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Different efficient and accurate numerical methods have recently been proposed and 
analyzed for the nonlinear Klein-Gordon equation (NKGE) with a dimensionless parameter 
ε ∈ (0, 1], which is inversely proportional to the speed of light. In the nonrelativistic limit 
regime, i.e. 0 < ε � 1, the solution of the NKGE propagates waves with wavelength at O (1)

and O (ε2) in space and time, respectively, which brings significantly numerical burdens 
in designing numerical methods. We compare systematically spatial/temporal efficiency 
and accuracy as well as ε-resolution (or ε-scalability) of different numerical methods 
including finite difference time domain methods, time-splitting method, exponential wave 
integrator, limit integrator, multiscale time integrator, two-scale formulation method and 
iterative exponential integrator. Finally, we adopt the multiscale time integrator to study 
the convergence rates from the NKGE to its limiting models when ε → 0+.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Consider the dimensionless nonlinear Klein-Gordon equation (NKGE) in d-dimensions (d = 1, 2, 3) with cubic nonlinearity 
[10,11,29,34,48]:⎧⎪⎨⎪⎩

ε2∂tt u(x, t) − �u(x, t) + 1

ε2
u(x, t) + λ |u(x, t)|2u(x, t) = 0, x ∈Rd, t > 0,

u(x,0) = φ1(x), ∂t u(x,0) = 1

ε2
φ2(x), x ∈Rd,

(1.1)

where t is time, x ∈Rd is the spatial coordinate, u := u(x, t) is a complex-valued scalar field, 0 < ε ≤ 1 is a dimensionless 
parameter inversely proportional to the speed of light, λ ∈R is a given dimensionless parameter (positive and negative for 
defocussing and focusing self-interaction, respectively), and φ1 and φ2 are given complex-valued ε-independent initial data.

When λ = 0, the above Klein-Gordon equation is known as the relativistic version of the Schrödinger equation for cor-
rectly describing the spinless relativistic composite particles, like the pion and the Higgs boson [34]. When λ �= 0, the NKGE 
was widely adapted in plasma physics for modeling interaction between Langmuir and ion sound waves [20,37] and in cos-
mology as a phonological model for dark-matter and/or black-hole evaporation [52,73]. The NKGE (1.1) is time symmetric 
and conserves the energy
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Fig. 1. Solution of the NKGE (1.1) with d = 1, λ = 1 and the initial data taken as (1.3) for different ε.

E(t) :=
∫
Rd

[
ε2|∂t u(x, t)|2 + |∇u(x, t)|2 + 1

ε2
|u(x, t)|2 + λ

2
|u(x, t)|4

]
dx

≡
∫
Rd

[
1

ε2
|φ2(x)|2 + |∇φ1(x)|2 + 1

ε2
|φ1(x)|2 + λ

2
|φ1(x)|4

]
dx = E(0), t ≥ 0. (1.2)

For the derivation and nondimensionalization of (1.1), we refer to [11,34,60,61] and references therein. For the well-
posedness of the Cauchy problem (1.1) with a fixed ε ∈ (0, 1], e.g. ε = 1, we refer to [34,60,61] and references therein. 
We remark here that when the initial data φ1 and φ2 are real-valued, then the solution u of (1.1) is also real-valued; and 
this case has been widely studied analytically and numerically in the literature [2,4,21,22,29,35,36,40,44,45,48,53–55,57,58,
70,71]. For simplicity of notations and without loss of generality, from now on, we assume that φ1 and φ2 are real-valued, 
and thus the solution u of (1.1) is real-valued too. Our methods and results can be straightforwardly extended to the case 
when φ1 and φ2 are complex-valued and/or general nonlinearity in (1.1) [10,11], and the conclusion will be remained the 
same.

When ε → 0+ in (1.1), due to that the energy E(t) = O (ε−2) in (1.2) becomes unbounded, the analysis of the nonrela-
tivistic limit of the solution u becomes challenging and quite complicated. Fortunately, convergence from the NKGE (1.1) to 
a nonlinear Schrödinger equation has been extensively studied in the mathematics literature [10,60,61,64]. Based on their 
results, the solution u of the NKGE (1.1) propagates waves with wavelength at O (ε2) and O (1) in time and space, respec-
tively, in the nonrelativistic limit regime, i.e. 0 < ε � 1. To illustrate this, Fig. 1 shows the solution of (1.1) with d = 1 and 
λ = 1 and the initial data

φ1(x) = 3 sin(x)

ex2/2 + e−x2/2
, φ2(x) = 2e−x2

√
π

, x ∈R. (1.3)

In fact, when 0 < ε � 1, formally by taking the ansatz [60,61]

u(x, t) = eit/ε2
z(x, t) + e−it/ε2

z(x, t) + O (ε2), x ∈ Rd, t ≥ 0, (1.4)

where z := z(x, t) is a complex-valued function and z denotes the complex conjugate of z, the NKGE (1.1) can be formally 
reduced to – semi-limiting model – the nonlinear Schrödinger equation with wave operator (NLSW) under well-prepared 
initial data [5,7]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2i∂t z(x, t) + ε2∂tt z(x, t) − �z(x, t) + 3λ|z(x, t)|2z(x, t) = 0, x ∈Rd, t > 0,

z(x,0) = 1

2
[φ1(x) − iφ2(x)] =: z0(x), x ∈Rd,

∂t z(x,0) = i

2

[
−�z0(x) + 3λ|z0(x)|2z0(x)

]
.

(1.5)

In addition, by dropping the small term ε2∂tt z in (1.5), one gets – limiting model – the nonlinear Schrödinger equation 
(NLSE) [5,7,60,61]⎧⎨⎩2i∂t z(x, t) − �z(x, t) + 3λ|z(x, t)|2z(x, t) = 0, x ∈ Rd, t > 0,

z(x,0) = 1
[φ1(x) − iφ2(x)] := z0(x), x ∈Rd.

(1.6)
2
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When ε = 1 in (1.1), i.e. O (1)-wave speed regime, several numerical methods have been proposed and analyzed for the 
Cauchy problem (1.1) in the literature, see [21,40,54,58,59,71] and references therein. Specifically, the finite difference time 
domain (FDTD) methods [40,54,70] have been demonstrated excellent performance in terms of efficiency and accuracy for 
(1.1) when ε = 1. However, when 0 < ε � 1, i.e. in the nonrelativistic limit regime, it becomes much more challenging 
in designing and analyzing efficient and accurate numerical methods for (1.1) due to the highly oscillatory nature of the 
solution in time (cf. Fig. 1). To address this issue, Bao and Dong [11] established rigorous error bounds of the FDTD methods 
for (1.1), which depends explicitly on the mesh size h and time step τ as well as the small parameter ε ∈ (0, 1]. Based on 
their results [11], in order to obtain the ‘correct’ numerical solution of (1.1), the ε-resolution (or ε-scalability or meshing 
strategy) of the FDTD methods is τ = O (ε3) and h = O (1), which is under-resolution in time with respect to ε ∈ (0, 1]
regarding to the Shannon’s information theory [56,67,68] – to resolve a wave one needs a few points per wavelength – since 
the wavelength in time is at O (ε2). To overcome the temporal under-resolution of the FDTD methods, they [11] proposed 
to adapt the exponential wave integrator (EWI) [51] for discretizing temporal derivatives in (1.1) and showed rigorously the 
ε-resolution of EWI is τ = O (ε2) and h = O (1), which is optimal-resolution in time with respect to ε ∈ (0, 1]. Later, the 
time-splitting (TS) method [63] was also applied to discretize the NKGE (1.1), and the method was shown as equivalent to 
one type EWI and thus it retains the same ε-resolution as that of the EWI but with an improved error bound regarding 
to the small parameter ε ∈ (0, 1] [39]. In fact, FDTD, EWI and TS methods perform very well when τ → 0 under ε = ε0
fixed and they lose accuracy when ε → 0 under τ = τ0 fixed. At the meantime, Faou and Schratz [41] presented a class 
of limit integrators (LI) for (1.1) via solving numerically the limiting model NLSE (1.6) and obtained their error bounds. On 
the contrary, the LI methods perform very well when ε → 0 under τ = τ0 fixed and they lose accuracy when τ → 0 under 
ε = ε0 fixed.

It is a natural question to ask on whether one can design a numerical method for the NKGE (1.1) such that it is uniformly 
accurate for ε ∈ (0, 1], i.e. super-resolution in time, especially in the nonrelativistic limit regime, since we have the solution 
structure (1.4) of the NKGE (1.1) via the limiting model NLSW (1.5) or NLSE (1.6). Recently, different uniformly accurate 
(UA) numerical methods have been designed and analyzed for the NKGE (1.1) including a multiscale time integrator (MTI) 
via a multiscale decomposition of the solution [10], a two-scale formulation (TSF) method [23] and a multi-revolution 
composition (MRC) method [62] as well as two uniformly and optimally accurate (UOA) methods [18,19]. The main aim 
of this paper is to carry out a systematical comparison of different numerical methods which have been proposed for 
the NKGE (1.1) in terms of temporal/spatial accuracy and efficiency as well as ε-resolution for ε ∈ (0, 1], especially in the 
nonrelativistic limit regime.

The rest of the paper is organized as follows. The FDTD, EWI and TS methods as well as the LI schemes for the NKGE 
(1.1) are briefly reviewed in Section 2; the uniformly accurate methods are briefly reviewed in Section 3; and the uniformly 
and optimally accurate methods are briefly reviewed in Section 4. In Section 5, we present detailed comparison of different 
numerical methods; and in Section 6, we report convergence rates of the NKGE (1.1) to its limiting models NLSW (1.5) and 
NLSE (1.6) and show wave interactions of NKGE in two dimensions (2D). Finally, some conclusions are drawn in Section 7. 
Throughout this paper, we adopt the notation A � B to represent that there exists a generic constant C > 0, which is 
independent of τ (or n), h and ε, such that |A| ≤ C B .

2. Non-uniformly accurate numerical methods

In this section, we briefly review the FDTD, EWI and TS methods [11] as well as the LI methods [41] which have been 
proposed in the literature for discretizing the NKGE (2.1) (or (1.1)).

For simplicity of notation and without loss of generality, we only present the numerical methods in one dimension (1D). 
Generalization to high dimensions is straightforward by tensor product. As adapted in the literature [10,19,23], the NKGE 
(1.1) with d = 1 is usually truncated onto a bounded interval 	 = (a, b) (|a| and b are usually taken large enough such that 
the truncation error is negligible) with periodic boundary condition⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε2∂tt u(x, t) − ∂xxu(x, t) + 1

ε2
u(x, t) + λ(u(x, t))3 = 0, x ∈ 	, t > 0,

u(x,0) = φ1(x), ∂t u(x,0) = 1

ε2
φ2(x), x ∈ 	,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t).

(2.1)

Choose τ > 0 be the time step and h = (b − a)/N be the mesh size with N an even positive integer, denote the grid points 
as x j = a + jh for j = 0, 1, . . . , N and time steps as tn = nτ for n ≥ 0. Let un

j be the numerical approximation of u(x j, tn) for 
0 ≤ j ≤ N and n ≥ 0 and un = (un

0, u
n
1, . . . , u

n
N)T be the solution vector at t = tn , and define

‖un‖2
l2 = h

N−1∑
j=0

|un
j |2, n ≥ 0. (2.2)
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2.1. Finite difference time domain (FDTD) methods

Introduce the finite difference operators as

δ2
t un

j = un+1
j − 2un

j + un−1
j

τ 2
, δ+

x un
j = un

j+1 − un
j

h
, δ2

x un
j = un

j+1 − 2un
j + un

j−1

h2
.

As used in [11], the Crank-Nicolson finite difference (CNFD) method for discretizing (2.1) reads

ε2δ2
t un

j +
[
−1

2
δ2

x + 1

2ε2
+ λ

4
[(un+1

j )2 + (un−1
j )2]

]
(un+1

j + un−1
j ) = 0, 0 ≤ j ≤ N − 1, n ≥ 0. (2.3)

Similarly, the semi-implicit finite difference (SIFD) method is [11]

ε2δ2
t un

j − 1

2
δ2

x (un+1
j + un−1

j ) + 1

2ε2
(un+1

j + un−1
j ) + λ(un

j )
3 = 0, 0 ≤ j ≤ N − 1, n ≥ 0; (2.4)

and the leap-frog finite difference (LFFD) method is [11]

ε2δ2
t un

j − δ2
x un

j + 1

ε2
un

j + λ(un
j )

3 = 0, 0 ≤ j ≤ N − 1, n ≥ 0. (2.5)

The initial and boundary conditions in (2.1) are discretized as [11,13]

un
0 = un

N , un−1 = un
N−1, n ≥ 0; u0

j = φ1(x j), j = 0, . . . , N,

u1
j = φ1(x j) + sin

( τ

ε2

)
φ2(x j) + τ

2
sin
( τ

ε2

)[
δ2

x φ1(x j) − 1

τ
sin
( τ

ε2

)
φ1(x j) − λ(φ1(x j))

3
]

.
(2.6)

We remark here that we adapt (2.6) to compute the approximation at t = t1 instead of the classical method

u1
j = φ1(x j) + τ

ε2
φ2(x j) + τ 2

2ε2

[
δ2

x φ1(x j) − 1

ε2
φ1(x j) − λ(φ1(x j))

3
]

, j = 1,2, . . . , N − 1, (2.7)

i.e. replacing τ/ε2 by sin(τ/ε2), such that the numerical solution u1 is uniformly bounded for ε ∈ (0, 1].
As observed and stated in [11], the above CNFD, SIFD and LFFD methods are time symmetric and their memory cost 

is O (N). The LFFD method is explicit and its computational cost per step is O (N). It is conditionally stable and there is a 
severe stability condition which depends on both h and ε, especially when 0 < ε � 1 [11]. In fact, it is the most efficient 
and accurate method among all FDTD methods for the NKGE when ε = 1. The SIFD method is implicit, but it can be solved 
efficiently via the fast Fourier transform (FFT) and thus its computational cost per step is O (N ln N). It is conditionally stable 
and the stability condition depends on ε and is independent of h [11]. The CNFD method is implicit and at every time step 
a fully nonlinear coupled system needs to be solved. One main advantage is that it conserves the energy (1.2) in the discrete 
level as [11]

En := ε2‖δ+
t un‖2

l2 + 1

2

(
‖δ+

x un‖2
l2 + ‖δ+

x un+1‖2
l2

)
+ 1

2ε2

(
‖un‖2

l2 + ‖un+1‖2
l2

)
+ hλ

4

N−1∑
j=0

[
(un

j )
4 + (un+1

j )4
]

≡ E0, n ≥ 0, (2.8)

which immediately implies that it is unconditionally stable when λ ≥ 0. In addition, under proper regularity of the solution u
of the NKGE (2.1) and stability conditions for the SIFD and LFFD methods, the following rigorous error bound was established 
for the three FDTD methods [11]

‖en‖l2 + ‖δ+
x en‖l2 � h2 + τ 2

ε6
, 0 ≤ n ≤ T

τ
, (2.9)

where T > 0 is a fixed time and the error function en is defined as en
j = u(x j, tn) − un

j for 0 ≤ j ≤ N and n ≥ 0. This error 
bound suggests that the FDTD methods are second order in both space and time discretization for any fixed ε = ε0 and 
the ε-resolution of the FDTD methods is h = O (1) and τ = O (ε3) in the nonrelativistic limit regime, i.e. 0 < ε � 1, which 
immediately show that the temporal resolution with respect to ε ∈ (0, 1] of the FDTD methods is under-resolution in time 
since the wavelength in time is at O (ε2).
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2.2. Exponential wave integrator (EWI)

As it has been proposed in [11], the NKGE (2.1) is discretized in space by the Fourier (pseudo)spectral method and 
followed by adapting an exponential wave integrator (EWI) in time which has been widely used for discretizing second 
order oscillatory differential equations in the literature [30,38,43,46,47,49–51].

