y, 0) (middle row), and φ−1(x, y, 0) (bottom row) with N = 104 and M = 0.5 in an optical
lattice potential. Left column: For 87Rb in case I and right column: for 23Na in case II.

Finally, based on our extensive numerical experiments and results, we conjecture
that when βn ≥ 0, βn ≥ |βs|, and V (x) ≥ 0 satisfying lim|x|→∞ V (x) → ∞, there
exists a minimizer of the nonconvex minimization problem (1.15). In addition, when
βs < 0, the positive minimizer (the three components are positive function) is unique;
when βs > 0, the nonnegative minimizer (φ1 and φ−1 are positive and φ0 ≡ 0) is
unique. Rigorous mathematical justifications are ongoing.
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Appendix A. Derivation of the third projection equation (2.10).
In order to find the third projection or normalization equation used in the pro-

jection step of the normalized gradient flow, we first review the CNGF constructed in
[10] for computing the ground state of a spin-1 BEC in (1.15):

∂tφ1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ0|2

)
− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ
2
0 + [μΦ(t) + λΦ(t)]φ1,(A.1)

∂tφ0(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ−1|2

)
− βn|φ0|2

]
φ0

− 2βs φ−1 φ̄0 φ1 + μΦ(t) φ0,(A.2)

∂tφ−1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ−1|2 + |φ0|2

)
− (βn − βs)|φ1|2

]
φ−1

−βs φ
2
0 φ̄1 + [μΦ(t) − λΦ(t)]φ−1.(A.3)

μΦ(t) and λΦ(t) are chosen such that the above CNGF is mass- (or normalization-)
and magnetization-conservative, and they are given as [10]

(A.4) μΦ(t) =
RΦ(t)DΦ(t) −MΦ(t)FΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

, λΦ(t) =
NΦ(t)FΦ(t) −MΦ(t)DΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

,

with

NΦ(t) =

∫
Rd

[
|φ−1(x, t)|2 + |φ0(x, t)|2 + |φ1(x, t)|2

]
dx,(A.5)

MΦ(t) =

∫
Rd

[
|φ1(x, t)|2 − |φ−1(x, t)|2

]
dx,(A.6)

RΦ(t) =

∫
Rd

[
|φ1(x, t)|2 + |φ−1(x, t)|2

]
dx,(A.7)

DΦ(t) =

∫
Rd

{
1∑

l=−1

(
1

2
|∇φl|2 + V (x)|φl|2

)
+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+ (βn + βs)
[
|φ1|4 + |φ−1|4 + 2|φ0|2

(
|φ1|2 + |φ−1|2

)]

+ 2βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx,(A.8)

FΦ(t) =

∫
Rd

{
1

2

(
|∇φ1|2 − |∇φ−1|2

)
+ V (x)

(
|φ1|2 − |φ−1|2

)
+ (βn + βs)

[
|φ1|4 − |φ−1|4 + |φ0|2

(
|φ1|2 − |φ−1|2

)]}
dx.(A.9)

For the above CNGF, for any given initial data

(A.10) Φ(x, 0) = (φ1(x, 0), φ0(x, 0), φ−1(x, 0))T := Φ(0)(x), x ∈ R
d,

satisfying

(A.11) NΦ(t = 0) := NΦ(0) = 1, MΦ(t = 0) := MΦ(0) = M,
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it was proven that the total mass and magnetization are conservative and the energy
is diminishing [10], i.e.,

NΦ(t) ≡ 1, MΦ(t) ≡ M, E (Φ(·, t)) ≤ E (Φ(·, s)) for any t ≥ s ≥ 0.

The normalized gradient flow (2.1)–(2.6) can be viewed as applying a time-
splitting scheme to the CNGF (A.1)–(A.3), and the projection step (2.4)–(2.6) is
equivalent to solving the following nonlinear ordinary differential equations (ODEs):

∂tφ1(x, t) = [μΦ(t) + λΦ(t)]φ1,(A.12)

∂tφ0(x, t) = μΦ(t) φ0, tn−1 ≤ t ≤ tn, n ≥ 1,(A.13)

∂tφ−1(x, t) = [μΦ(t) − λΦ(t)]φ−1.(A.14)

The solution of the above ODEs can be expressed as

φ1(x, tn) = exp

(∫ tn

tn−1

[μΦ(τ) + λΦ(τ)] dτ

)
φ1(x, tn−1),(A.15)

φ0(x, tn) = exp

(∫ tn

tn−1

μΦ(τ) dτ

)
φ0(x, tn−1),(A.16)

φ−1(x, tn) = exp

(∫ tn

tn−1

[μΦ(τ) − λΦ(τ)] dτ

)
φ−1(x, tn−1).(A.17)

This solution suggests the following relation between the coefficients:

exp

(∫ tn

tn−1

[μΦ(τ) + λΦ(τ)] dτ

)
exp

(∫ tn

tn−1

[μΦ(τ) − λΦ(τ)] dτ

)

= exp

(∫ tn

tn−1

2μΦ(τ) dτ

)
=

[
exp

(∫ tn

tn−1

μΦ(τ) dτ

)]2

.(A.18)

This immediately suggests to us to propose the third normalization equation (2.10)
to determine the projection parameters. In fact, (2.10) can be also obtained from the
relation between the chemical potentials in (1.23) by physical intuitions.

