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We propose a sharp-interface continuummodel based on a thermodynamic variational approach to investigate
the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong sur-
face energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the
widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate.
We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution
model to demonstrate that all such shapes are dynamically accessible.

© 2016 Elsevier Ltd. All rights reserved.
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Solid-state dewetting is a ubiquitous phenomenon in thin film tech-
nology [1–5] which can either be deleterious, destabilizing a thin film
structure, or advantageous, leading to the controlled formation of an
array of nanoscale particles, e.g., used in sensor devices [6] and as cata-
lysts for the growth of carbon or semiconductor nanowires [7,8]. Re-
cently, solid-state dewetting has been attracting increased attention
both because of interest in the underlying pattern formation physics
and its potential application as an economical approach to obtain nano-
structured surfaces and nanodevices [9–18].

The dewetting of thin solid films deposited on substrates is similar
to the dewetting of liquid films [19,20]. However, mass transport during
solid-state dewetting is usually dominated by surface diffusion rather
than fluid dynamics. Solid-state dewetting can be modeled as interface-
tracking problem where morphology evolution is governed by surface
diffusion and contact line migration [17,18]. In early studies, a number
of simplifying assumptions were made in order to keep the analysis
tractable. For example, under the assumption that all interface energies
are isotropic, Srolovitz and Safran [9] proposed a sharp-interface model
to analyze hole growth; based on the above model. Wong et al. [10,11]
designed a “marker particle” numerical scheme to study the two-
dimensional retraction of an island and a perturbed cylindrical wire on
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a substrate. Recently, Jiang et al. [17] solved a similar problem using a
phase field approach that naturally captures the topological events that
occur during evolution and is applicable in any number of dimensions.

However, many experiments have demonstrated that the morpholo-
gy evolution that occurs during thin solid film dewetting is strongly
affected by crystalline anisotropy [3]. Recent approaches that incorporate
crystalline anisotropy have included a discrete model [12], a kinetic
Monte Carlo method [13,14] and the crystalline method [15,16]. The
main drawback of these approaches is that the evolution does not
account for the full anisotropic free energy of the system or do not
represent a completely mathematical description. To overcome these
shortcomings, we [18] proposed a continuum model for simulating
morphology evolution during solid-state dewetting forweakly anisotrop-
ic surface energies. But it is not straightforward to extend this approach to
the strongly anisotropic case, and themajor difficulty comes from how to
understand the thermodynamic variation including contact line
migration. In this letter, we extend this dynamical evolution continuum
model to include the common case where the anisotropy is strong and
its influence on solid-state dewetting morphologies is pronounced.

We note at the outset, that althoughwe apply this dynamical evolu-
tion model to the simulation of morphology evolution during the solid-
state dewetting of thin films, it also naturally provides a much more
general solution to the problem of how to determine the equilibrium
shape of a crystalline island on a substrate than is currently available.
This is a problem of long-standing in the materials science and applied
mathematics communities; receiving important attentions from many
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researchers over more than one hundred years [21–27]. This problem
can be stated as follows: determine the island shape that minimizes
the total interface energy,

min
Ω

W1 ¼
Z
Γ

γ θð Þ dΓþ γFS−γVSð Þ xrc−xlc
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Substrate Energy

; ð1Þ

where Ω denotes the region occupied by the island, the volume of the
island is conserved, i.e., |Ω | = constant, Γ represents the film (or is-
land)/vapor interface, and the right and left contact points are
xc
r and xc

l (these are points/lines where the vapor, film and substrate co-
exist), and γFV, γFS and γVS are, respectively, the surface energy densities
of the film/vapor, film/substrate and vapor/substrate interfaces. We as-
sume that the film/vapor interface energy (density) γFV is a function
only of the interface normal, i.e., γFV=γ(θ), θ∈ [−π,π] represents the
local orientation of the outer normal to the film/vapor interface, and
γFS and γVS are independent constants. The solution to problem (1)
yields an equilibrium shape with minimal interface/surface energy of
prescribed area (or volume).