Let un
j and u̇n

j be the approximations of u(x j, tn) and ∂t u(x j, tn), respectively, for 0 ≤ j ≤ N and n ≥ 0 and take 
u0

j = φ1(x j), ̇u0
j = φ2(x j)/ε

2 for j = 0, 1, . . . , N . When the EWI is taken as the Gautschi’s quadrature [11,43,46,47,50], a 
Gautschi-type exponential wave integrator Fourier pseudospectral (EWI-FP) method [11] reads as:

un+1
j =

N/2−1∑
l=−N/2

˜(un+1)l eiμl(x j−a) =
N/2−1∑

l=−N/2

˜(un+1)l e2i jlπ/N , j = 0,1, . . . , N, n ≥ 0, (2.10)

where

˜(un+1)l =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
cos(ω0

l τ ) + α0
(
1 − cos(ω0

l τ )
)

(εω0
l )2

]
(̃u0)l +

sin(ω0
l τ )

ω0
l

(̃u̇0)l +
cos(ω0

l τ ) − 1

(εω0
l )2

˜( f 0)l, n = 0,

−˜(un−1)l + 2

[
cos(ωn

l τ ) + αn
(
1 − cos(ωn

l τ )
)

(εωn
l )2

]
(̃un)l +

2
(
cos(ωn

l τ ) − 1
)

(εωn
l )2

˜( f n)l, n ≥ 1,

with f (u) = λu3, f n := f (un) = ( f (un
0), f (un

1), . . . , f (un
N ))T , μl = 2lπ/(b − a), ωn

l = 1
ε2

√
1 + ε2(μ2

l + αn) (l = −N/2, . . . ,

N/2 −1) with αn = max
{
αn−1, max0≤ j≤N {λ(un

j )
2}
}

for n ≥ 0 and α−1 = 0 being the stabilization constants, and ̃vl (−N/2 ≤
l ≤ N/2 − 1) being the discrete Fourier transform coefficients of the vector v = (v0, v1, . . . , v N)T with v0 = v N defined as

ṽl = 1

N

N−1∑
j=0

v j e−iμl(x j−a) = 1

N

N−1∑
j=0

v j e−2i jlπ/N , l = − N

2
,− N

2
+ 1, . . . ,

N

2
− 1. (2.11)

Of course, in practice if the approximation of the first order derivative in time is needed, then they can be obtained as [11]

u̇n+1
j =

N/2−1∑
l=−N/2

˜(u̇n+1)l eiμl(x j−a) =
N/2−1∑

l=−N/2

˜(u̇n+1)l e2i jlπ/N , j = 0,1, . . . , N, n ≥ 0, (2.12)

where

˜(u̇n+1)l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ωl sin(ωlτ )(̃u0)l + cos(ωlτ )(̃u̇0)l − sin(ωlτ )

ε2ωl

˜( f 0)l, n = 0,

˜(u̇n−1)l − 2ωl sin(ωlτ )(̃un)l − 2
sin(ωlτ )

ε2ωl

˜( f n)l, n ≥ 1.

As it can be seen, EWI-FP is explicit and time symmetric. The memory cost is O (N) and computational cost per step 
is O (N ln N). In addition, the EWI-FP is unconditionally stable due to the stabilization constant αn [11]. Under proper 
regularity of the solution u of the NKGE (2.1) and the assumption τ � ε2, the following rigorous error bound was established 
for the EWI-FP method [11]

‖u(·, tn) − IN un‖L2 � hm0 + τ 2

ε4
, ‖∂x[u(·, tn) − IN un]‖L2 � hm0−1 + τ 2

ε4
, 0 ≤ n ≤ T

τ
, (2.13)

where m0 ≥ 2 depends on the regularity of the solution u of (2.1) and IN is the standard interpolation operator [69]. The 
error bounds suggest that EWI-FP is spectral order in space if the solution is smooth and is second order in time for any 
fixed ε = ε0 and the ε-resolution is h = O (1) and τ = O (ε2) in the nonrelativistic limit regime, i.e. 0 < ε � 1, which 
immediately show that EWI-FP is optimal-resolution in time with respect to ε ∈ (0, 1] since the wavelength in time is at 
O (ε2). Recently, the EWI-FP method has been extended to arbitrary even order in time [59,72].

2.3. Time-splitting (TS) method

The time-splitting method [63] has been widely used to solve different (partial) differential equations and it has shown 
great advantages in many cases, such as for the (nonlinear) Schrödinger equation [6,63]. As proposed in [39], in order to 
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adapt the TS method for solving the NKGE, the NKGE (2.1) is first re-formulated into a first order system by introducing 
v := v(x, t) = ∂t u(x, t). Then the first order system is split into⎧⎨⎩

∂t u = 0,

∂t v + λ

ε2
u3 = 0,

and

⎧⎨⎩
∂t u − v = 0,

∂t v − 1

ε2
∂xxu + 1

ε4
u = 0.

Let un
j and vn

j be the approximations of u(x j, tn) and v(x j, tn), respectively, for 0 ≤ j ≤ N and n ≥ 0 and take u0
j = φ1(x j), 

v0
j = φ2(x j)/ε

2 for j = 0, 1, . . . , N . Then a second-order time splitting Fourier pseudospectral method (TS-FP) [39] reads as:

v(1)
j = vn

j − λτ

2ε2
(un

j )
3,

v(2)
j =

N/2−1∑
l=−N/2

[
−ωl sin (ωlτ ) (̃un)l + cos (ωlτ )˜(v(1))l

]
eiμl(x j−a),

un+1
j =

N/2−1∑
l=−N/2

[
cos (ωlτ ) (̃un)l + sin (ωlτ )

ωl

˜(v(1))l

]
eiμl(x j−a),

vn+1
j = v(2)

j − λτ

2ε2
(un+1

j )3,

j = 0,1, . . . , N, n ≥ 0, (2.14)

where ωl = 1
ε2

√
1 + ε2μ2

l for l = −N/2, . . . , N/2 − 1.

Again, the TS-FP (2.14) is explicit and time symmetric. Its memory cost is O (N) and computational cost per time step 
is O (N ln N). We remark here that the TS-FP (2.14) is mathematically equivalent to an EWI via trapezoidal quadrature (or 
known as Deuflhard-type exponential integrator [38]) for solving the NKGE (2.1) (or (1.1)) [39,49]. Under the condition 
τ � ε2, the following error bound was observed for the TS-FP in [39]:

‖u(·, tn) − IN un‖L2 � hm0 + τ 2

ε2
, ‖∂x[u(·, tn) − IN un]‖L2 � hm0−1 + τ 2

ε2
, 0 ≤ n ≤ T

τ
. (2.15)

The above error bound could be rigorously obtained by the super-convergence analysis in [8,9,28]. It can be seen that the 
error bound (2.15) is an improved error bound compared to the error bound (2.13) regarding to the small parameter ε when 
0 < τ � ε2 and 0 < ε � 1 (cf. Tables 9 and 10). Of course, due to the convergence restriction τ � ε2, the ε-resolution of 
TS-FP is still h = O (1) and τ = O (ε2) in the nonrelativistic limit regime. Thus the TS-FP is also optimal-resolution in time 
with respect to ε ∈ (0, 1].

2.4. Limit integrators (LIs)

As presented in [41], a class of limit integrators (LIs) has been designed for the NKGE (2.1) (or (1.1)) with different order 
of accuracy in terms of ε when 0 < ε � 1. In the LIs, the limiting equation of the NKGE (1.1), e.g. (1.6), is solved numerically 
and the numerical solution of the NKGE (1.1) is constructed via the ansatz (1.4).

In practice, the NLSE (1.6) in 1D is truncated on a bounded computational domain 	 = (a, b) with periodic boundary 
condition and then it is discretized by the second order time-splitting Fourier pseudospectral (TSFP) method [3,6,14,15]. Let 
un

j and zn
j be the approximations of u(x j, tn) and z(x j, tn), respectively, for 0 ≤ j ≤ N and n ≥ 0 and take u0

j = φ1(x j), z0
j =

z0(x j) for j = 0, 1, . . . , N . Then a first order (with respect to the small parameter ε) limit integrator Fourier pseudospectral 
(LI-FP1) method was proposed in [41] as:

un+1
j = eitn+1/ε2

zn+1
j + e−itn+1/ε2

zn+1
j , j = 0,1, . . . , N, n ≥ 0, (2.16)

where zn+1 is a numerical approximation of (1.6) by a TSFP method [3,6,14,15] and is given as

z(1)
j =

N/2−1∑
l=−N/2

eiμ2
l τ/4 (̃zn)l eiμl(x j−a),

z(2)
j = e3iλτ |z(1)

j |2/2 z(1)
j ,

zn+1
j =

N/2−1∑
eiμ2

l τ/4 ˜(z(2))l eiμl(x j−a),

j = 0,1, . . . , N, n ≥ 0. (2.17)
l=−N/2
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Again, as presented in [41], when 0 < ε � 1, formally by taking the following ansatz (found by the modulated Fourier 
expansion [30,31,42,49]) which is more accurate than (1.4) for approximating the solution of NKGE (2.1),

u(x, t) = eit/ε2
z(x, t) + e−it/ε2

z(x, t) + ε2 w(x, t) + O (ε4), x ∈ 	, t ≥ 0, (2.18)

one can obtain z := z(x, t) still satisfies the NLSE (1.6) and w := w(x, t) is given by [41]

w(x, t) = − 3λ

4
|z(x, t)|2

[
z(x, t)eit/ε2 + z(x, t)e−it/ε2

]
+ λ

8

[
z(x, t)3e3it/ε2 + z(x, t)3e−3it/ε2

]
+ 1

2

[
v(x, t)eit/ε2 + v(x, t)e−it/ε2

]
, x ∈ 	, t > 0, (2.19)

with v := v(x, t) satisfying [41]

i∂t v − 1

2
∂xx v + 3λ|z|2v + 3λ

2
z2 v = 1

4
∂xxxxz + 51λ2

8
|z|4z − 3λ

2
∂xx(|z|2z), x ∈ 	, t > 0; (2.20)

and the initial condition [41]

v(x,0) = −λ

2
z(x,0)3 + λ

4
z(x,0)3 + 3λ

2
|z(x,0)|2z(x,0) + 1

2
∂xx(z(x,0) − z(x,0)) =: v0(x), x ∈ 	. (2.21)

The NLSE (1.6) can be solved by the second order TSFP method [3,6,14,15] (cf. (2.17) for the case of 1D) as before. In order 
to solve (2.20) numerically [41], it is split into a kinetic part

k(t) : i∂t v = 1

2
∂xx v, x ∈ 	, t > 0,

and a potential part

p(t) : i∂t v + 3λ|z|2 v + 3λ

2
z2 v = 1

4
∂xxxxz + 51λ2

8
|z|4z − 3λ

2
∂xx(|z|2z), x ∈ 	, t > 0, (2.22)

and then the flow is composed by a second order splitting scheme as (τ) ≈ k
(
τ
2

)
p (τ )k

(
τ
2

)
. The kinetic part can be 

integrated as usual, while the potential part is integrated in its vector form by an exponential trapezoidal rule in [41].
Here we present the method in 1D and truncate (2.22) on the bounded domain 	 = (a, b) with periodic boundary 

condition. Let un
j , zn

j , wn
j and vn

j be the approximations of u(x j, tn), z(x j, tn), w(x j, tn) and v(x j, tn), respectively, for 0 ≤
j ≤ N and n ≥ 0 and take u0

j = φ1(x j), z0
j = z0(x j), v0

j = v0(x j) ≈ − λ
2 (z0

j )
3 + λ

4 (z0
j )

3 + 3λ
2 |z0

j |2z0
j + 1

2

(
∂Fxx z0

j − ∂Fxx z0
j

)
for j =

0, 1, . . . , N , where ∂Fxx is the standard Fourier pseudospectral approximation of the operator ∂xx on the bounded domain 	 =
(a, b), e.g. ∂Fxx z0

j = ∂xx(IN z0)(x j) [69]. Then a second order (with respect to the small parameter ε ∈ (0, 1]) limit integrator 
Fourier pseudospectral (LI-FP2) method is given [41] as

un+1
j = eitn+1/ε2

zn+1
j + e−itn+1/ε2

zn+1
j + ε2 wn+1

j , j = 0,1, . . . , N, n ≥ 0, (2.23)

where zn+1
j ( j = 0, 1, . . . , N) are given in (2.17) and wn+1 is an approximation of (2.19) as

wn+1
j = − 3λ

4
|zn+1

j |2
[

zn+1
j eitn+1/ε2 + zn+1

j e−itn+1/ε2
]
+ λ

8

[
(zn+1

j )3e3itn+1/ε2 + (zn+1
j )3e−3itn+1/ε2

]
+ 1

2

[
vn+1

j eitn+1/ε2 + vn+1
j e−itn+1/ε2

]
, j = 0,1, . . . , N, n ≥ 0.

