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In this paper, we propose an efficient and accurate message-passing interface (MPI)-based 
parallel simulator for streamer discharges in three dimensions using the fluid model. First, 
we propose a new second-order semi-implicit scheme for the temporal discretization of the 
model that relaxes the dielectric relaxation time restriction. Moreover, it requires solving 
the Poisson-type equation only once at each time step, while the classical second-order 
explicit schemes typically need to do twice. Second, we introduce a geometric multigrid 
preconditioned FGMRES solver that dramatically improves the efficiency of solving the 
Poisson-type equation with either constant or variable coefficients. We show numerically 
that no more than 4 iterations are required for the Poisson solver to converge to a relative 
residual of 10−8 during streamer simulations; the FGMRES solver is much faster than R&B 
SOR and other Krylov subspace solvers. Last but not least, all the methods are implemented 
using MPI. The parallel efficiency of the code and the fast algorithmic performances 
are demonstrated by a series of numerical experiments using up to 2560 cores on the 
Tianhe2-JK clusters. For applications, we study a double-headed streamer discharge as well 
as the interaction between two streamers, using up to 10.7 billion mesh cells.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A streamer is a cold plasma that is common in both nature and industrial processes. As the building blocks of long 
air-gap discharges, streamer discharges are associated with many insulation problems [10] such as flashovers along an 
insulator, air-gap breakdowns in DC power systems [9], or lightning bolts [47] where the sprites triggered by the strong 
quasi-electrostatic field generated by intense cloud-to-ground lightning flashes have been found to be filament streamer 
discharges [22].

In this paper, we focus on the numerical methods for streamer discharge simulations in three dimensions (3D), therefore 
we use a minimal model that incorporates the essential mechanism of the phenomena [25]. The minimal three-dimensional 
model for simulating streamer discharges consists of two convection-dominated transport equations coupled with a Poisson 
equation for the electrical potential and the field:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ne

∂t
− ∇ · (μe �Ene) − ∇ · (De∇ne) = α(|�E|)μe|�E|ne,

∂np

∂t
+ ∇ · (μp �Enp) = α(|�E|)μe|�E|ne, �x ∈ �, t > 0,

− �φ = e

ε0
(np − ne), �E = −∇φ,

(1.1)

where �x = (x, y, z)T and � ⊂ R3 is a bounded domain; ne = ne(�x, t) and np = np(�x, t) denote the densities of electrons 
and positive ions, respectively; φ = φ(�x, t) and �E = �E(�x, t) denote the electric potential and electric field, respectively; 
μe and μp (μe > 0, μp > 0) are mobility constants for electrons and positive ions, respectively; De is a diagonal matrix 
De = diag(De,x, De,y, De,z), and De,x , De,y and De,z are the diffusion coefficients in x, y, z directions, respectively. Here, 
α = α(|�E|) is the effective ionization coefficient, and the parameters e and ε0 are the elementary charge and the vacuum 
dielectric permittivity, respectively.

To model the streamer discharge between two parallel plates, a cubic domain � = (x0, x1) × (y0, y1) × (z0, z1) is consid-
ered. Dirichlet boundary conditions are applied for the potential, φ, on the upper and lower plate electrodes (i.e., φ|z=z1 = φ0

where φ0 is a constant denotes applied potential, and φ|z=z0 = 0); and homogeneous Neumann boundary conditions, which 
are ∂φ

∂x |x=x0,x1 = 0 and ∂φ
∂ y |y=y0,y1 = 0, are applied on other four sides. Initial conditions for ne and np are given as

ne(�x, t = 0) = ne,0(�x), np(�x, t = 0) = np,0(�x), �x ∈ �̄. (1.2)

For simplicity, the plasma is initially assumed to be electrically neutral everywhere, which gives ne,0(�x) = np,0(�x) = ñ(�x)
with ñ(�x) a given function. Homogeneous Neumann boundary conditions are applied at all the boundaries for ne , and at all 
inflow boundaries for np .