As is well known, if the island is free-standing (i.e., not in contact
with the substrate), the equilibrium shape is given by the classical
Wulff construction [21–24]. If, on the other hand, the island is in contact
with a flat, rigid substrate, the equilibrium shape is classically described
using the Winterbottom construction [25,26]. However, when the sur-
face energy anisotropy is strong, the Wulff envelope may include
“ears”; cutting off the “ears” gives the equilibrium shape [23,28]. In
the case of an island on a substrate, however, the existence of “ears” in
the Wulff envelope can give rise to multiple stable (or metastable)
shapes. As we demonstrate below, the existence of such additional
states has a profound effect on morphology evolution; giving rise to
stable morphologies never seen on the basis of the widely accepted
and applied Winterbottom construction. Incorporation of such non-
Winterbottom effects is essential in describing observed island mor-
phologies that arise during kinetic phenomena such as the solid-state
dewetting process discussed here.

We first derive the dynamical evolutionmodel directly from the free
energy, including the effect of strong interface energy anisotropy. The
total free energy of the system for solid-state dewetting problems
under strongly anisotropic conditions can be written in two parts:
W=W1+W2, where the first term W1 was defined in Eq. (1) (also
see Ref. [18]). When the surface energy anisotropy is sufficiently large,
the surface diffusion evolution equations become ill-posed. To address
this issue, we add a regularization term W2 (i.e., a Willmore energy
regularization) into the system [29–32]:

W2 ¼ ε2

2

Z
Γ

κ2 dΓ; ð2Þ

where ε is a small regularization parameter and κ denotes the curvature
of the film/vapor interface, Γ.

We calculate the first variation of the energy functional W with re-
spect to the interface shape Γ and the left and right moving contact
points, xcl and xc

r [33]. Then, following a procedure similar to that in
the weakly anisotropic case [18], we find that the two-dimensional
solid-state dewetting of a thin film with strongly anisotropic surface
energies on a flat solid substrate can be described in the following
dimensionless form in a sharp-interface model (see Supplemental
Material for more details):

∂X
∂t

¼ Vnn ¼ ∂2μ
∂s2

n; ð3Þ

μ ¼ γ θð Þ þ γ00 θð Þð Þκ � ε2
∂2κ
∂s2

þ κ3

2

 !
; ð4Þ
where Γ=X(s, t)=(x(s, t),y(s,t)) represents the moving film/vapor in-
terface, s is the arc length or distance along the interface and t is the
time, Vn is the velocity of the interface in the direction of its outward
normal, n is the interface outer unit normal direction and μ denotes
the chemical potential. Note that all lengths and interface energies are
scaled by two constants R0 and γ0, chosen as described below. The
governing Eqs. (3)–(4) are subject to the following dimensionless
boundary conditions:

(I) Contact point condition (BC1)

y 0; tð Þ ¼ 0; y L; tð Þ ¼ 0; ð5Þ

where L=L(t) denotes the total length of the interface at time t, and
therefore we can use s = 0 and s = L to represent the left and right
contact points (xcl and xc

r).

(II) Relaxed contact angle condition (BC2)

dxlc
dt

¼ η f ε θld
� �

;
dxrc
dt

¼ −η f ε θrd
� �

; ð6Þ

where θdl (or θdr) is the (dynamical) contact angle at the left (or right)
contact point, η represents the contact linemobility, f εðθÞ ¼ γðθÞ cosθ−
γ0ðθÞ sinθ−σ−ε2 ∂κ

∂s sinθ, and the material parameter σ=(γVS−γFS)/
γ0.

(III) Zero-mass flux condition (BC3)

∂μ
∂s

0; tð Þ ¼ 0;
∂μ
∂s

L; tð Þ ¼ 0: ð7Þ

(IV) Zero-curvature condition (BC4)

κ 0; tð Þ ¼ 0; κ L; tð Þ ¼ 0: ð8Þ

Because these dynamical evolution PDEs are sixth-order (fourth-
order for weak anisotropy [18]), to make the systemwell-posed, we in-
troduced an additional boundary condition (BC4), which rigorously
comes from the variation of the total energy functional [34]. The total
free energy of the system described in Eqs. (3)–(8) can be shown to
decrease monotonically at all times and that the total mass of the solid
film on top of the substrate is conserved during the evolution.