Here vn+1 is a numerical solution of (2.20) by a TSFP method [41] and is given as:

v(1)
j =

N/2−1∑
l=−N/2

eiμ2
l τ/4 (̃vn)l eiμl(x j−a),

v(2)
j = α

(2)
j + i β(2)

j ,

vn+1
j =

N/2−1∑
l=−N/2

eiμ2
l τ/4 ˜(v(2))l eiμl(x j−a),

j = 0,1, . . . , N, n ≥ 0,

where[
α

(2)
j

β
(2)

]
= e

τ
2

(
A(zn+1

R, j ,zn+1
I, j )+A(zn

R, j,z
n
I, j)
) ([

α
(1)
j

β
(1)

]
+ τ

2

[
Im(χn

j )

−Re(χn
j )

])
+ τ

2

[
Im(χn+1

j )

−Re(χn+1)

]
, (2.24)
j j j
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with

α
(1)
j = Re

(
v(1)

j

)
, β

(1)
j = Im

(
v(1)

j

)
, zn

R, j = Re(zn
j ), zn

I, j = Im(zn
j ),

A(zR , zI ) = −3λ

2

[
2zR zI z2

R + 3z2
I−3z2

R − z2
I −2zR zI

]
,

χn
j = 1

4
∂Fxxxxzn

j + 51λ2

8
|zn

j |4zn
j − 3λ

2
∂Fxx (|zn

j |2zn
j ).

Here Re( f ) and Im( f ) denote the real and imaginary parts of f , respectively, and ∂Fxxxx is the Fourier pseudospectral 
approximation of ∂xxxx on the bounded domain 	 = (a, b) [69].

As stated and proved in [41], both LI-FP1 and LI-FP2 are explicit, unconditionally stable and time symmetric, and their 
memory cost is O (N) and computational cost per step is O (N ln N). In addition, under proper regularity of the solution u
of the NKGE (2.1) and z of the NLSE (1.6), the following rigorous error bound was established for the LI-FP1 method [41]

‖u(·, tn) − IN un‖H1 � hm1 + τ 2 + ε2, n = 0,1, . . . ,
T

τ
, (2.25)

where m1 ≥ 1 depends on the regularity of the solution u of (2.1). Similarly, the following rigorous error bound was estab-
lished for the LI-FP2 method [41]

‖u(·, tn) − IN un‖H1 � hm1 + τ 2 + ε4, n = 0,1, . . . ,
T

τ
. (2.26)

These error bounds suggest that both LI-FP1 and LI-FP2 methods are spectral order in space if the solution is smooth 
and when ε → 0+ , and LI-FP1 and LI-FP2 are second order in time when 0 < ε � τ and 0 < ε � τ 1/2, respectively. The 
ε-resolution of the two methods is h = O (1) and τ = O (1) in the nonrelativistic limit regime, i.e. 0 < ε � 1, which imme-
diately show that both LI-FP1 and LI-FP2 are super-resolution in time with respect to 0 < ε � 1 since the wavelength in 
time is at O (ε2). On the contrary, when ε = ε0 is fixed, e.g. ε = 1, there is no convergence of LI-FP1 and LI-FP2 for the 
NKGE (2.1) (or (1.1)).

3. Uniformly accurate (UA) methods

In this section, we review the uniformly accurate MTI [10,13] and TSF method [23] which have been proposed in the 
literature for discretizing the NKGE (2.1) (or (1.1)).

3.1. A multiscale time integrator (MTI)

As proposed in [10,16,17], the MTI was designed via a multiscale decomposition of the solution of the NKGE (1.1) and 
adapting the EWI-FP method for discretizing the decomposed sub-problems (Fig. 2).

For any fixed n ≥ 0, by assuming that the initial data at t = tn is given as

u(x, tn) = φn
1(x) = O (1), ∂t u(x, tn) = 1

ε2
φn

2(x) = O (ε−2), x ∈Rd, (3.1)

and decomposing the solution u(x, t) = u(x, tn + s) of the NKGE (1.1) on the time interval t ∈ [tn, tn+1] as [10,60,61]

u(x, tn + s) = eis/ε2
zn(x, s) + e−is/ε2

zn(x, s) + rn(x, s), x ∈Rd, 0 ≤ s ≤ τ , (3.2)

then a multiscale decomposition by the ε-frequency (MDF) of the NKGE (1.1) can be given as [10,12]⎧⎨⎩
2i∂szn(x, s) + ε2∂sszn(x, s) − �zn(x, s) + 3λ|zn(x, s)|2zn(x, s) = 0,

ε2∂ssrn(x, s) − �rn(x, s) + 1

ε2
rn(x, s) + fr

(
zn(x, s), rn(x, s); s

)= 0,
x ∈ Rd, 0 ≤ s ≤ τ , (3.3)

with the well-prepared initial data for zn and small initial data for rn as [10,12]⎧⎨⎩ zn(x,0) = 1

2

[
φn

1(x) − iφn
2(x)

]
, ∂szn(x,0) = i

2

[
−�zn(x,0) + 3λ|zn(x,0)|2zn(x,0)

]
,

rn(x,0) = 0, ∂srn(x,0) = −∂szn(x,0) − ∂szn(x,0), x ∈Rd,

(3.4)

where

fr (z, r; s) = λe3is/ε2
z3 + λe−3is/ε2

z3 + 3λ
(

e2is/ε2
z2 + e−2is/ε2

z2
)

r + 3λ
(

eis/ε2
z + e−is/ε2

z
)

r2

+ 6λ|z|2r + λr3.
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Fig. 2. Decomposition of the solution u(1, t) of (1.1) and (1.3) with d = 1 and λ = 1 via the MDF (3.3) with τ = 0.5 for different ε: z(1, t) = zn(1, s) and 
r(1, t) = rn(1, s) if t = nτ + s.

Then the problem (3.3) with (3.4) is truncated on a bounded domain with periodic boundary condition and then dis-
cretized by the EWI-FP method [10] with details omitted here for brevity. After solving numerically the decomposed problem 
(3.3) with (3.4), the solution of the NKGE (1.1) at t = tn+1 is reconstructed by the ansatz (3.2) by setting s = τ [10].

For the convenience of the reader and simplicity of notation, here we only present the method in 1D on 	 = (a, b) with 
the periodic boundary condition. Let un

j and u̇n
j be the approximations of u(x j, tn) and ∂t u(x j, tn), respectively; and let zn+1

j , 
żn+1

j , rn+1
j and ṙn+1

j be the approximations of zn(x j, τ ), ∂szn(x j, τ ), rn(x j, τ ) and ∂srn(x j, τ ), respectively, for j = 0, 1, . . . , N
and n ≥ 0. Choosing u0

j = φ1(x j) and u̇0
j = φ2(x j)/ε

2, then a multiscale time integrator Fourier pseudospectral (MTI-FP) 
method for discretizing the NKGE (2.1) is given as [10]⎧⎪⎨⎪⎩

un+1
j = eiτ/ε2

zn+1
j + e−iτ/ε2

zn+1
j + rn+1

j , j = 0,1, . . . , N, n ≥ 0,

u̇n+1
j = eiτ/ε2

(
żn+1

j + i

ε2
zn+1

j

)
+ e−iτ/ε2

(
żn+1

j − i

ε2
zn+1

j

)
+ ṙn+1

j ,
(3.5)

where zn+1, żn+1, rn+1 and ṙn+1 are numerical approximations of (3.3) with (3.4) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
zn+1

j =
N/2−1∑

l=−N/2

˜(zn+1)l eiμl(x j−a), rn+1
j =

N/2−1∑
l=−N/2

˜(rn+1)l eiμl(x j−a),

żn+1
j =

N/2−1∑
l=−N/2

˜(żn+1)l eiμl(x j−a), ṙn+1
j =

N/2−1∑
l=−N/2

˜(ṙn+1)l eiμl(x j−a),

(3.6)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜(zn+1)l = al(τ )˜(z(1))l + ε2bl(τ )˜(ż(1))l − cl(τ )˜(η(1))l − dl(τ )˜(η̇(1))l,

˜(żn+1)l = a′
l(τ )˜(z(1))l + ε2b′

l(τ )˜(ż(1))l − c′
l(τ )˜(η(1))l − d′

l(τ )˜(η̇(1))l, l = −N/2, . . . , N/2 − 1,

˜(rn+1)l = sin(ωlτ )

ωl

˜(ṙ(1))l − pl(τ )˜(g(1))l − ql(τ )˜(ġ(1))l − pl(τ )
(̃

g(1)
)

l
− ql(τ )

(̃
ġ(1)
)

l
,

˜(ṙn+1)l = cos(ωlτ )˜(ṙ(1))l − p′
l(τ )˜(g(1))l − q′

l(τ )˜(ġ(1))l − p′
l(τ )
(̃

g(1)
)

l
− q′

l(τ )
(̃

ġ(1)
)

l
− τ

2ε2
˜(wn+1)l,

(3.7)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(1)
j = 1

2

(
un

j − iε2u̇n
j

)
, η

(1)
j = 3λ

∣∣∣z(1)
j

∣∣∣2 z(1)
j , g(1)

j = λ
(

z(1)
j

)3
, ż(1)

j = i

2

[
−∂Fxx z(1)

j + η
(1)
j

]
,

ṙ(1)
j = −ż(1)

j − ż(1)
j , η̇

(1)
j = 6λz(1)

j · Re

(
z(1)

j ż(1)
j

)
+ 3λż(1)

j |z(1)
j |2, ġ(1)

j = 3λ
(

z(1)
j

)2
ż(1)

j ,

wn+1
j = 3λrn+1

j

(
e2iτ/ε2

(zn+1
j )2 + e−2iτ/ε2

(zn+1
j )2

)
+ 3λ(rn+1

j )2
(

eiτ/ε2
zn+1

j + e−iτ/ε2
zn+1

j

)
+ 6λ|zn+1|2rn+1 + λ(rn+1)3, j = 0,1, . . . , N, n ≥ 0.

(3.8)
j j j
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Here we adopt the following functions [10]

al(s) := λ+
l eisλ−

l − λ−
l eisλ+

l

λ+
l − λ−

l

, bl(s) := i
eisλ+

l − eisλ−
l

ε2(λ−
l − λ+

l )
, λ±

l = −
1 ±

√
1 + μ2

l ε
2

ε2
,

cl(s) :=
s∫

0

bl(s − θ)dθ, dl(s) :=
s∫

0

bl(s − θ)θ dθ, 0 ≤ s ≤ τ ,

pl(s) :=
s∫

0

sin (ωl(s − θ))

ε2ωl
e3iθ/ε2

dθ, ql(s) :=
s∫

0

sin (ωl(s − θ))

ε2ωl
e3iθ/ε2

θ dθ.

The MTI-FP is explicit, unconditionally stable, and its memory cost is O (N) and computational cost per step is O (N ln N). 
As established in [10], under proper regularity of the solution u of the NKGE (2.1), the following two error bounds were 
established by using two different techniques for the MTI-FP method [10]

‖u(·, tn) − IN un‖H2 � hm2 + τ 2 + ε2, ‖u(·, tn) − IN un‖H2 � hm2 + τ 2

ε2
, n = 0,1, . . . ,

T

τ
, (3.9)

which imply a uniform error bound for ε ∈ (0, 1] [10]

‖u(·, tn) − IN un‖H2 � hm2 + max
0<ε≤1

min

{
ε2,

τ 2

ε2

}
� hm2 + τ , 0 ≤ n ≤ T

τ
, (3.10)

where m2 ≥ 1 depends on the regularity of the solution u of (2.1).
These error bounds suggest that the MTI-FP method is uniformly spectral order in space if the solution is smooth and is 

uniformly first order in time for 0 < ε ≤ 1. The ε-resolution is h = O (1) and τ = O (1) in the nonrelativistic limit regime, 
which immediately show that the MTI-FP is super-resolution in time with respect to ε ∈ (0, 1] since the time step can be 
chosen as independently of ε although the solution is highly oscillatory in time at wavelength O (ε2).

3.2. Two-scale formulation (TSF) method

As presented in [23], the TSF method was constructed by separating the slow time scale t and the fast time scale 
ξ = t/ε2 and re-formulating the NKGE (1.1) into a two-scale formulation. This approach offers a general strategy to design 
uniformly accurate schemes for highly oscillatory differential equations and PDEs which contain general nonlinearity or 
strong couplings [24,32,33].

Introducing [23]

v := v(x, t) = u(x, t) − iε2(1 − ε2�)−1/2∂t u(x, t) ⇒ u(x, t) = 1

2
[v(x, t) + v(x, t)] , x ∈ Rd, t ≥ 0, (3.11)

then the NKGE (1.1) can be re-written as a first order PDE⎧⎨⎩ i∂t v(x, t) = − 1

ε2
(1 − ε2�)1/2 v(x, t) − λ

8
(1 − ε2�)−1/2 [v(x, t) + v(x, t)]3 , x ∈ Rd, t > 0,

v(x,0) = v0(x) := φ1(x) − i(1 − ε2�)−1/2φ2(x), x ∈Rd.

(3.12)

Let

w := w(x, t) = e−it/ε2
√

1−ε2�v(x, t) ⇔ v(x, t) = eit/ε2
√

1−ε2�w(x, t), x ∈Rd, t ≥ 0, (3.13)

so as to filter out the main oscillation in the above PDE. Then one gets [23]⎧⎨⎩ ∂t w = iλ

8
(1 − ε2�)−1/2e−it/ε2

√
1−ε2�

[
eit/ε2

√
1−ε2�w + e−it/ε2

√
1−ε2�w

]3
, x ∈ Rd, t > 0,

w(x,0) = v0(x), x ∈Rd.