Continuous efforts have been made to simulate streamer discharges over the past few decades. In the 1980s and 1990s, 
the flux-corrected transport (FCT) technique [6,45] was widely used. It was combined with the finite difference method 
(FDM) and finite element method (FEM) to overcome the numerical oscillations that occur when classical linear schemes 
are used to solve convection-dominated equations [15,26]. Later, the finite volume method (FVM) became popular due to 
the property of local conservation [25,44]. Motivated by the successes of FVM and FEM, the discontinuous Galerkin (DG) 
method, which uses a finite element discretization with discontinuous basis functions and incorporates the ideas of numer-
ical fluxes and slope limiters from the high-resolution FDM and FVM, was used to simulate the streamers [48–50]. These 
improvements in the numerical methods achieved great progress in streamer simulations [2], especially in two-dimensional 
(2D) cases where the streamer is assumed to be axisymmetric. However, compared with 2D simulations, studies of real 
three-dimensional simulations are much fewer, and are mostly done by limited groups [24,28,31,35,36,40–42].

The difficulty in three-dimensional simulations lies in the fine meshes needed to simulate rapid variations in the so-
lution. Streamer discharges propagate at dramatic speeds, e.g., at 106 m/s, as shown in Fig. 7 of [8]. During this rapid 
transient process, the electric field in the discharge channel, which is one of the key parameters dominating the devel-
opment of a streamer, varies significantly both temporally and spatially. After streamer inception, the electric field at its 
head is greatly enhanced due to the net charge accumulation, which further accelerates the ionization and charge accu-
mulation. Thus, a sharp charge density profile forms at the streamer’s head. Capturing the structures of the charge carriers 
in a simulation requires a very high-resolution spatial grid. Typically, the order of magnitude for the grid size adopted in 
previous simulations has been characterized by micrometers [5,35], which is tiny compared with the characteristic length 
of the problem at the scale of, e.g., centimeters. Consequently, the maximal allowed time step is restricted to the order 
of several picoseconds or even smaller when explicit schemes are used. In addition, because the Poisson equation and 
transport equations for the charge carriers are coupled together, the time step is further restricted by the dielectric re-
laxation time, i.e., ε0/e max(μpnp + μene), which is also typically on the order of several picoseconds. For these reasons, 
even two-dimensional simulations require long computational times, let alone three-dimensional simulations which have 
thousands times the number of degrees of freedom (DOFs) in 2D simulations, for even a small domain in 3D. Thus, it seems 
parallel computing is the only possible way to efficiently construct large-scale three-dimensional simulations for streamer 
discharges.

Recently, Teunissen and Ebert reported on 3D streamer simulations using the parallel adaptive Afivo framework [35], 
which features adaptive mesh refinement (AMR), geometric multigrid methods for the Poisson equation and OpenMP par-
allelism. AMR performs well, however, further improvement could be made by replacing the OpenMP parallelism with 
message-passing interface (MPI) libraries to fully exploit the power of clusters, especially for simulations of very long 
streamers. Another advance in the MPI-based simulation was reported by Plewa, Eichwald, and Ducasse et al. [28], who 
used the successive over-relaxation iterative solver in the red and black strategy (R&B SOR) as the Poisson solver, and tested 
the parallelization and the scalability with cell numbers ranging from 8–512 million and core numbers from 20–1600. Their 
use of high-performance computing clusters with an MPI implementation reduced the computational time.

These previous works suggest an efficient simulator has advantages in the following aspects: (1) an efficient time integra-
tion scheme, which may reduce the time marching steps; (2) a fast algebraic elliptic solver, which accelerates the solution 
of the Poisson equation that dominates the total computing time; (3) a good parallelization, which allows to utilize the full 
power of modern clusters; (4) adaptive mesh strategies, which can reduce the number of DOFs. This paper contributes to the 
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first three aspects. First, we propose a new second-order semi-implicit scheme for temporal discretization. In particular, the 
scheme is stable when the time step exceeds the dielectric relaxation time. We numerically demonstrate that it is second-
order accurate in time. Moreover, at each time step, it requires solving the Poisson equation only once, while previous 
second-order schemes typically need twice [35,48]. Note that solving the Poisson equation is the most expensive calcula-
tion in the simulator. Second, we adopt the geometric multigrid preconditioned FGMRES solver with Chebyshev iteration as 
the smoother in the multigrid preconditioner, which dramatically improves the efficiency of solving Poisson equations with 
either constant or variable coefficients. We show numerically that the multigrid preconditioned FGMRES algorithm is more 
efficient than other Krylov subspace based methods and R&B SOR. We implement all methods using MPI, and the code runs 
with good parallel efficiency on the Tianhe2-JK cluster using more than 2500 cores. The numerical experiments demonstrate 
the good performance of the algorithms. Finally, we study a double-headed streamer discharge as well as the interaction of 
two streamers using up to 10.7 billion mesh cells.