We solve the governing Eqs. (3)–(8) by using a parametric semi-
implicit mixed finite element scheme [35]. Compared to traditional
explicit finite difference approaches (e.g., marker particle methods),
the proposed finite element method allows for larger time steps
while satisfying numerical stability requirements [36]. We set the
initial film thickness to unity (i.e., we choose R0 as the initial film
thickness) and assume a dimensionless anisotropic surface energy
of the form:

γ θð Þ ¼ 1þ β cos m θþ ϕð Þ½ �; ð9Þ

where β controls the magnitude of the anisotropy,m is the rotational
symmetry order and ϕ represents a phase shift angle describing a
rotation of the crystallographic axes of the island with respect to
the substrate plane (ϕ is set to zero except where noted). It should
be pointed out that although we assume that the surface energy is
smooth, for the non-smooth or “cusped” surface energy, we can
deal with the problem by smoothing the surface energy with small
parameters.

We now turn to the issue: how does strong anisotropy affect solid
film dewettingmorphologies— especially, the stable island shapes pro-
duced by dewetting? In the proposed model, we find that if the small
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regularization parameter ε goes to zero, the equilibrium contact angles
θa satisfies the anisotropic Young equation [18,37]:

limε→0 f ε θð Þ ¼ f θð Þ ¼ γ θð Þ cosθ−γ0 θð Þ sinθ−σ ¼ 0: ð10Þ

Eq. (10)may havemultiple roots in θ∈ [0,π] onlywhen there exist
orientations for which γ(θ)+γ″(θ)b0, i.e., in strongly anisotropic
cases.

We perform a series of dynamical evolution numerical simulations
for different initial island shapes for strongly anisotropic surface ener-
gies at fixed island volumes. Several examples are shown in Fig. 1 for
m=4,β=0.3,σ=−0.5. We clearly see that depending on the initial
island shape, three different stable shapes evolve (shown by the solid
black lines).

All three stable shapes can be predicted by generalizing the
Winterbottom construction, i.e., using the flat substrate to truncate
the Wulff envelope (shown by the dashed blue lines) in Fig. 1
where the truncations may include parts of the “ears”. The equilibri-
um Winterbottom (global minimum energy) shape is that shown in
Fig. 1(b); the other two stable shapes (Fig. 1(a) and (c)) correspond
to local minimum energy (metastable) shapes. These local minima
can be understood in terms of the multiple roots of the anisotropic
Young equation; only these roots correspond to candidate stable
contact angles. In this example, the anisotropic Young equation,
Eq. (10), has three distinct roots in [0, π]— corresponding to two sta-
ble and one unstable equilibrium (“stable” equilibrium contact an-
gles could, in principle, be obtained from the dynamical evolution).

Although non-Winterbottom shapes have been observed in the
experiments [38–40], there exists very few theoretical literature
which can offer a good explanation and prediction. Based on a wide
range of numerical results, we have developed a method to repair
the classical Winterbottom construction. For any given anisotropic
surface energy (i.e.,m and β here), we first construct theWulff enve-
lope. Then, following theWinterbottom construction procedure for a
flat substrate, we truncate the Wulff envelope at a height y = σ (see
Fig. 3) to obtain the possible stable shapes. For simplicity, we de-
scribe the procedure for four-fold crystalline anisotropy, as illustrat-
ed in Figs. 2 and 3 for several (σ, β) combinations. Referring to Fig. 2,
we identify six different types of strongly anisotropic (βN1/15)
behaviors:

• Case I: Complete wetting. The “substrate line” L1 falls above the Wulff
envelope such that f(θ) is always less than zero. In this case, for any
initial island shape, the contact points will move outward and there
is no stable shape; the island tends to cover the substrate.

• Case II: Partial wetting, θa∈ð0; π2Þ. The equilibrium shape is found by
flipping over the part of theWulff envelope truncated by the substrate
line that lies between L1 and Line L2, as indicated by the blue shaded
region in Fig. 3(a) for the red dashed substrate line.

• Case III: Partial wetting,θa∈ð0; π2Þ. The equilibrium shape can be directly
obtained from the section of the Wulff shape delimited by the
Fig. 1. The equilibrium shapes of thin films with different initial island shapes (shown by dash–
lines show thedifferent numerical equilibriumshapes, and thedashed blue lines represent theW
include some parts of the “ears” seen in theWulff envelopewhen the anisotropy of surface ener
referred to the web version of this article.)
substrate line between L2 and Line L3 in Fig. 2, as shown by the blue
shaded region in Fig. 3(b).