(3.14)

Introduce U := U (x, t, ξ) with ξ interpreted as another ‘space’ variable on torus T =R/(2πZ) such that

w(x, t) = U

(
x, t,

t

ε2

)
, x ∈Rd, t ≥ 0, (3.15)

with t the slow time variable and ξ = t/ε2 the fast time variable [23]. Noticing (3.14), one needs to request U satisfies the 
following PDE [23]
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t U (x, t, ξ) + 1

ε2
∂ξ U (x, t, ξ) = F (t, ξ, U (x, t, ξ)), x ∈ Rd, t > 0, ξ ∈T ,

U (x,0, ξ) = U0(x, ξ), x ∈Rd, ξ ∈T ,

U (x, t, ξ) = U (x, t, ξ + 2π), x ∈ Rd, t ≥ 0, ξ ∈T ,

(3.16)

where U0(x, ξ) to be determined later satisfying U0(x, 0) = v0(x) and

F (t, ξ,φ) := iλ

8
(1 − ε2�)−1/2e−iξ e−it Dε

[
eiξ eit Dεφ + e−iξ e−it Dεφ

]3
, Dε = 1

ε2

[√
1 − ε2� − 1

]
, (3.17)

with φ := φ(x).
The initial data U0(x, ξ) in (3.16) is only prescribed at one point, i.e. ξ = 0, so there is some freedom to choose the 

initial data in order to bound the time derivatives of U . By using the Chapman-Enskog expansion, the initial data U0(x, ξ)

was obtained at different order of accuracy in term of ε [23]. For example, the initial data at first order of accuracy was 
given as [23]

U0(x, ξ) := U 1st
0 (x, ξ) = v0(x) + G1(ξ, v0) − G1(0, v0), x ∈Rd, 0 ≤ ξ ≤ 2π, (3.18)

such that ∂2
t U (x, t, ξ) = O (1) for fixed t ≥ 0 as ε → 0 [23], where

G1(ξ,φ) = ε2A F (0, ξ,φ) with A := L−1(I − �),

with the operators L and � defined as

Lϕ(ξ) = ∂ξϕ(ξ), �ϕ = 1

2π

2π∫
0

ϕ(ξ)dξ, and L−1ϕ = (I − �)

ξ∫
0

ϕ(θ)dθ when �ϕ = 0,

for some periodic function ϕ := ϕ(ξ) on T .
Let Un(x, ξ) be the numerical approximation of U (x, tn, ξ) for n ≥ 0. Then (3.16) with (3.18) can be discretized in time 

as

Un+1(x, ξ) = Un(x, ξ) + τ F
(
tn, ξ, Un(x, ξ)

)− τ

ε2
∂ξ Un+1(x, ξ), x ∈Rd, ξ ∈ T , n ≥ 0, (3.19)

with Un(x, ξ) = U 1st
0 (x, ξ). In the ξ -direction, thanks to the periodicity, one can further discretize (3.19) by the Fourier 

pseudospectral method as: Let hξ = 2π/Nξ with Nξ an even positive integer, ξm = mhξ and Un
m(x) be the approximation of 

Un(x, ξm) for m = 0, 1, . . . , Nξ , denote Un(x) = (Un
0(x), Un

1(x), . . . , Un
Nξ

(x))T , take U 0
m(x) = U 1st

0 (x, ξm) for m = 0, 1, . . . , Nξ , 
then one can get

Un+1
m (x) =

Mξ /2−1∑
l=−Nξ /2

Ũn+1
l (x) eilξm , m = 0,1, . . . , Nξ , n ≥ 0, (3.20)

with Ũn
l (x) =∑Nξ −1

m=0 Un
m(x) e−ilξm and

Ũn+1
l (x) = Ũn

l (x) + τ F̃ n
l (x)

1 + ilτ/ε2
, F̃ n

l (x) =
Nξ −1∑
m=0

F
(
tn, ξm, Un

m(x)
)

e−ilξm , l = − Nξ

2
, . . . ,

Nξ

2
− 1. (3.21)

Then (3.20) with (3.21) will be first truncated (in x) on a bounded computational domain with periodic boundary condition 
and then discretized by the standard Fourier pseudospectral method with details omitted here for brevity [23]. Finally, 
noticing (3.11), (3.13) and (3.15), one can reconstruct the approximation of the solution u of the NKGE (1.1) (or (2.1)). 
For the simplicity of notations, here we only present a first order two-scale formulation Fourier pseudospectral (TSF-FP1) 
method in 1D as [23]:

un+1
j = 1

2

[
vn+1

j + vn+1
j

]
, vn+1

j = e
itn+1
ε2

√
1−ε2∂Fxx

(
INξ Un+1(x j)

)∣∣
ξ= tn+1

ε2
, 0 ≤ j ≤ N, n ≥ 0, (3.22)

where u0
j = φ1(x j) for j = 0, 1, . . . , N .

Similarly, by taking the initial data as

U0(x, ξ) = U 2nd
0 (x, ξ) := v0(x) + G1

(
ξ, U 1st

0 (x)
)− G1

(
0, U 1st

0 (x)
)+ G2(ξ, v0(x)) − G2(0, v0(x)), (3.23)

such that ∂3
t U (x, t, ξ) = O (1) for fixed t ≥ 0 as ε → 0 [23], where
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G2(ξ,φ) := −ε2A2 [∂t F (0, ξ,φ) + ∂φ F (0, ξ,φ)�(F (0, ξ,φ))
]
.

Then (3.16) with (3.23) can be discretized by a second order scheme in time as⎧⎪⎨⎪⎩
Un+1/2(x, ξ) = Un(x, ξ) + τ

2
F
(
tn, ξ, Un(x, ξ)

)− τ

2ε2
∂ξ Un+1/2(x, ξ), x ∈Rd, ξ ∈T ,

Un+1(x, ξ) = Un(x, ξ) + τF
(

tn+1/2, ξ, Un+1/2(x, ξ)
)

− τ

2ε2
∂ξ

(
Un+1(x, ξ) + Un(x, ξ)

)
,

(3.24)

with Un(x, ξ) = U 2nd
0 (x, ξ). Similarly, (3.24) can be discretized in ξ -direction via the Fourier pseudospectral method, trun-

cated in x-direction onto a bounded computational domain with periodic boundary condition and then discretized via the 
Fourier pseudospecral method with details omitted here for brevity [23]. Finally one can obtain a second order two-scale 
formulation Fourier pseudospectral (TSF-FP2) scheme for the NKGE (1.1) (or (2.1)) via the reconstruction (3.22).

As shown in [23], both TSF-FP1 and TSF-FP2 are explicit, unconditionally stable, and its memory cost is O (Nξ N) and 
computational cost per step is O (Nξ N ln(Nξ N)). Under proper regularity of the solution U of the PDE (3.16), the following 
error bound was established for TSF-FP1 [23]

‖u(·, tn) − IN un‖H1 � hm0 + hm1
ξ + τ , n = 0,1, . . . ,

T

τ
, (3.25)

and respectively, for TSF-FP2 [23]

‖u(·, tn) − IN un‖H1 � hm0 + hm1
ξ + τ 2, n = 0,1, . . . ,

T

τ
, (3.26)

where m0 and m1 are two positive integers which depend on the regularity of solution U of (3.16) in x- and ξ -direction, 
respectively.

These error bounds suggest that both TSF-FP1 and TSF-FP2 methods are uniformly spectral order in space and in 
ξ -direction if the solution is smooth, and the TSF-FP1 and TSF-FP2 are uniformly first and second order, respectively, in 
time. Again, the ε-resolution is h = O (1) and τ = O (1) in the nonrelativistic limit regime, which immediately show that 
both TSF-FP1 and TSF-FP2 are super-resolution in time with respect to ε ∈ (0, 1] since the time step can be chosen inde-
pendently on ε although the solution is highly oscillatory in time at wavelength O (ε2). We remark that the finite difference 
integrator (3.19) or (3.24) from [23] is not the unique choice for discretizing the two-scale system (3.16). The formulation 
(3.16) and the well-prepared initial data (3.18) or (3.23) are essential for the TSF approach, and other numerical discretiza-
tions such as EWI-FP can also be applied to solve (3.16), see [24,33,74].

3.3. Multi-revolution composition (MRC) method

The multi-revolution composition (MRC) method is a geometric framework proposed in [27] for solving highly oscilla-
tory differential equations in the spirit of heterogenous multiscale method [1]. Recent works [25,62] revealed the uniform 
accuracy of MRC in its extended form. We are going to present a second order version of the extended MRC from [62] for 
solving the NKGE (1.1).

Suppose we are solving the NKGE (1.1) till some T f > 0, by a rescaling of the time t → ε2t , we can rewrite the formula-
tion (3.12) into⎧⎨⎩ i∂t v(x, t) = −v(x, t) + ε2

[
−Dε v(x, t) −Aελ |v(x, t)|2 v(x, t)

]
, 0 < t ≤ T f

ε2
,

v(x,0) = u(x,0) − iε2 Aε∂t u(x,0),

(3.27)

where we denote

Dε = 1

ε2

[√
1 − ε2� − 1

]
, Aε = (1 − ε2�)−1/2. (3.28)

This formulation casts the NKGE (1.1) into a perturbation of a motion of 2π -period on a large time interval, where we can 
write the time interval by the number of periods as

T f

ε2
= 2π M f + Tr, M f =

⌊
T f

2πε2

⌋
∈N, 0 ≤ Tr < 2π.

Then by choosing an integer 0 < M0 ≤ M f , we proceed the flow each time (at the macro level) by a step of length 2π M0, 
and the flow is approximated by

v(tn+1) ≈ Eβ(−2π)Eα(2π)v(tn), 0 ≤ n ≤ Nt − 1, (3.29)

where Eα(2π) denotes the flow
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i∂t v = −v + αH
[
−Dε v −Aελ |v|2 v

]
, 0 < t ≤ 2π,

and Eβ(−2π) denotes

i∂t v = −v − βH
[
−Dε v −Aελ |v|2 v

]
, −2π ≤ t < 0,

with

α = 1

2

(
1 + 1

M0

)
, β = 1

2

(
1 − 1

M0

)
, Nt = M f

M0
, H = ε2M0. (3.30)

After evaluating (3.29) till n = Nt , the MRC method is completed by solving the remaining flow Er(Tr):

i∂t v = −v + ε2
[
−Dε v −Aελ |v|2 v

]
, 0 < t ≤ Tr .

Each of the sub-flows Eα , Eβ and Er can be done by Strang splitting. For example for Eα(2π) (similarly for others), the flow 
can be split as

Ek
α(t) : i∂t v = (−1 − αH Dε)v and E p

α(t) : i∂t v = −αH Aελ |v|2 v.

Note that v is time-independent in Ek
α(t), so both Ek

α(t) and E p
α (t) can be evaluated exactly. When M0 = 1, then in (3.30)

α = 1, β = 0 and the MRC coincides with standard splitting [25]. Therefore, as the extended version of MRC presented 
in [25], one starts with a given Nt ∈ N+ , and if M0 = T f /ε

2/(2π Nt) ≤ 1, the MRC scheme is taken as the direct Strang 
splitting scheme on (3.27).

The detailed extended second order MRC Fourier pseudospectral (MRC-FP) scheme, by assuming Tr = 0 for simplicity, 
for solving the NKGE (2.1) in 1D reads: take Nt which is the number of total macro steps to discretize the time interval 
[0, 2π ] for the subflows and denote the micro time step size as τ = 2π/Nt ; denoting un

j ≈ u(x j, n
Nt

T f ) as the numerical 
solution of (2.1), vn

j ≈ v(x j, 2πnM0) as the numerical solution of (3.27) for j = 0, . . . , N; choosing v0
j = v(x j, 0), then if 

T f /ε
2/(2π Nt) > 1

vn+1
j = (E p

β (−τ/2)Ek
β(−τ )E p

β (−τ/2)
)Nt
(
E p
α(τ/2)Ek

α(τ )E p
α(τ/2)

)Nt
(IN vn)(x j), 0 ≤ n ≤ Nt − 1, (3.31)

and un
j = 1

2 (vn
j + vn

j ) for j = 0, . . . , N; if T f /ε
2/(2π Nt) ≤ 1, solve (3.27) by Strang splitting with time step τ . Again, the 

spatial discretization can be done by the Fourier pseudospecral method.
The MRC-FP scheme is explicit with computational costs O (Nt N ln(N)) at each step due to the micro solver. It is geo-

metric since it essentially uses compositions, and it is exactly charge preserving for vortices dynamics in NKGE [62]. The 
error bound is formally and numerically justified in [25,62] as

u

(
x j,

n

Nt
T f

)
− un

j = O (N−2
t ) + O (ε2τ 2) + O (hm0), n = 0, . . . , Nt, j = 0, . . . , N,

for some integer m0 > 0 which depends on the regularity of the solution. Since the total computational cost of MRC-FP is 
O (N2

t N ln(N)), so MRC-FP in time is first order uniformly accurate in terms of total cost. We remark that the integer for 
discretizing the subflows could be different from Nt in general [27].

4. Uniformly and optimally accurate (UOA) methods

In this section, we review briefly two UA methods with optimal convergence rate in time and/or computational costs, i.e. 
uniformly second-order in time without solving a problem in one more spatial dimension. One is the iterative exponential-
type integrator in [19], and the other is a MTI based on higher order multiscale expansion by frequency in [18].

4.1. An iterative exponential integrator (IEI)

Without using higher order approximations or extra dimensions, a second order UOA method for the NKGE (1.1) (or 
(2.1)) was very recently proposed in [19] by using an iterative exponential integrator. By reformulating the NKGE (1.1) into 
the first order PDE (3.12) and then introducing

v∗(x, t) = e−it/ε2
v(x, t), (4.1)

one finds

i∂t v∗(x, t) = −Dε v∗(x, t) − λ

8
Aεe−it/ε2

[
eit/ε2

v∗(x, t) + e−it/ε2
v∗(x, t)

]3
, x ∈Rd, t > 0,

which based on the Duhammel’s formula gives
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v∗(x, tn + s) = eisDε v∗(x, tn) (4.2)

+ λiAε

8

s∫
0

ei(s−θ)Dε−i(tn+θ)/ε2
[

ei(tn+θ)/ε2
v∗(x, tn + θ) + e−i(tn+θ)/ε2

v∗(x, tn + θ)
]3

dθ.

Here Dε is defined the same as in (3.17) and Aε is introduced as in (3.28). As used in [19], an exponential integrator is 
proposed by plugging (4.2) iteratively into the cubic terms (see this technique also in [65]). To describe the scheme, the 
following functions and operators are introduced.

ϕ1(z) = ez − 1

z
, ϕ2(z) = zez − ez + 1

z2
, z ∈ C,

Dn
k = τei(τ Dε+2tn/ε2)ϕk

(
iτ
(

2ε−2 − �/2
))

, k = 1,2, n ≥ 0,

Dn
k,m = τei(τ Dε−mtn/ε2)ϕk

(
−iτ

(
mε−2 + Dε

))
, k = 1,2, m = 2,4, n ≥ 0.