This paper is organized as follows. In Section 2, after reviewing some existing temporal discretization schemes, we de-
scribe our new second-order semi-implicit temporal scheme in details and briefly show the spatial discretization. Multigrid 
preconditioned FGMRES elliptic solver is described in Section 3, and the MPI parallelism is briefly described in Section 4. 
In Section 5, we use a one-dimensional dimensionless example to illustrate the convergence order and stability of different 
temporal schemes, and then take 3D examples to show the scalability of the parallel implementation and the performance 
of different algebraic elliptic solvers. Section 6 gives simulation results of a double-headed streamer propagation as well as 
the interaction between two streamers. Conclusions are drawn in Section 7.

2. Numerical discretization

In this section, we first focus on temporal discretization and present a new second-order semi-implicit scheme. Then, we 
introduce the finite volume method for spatial discretization.

2.1. A second-order semi-implicit temporal discretization

Let t0 = 0, τn > 0 be the time step at n-th step, and tn+1 = tn + τn for n ≥ 0. We use nn
e = nn

e (�x), nn
p = nn

p(�x), φn = φ(�x)
and �En = �En(�x) to denote the associated quantities to be approximated at time tn . To avoid solving nonlinear algebraic 
equations, explicit schemes are frequently used for time discretization, among which the forward Euler scheme is used to 
discretize the model (1.1) as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nn+1
e − nn

e

τn
− ∇ · (μe �Ennn

e ) − ∇ · (De∇nn
e ) = α(|�En|)μe|�En|nn

e ,

nn+1
p − nn

p

τn
+ ∇ · (μp �Ennn

p) = α(|�En|)μe|�En|nn
e , �x ∈ �.

− �φn = e

ε0
(nn

p − nn
e ),

�En = −∇φn.

(2.1)

At each time step, the potential φn is first calculated by the Poisson equation, and then nn+1
e and nn+1

p are obtained subse-
quently. The Poisson equation need to be solved once at each time step.

It is easy to see the scheme (2.1) is only first order in time, and it has been upgraded to second order by Heun’s method, 
as is used in [35]. The first stage of Heun’s method is to solve φn , n∗

e and n∗
p from nn

e and nn
p ,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∗
e − nn

e

τn
− ∇ · (μe �Ennn

e ) − ∇ · (De∇nn
e ) = α(|�En|)μe|�En|nn

e ,

n∗
p − nn

p

τn
+ ∇ · (μp �Ennn

p) = α(|�En|)μe|�En|nn
e , �x ∈ �,

− �φn = e

ε0
(nn

p − nn
e ),

�En = −∇φn,

(2.2)

and then evolve the solution through one more stage to obtain n∗∗
e and n∗∗

p :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∗∗
e − n∗

e

τn
− ∇ · (μe �E∗n∗

e ) − ∇ · (De∇n∗
e ) = α(|�E∗|)μe|�E∗|n∗

e ,

n∗∗
p − n∗

p

τn
+ ∇ · (μp �E∗n∗

p) = α(|�E∗|)μe|�E∗|n∗
e , �x ∈ �.

− �φ∗ = e

ε0
(n∗

p − n∗
e ),

�E∗ = −∇φ∗.

(2.3)

The final solution at tn+1 is constructed by
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nn+1
e = 1

2

(
nn

e + n∗∗
e

)
, nn+1

p = 1

2

(
nn

p + n∗∗
p

)
, �x ∈ �. (2.4)

This temporal scheme possesses a second-order time accuracy and has been used (e.g., in [5,25]).
We emphasize that the second-order explicit scheme shown in (2.2)–(2.4) requires solving the Poisson equation twice 

at each time step (from tn to tn+1). Moreover, it was suggested in [4,35] that these explicit schemes need to satisfy the 
dielectric relaxation time constraint, i.e.,

τn ≤ ε0

e max(μpnn
p + μenn

e )
, n ≥ 0. (2.5)

To relax this time constraint (2.5), semi-implicit schemes were introduced [39,43]. In [43], Villa et al. proposed a first-
order semi-implicit scheme with a rigorous asymptotic preserving property. Here we present the scheme with a slight 
modification as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nn+1
e − nn

e

τn
− ∇ · (μe �En+1nn

e ) − ∇ · (De∇nn
e ) = α(|�En+1|)μe|�En+1|nn

e ,

nn+1
p − nn

p

τn
+ ∇ · (μp �En+1nn

p) = α(|�En+1|)μe|�En+1|nn
e , �x ∈ �.