• Case IV (or IV′): Multiple equilibrium shapes. In these cases, multiple
stable shapes exist that can be determined by proper truncation of
the Wulff envelope (shown in Fig. 3(c)). In this case, there are two
“stable” equilibrium contact angles θa∈(0,π) which yield three
possible equilibrium shapes. Referring to Fig. 3(c), the stable shapes
are (i) the blue shaded region (i.e., the equilibrium Winterbottom
shape), (ii) the striped region, (iii) the left side of the island
corresponds to the striped and the right side to the blue regions, and
(iv) the right side of the island corresponds to the striped and the
left side to the blue regions (the mirror of case (iii)). The dynamical
evolution for this case with different initial conditions was shown in
Fig. 1, realizing three of these cases.

• Case V: Partial wetting, θa∈ðπ2 ;πÞ. The equilibrium shape is obtained
from the section of the Wulff shape delimited by the substrate line
between lines L4 and L5 in Fig. 2, as shown by the blue shading in
Fig. 3(d).

• Case VI: Complete dewetting. This case corresponds to complete
dewetting (shown in Fig. 3(e)).

Note here that when β becomes very large, the boundary line L4may
fall below line L5 (shown in Fig. 2(b)), and if the substrate line lies be-
tween L5 and L4, it will produce Case IV′ Compared to Case IV for multi-
ple equilibrium shapes, Case IV′ differs only in that its equilibrium
Winterbottom shape corresponds to complete dewetting (shown in
Fig. 3(f)).

Additional numerical examples are presented in the Supplemental
Material. Expressions for the boundary lines from L1 to L5 are given in
the Supplementary Materials (either explicitly or implicitly) for all
(σ,β) parameter pairs. This completely determines which shapes may
be found in all cases. Although we have focused on the case of a crystal
with a four-fold rotational symmetry (m=4) above, similar discussion
can be also performed for other values of m.

To validate the predictions shown above, we have performed
ample numerical simulations to confirm that the parameter pairs
(σ,β) will fall into the expected stable island shape cases. These re-
sults are summarized in the phase diagram of Fig. 4. This diagram
confirms that the numerical results are consistent with the theoreti-
cal predictions.

In this letter, we presented a sharp-interface continuum model
for solid-state dewetting which can include the strong anisotropy ef-
fect. Based on themodel, we find both the equilibriumWinterbottom
and metastable island shapes, which is unlike in the classical
(Winterbottom) prediction about the shape of anisotropic islands
on a substrate. Then we proposed a theory to repair Winterbottom
prediction. By starting with different film shapes (initial conditions),
our numerical simulations demonstrate that dewetting can lead to
either the equilibriumWinterbottom shape or any of the metastable
shapes found in our theory. While the presented results are for two
dot red lines) under the same parameters:m=4,β=0.3,σ=−0.5, where the solid black
ulff envelope truncated by theflat substrate.Wenote here that the equilibriumshapemay
gy is strong. (For interpretation of the references to color in this figure legend, the reader is



Fig. 2. Classification of the wetting/dewetting into six different cases for a four-fold crystalline thin film: (a) β is not very large, (b) β is very large (i.e., large “ears”). Here, the blue curves
represent theWulff envelope, and the dashed blue curves correspond to unstable solutions of the anisotropic Young equation, Eq. (10). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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dimensions, our approach can be directly generalized to three di-
mensions, but the main challenge is how to design efficient and
accurate numerical algorithms to simulating moving open surfaces
coupled with contact line migration in three dimensions. We believe
that our approach opens the door to quantitatively simulating
Fig. 3. A schematic illustration of the different cases of wetting/dewetting for a four-fold
crystalline film as defined in Fig. 2: (a) Case II, (b) Case III, (c) Case IV, (d) Case V,
(e) Case VI, and (f) Case IV′. The dashed red lines are the flat substrates lines. The
shaded blue region corresponds to the equilibrium Winterbottom island shapes and
the horizontal dashed shaded regions represent other stable island shapes. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Phase diagram between the parameter pairs and the cases of wetting/dewetting.
The colored symbols respectively denote the different cases of wetting/dewetting, which
are obtained from our numerical simulations under different parameter pairs (σ,β). The
solid black lines, which are calculated from our theoretical predictions presented in
Fig. 2, represent the different boundary lines between the different cases.
common cases for solid-state dewetting at large scale, and tailoring
island shapes and hence subsequent material properties.
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