For simplicity of notations, here we only present the method in 1D. In this case, � = ∂xx . Let vn∗ be an approximation 
of v∗(x, tn) for n ≥ 0 via time integration, and take u0(x) = φ1(x) and v0∗ = φ1(x) − i(1 − ε2∂xx)

−1/2φ2(x). Then an iterative 
exponential integrator (IEI) scheme for approximating (4.2) reads:

vn+1∗ = eiτ Dε/2e3λiτ |wn∗|2/8 wn∗ + 3λiτ

8
(Aε − 1)eiτ Dε/2|wn∗|2 wn∗ + τ 2λ2κn + λi

8
Aεχ

n

+ 3iτε2λ2

128
Aε

(
2|vn∗|2Aεζ

n
0 + (vn∗)2Aεζ

n
0

)
, n ≥ 0, (4.3)

where

wn∗ = eiDετ/2 vn∗, �
n,m
j,k = 3λi

8
τ 2emitn/ε2

(vn∗) j(vn∗)kAε, j,k = 0,1,2, m = −4,−2,2, n ≥ 0,

κn = 9

128
eiDετ/2

[
Aε(wn∗)2(Aε − 1)|wn∗|2 wn∗ − (Aε − 1)|wn∗|4 wn∗ − 2Aε|wn∗|2(Aε − 1)|wn∗|2 wn∗

]
,

χn = Dn
1(vn∗)3 + iτDn

2

[
(∂xx/2 − Dε)(vn∗)3 + 3(vn∗)2 Dε vn∗

]
+ 3Dn

1,2|vn∗|2 vn∗ +Dn
1,4(vn∗)3 − �

n,2
2,0U

n
2

+ 3iτDn
2,2

[
(vn∗)2 Dε vn∗ − 2|vn∗|2 Dε vn∗

]
− 3iτDn

2,4(vn∗)2 Dε vn∗ − �
n,−2
0,2 Un−2 + 2�

n,−2
1,1 Wn

2 + �
n,−4
0,2 Wn

4 ,

ζn
m = e2itn/ε2

(
ϕ1((m + 2)iτ/ε2) − ϕ1(miτ/ε2)

)
(vn∗)3 − 3e−2itn/ε2

(
ϕ1((m − 2)iτ/ε2)

− ϕ1(miτ/ε2)
)

|vn∗|2 vn∗ − e−4itn/ε2 ϕ1((m − 4)iτ/ε2) − ϕ1(miτ/ε2)

2
(vn∗)3, m = −2,0,2,4, n ≥ 0,

with

Un
m =3ϕ2(miτ/ε2)|vn∗|2 vn∗ − iε2

2τ
ζn

m, Wn
m = 3ϕ2(miτ/ε2)|vn∗|2 vn∗ + iε2

2τ
ζn

m, m = −2,2,4, n ≥ 0.

Combining (3.11) and (4.1), a semi-discretized approximation of the NKGE (2.1) is given as

un+1(x) = 1

2

[
eitn+1/ε2

vn+1∗ (x) + e−itn+1/ε2
vn+1∗ (x)

]
, x ∈ 	, n ≥ 0.

In practice, performing all the differential operations in the above IEI method by the Fourier pseudospectral approximation 
with details omitted here for brevity [65], we obtain the iterative exponential integrator Fourier pseudospectral (IEI-FP) 
scheme.

The IEI-FP is explicit, unconditionally stable, and its memory cost is O (N) and computational cost per step is O (N ln N). 
As established in [65], under proper regularity of the solution u of the NKGE (2.1) [65] (which is weaker than that is needed 
for MTI-FP or TSF-FP), the following error bound was established for IEI-FP [65]

‖u(·, tn) − IN un‖H1 � hm0 + τ 2, n = 0,1, . . . ,
T

τ
. (4.4)
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4.2. A higher order MTI

Another uniform second-order in time UOA method for solving the NKGE (1.1) was very recently presented in [18] via a 
higher order multiscale expansion of the solution of the NKGE. As obtained in [18], the solution u(x, t) of (1.1) is expanded 
as

u(x, t) =
[

eit/ε2
v(x, t) + ε2λ

8
e3it/ε2

v(x, t)3 + c.c.

]
+ ε2 R(x, t), x ∈Rd, t ≥ 0, (4.5)

where c.c. represents the complex conjugate of the whole expression before it within the bracket, and v := v(x, t) solves 
the following nonlinear Schrödinger equation with wave operator (NLSW) under well-prepared initial data [7,10,18]⎧⎪⎪⎨⎪⎪⎩

2i∂t v + ε2∂tt v − �v + 3

(
λ|v|2 + ε2λ2

8
|v|4
)

v = 0, x ∈Rd, t > 0,

v(x,0) = w0(x) + ε2r0(x) =: v0(x), ∂t v(x,0) = i

2

(
−�w0(x) + 3λ|w0(x)|2 w0(x)

)
=: v1(x),

(4.6)

where

w0(x) = 1

2
(φ1(x) − iφ2(x)), r0(x) = λ

8
w0(x)3 − λ

4
w0(x)3 + i Re(v1(x)),

and R := R(x, t) solves the following NKGE with small initial data [18]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε2∂tt R − �R + 1

ε2
R + λ(F v + F R) = 0, x ∈Rd, t > 0,

R(x,0) = −λε2

4
Re (r1(x)) =: R0(x) = O (ε2), x ∈Rd,

∂t R(x,0) = −3λ

4
Re
(

v0(x)2 v1(x)
)

+ 3λ

4
Im (r1(x)) =: R1(x) = O (1),

(4.7)

with

r1(x) = r0(x)
[

v0(x)2 + v0(x)w0(x) + w0(x)2
]
,

F v(x, t) =
[

e
it
ε2

3λ2

32
ε2|v|6v + e

3it
ε2

(
3λ

4
|v|2 v3 + 9i

4
v2∂t v − 1

8
�v3 + ε2 3

4
(∂t v)2 + ε2 3

8
v2∂tt v + ε4 3λ3

512
|v|6v3

)
+ e5it/ε2

(
3λ

8
v5 + ε2 3λ2

64
|v|2v5

)
+ e7it/ε2

ε2 3λ2

64
v7 + e9it/ε2

ε4 λ3

512
v9 + c.c.

]
,

F R(x, t) =
[

e2it/ε2
(

3v2 + 3λ

4
ε2|v|2v2

)
R + 3eit/ε2

ε2 v R2 + 3λ2

64
e6it/ε2

ε4 v6 R + 3λ

8
e3it/ε2

ε4 v3 R2

+ 3λ

4
e4it/ε2

ε2 v4 R + c.c.

]
+ 6|v|2 R + ε4 R3 + 3λ2

32
ε4|v|6 R.

It was shown that R(x, t) = O (ε2) [18] and thus the multiscale expansion (4.5) without the last term is a higher order 
multiscale expansion of the solution of the NKGE (1.1) at O (ε4) [18]. Then the decomposed problems (4.6) and (4.7) are 
solved numerically by the EWI-FP method [18].

Again, for the convenience of the reader and simplicity of notations, here we only present the method in 1D on 	 = (a, b)

with the periodic boundary condition. Let un
j and u̇n

j be the approximations of u(x j, tn) and ∂t u(x j, tn), respectively; and let 
vn

j , v̇n
j , Rn

j and Ṙn
j be the approximations of v(x j, tn), ∂t v(x j, tn), R(x j, tn) and ∂t R(x j, tn) respectively, for j = 0, 1, . . . , N and 

n ≥ 0. Choosing u0
j = φ1(x j) and u̇0

j = φ2(x j)/ε
2, v0

j = v0(x j), v̇0
j = v1(x j), R0

j = R0(x j) and Ṙ0
j = R1(x j) for j = 0, 1 . . . , N , 

then a high-order multiscale time integrator Fourier pseudospectral (MTI-FP2) method for discretizing the NKGE (2.1) is 
given as [18]

un+1
j =

[
eitn+1/ε2

vn+1
j + λε2

8
e3itn+1/ε2

(vn+1
j )3 + c.c.

]
+ ε2 Rn+1

j , j = 0,1, . . . , N, n ≥ 0,

u̇n+1
j =

[
i

ε2
e

itn+1
ε2 vn+1

j + e
itn+1
ε2 v̇n+1

j + 3iλ

8
e

3itn+1
ε2 (vn+1

j )3 + 3λ

8
ε2e

3itn+1
ε2 (vn+1

j )2 v̇n+1
j + c.c.

]
+ ε2 Ṙn+1.

(4.8)
j
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Here vn+1 and v̇n+1 are approximations of the NLSW (4.6) by an EWI-FP [7,10,18] as

vn+1
j =

N/2−1∑
l=−N/2

˜(vn+1)l eiμl(x j−a), v̇n+1
j =

N/2−1∑
l=−N/2

˜(v̇n+1)l eiμl(x j−a), j = 0,1, . . . , N, n ≥ 0, (4.9)

where

˜(vn+1)l =

⎧⎪⎨⎪⎩
al(τ )(̃v0)l + ε2bl(τ )(̃v̇0)l − cl(τ )(̃g0)l, n = 0,

al(τ )(̃vn)l + ε2bl(τ )(̃v̇n)l − cl(τ )(̃gn)l − dl(τ )
τ

[
(̃gn)l − ˜(gn−1)l

]
, n ≥ 1,

˜(v̇n+1)l =

⎧⎪⎨⎪⎩
a′

l(τ )(̃v0)l + ε2b′
l(τ )(̃v̇0)l − c′

l(τ )(̃g0)l, n = 0,

a′
l(τ )(̃vn)l + ε2b′

l(τ )(̃v̇n)l − c′
l(τ )(̃gn)l − d′

l (τ )

τ

[
(̃gn)l − ˜(gn−1)l

]
, n ≥ 1,

with gn = (gn
0, gn

1, . . . , gn
N)T given as

gn
j = 3

(
λ|vn

j |2 + ε2λ2

8
|vn

j |4
)

vn
j , j = 0,1, . . . , N, n ≥ 0.

Similarly, here Rn+1 and Ṙn+1 are approximations of the NKGE (4.7) by an EWI-FP [10,11,18] as

Rn+1
j =

N/2−1∑
l=−N/2

˜(Rn+1)l eiμl(x j−a), Ṙn+1
j =

N/2−1∑
l=−N/2

˜(Ṙn+1)l eiμl(x j−a), j = 0,1, . . . , N, n ≥ 0, (4.10)

where
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Ġn
3

)
l
− (pn

l,5)
′(τ )˜(Gn

5)l − (qn
l,5)

′(τ )
(̃
Ġn
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Here we adopt the following functions from [18]: for n ≥ 0, l = −N/2, . . . , N/2 − 1 and k = 3, 5,
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Table 1
Spatial error of ECFD for different ε at time t = 1 under τ = 10−5.

eτ ,h
ε (t = 1) h0 = 0.5 h0/2 h0/4 h0/8 h0/16 h0/32

ε0 = 1.0 3.10E-1 8.37E-2 2.09E-2 5.31E-3 1.24E-3 3.11E-4
rate – 1.89 2.00 1.98 2.09 2.00
ε0/2 4.26E-1 1.19E-1 3.11E-2 7.92E-3 1.83E-3 4.58E-4
rate – 1.84 1.94 1.97 2.11 2.00
ε0/22 6.67E-1 2.16E-1 5.71E-2 1.41E-2 3.30E-3 8.26E-4
rate – 1.63 1.92 2.01 2.09 2.00
ε0/23 9.05E-1 2.77E-1 7.58E-2 1.98E-2 4.46E-3 1.11E-3
rate – 1.70 1.87 1.94 2.14 2.00
ε0/24 8.48E-1 3.00E-1 8.37E-2 2.21E-2 5.11E-3 1.21E-3
rate – 1.50 1.84 1.92 2.10 2.07

Table 2
Spatial error of LI-FP1 for different ε at time t = 1 under τ = 10−7.

eτ ,h
ε (t = 1) h = 2 h = 1 h/2 h/4 h/8

ε0 = 1.0 9.53E-1 1.49 1.44 1.44 1.44
ε0/22 9.42E-1 4.80E-1 5.06E-1 5.05E-1 5.05E-1
ε0/24 7.48E-1 3.04E-1 5.39E-2 5.38E-2 5.38E-2
ε0/26 1.10 4.98E-1 1.98E-2 3.29E-3 3.29E-3
ε0/28 1.08 4.89E-1 1.76E-2 2.07E-4 2.07E-4
ε0/210 9.74E-1 3.45E-1 2.57E-2 2.11E-5 1.33E-5
ε0/212 1.04 4.74E-1 1.54E-2 6.77E-6 8.17E-7
ε0/214 7.31E-1 2.52E-1 1.06E-2 1.34E-5 7.69E-8

pn
l,k(s) =

s∫
0

λ sin(ωl(s − θ))

ε2ωl
eki(tn+θ)/ε2

dθ, qn
l,k(s) =

s∫
0

λ sin(ωl(s − θ))

ε2ωl
eki(tn+θ)/ε2

θdθ.

Again, the MTI-FP2 is explicit, unconditionally stable, and its memory cost is O (N) and computational cost per step is 
O (N ln N). As established in [18], under proper regularity of the solution u of the NKGE (2.1), the following error bound 
was established for MTI-FP2 [18]

‖u(·, tn) − IN un‖H1 + ε2‖∂t u(·, tn) − IN u̇n‖H1 � τ 2 + hm0 , n = 0,1, . . .
T

τ
. (4.11)

We remark here that two new UOA schemes named as micro-macro method and pull-back method were proposed very 
recently in [26] based on the averaging theory. The accuracy of the micro-macro method is very similar to TSF-FP2 and the 
efficiency is very similar to MTI-FP2 and IEI-FP. The pull-back is implicit but with superior long-time behavior over other 
methods [26].

5. Numerical comparisons and results

In this section, we report the performance of different numerical methods reviewed in previous sections and carry out a 
systematical comparison.

In order to do so, we take d = 1 and λ = 1 in (1.1) and choose the initial data as

φ1(x) = 3 sin(x)

ex2/2 + e−x2/2
, φ2(x) = 2e−x2

√
π

, x ∈R.