− �φn+1 = e

ε0
(nn+1

p − nn+1
e ), �En+1 = −∇φn+1.

(2.6)

In [43], a fully implicit source term α(|�En+1|)μe|�En+1|nn+1
e was adopted; however, our simplification of the source term in 

(2.6) does not affect the proof of the asymptotic preserving property. A comparison of (2.6) and (2.1) shows that the main 
difference between the semi-implicit scheme and the explicit schemes lies in whether the electric field is treated implicitly. 
As demonstrated in [43], when the reference states of ne , np and �E are bounded, the time step τn is no longer restricted by 
the dielectric relaxation time.

Although (2.6) is a semi-implicit discretization of (1.1), thanks to the structure of (2.6), it can be solved explicitly by 
rewriting the Poisson equation as a variable coefficient elliptic equation or Poisson-type equation [43]. A subtraction of the 
first two equations in (2.6) yields

(nn+1
p − nn+1

e ) − (nn
p − nn

e )

τn
+ ∇ · (μp �En+1nn

p) + ∇ · (μe �En+1nn
e ) + ∇ · (De∇nn

e ) = 0. (2.7)

Then, we plug the expression of (nn+1
p − nn+1

e ) in (2.7) into the Poisson equation in (2.6), and obtain an elliptic equation:

−∇ ·
((ε0

e
+ τn

(
μpnn

p + μenn
e

))∇φn+1
)

= nn
p − nn

e − τn∇ · (De∇nn
e ). (2.8)

After solving the variable coefficient elliptic problem (2.8), we obtain φn+1. Then, we can calculate �En+1 = −∇φn+1, and 
evolve the first two equations in (2.6) to obtain nn+1

e and nn+1
p .

Scheme (2.6) is only first order accurate in time, which will be numerically demonstrated later in Table 5.2. Here we 
propose a new second-order semi-implicit scheme for (1.1). Our scheme can be regarded as a predictor-corrector method. 
First, we calculate a prediction nn+1/2

e , nn+1/2
p , φn+1/2 and �En+1/2 at time tn +τn/2 using the first-order semi-implicit scheme 

(2.6), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nn+1/2
e − nn

e

τn/2
− ∇ · (μe �En+1/2nn

e ) − ∇ · (De∇nn
e ) = α(|�En+1/2|)μe|�En+1/2|nn

e ,

nn+1/2
p − nn

p

τn/2
+ ∇ · (μp �En+1/2nn

p) = α(|�En+1/2|)μe|�En+1/2|nn
e , �x ∈ �.

− �φn+1/2 = e

ε0
(nn+1/2

p − nn+1/2
e ), �En+1/2 = −∇φn+1/2.

(2.9)

Then, we get a correction of ne and np using a midpoint scheme, which yields (2.10)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nn+1
e − nn

e

τn
− ∇ · (μe �En+1/2nn+1/2

e ) − ∇ · (De∇nn+1/2
e ) = α(|�En+1/2|)μe|�En+1/2|nn+1/2

e ,

nn+1
p − nn

p

τn
+ ∇ · (μp �En+1/2nn+1/2

p ) = α(|�En+1/2|)μe|�En+1/2|nn+1/2
e ,

�x ∈ �. (2.10)

The potential φn+1/2 and electric field �En+1/2 are already predicted at time tn + τn/2 by solving the following variable 
coefficient elliptic equation derived from (2.9):
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−∇ ·
((ε0

e
+ τn

2

(
μpnn

p + μenn
e

))∇φn+1/2
)

= nn
p − nn

e − τn

2
∇ · (De∇nn

e ), (2.11)

consequently, φn+1/2 and �En+1/2 can be reused in (2.10) without additional calculation. Therefore, the elliptic equation is 
solved only once at each time step.

The basic idea for reducing the computational cost is to mimic the underlying mechanism of the second-order implicit 
midpoint rule [17, Chapter 3], in which the right-hand side appears only once at each time step. To avoid solving nonlin-
ear systems, this mechanism is applied only to the electric field; the other parts are implemented following the explicit 
midpoint method. Comparing the first-order scheme (2.6) and our second-order scheme (2.9)–(2.10), and focusing on the 
treatment of the electric field, the difference is similar to the difference between the backward Euler method and the im-
plicit midpoint method. However, it is well known that the backward Euler method is L-stable, while the implicit midpoint 
method is not. Hence, due to the strong relation between L-stability and the asymptotic preserving property [14], when 
using (2.9)–(2.10), we will probably lose the asymptotic preserving property while gaining one additional numerical order. 
Nevertheless, due to its implicit nature, the scheme in (2.9)–(2.10) is indeed more stable than the explicit ones, as will be 
shown numerically in Section 5.1.