Appendix B. Derivation of the projection parameters in (2.11)–(2.12).
By summing (2.11) and (2.12), we get

(B.1) 2(σn
1 )2‖φ1(·, t−n )‖2 = 1 + M − (σn

0 )2‖φ0(·, t−n )‖2.

This immediately implies that

(B.2) σn
1 =

√
1 + M − (σn

0 )2‖φ0(·, t−n )‖2

√
2 ‖φ1(·, t−n )‖

.

By subtracting (2.12) from (2.11), we obtain

(B.3) 2(σn
−1)

2‖φ−1(·, t−n )‖2 = 1 −M − (σn
0 )2‖φ0(·, t−n )‖2.

Again, this immediately implies that

(B.4) σn
−1 =

√
1 −M − (σn

0 )2‖φ0(·, t−n )‖2

√
2 ‖φ−1(·, t−n )‖

.
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By multiplying (B.2) and (B.4) and noticing (2.10), we get[
1 + M − (σn

0 )2‖φ0(·, t−n )‖2
] [

1 −M − (σn
0 )2‖φ0(·, t−n )‖2

]
= 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2 (σn

0 )4.(B.5)

By simplifying the above equation, we obtain[
‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2

]
(σn

0 )4 − 2‖φ0(·, t−n )‖2 (σn
0 )2

+ (1 −M2) = 0.(B.6)

By solving the above equation and noticing (σn
0 )2 ‖φ0(·, t−n )‖2 ≤ (1 −M2), we get

(σn
0 )2 =

‖φ0(·, t−n )‖2 −
√

4(1 −M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4

‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2

=
1 −M2

‖φ0(·, t−n )‖2 +
√

4(1 −M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4

.(B.7)

Thus immediately implies the solution in (2.11).

Appendix C. Computing the chemical potentials μ and λ.
After we get the ground state Φ numerically, the energy of the ground state

can be computed from the discretization of (1.14) immediately. In order to compute
the chemical potentials numerically, different formulations can be applied. Here we
propose one of the most reliable ways to compute them. By multiplying both sides of
(1.18) by φ̄1 and integrating over R

d, we get

(C.1) (μ + λ)‖φ1‖2 =

∫
Rd

φ̄1 H1φ1 dx := (φ1, H1φ1).

Similarly, by taking the same procedure to (1.19) and (1.20) by multiplying φ̄0 and
φ̄−1, respectively, we obtain

μ‖φ0‖2 =

∫
Rd

φ̄0 H0φ0 dx := (φ0, H0φ0),(C.2)

(μ− λ)‖φ−1‖2 =

∫
Rd

φ̄−1 H−1φ−1 dx := (φ−1, H−1φ−1).(C.3)

By summing (C.1), (C.2), and (C.3) and noticing that the ground state Φ satisfies
the constraints (1.16), we get

(C.4) μ + M λ = (φ1, H1φ1) + (φ0, H0φ0) + (φ−1, H−1φ−1).

By subtracting (C.3) from (C.1), we get

(C.5) M μ +
(
‖φ1‖2 + ‖φ−1‖2

)
λ = (φ1, H1φ1) − (φ−1, H−1φ−1).

By solving the linear system (C.4) and (C.5) for the chemical potentials μ and λ as
unknowns and integrating by parts to the right-hand sides, we have

(C.6) μ =

(
‖φ1‖2 + ‖φ−1‖2

)
D(Φ) −M F (Φ)

‖φ1‖2 + ‖φ−1‖2 −M2
, λ =

F (Φ) −M D(Φ)

‖φ1‖2 + ‖φ−1‖2 −M2
,
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where

D(Φ) =

∫
Rd

{
1∑

l=−1

(
1

2
|∇φl|2 + V (x)|φl|2

)
+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+ (βn + βs)
[
|φ1|4 + |φ−1|4 + 2|φ0|2

(
|φ1|2 + |φ−1|2

)]

+ 2βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx,(C.7)

F (Φ) =

∫
Rd

{
1

2

(
|∇φ1|2 − |∇φ−1|2

)
+ V (x)

(
|φ1|2 − |φ−1|2

)
+ (βn + βs)

[
|φ1|4 − |φ−1|4 + |φ0|2

(
|φ1|2 − |φ−1|2

)]}
dx.(C.8)

Thus the chemical potentials μ and λ can be computed numerically from the dis-
cretization of (C.6), (C.7), and (C.8).
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