The problem is solved numerically on a bounded computational domain 	 = (−16, 16). The ‘exact’ solution of the NKGE 
(2.1) is obtained numerically by TSF-FP2 with a very small step size, i.e. τ = 10−6, h = 1/64, hξ = π/64. Define error

eτ ,h
ε (t = tn) := ∥∥P N u(·, tn) − IN un

∥∥
H1 ,

where P N is the standard projection operator [69]. We depict the errors at t = 1. The temporal error and spatial error of 
each numerical method are studied and shown separately in the following.

5.1. Spatial errors

We first test and compare the spatial discretization error of different numerical methods. For spatial error analysis, the 
time step τ is chosen small enough such that the discretization error in time is negligible, e.g. τ = 10−6.
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Table 3
Spatial error of LI-FP2 for different ε at time t = 1 under τ = 10−7.

eτ ,h
ε (t = 1) h = 2 h = 1 h/2 h/4 h/8

ε0 = 1.0 7.41E-1 10.2 12.9 14.2 14.2
ε0/22 8.84E-1 6.07E-1 5.86E-1 6.50E-1 6.50E-1
ε0/24 7.51E-1 2.77E-1 2.54E-2 9.77E-3 9.77E-3
ε0/26 1.10 4.97E-1 1.90E-2 6.46E-5 6.38E-5
ε0/28 1.08 4.89E-1 1.76E-2 7.03E-6 2.39E-7
ε0/210 9.74E-1 3.46E-1 2.57E-2 1.66E-5 6.24E-9
ε0/212 1.04 4.74E-1 1.54E-2 6.73E-6 7.20E-9
ε0/214 7.31E-1 2.52E-1 1.06E-2 1.34E-5 4.41E-9

Table 4
Spatial error of MTI-FP for different ε at time t = 1 under τ = 10−7.

eτ ,h
ε (t = 1) h = 2 h = 1 h/2 h/4 h/8

ε0 = 1.0 5.88E-1 2.10E-1 9.61E-3 7.58E-6 1.61E-11
ε0/2 5.88E-1 4.52E-1 2.37E-2 1.70E-5 1.63E-11
ε0/22 8.99E-1 4.60E-1 3.05E-2 1.29E-5 1.61E-11
ε0/23 7.07E-1 1.57E-1 7.35E-3 6.05E-6 8.31E-12
ε0/24 7.58E-1 2.76E-1 2.60E-2 1.72E-5 7.75E-12
ε0/25 1.12 4.66E-1 2.43E-2 1.55E-5 9.33E-12
ε0/28 1.08 4.90E-1 1.64E-2 7.58E-6 6.56E-12
ε0/211 7.35E-1 2.32E-1 1.64E-2 1.66E-5 7.29E-12

Table 5
Spatial Error of TSF-FP1 in ξ for different ε at time t = 1 under τ = 10−7, h = 1/16.

eτ ,h
ε (t = 1) hξ = π hξ /2 hξ /4 hξ /8 hξ /16

ε0 = 1 4.51E-1 2.01E-1 1.47E-2 4.21E-5 9.05E-10
ε0/2 4.16E-1 1.32E-1 4.33E-3 1.92E-6 1.08E-12
ε0/22 6.33E-1 1.27E-1 7.46E-4 2.59E-8 1.34E-11
ε0/23 6.22E-1 1.10E-1 1.44E-5 2.34E-12 4.45E-13
ε0/24 8.14E-1 9.84E-2 3.70E-7 4.12E-13 4.12E-13
ε0/25 9.33E-1 1.13E-1 3.22E-8 5.14E-13 3.74E-13
ε0/28 1.07 9.16E-2 5.48E-12 4.56E-13 2.91E-13
ε0/211 7.24E-1 1.06E-1 5.18E-13 3.07E-13 2.64E-13

The three finite difference methods share almost the same discretization error in space. Thus, we only give the spatial 
error of ECFD in Table 1 as a representative and omit the results of SIFD and LFFD. The errors of LI-FP1 and LI-FP2 are given 
in Table 2 and Table 3, respectively. These errors are the spatial errors mixed with the model reduction errors. The spatial 
error of MTI-FP is given in Table 4. The results of EWI-FP, TS-FP, TSF-FP2, MRC-FP, IEI-FP and MTI-FP2 behave similarly 
as that of MTI-FP since they share the same Fourier discretization, so the corresponding results have been omitted for 
brevity as well. The error of TSF-FP1 in the extra space direction ξ is given in Table 5, which represents the very similar 
corresponding results of TSF-FP2.

From Tables 1-5, we can draw the following observations:
(i) ECFD, SIFD and LFFD have second order accuracy in space error, while EWI-FP, TS-FP, MTI-FP, TSF-FP1, TSF-FP2 and 

MRC-FP have spectral accuracy in space. The errors are uniform in space in terms of ε with spatial ε-scalability h = O (1). 
Thus, when the initial data of NKGE is smooth enough, the Fourier pseudospectral discretization in space is obviously more 
efficient than finite difference discretization.

(ii) The spatial errors of the LI-FP1 and LI-FP2 are mixed with the residue of O (ε2) and O (ε4), respectively from the 
model reductions. Thus, for a fixed 0 < ε ≤ 1, the spectral accuracy of space discretization is broken and the error is bounded 
from blow.

(iii) The errors of TSF-FP1 and TSF-FP2 in the extra space direction ξ are of spectral accuracy. The error is uniformly 
bounded for all ε ∈ (0, 1] which allows the use of hξ = O (1). The computational resource needed in the ξ -direction is not 
very heavy, i.e. Nξ = 32 is enough to get machine accuracy for all the ε in this example. The smaller ε is, the less grid 
points are needed in ξ direction to reach the machine accuracy.

5.2. Temporal errors

For temporal error analysis, the mesh size h (and so is hξ for TSF-FP) is chosen small enough such that the discretization 
error in space is negligible. The detailed data of the used h, hξ is given case by case below.
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Table 6
Temporal error of ECFD for different ε at time t = 1 under h = 1/1024.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/23 τ0/26 τ0/29 τ0/212

ε0 = 1 2.90E-1 6.79E-3 1.15E-4 1.81E-6 3.57E-8
rate – 1.80 1.96 2.02 1.89
ε0/2 2.73 7.13E-2 1.15E-3 2.04E-5 3.47E-7
rate – 1.76 1.98 1.94 1.95
ε0/22 3.16 2.32 3.90E-2 6.28E-4 1.51E-5
rate – 0.15 1.97 1.97 1.93
ε0/23 6.22 3.23 1.73 2.71E-2 4.28E-4
rate – 0.32 0.30 1.99 2.00
ε0/24 4.03 7.30 7.01 1.61 2.60E-2
rate – 0.29 0.02 0.71 1.98

Table 7
Temporal error of SIFD for different ε at time t = 1 under h = 1/1024.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/23 τ0/26 τ0/29 τ0/212

ε0 = 1 2.42E-1 5.46E-3 9.27E-5 1.72E-6 3.50E-8
rate – 1.82 1.96 1.99 1.87
ε0/2 2.28 5.83E-2 9.67E-4 2.11E-5 3.51E-7
rate – 1.76 1.98 1.84 1.97
ε0/22 4.06 2.07 3.39E-2 5.63E-4 8.88E-6
rate – 0.32 1.96 1.97 2.00
ε0/23 6.05 2.67 1.67 2.66E-2 4.14E-4
rate – 0.39 0.22 1.99 2.00
ε0/24 4.05 6.78 7.07 1.60 2.60E-2
rate – −0.24 −0.01 0.71 1.99

Table 8
Temporal error of LFFD for different ε at time t = 1 with rule (5.1).

eτ ,h
ε (t = 1) τ0 = 0.2

h0 = 0.5
τ0/8
h0/8δ1(ε)

τ0/82

h0/82δ2(ε)

τ0/83

h0/83δ3(ε)

τ0/84

h0/84δ4(ε)

ε0 = 1 2.29E-1 3.94E-3 6.22E-5 9.78E-7 3.07E-8
rate – 1.95 1.99 2.00 1.66
ε0/2 6.05E-1 9.05E-3 1.45E-4 2.27E-6 1.68E-8
rate – 2.02 1.99 2.00 2.36
ε0/22 unstable 3.12E-1 4.93E-3 7.13E-5 1.24E-6
rate – – 2.00 2.03 1.95
ε0/23 unstable unstable 2.38E-1 3.56E-3 6.22E-5
rate – – – 2.02 1.95
ε0/24 unstable unstable 2.68 2.35E-1 3.64E-3
rate – – – 1.17 2.00

The results of ECFD, SIFD, LFFD, EWI-FP, TS-FP, LI-FP1, LI-FP2, MTI-FP, TSF-FP1, TSF-FP2, MRC-FP, IEI-FP and MTI-FP2 are 
shown in Tables 6-18, respectively. For the LFFD method, in order to show the temporal discretization error but meanwhile 
to satisfy the stability condition, we choose [8,9]

δ j(ε) =
{

ε2, ε0/2 j ≤ ε ≤ 1,

ε2
0/4 j, 0 < ε < ε0/2 j,

j = 0,1, . . . , (5.1)

in Table 8 for the temporal error. To illustrate the UA property of MTI-FP, TSF-FP1 and TSF-FP2, we also define the error

eτ ,h∞ (T ) := max
ε

{
eτ ,h
ε (T )

}
.

The convergence rate of each method is shown along with the error. In the tables, we highlight the error of each classical 
method in the table when the time step is chosen according to its ε-scalability. The efforts made here are to illustrate the 
convergence rate of each method and the ε-scalability in the limit regime.

As a summary, a detailed table on the comparison of computational complexity of each method has been given in 
Table 19. The comparison of the temporal error of each method in the classical regime, i.e. ε = O (1), and the comparison in 
the limit regime have been given in Tables 20 and 21 together with the computational time. An efficiency comparison plot 
is made in Fig. 3. Table 22 shows the temporal error of different methods under the natural mesh strategy, i.e. τ = O (ε2)

which fully resolves the temporal wavelength of the oscillation. All methods are programmed with Matlab and run on an 
Intel i3-3120M 2.5 GHz CPU laptop.
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Fig. 3. Efficiency comparisons of the methods in classical regime ε = 1 (left) and in the limit regime ε = 1/211 (right): the error eτ ,h
ε (t = 1) against 

computational time (h = 1/8 for all methods and hξ = π/16, π/4 for TSF-FP2 under ε = 1, 1/211 respectively). Note for ε = 1 MRC-FP coincides with TS-FP.

Table 9
Temporal error of EWI-FP for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 1.41E-2 8.14E-4 5.07E-5 3.09E-6 1.62E-7 1.06E-8
rate – 2.05 2.00 2.02 2.13 1.96
ε0/2 1.11E-1 4.40E-3 2.75E-4 1.72E-5 1.07E-6 6.79E-8
rate – 2.32 2.00 2.00 2.00 1.99
ε0/22 2.47 6.56E-2 3.90E-3 2.42E-4 1.51E-5 9.50E-7
rate – 2.61 2.04 2.00 2.00 2.00
ε0/23 6.73E-1 2.82 6.62E-2 4.00E-3 2.51E-4 1.56E-5
rate – −1.03 2.71 2.02 2.00 2.00
ε0/24 9.50E-1 9.28E-1 2.67 6.73E-2 4.00E-3 2.49E-4
rate – 0.02 −0.46 2.66 2.04 2.00
ε0/25 9.96E-1 1.05 1.11 3.87 6.34E-2 3.70E-3
rate – −0.04 −0.04 −0.90 2.97 2.04

Table 10
Temporal error of TS-FP for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 8.49E-3 5.12E-4 3.19E-5 2.00E-6 1.24E-7 7.64E-9
rate – 2.02 2.00 2.00 2.00 2.01
ε0/2 8.60E-2 3.20E-3 1.97E-4 1.23E-5 7.69E-7 4.73E-8
rate – 2.37 2.01 2.00 2.00 2.01
ε0/22 7.18E-1 2.15E-2 1.11E-3 6.90E-5 4.31E-6 2.65E-7
rate – 2.53 2.13 2.00 2.00 2.01
ε0/23 6.39E-1 6.39E-1 5.05E-3 2.74E-4 1.70E-5 1.05E-6
rate – 0.00 3.49 2.10 2.01 2.01
ε0/24 6.84E-1 2.58E-1 2.56E-1 1.32E-3 7.18E-5 4.39E-6
rate – 0.70 0.01 3.80 2.10 2.02
ε0/25 7.64E-1 5.03E-2 5.77E-2 5.88E-2 3.89E-4 2.94E-5
rate – 1.96 −0.10 −0.01 3.62 1.86

5.3. Comparison of different methods

From Tables 6-22 and Fig. 3, we can draw the following conclusions:
(i) All FDTD methods have temporal ε-scalability τ = O (ε3) (cf. Tables 6-8). In the classical regime, LFFD is the most 

accurate and efficient method among the three. However, all FDTD methods become inefficient when ε becomes small.
(ii) Both EWI-FP and TS-FP have temporal ε-scalability τ = O (ε2) (cf. Tables 9 and 10). While when τ � ε2, TS-FP has 

an improved error bound at τ 2/ε2 with respect to the small parameter ε ∈ (0, 1]. Both methods perform very well in the 
classical regime (cf. Tables 21 and 22), but they are unsatisfactory in the limit regime. They have very similar efficiency but 
TS-FP is more accurate when ε is small.