It is worth noting that both (2.8) and (2.11) are variable coefficient elliptic problems in which the coefficients vary at 
every time step during the streamer simulations. Thus, the coefficient matrix must be computed and assembled in each 
time step, whereas it needs to be calculated only once in the constant case. When a preconditioned iterative elliptic solver 
is used, the preconditioner must also be renewed in each step to solve the variable coefficient elliptic equation (again, this 
needs to be done only once in the constant case). The situation is similar if a direct solver is used. Therefore, in streamer 
simulations, solving a variable coefficient elliptic equation generally consumes more time than solving a Poisson equation 
with constant coefficients.

However, it is still not true to conclude that the second-order explicit scheme in (2.2)–(2.4) is faster than the second-
order semi-implicit scheme in (2.9)–(2.10). As we will show in Section 5.3, the semi-implicit scheme achieves better 
performance than explicit schemes in many Krylov elliptic solvers even under the same time steps. Moreover, the semi-
implicit schemes remove the dielectric relaxation time restriction, which may allow a larger time step on many occasions 
to further shorten the total computational time.

2.2. Spatial discretization by FVM

Finite volume method is applied for spatial discretization. The computational domain is decomposed by a uniform grid 
with Mx , M y , Mz partitions in the x, y, z directions, respectively. Therefore, the grid size is characterized by �x = (x1 −
x0)/Mx , �y = (y1 − y0)/M y , �z = (z1 − z0)/Mz . The grid cells are denoted by Ii, j,k = [x0 + i�x, x0 + (i + 1)�x] × [y0 +
j�y, y0 + ( j + 1)�y] × [z0 + k�z, z0 + (k + 1)�z], where 0 ≤ i ≤ Mx − 1, 0 ≤ j ≤ M y − 1, and 0 ≤ k ≤ Mz − 1. The finite 
volume method is used for the spatial discretization, and we define

(ne)
n
i, j,k = 1

|Ii, j,k|
∫

Ii, j,k

nn
e (x, y, z)dxdydz. (2.12)

Other notations, such as (np)n
i, j,k and φn+1/2

i, j,k are similarly defined. We adopt the classical second-order central scheme for 
(2.11). Let Pn

i, j,k be the discrete coefficient of the elliptic problem (2.11) defined by

Pn
i, j,k = ε0

e
+ τn

2

(
μp(np)n

i, j,k + μe(ne)
n
i, j,k

)
, (2.13)

and denote

Pn
i±1/2, j,k = 1

2
(Pn

i±1, j,k + Pn
i, j,k), Pn

i, j±1/2,k = 1

2
(Pn

i, j±1,k + Pn
i, j,k), Pn

i, j,k±1/2 = 1

2
(Pn

i, j,k±1 + Pn
i, j,k).

Then, (2.11) is discretized as follows:

− Pn
i+1/2, j,k�+xφ

n+1/2 − Pn
i−1/2, j,k�−xφ

n+1/2

(�x)2
− Pn

i, j+1/2,k�+yφ
n+1/2 − Pn

i, j−1/2,k�−yφ
n+1/2

(�y)2

− Pn
i, j,k+1/2�+zφ

n+1/2 − Pn
i, j,k−1/2�−zφ

n+1/2

(�z)2
= nn

p − nn
e − �tn

2

(
De,x

(�x)2
δ2

x nn
e + De,y

(�y)2
δ2

ynn
e + De,z

(�z)2
δ2

z nn
e

)
(2.14)

where the subscripts are neglected for the numerical solutions at Ii, j,k , e.g., nn
p denotes (np)n

i, j,k , �+xφ
n+1/2 and �−xφ

n+1/2

denote the forward and backward differences of φn+1/2
i, j,k in the x direction, respectively:

�+xφ
n+1/2 = φ

n+1/2
i+1, j,k − φ

n+1/2
i, j,k , �−xφ

n+1/2 = φ
n+1/2
i, j,k − φ

n+1/2
i−1, j,k, (2.15)



6 B. Lin et al. / Journal of Computational Physics 401 (2020) 109026
and similar notations are applied for �±yφ
n+1/2 and �±zφ

n+1/2; δ2
x nn

e denotes the second-order central difference of 
(ne)

n
i, j,k in the x direction:

δ2
x nn

e = (ne)
n
i+1, j,k − 2(ne)

n
i, j,k + (ne)

n
i−1, j,k, (2.16)

and similar notations are used for δ2
ynn

e and δ2
z nn

e .

Afterwards, �E can be calculated numerically by the central difference from the numerical solution of φ, and |�E | can be 
evaluated accordingly. In some cases [2,28] where the mobility and diffusion coefficients depend on |�E |, interpolations can 
be applied to obtain |�E| on the cell surfaces.

For the transport equations in (2.9)–(2.10), the second-order MUSCL scheme combined with the Koren limiter is applied 
[20,38]. Ghost cells are used for all the boundary conditions of ne and np . This part of the spatial discretization is classi-
cal, and we omit the details here. Generally, we expect second-order accuracy from this spatial discretization for smooth 
solutions.

Due to the explicit treatment in the temporal discretization of the drift and diffusion terms, all temporal schemes in 
Section 2.1 with the above FVM discretization should satisfy the following stability condition

τn

∑
α=x,y,z

(
Cλμe|(Eα)∗|max

�α
+ 2De,α

(�α)2

)
≤ 1, (2.17)

where (Eα)∗ denotes En+1/2
α for scheme (2.9)–(2.10), En

α for explicit schemes, and En+1
α for scheme (2.6); Ex , E y and Ez are 

the components of the electric field �E = (Ex, E y, Ez)
T , and the subscript “max” denotes the maximum value among all cells.

We have two remarks on (2.17). Firstly, the problem is convection dominated, and typically the restriction on the time 
step determined by the convection term is stricter than that of the diffusion term. Secondly, the drift velocity of electrons 
μe|�E| is typically one or two orders of magnitude larger than that of positive ions μp|�E|, and therefore only the stability 
condition for ne needs to be considered.

The constant Cλ in (2.17) depends on both time integration and space discretization methods [11,12,32]. The stability of 
the schemes can be analyzed by fixing the electric field and neglecting the source terms. With the MUSCL finite volume 
method as the space discretization, von Neumann analysis (e.g. [21, Chapter 20]) indicates the second-order methods in 
this paper (including the proposed semi-implicit method and the second-order explicit scheme) are linearly stable without 
limiters under the condition (2.17) with Cλ = 1. On the other hand, by Harten’s theorem [16], it can be shown that the 
first-order methods (2.1) and (2.6) are stable under (2.17) with Cλ = 2 provided that a proper slope limiter is applied, e.g., 
the Koren limiter which is used in this paper.

As a summary, we have discussed two constraints for the time step, one from the dielectric relaxation time (2.5), and 
the other from the convection and diffusion (2.17). For explicit schemes (2.1) and (2.2)–(2.4), both conditions have to be 
satisfied; while for the proposed second-order semi-implicit (2.9)–(2.10) and the first-order semi-implicit scheme (2.6), it 
will be shown numerically in Section 5.1 that the constraint from the dielectric relaxation time can be relaxed. Which 
constraint is more restrictive depends on the problem setting and the spatial discretization. For the problems in which 
(2.17) gives a stricter constraint, all the aforementioned schemes require similar time steps. However, for those problems 
where the dielectric relaxation constraint is tighter, semi-implicit schemes allow larger time steps, so that we can better 
match the errors of temporal and spatial discretization to maximize the computational efficiency.

3. Multigrid preconditioned FGMRES elliptic solver

To solve (2.14), an iterative solver is preferable to a direct solver. Although some state-of-the-art direct solvers retain the 
matrix sparsity to some degree, in three-dimensional simulations, a parallel direct solver still generally requires enormous 
amounts of memory, which is unaffordable when the number of DOFs becomes large and is therefore inapplicable. One 
example of using the parallel direct solver MUMPS can be found in [28].

In [19], the geometric multigrid method was shown to be faster than the SOR method for solving the Poisson equation 
in 2D streamer discharges. Moreover, the convergence rate of the SOR method depends on the relaxation factor; however, 
maintaining its optimality at each time step is difficult because the coefficients in elliptic problem (2.14) vary.