(iii) The two LI methods are accurate in the limit regime, but both of them do not have convergence in the classical or 
the intermediate regime (cf. Tables 11 and 12). LI-FP2 is more accurate than LI-FP1 due to the correction.
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Table 11
Temporal error of LI-FP1 for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 1.44 1.44 1.44 1.44 1.44 1.44
rate – 0.00 0.00 0.00 0.00 0.00
ε0/22 5.05E-1 5.05E-1 5.05E-1 5.05E-1 5.05E-1 5.05E-1
rate – 0.40 0.00 0.00 0.00 0.00
ε0/24 7.11E-2 5.37E-2 5.37E-2 5.37E-2 5.37E-2 5.37E-2
rate – 1.68 0.03 0.00 0.00 0.00
ε0/26 4.06E-2 3.40E-3 3.29E-3 3.29E-3 3.29E-3 3.29E-3
rate – 1.79 0.02 0.00 0.00 0.00
ε0/28 4.00E-2 1.07E-3 2.12E-4 2.07E-4 2.07E-4 2.07E-4
rate – 2.61 1.17 0.01 0.00 0.00
ε0/210 4.19E-2 1.11E-3 7.03E-5 1.44E-5 1.33E-5 1.33E-5
rate – 2.61 1.99 1.14 0.06 0.00
ε0/212 4.00E-2 1.05E-3 6.38E-5 4.00E-6 8.33-7 8.16E-7
rate – 2.62 2.02 2.00 1.13 0.01
ε0/214 4.13E-2 9.43E-4 5.76E-5 3.60E-6 2.38E-7 7.82E-8
rate – 2.72 2.01 2.00 1.96 0.8

Table 12
Temporal error of LI-FP2 for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 12.4 13.3 14.1 14.1 14.1 14.1
rate – −0.05 −0.04 0.00 0.00 0.00
ε0/22 1.18E-1 6.40E-1 6.07E-1 6.47E-1 6.50E-1 6.50E-1
rate – −1.21 0.04 −0.04 −0.01 0.00
ε0/24 7.01E-2 6.52E-3 9.46E-3 9.75E-3 9.77E-3 9.77E-3
rate – 1.71 −0.02 −0.01 −0.01 0.00
ε0/25 4.62E-2 1.01E-3 1.01E-3 1.07E-3 1.07E-3 1.07E-3
rate – 2.75 0.00 0.00 0.00 0.00
ε0/26 4.11E-2 1.05E-3 4.99E-5 6.11E-5 6.36E-5 6.38E-5
rate – 2.64 2.19 −0.15 −0.01 −0.01
ε0/27 4.26E-2 1.08E-3 6.39E-5 3.15E-6 3.63E-6 3.80E-6
rate – 2.65 2.03 2.17 0.1 0.03
ε0/28 4.00E-2 1.07E-3 6.48E-5 3.89E-6 1.93E-7 2.31E-7
rate – 2.61 2.02 2.03 2.16 −0.13
ε0/29 4.14E-2 1.13E-3 6.90E-5 4.30E-6 2.60E-7 1.41E-8
rate – 2.59 2.01 2.00 2.02 2.10

(iv) MTI-FP, TSF-FP1, TSF-FP2, IEI-FP, MTI-FP2 and MRC-FP have temporal ε-scalability τ = O (1) and they offer uniformly 
correct results for all ε ∈ (0, 1] (cf. Tables 13-18). MRC-FP is of first order accuracy in terms of total costs in the limit regime 
(cf. Fig. 3). All the other five UA methods have some temporal convergence order reductions in the resonance regime. 
Between the two first order UA schemes, MTI-FP is more accurate than TSF-FP1 (cf. Tables 13 and 14). TSF-FP2 is the most 
accurate method among the first five under the same step size (cf. Tables 21 and 22), while from the computational cost 
point of view, TSF-FP2 is more expensive than the UOA methods due to the extra dimension (cf. Table 19 and Fig. 3), 
especially the memory cost in high dimensions (cf. Table 19), and IEI-FP is found to be most efficient (cf. Tables 20-22 and 
Fig. 3).

(v) Among all the methods, in the ε = O (1) regime, the EWI-FP method and TS-FP are the most accurate and efficient 
methods (cf. Tables 20 and 22 and Fig. 3). While in the intermediate regime and the limit regime, the two UOA methods, 
i.e. IEI-FP and MTI-FP2 are significantly more powerful than the others (cf. Tables 21 and 22 and Fig. 3).

Remark 5.1. The second order uniform accuracy of TSF-FP2 has been shown in [23] under condition τ ≤ C with C > 0
independent of ε. Here in our test (cf. Table 15), we are interested in performance of the scheme with a wide range of time 
step. Hence the order reduction here does not conflict with the theoretical results.

To address the long-time performance of each method, we define the numerical energy of the UA methods as:

En :=
∫
	

[
ε2|u̇n|2 + |∂xun|2 + 1

ε2
|un|2 + λ

2
|un|4

]
dx, n = 0,1, . . . ,

where un = un(x) ≈ u(x, tn), u̇n = u̇n(x) ≈ ∂t u(x, tn) denote the numerical solutions from the schemes, and then we test the 
energy error for the NKGE (2.1) on the torus 	 = (0, 2π) with initial data
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Fig. 4. Energy error |En − E(0)|/E(0) of the second order UA methods for (5.2) till t = 20 under ε = 1/27: τ = 10−3 for IEI-FP, MTI-FP2, TSF-FP2; τ = π/64
and M0 = 14 for MRC-FP.

Table 13
Temporal error of MTI-FP for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 1.90E-1 1.98E-2 1.49E-3 9.73E-5 6.16E-6 3.82E-7
rate – 1.63 1.87 1.97 1.99 2.01
ε0/2 1.63E-1 1.19E-2 8.26E-4 5.26E-5 3.30E-6 2.04E-7
rate – 1.85 1.92 1.99 2.00 2.01
ε0/22 1.63E-1 3.22E-2 2.62E-3 1.63E-4 1.01E-5 6.28E-7
rate – 1.17 1.81 2.00 2.00 2.01
ε0/23 1.01E-1 3.68E-2 6.22E-3 5.13E-4 3.23E-5 2.00E-6
rate – 0.73 1.27 1.80 1.99 2.01
ε0/24 9.67E-2 1.30E-2 9.62E-3 1.60E-3 1.32E-4 8.26E-6
rate – 1.44 0.23 1.30 1.80 2.00
ε0/25 9.50E-2 6.22E-3 2.77E-3 2.62E-3 5.03E-4 3.86E-5
rate – 2.00 0.58 0.04 1.19 1.85
ε0/27 9.56E-2 5.61E-3 4.30E-4 1.19E-4 1.62E-4 1.69E-4
rate – 2.04 1.85 0.93 −0.22 −0.03
ε0/29 9.44E-2 5.48E-3 3.43E-4 2.06E-5 1.19E-6 3.51E-6
rate – 2.06 2.00 2.02 2.05 −0.77
ε0/211 9.67E-2 5.60E-3 3.48E-4 2.19E-5 1.66E-6 1.67E-7
rate – 2.05 2.00 1.99 1.86 1.66
ε0/213 9.50E-2 5.48E-3 3.40E-4 2.12E-5 1.29E-6 7.35E-8
rate – 2.05 2.00 2.00 2.01 2.06
ε0/215 9.50E-2 5.50E-3 3.41E-4 2.13E-5 1.33E-6 8.60E-8
rate – 2.05 2.00 2.00 2.00 1.98
eτ ,h∞ 1.90E-1 3.68E-2 9.62E-3 2.62E-3 5.03E-4 1.69E-4
rate – 1.19 0.97 0.94 1.19 0.80

φ1(x) = 2 sin(x)
, φ2(x) = 2 + 2 cos(2x)

, x ∈ 	. (5.2)

2 − cos(x) 2 + sin(x)
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Table 14
Temporal Error of TSF-FP1 for different ε at time t = 1 under h = 1/8, hξ = π/32.

eτ ,h
ε (t = 1) τ = 0.2 τ/22 τ/24 τ/26 τ/28 τ/210

ε0 = 1 1.07E-1 3.05E-2 7.92E-3 2.01E-3 5.04E-4 1.26E-4
rate – 0.91 0.97 0.99 1.00 1.00
ε0/2 8.88E-2 4.18E-2 1.70E-2 5.18E-3 1.38E-3 3.53E-4
rate – 0.54 0.65 0.86 0.95 0.99
ε0/22 6.39E-2 1.70E-2 7.35E-3 4.76E-3 2.14E-3 6.96E-4
rate – 0.96 0.60 0.31 0.58 0.81
ε0/23 8.43E-2 1.98E-2 5.04E-3 1.44E-3 6.90E-4 4.75E-4
rate – 1.04 0.99 0.90 0.53 0.27
ε0/24 9.67E-2 2.15E-2 5.28E-3 1.32E-3 3.38E-4 9.79E-5
rate – 1.09 1.01 1.00 0.98 0.89
ε0/25 9.05E-2 1.98E-2 4.96E-3 1.24E-3 3.11E-4 7.81E-5
rate – 1.1 1.00 1.00 1.00 1.00
ε0/28 9.61E-2 2.03E-2 5.08E-3 1.27E-3 3.22E-4 8.48E-5
rate – 1.12 1.00 1.00 0.99 0.96
ε0/211 1.01E-1 2.20E-2 5.45E-3 1.36E-3 3.40E-4 8.48E-5
rate – 1.10 1.01 1.00 1.00 1.00
eτ ,h∞ 1.07E-1 4.18E-2 1.70E-2 5.18E-3 2.14E-3 6.96E-4
rate – 0.68 0.65 0.86 0.64 0.81

Table 15
Temporal error of TSF-FP2 for different ε at time t = 1 under h = 1/8, hξ = π/32.

eτ ,h
ε (t = 1) τ = 0.2 τ/22 τ/24 τ/26 τ/28 τ/210

ε0 = 1 1.86E-2 1.18E-3 7.35E-5 4.57E-6 2.84E-7 1.67E-8
rate – 1.99 2.00 2.00 2.00 2.04
ε0/2 3.45E-2 5.25E-3 3.44E-4 2.15E-5 1.35E-6 8.26E-8
rate – 1.36 1.97 2.00 2.00 2.01
ε0/22 2.94E-2 2.82E-3 9.16E-4 8.77E-5 5.47E-6 3.39E-7
rate – 1.69 0.81 1.69 2.00 2.01
ε0/23 2.43E-2 1.01E-3 2.00E-4 7.07E-5 1.15E-5 7.35E-7
rate – 2.29 1.17 0.75 1.31 1.98
ε0/24 3.34E-2 5.94E-4 7.47E-5 1.39E-5 1.28E-6 5.94E-7
rate – 2.90 1.50 1.21 1.72 0.55
ε0/25 3.73E-2 5.43E-4 3.54E-5 5.12E-6 1.00E-6 8.14E-8
rate – 3.05 1.97 1.40 1.18 1.81
ε0/28 3.85E-2 5.25E-4 3.11E-5 1.94E-6 1.21E-7 7.81E-9
rate – 3.09 2.04 2.00 2.00 1.98
ε0/211 3.79E-2 5.25E-4 2.82E-5 1.76E-6 1.10E-7 6.39E-9
rate – 3.15 2.04 2.00 2.00 2.04
eτ ,h∞ 3.85E-2 5.25E-3 9.16E-4 8.77E-5 1.15E-5 7.35E-7
rate – 1.44 1.26 1.70 1.47 1.98

The relative energy errors |En − E(0)|/E(0) of MRC-FP, IEI-FP, TSF-FP2 and MTI-FP2 are shown in Fig. 4 as functions of time. 
We can see by the numerical results that in this example: i) the numerical energy of the IEI-FP or TSF-FP2 has a linear 
drift as time evolves, while the other two remain bounded within the time of computation. ii) MTI-FP2 shows the smallest 
energy error among them.

6. Applications

In this section, we apply the UOA MTI-FP2 method to study numerically the convergence rates from the NKGE (1.1) to 
its limiting models (1.5) and (1.6), and to simulate wave interaction in two dimensions (2D).

6.1. Convergence rates of NKGE to its limiting models

We take d = 1 and λ = 1 in the NKGE (1.1). Let u be the solution of NKGE (1.1), zsw be the solution of the NLSW (1.5)
and zs be the solution of the NLSE (1.6). Take the initial data as

φ1(x) = e−x2

√
π

, φ2(x) = 1

2
sech(x2) sin(x), x ∈R, (6.1)

or

φ1(x) = xm|x|e−x2

√ , φ2(x) = 1
sech(x2) sin(x), x ∈R, (6.2)
π 2
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Table 16
Temporal error of MRC-FP for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ = π/4 τ/2 τ/22 τ/23 τ/24

ε0 = 1 2.11E-1 4.48E-2 7.78E-3 1.86E-3 4.61E-4
rate – 2.23 2.52 2.06 2.01
ε0/2 6.50E-2 9.69E-3 2.26E-3 5.56E-4 1.36E-4
rate – 2.74 2.1 2.02 2.03
ε0/22 1.58E-2 3.40E-3 7.96E-4 1.97E-4 4.88E-5
rate – 2.21 2.09 2.01 2.01
ε0/23 4.10E-3 9.08E-4 2.36E-4 5.95E-5 1.48E-5
rate – 2.17 1.94 1.98 2.01
ε0/24 3.10E-3 4.15E-4 6.95E-5 1.68E-5 4.11E-6
rate – 2.9 2.58 2.05 2.03
ε0/25 4.00E-3 7.11E-4 1.64E-4 2.00E-5 9.97E-7
rate – 2.49 2.11 3.03 4.32
ε0/28 4.00E-3 6.63E-4 1.56E-4 3.86E-5 9.64E-6
rate – 2.59 2.08 2.01 2.00
ε0/211 3.40E-3 5.34E-4 1.22E-4 2.99E-5 7.45E-6
rate – 2.67 2.13 2.03 2.00
eτ ,h∞ 2.11E-1 4.48E-2 7.78E-3 1.86E-3 4.61E-4
rate – 2.23 2.52 2.06 2.01

Table 17
Temporal error of IEI-FP for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ = 0.2 τ/22 τ/24 τ/26 τ/28 τ/210

ε0 = 1 5.43E-2 3.58E-3 2.45E-4 1.57E-5 9.84E-7 6.11E-8
rate – 1.96 1.94 1.98 2.00 2.00
ε0/2 2.43E-2 2.16E-3 1.40E-4 8.77E-6 5.48E-7 3.43E-8
rate – 1.75 1.97 2.00 2.00 2.00
ε0/22 1.19E-1 2.36E-3 1.36E-4 8.43E-6 5.27E-7 3.26E-8
rate – 2.83 2.06 2.00 2.00 2.01
ε0/23 5.71E-2 1.70E-2 8.48E-5 4.75E-6 2.91E-7 1.35E-8
rate – 0.88 3.82 2.08 2.01 2.21
ε0/24 3.62E-2 5.31E-3 1.47E-3 4.61E-6 3.43E-7 1.67E-8
rate – 1.39 0.92 4.16 1.88 2.18
ε0/25 3.68E-2 6.73E-4 6.11E-5 1.51E-5 3.26E-7 2.12E-8
rate – 2.89 1.73 1.01 2.77 1.97
ε0/28 3.85E-2 7.07E-4 4.19E-5 2.58E-6 1.57E-7 7.81E-9
rate – 2.88 2.04 2.01 2.02 2.17
ε0/211 3.85E-2 6.96E-4 4.21E-5 2.62E-6 1.62E-7 7.58E-9
rate – 2.89 2.03 2.00 2.01 2.21
eτ ,h∞ 1.19E-1 1.70E-2 1.47E-3 1.57E-5 9.84E-7 6.11E-8
rate – 1.41 1.76 3.27 2.00 2.00