We use a geometric multigrid as a preconditioner rather than a solver because the geometric multigrid preconditioned 
Krylov subspace solver may be more stable and efficient than using a geometric multigrid alone. In [33], a multigrid method 
was shown to be divergent for high-order FEMs when used as a solver, but convergence was achieved when the multigrid 
was combined with the conjugate gradient method. By investigating the eigenvalues of the iteration matrix, it was found in 
[27] that while isolated large eigenvalues limit the convergence of a multigrid solver, the eigenvectors belonging to these 
large eigenvalues can be captured in a Krylov subspace constructed by GMRES within a few iterations, which accelerates 
the convergence of a multigrid solver. It was also shown in [33,34] that the multigrid preconditioner combined with the 
conjugate gradient method is faster and more stable than the multigrid solver alone.
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Algorithm 1 FGMRES with preconditioning to solve Ax = b.
1: 1. Initial guess x0. Define a (m + 1) × m zero matrix H̄m = (hi, j), where m is a given number indicating the dimension of Krylov subspace and hi, j

denotes the (i, j)-th entry of H̄m . Let k ← m.
2: 2. Arnoldi process:
3: Compute r0 ← b − Ax0, β ← ‖r0‖ and v1 ← r0/β .
4: for j = 1, · · · , m do
5: Preconditioning: z j ← M̄ j v j ;
6: Compute ω ← Az j ;
7: for i = 1, · · · , j do
8: Gram-Schmidt process: hi, j ← (ω, vi), ω ← ω − hi, j vi ;
9: end for

10: Compute h j+1, j ← ‖ω‖, v j+1 ← ω/h j+1, j ;
11: Compute the residual r j ← miny ‖βe j − H̄ j y‖, where H̄ j is the upper left ( j + 1) × j sub-matrix of H̄m and e j = [1, 0, · · · , 0]T with totally j + 1

entries;
12: Check the stopping criterion. If satisfied, let k ← j and go to line 14.
13: end for
14: Define a matrix Zk ← [z1, · · · , zk].
15: 3. Form the iterative solution xk ← x0 + Zk yk , where yk = arg miny ‖βek − H̄k y‖.
16: 4. Restart: If the stopping criterion is not satisfied, let x0 ← xk and k ← m; go to line 2.

3.1. Preconditioned FGMRES solver

Using a geometric multigrid as the preconditioner, we find that the geometric multigrid-preconditioned flexible general-
ized minimal residual (FGMRES) solver is the best among various Krylov subspace solvers, as discussed in Section 5.3. The 
flowchart of the preconditioned FGMRES is shown in Algorithm 1 [29]. Hereafter, the notation ‖ · ‖ denotes 2-norm.

As shown in line 5 of Algorithm 1, for different basis vectors v j , different preconditioning matrices M̄ j can be selected, 
which provides the “flexibility” reflected in the solver’s name. The price is that the preconditioned vectors z j in line 5 must 
be stored to form the matrix Zm , resulting in a larger memory cost than is achieved by the classical generalized minimal 
residual (GMRES) method which stores only the vectors v j . However, the flexibility resulting from different preconditioners 
helps to improve the robustness of the GMRES algorithm, as shown in [29]. In our FGMRES implementation, we initially set 
m = 30 and selected the multigrid as the preconditioner in line 5.

3.2. Multigrid preconditioner

A geometric multigrid preconditioner is chosen to accelerate the convergence of the FGMRES solver.
Our implementation of the geometric multigrid preconditioner uses a full multigrid (FMG) [19] for the first time step, 

and V-cycle multigrid afterwards. In the first time step, no previous information is available, and therefore we simply make 
a zero initial guess, with the expectation that FMG will achieve faster convergence. Subsequently, the potential φ calculated 
during the previous time step is adopted as the initial guess. Given a good initial guess, the cheaper V-cycle multigrid gives 
better performance.

To introduce the multigrid preconditioner, we first provide a simple review of the multigrid solver [37, Chapter 2]. In the 
following, assume that the elliptic equation on grid level l is discretized as follows:

Alxl = bl. (3.1)

A diagram showing the procedure of the two-layer V-cycle multigrid method is given in Fig. 3.1, where the subscripts 2 and 
1 denote the second layer (the fine layer) and the first layer (the coarse layer) respectively. The restriction and prolongation 
are shown using a 2D example of 4 × 4 and 2 × 2 meshes. When solving the equation A1d1 = r1 shown at the bottom of 
the V-cycle, this multigrid procedure can be called recursively, resulting in a multi-layer multigrid solver.