Table 18
Temporal error of MTI-FP2 for different ε at time t = 1 under h = 1/8.

eτ ,h
ε (t = 1) τ = 0.2 τ/22 τ/24 τ/26 τ/28 τ/210

ε0 = 1 5.65E-2 3.91E-3 2.47E-4 1.54E-5 9.60E-7 5.44E-8
rate – 1.93 1.99 2.00 2.00 2.07
ε0/2 9.35E-2 8.88E-3 5.40E-4 3.34E-5 2.08E-6 1.31E-7
rate – 1.70 2.02 2.00 2.00 1.99
ε0/22 1.33E-1 2.13E-2 1.15E-3 7.02E-5 4.34E-6 2.68E-7
rate – 1.32 2.11 2.02 2.01 2.01
ε0/23 2.10E-1 1.35E-2 2.00E-3 9.72E-5 5.83E-6 3.59E-7
rate – 1.98 1.38 2.18 2.03 2.01
ε0/24 2.45E-1 1.55E-2 9.77E-4 1.38E-4 6.66E-6 3.97E-7
rate – 2.03 1.99 1.41 2.18 2.04
ε0/25 2.62E-1 1.59E-2 9.97E-4 6.23E-5 8.88E-6 4.31E-7
rate – 2.02 1.99 1.98 1.41 2.18
ε0/28 2.64E-1 1.62E-2 1.00E-3 6.28E-5 3.94E-6 2.48E-7
rate – 2.00 2.01 2.00 2.00 2.00
ε0/211 2.58E-1 1.64E-2 1.01E-3 6.33E-5 3.94E-6 2.45E-7
rate – 1.99 2.01 2.00 2.00 2.00
eτ ,h∞ 2.64E-1 2.13E-2 2.00E-3 1.38E-4 8.88E-6 4.31E-7
rate – 1.82 1.71 1.92 1.98 2.18
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Table 19
Comparison of properties of different numerical methods. Here N denotes the number of grid points in x-direction 
and Nξ denotes the number of grid point in ξ -direction.

Method LFFD SIFD ECFD EWI-FP TS-FP LI-FP1 
(or LI-FP2)

Time symmetric Yes Yes Yes Yes Yes Yes
Energy conservation No No Yes No No No
Unconditionally stable No No No Yes Yes Yes
Explicit Yes No No Yes Yes Yes
Temporal accuracy 2nd 2nd 2nd 2nd 2nd 2nd
Spatial accuracy 2nd 2nd 2nd spectral spectral spectral
Memory cost O (N) O (N) O (N) O (N) O (N) O (N)

Computational cost O (N) O (N) � O (N) O (N ln N) O (N ln N) O (N ln N)

Resolution h = O(1) h = O(1) h = O(1) h = O(1) h = O(1) h = O(1)
when 0 < ε � 1 τ = O (ε3) τ = O (ε3) τ = O (ε3) τ = O (ε2) τ = O (1) τ = O (1)

Uniformly accurate No No No No No No

Method MTI-FP TSF-FP1 TSF-FP2 MRC-FP IEI-FP MTI-FP2

Time symmetric No No No Yes No No
Energy conservation No No No No No No
Unconditionally stable Yes Yes Yes Yes Yes Yes
Explicit Yes Yes Yes Yes Yes Yes
Temporal accuracy 2nd 1st 2nd 1st 2nd 2nd
Spatial accuracy spectral spectral spectral spectral spectral spectral
Memory cost O (N) O (Nξ N) O (Nξ N) O (N) O (N) O (N)

Computational cost O (N ln N) O (Nξ N ln N) O (Nξ N ln N) O (Nt N ln N) O (N ln N) O (N ln N)

Resolution h = O(1) h,hξ = O(1) h,hξ = O(1) h = O(1) h = O(1) h = O(1)
when 0 < ε � 1 τ = O (1) τ = O (1) τ = O (1) τ = O (1) τ = O (1) τ = O (1)

Uniformly accurate Yes Yes Yes Yes Yes Yes
Optimally accurate No No No No Yes Yes

Table 20
Comparison of temporal errors and their corresponding computational time (seconds) of different meth-
ods for the NKGE (1.1) with ε = 1, h = 1/8 and hξ = π/16.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

EWI-FP 1.41E-2 8.14E-4 5.07E-5 3.09E-6 1.62E-7 1.06E-8
time (cpu) 4.5E-4 1.7E-3 6.6E-3 2.6E-2 1E-1 4.2E-1
TS-FP 8.49E-3 5.12E-4 3.19E-5 2.00E-6 1.24E-7 7.64E-9
time (cpu) 7E-4 2.6E-3 1E-2 3.7E-2 1.5E-1 5.9E-1
LI-FP2 12.4 13.3 14.1 14.1 14.1 14.1
time (cpu) 2.1E-3 8.3E-3 3.3E-2 1.3E-1 5E-1 2.1
MTI-FP 1.90E-1 1.98E-2 1.49E-3 9.73E-5 6.16E-6 3.82E-7
time (cpu) 2.5E-3 8.5E-3 3.4E-2 1.4E-1 5.5E-1 2.2
TSF-FP2 1.86E-2 1.18E-3 7.35E-5 4.57E-6 2.84E-7 1.67E-8
time (cpu) 4E-2 1.6E-1 6.3E-1 2.5 9.9 39.1
IEI-FP 5.43E-2 3.58E-3 2.45E-4 1.57E-5 9.84E-7 6.11E-8
time (cpu) 5.6E-3 1.6E-2 9.4E-2 3.4E-1 1.4 5.6
MTI-FP2 5.65E-2 3.91E-3 2.47E-4 1.54E-5 9.60E-7 5.44E-8
time (cpu) 1.6E-2 4.7E-2 1.9E-1 7.3E-1 3.0 11.6

Table 21
Comparison of temporal errors and their corresponding computational time (seconds) of different meth-
ods for the NKGE (1.1) with ε = 2−11, h = 1/8 and hξ = π/4.

eτ ,h
ε (t = 1) τ0 = 0.2 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

EWI-FP 9.97E-1 1.12 1.18 1.20 1.22 1.21
time (cpu) 4.5E-4 1.7E-3 6.6E-3 2.6E-2 1E-1 4.2E-1
TS-FP 6.39E-1 3.07E-1 8.48E-3 5.65E-3 6.22E-3 2.03E-4
time (cpu) 7E-4 2.6E-3 1E-2 3.7E-2 1.5E-1 5.9E-1
LI-FP2 4.15E-2 9.45E-4 5.77E-5 3.60E-6 2.27E-7 1.63E-8
time (cpu) 2.1E-3 8.3E-3 3.3E-2 1.3E-1 5E-1 2.1
MTI-FP 9.67E-2 5.60E-3 3.48E-4 2.19E-5 1.66E-6 1.67E-7
time (cpu) 2.5E-3 8.5E-3 3.4E-2 1.4E-1 5.5E-1 2.2
TSF-FP2 3.79E-2 5.25E-4 2.82E-5 1.76E-6 1.10E-7 6.39E-9
time (cpu) 9E-3 3E-2 1.2E-1 4.8E-1 1.8 7.4
IEI-FP 3.85E-2 6.96E-4 4.21E-5 2.62E-6 1.62E-7 7.58E-9
time (cpu) 5.6E-3 1.6E-2 9.4E-2 3.4E-1 1.4 5.6
MTI-FP2 2.58E-1 1.64E-2 1.01E-3 6.33E-5 3.94E-6 2.45E-7
time (cpu) 1.6E-2 4.7E-2 1.9E-1 7.3E-1 3.0 11.6
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Table 22
Comparison of temporal errors and their corresponding computational time (seconds) of different methods for the 
NKGE (1.1) with τ = O (ε2), h = 1/8 and hξ = π/16.

eτ ,h
ε (t = 1) ε0 = 1.0

τ0 = 0.2
ε0/2
τ0/22

ε0/22

τ0/24
ε0/23

τ0/26
ε0/24

τ0/28
ε0/25

τ0/210

EWI-FP 1.41E-2 4.42E-3 3.88E-3 4.01E-3 3.99E-3 3.74E-3
time (cpu) 4.5E-4 1.7E-3 6.6E-3 2.6E-2 1E-1 4.2E-1
TS-FP 8.48E-3 3.20E-3 1.11E-3 2.74E-4 7.18E-5 2.94E-5
time (cpu) 7E-4 2.6E-3 1E-2 3.7E-2 1.5E-1 5.9E-1
LI-FP2 12.4 3.16 6.47E-1 1.18E-1 9.77E-3 1.07E-3
time (cpu) 2.1E-3 8.3E-3 3.3E-2 1.3E-1 5E-1 2.1
MTI-FP 1.90E-1 1.19E-2 2.62E-3 5.12E-4 1.32E-4 3.86E-5
time (cpu) 2.5E-3 8.5E-2 3.4E-2 1.4E-1 5.5E-1 2.2
TSF-FP2 1.87E-2 5.25E-3 9.16E-4 7.07E-5 1.28E-6 8.14E-8
time (cpu) 4E-2 1.6E-1 6.3E-1 2.5 9.9 39.1
IEI-FP 5.41E-2 2.16E-3 1.36E-4 4.75E-6 3.44E-7 2.14E-8
time (cpu) 5.6E-3 2.2E-2 9.5E-2 3.6E-1 1.4 5.5
MTI-FP2 5.64E-2 8.87E-3 1.15E-3 9.72E-5 6.66E-6 4.31E-7
time (cpu) 1.5E-2 4.7E-2 1.9E-1 7.2E-1 3 11.5

Fig. 5. Time evolution of ηsw(t) and ηs(t) for the smooth initial data (6.1) under different ε.

where m = 1, 2. The solutions are obtained numerically with very fine mesh on a bounded interval 	 = (−128, 128) with 
periodic boundary conditions. Define

usw(x, t) := eit/ε2
zsw(x, t) + e−it/ε2

zsw(x, t), us(x, t) := eit/ε2
zs(x, t) + e−it/ε2

zs(x, t),

and define the error functions as

ηsw(t) := ‖u(·, t) − usw(·, t)‖H1 , ηs(t) := ‖u(·, t) − us(·, t)‖H1 . (6.3)

Fig. 5 shows the errors defined in (6.3) as functions of time with the smooth initial data (6.1). Fig. 6 and Fig. 7 show the 
results from the nonsmooth initial data (6.2) with m = 2 and m = 1, respectively. More systematical study and comparision 
of different asympototic expansions are given in [66].

From Figs. 5-7, we can draw the following conclusions:
(i) The solution of the NKGE (1.1) converges to that of the NLSW (1.5) quadratically in ε (and uniformly in time) provided 

that the initial data in (1.1) is smooth or at least satisfies φ1 and φ2 ∈ H2(	), i.e.

‖u(·, t) − usw(·, t)‖H1 ≤ C0ε
2, t ≥ 0,

where the constant C0 > 0 is independent of ε and time t ≥ 0.
(ii) The solution of the NKGE (1.1) converges to that of the NLSE (1.6) quadratically in ε (in general, not uniformly in 

time) provided that the initial data in (1.1) is smooth or at least satisfies φ1 and φ2 ∈ H3(	), i.e.

‖u(·, t) − us(·, t)‖H1 ≤ (C1 + C2T )ε2, 0 ≤ t ≤ T ,

where C1 and C2 are two positive constants which are independent of ε and T . On the contrary, if the regularity of the 
initial data is weaker, e.g. φ1 and/or φ2 ∈ H2(	), then the convergence rate collapses to linear rate, i.e.

‖u(·, t) − us(·, t)‖H1 ≤ (C3 + C4T )ε, 0 ≤ t ≤ T ,
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Fig. 6. Time evolution of ηsw(t) and ηs(t) with nonsmooth data (6.2) for m = 2 under different ε.

Fig. 7. Time evolution of ηsw(t) and ηs(t) with nonsmooth data (6.2) for m = 1 under different ε.

where C3 and C4 are two positive constants which are independent of ε and T . Rigorous mathematical justification for 
these numerical observations is on-going.

(iii) Under the same ε and at the same time t , the error ηsw(t) is much small than ηw(t). It indicates that the NLSW (1.5)
would be a better choice to design the LI scheme than the limit model (1.6), especially considering the long time behavior 
of the approximation.

6.2. Wave interactions in 2D

We take d = 2 and λ = 1 in the NKGE (1.1) and choose the initial data as

φ1(x, y) = exp (−(x + 2)2 − y2) + exp (−(x − 2)2 − y2),

φ2(x, y) = exp (−x2 − y2), (x, y) ∈R2.
(6.4)

The problem is solved numerically on a bounded computational domain 	 = (−16, 16) ×(−16, 16) with the periodic bound-
ary condition. Fig. 8 shows contour plots of the solutions of the NKGE (1.1) in 2D under different ε.

7. Conclusions

We systematically studied and compared different numerical methods to solve the nonlinear Klein-Gordon equation 
(NKGE) in the nonrelativistic limit regime, while the solution is highly oscillatory in time in the limit regime. The numerical 
methods considered here include the classical finite difference time domain methods, the exponential wave integrator (EWI) 
spectral method, the time-splitting (TS) spectral method, the limit integrators, and the recently proposed uniformly accurate 
(UA) methods namely the multiscale time integrator (MTI) spectral method, the two-scale formulation (TSF) method and the 
iterative exponential integrator (IEI). We emphasized the finite time error bound of each method and the resolution capacity 
in terms of the oscillation wavelength in the limit regime. Systematical comparisons between the methods in the accuracy, 
computational complexity and other mathematical properties were carried out. Numerical experiments were done to show 
and compare the performance of each method from the classical regime to the limit regime. Our results show the EWI and 
TS methods are most efficient in the classical regime, while the UA methods are more powerful in the intermediate and 
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Fig. 8. Contour plots of the solutions of the NKGE (1.1) in 2D at different time t under ε = 0.05 (first row) and ε = 0.005 (second row).

limit regimes. Among the UA methods, the uniformly and optimally accurate methods are the most efficient and accurate 
for ε ∈ (0, 1]. Finally, the UA numerical methods were applied to study numerically the convergence rates of the NKGE (1.1)
to its limiting models and to simulate wave interaction in two dimensions.
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