Some smoothers commonly used in sequential computation include the Gauss-Seidel method and the successive over 
relaxation (SOR) method [34]. However, when parallelized, the efficiency of these methods is impaired due to their sequen-
tial nature. Therefore, we adopt the Chebyshev smoother in our implementation, which is a polynomial smoother based 
on Chebyshev polynomials. The performance of polynomial smoothers (including Chebyshev polynomials) and the parallel 
Gauss-Seidel smoother were compared in [1]; the results show that polynomial smoothers are preferable in a parallel envi-
ronment. In general, given a polynomial pn(x) of degree n, the associated polynomial smoother in the pre-smoothing of the 
multigrid algorithm is

x(1)
2 = x(0)

2 + pn(A2)(b2 − A2x(0)
2 ), (3.2)

which smooths out the error as follows:

x(1)
2 − A−1

2 b2 = qn+1(A2)(x(0)
2 − A−1

2 b2),

where qn+1(x) = 1 − xpn(x). The Chebyshev smoother uses the following polynomials [7]:
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Fig. 3.1. Diagram of V-cycle geometric multigrid for uniform mesh in two layers.

qn+1(x) = Tn+1

(
λmax(A2) + λ∗(A2) − 2x

λmax(A2) − λ∗(A2)

)/
Tn+1

(
λmax(A2) + λ∗(A2)

λmax(A2) − λ∗(A2)

)
, (3.3)

where λmax(A2) is the largest eigenvalue of A2 and is usually replaced by an approximation of the largest eigenvalue in 
practice; λ∗(A2) is selected manually, both of which will be discussed later in this section; and Tn+1(x) is the Chebyshev 
polynomial of degree n + 1. pn(x) can be obtained accordingly. By introducing the two matrices P2 = pn(A2) and Q 2 =
qn+1(A2), we can re-write the pre-smoothing operation in (3.2) as follows:

x(1)
2 = Q 2x(0)

2 + P2b2. (3.4)

Moreover, the Chebyshev iteration can be further improved to become a “preconditioned Chebyshev iteration” by introducing 
another preconditioner on top of it, for which we refer the readers to [7] for details.

The post-smoothing operation in Fig. 3.1 is applied to x(2)
2 in the same way as (3.4). Therefore, the V-cycle multigrid in 

Fig. 3.1 is formulated as follows:

x(3)
2 = x(0)

2 + M2(b2 − A2x(0)
2 ), (3.5)

where M2 = Q 2 P2 + P2 + Q 2 P1,2 A−1
1 R2,1(I2 − A2 P2) and I2 is the identical matrix on the second layer. The derivation of 

(3.5) and the corresponding equation for the general multi-layer V-cycle method are shown in Appendix A.
In our implementation, the quadratic-polynomial preconditioned Chebyshev smoother is applied to both pre-smoothing 

and post-smoothing, using the one-step local symmetric successive over relaxation method (SSOR) as the preconditioner. 
The values of λmax(Al) and λ∗(Al), which are required in the Chebyshev iteration (see (3.3)), are estimated by

λmax(Al) ≈ 1.1λmax(Hm), λ∗(Al) = 0.1λmax(Hm),

where Hm is the upper Hessenberg matrix (hi, j)m×m obtained by applying the Arnoldi process (without preconditioning) to 
Al , as shown in Algorithm 1. We use m = 10 for the eigenvalue estimate. A sequential direct solver is applied to the coarsest 
mesh.

When the multigrid is used in the “Preconditioning” step in line 5 of Algorithm 1, we apply the multigrid preconditioner 
M̄ j to a vector v j by setting a zero initial x(0)

2 = �0 and b2 = v j in the multigrid solver, and run the V-cycle once. The output 
will be the preconditioned vector z j = M̄ j v j , turning a multigrid solver into a preconditioner for Krylov subspace solvers. 
More details of the preconditioning process can be found in, e.g., [1,34].

4. MPI based parallel implementation

Most High Performance Computing (HPC) platforms support MPI, and a variety of implementations are available. MPI is 
responsible for the communication between different processes by sending and receiving messages, and supports parallel 
computing using thousands of cores, to fully utilize the power of modern clusters.

In our implementation, we partition the 3D grid into Cartesian subgrids of equal size in each direction. Each process 
stores only the portion of the solutions defined in one of the subgrids. To reduce the communication latency, for each 
subgrid, the number of cells in each direction is approximately equal.
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To apply the MUSCL scheme, each process requires inter-process communication to retrieve the values of ne and np on 
the two adjacent layers of cells from its neighboring processes. For a 3D uniform grid, an interior subgrid whose size is 
M × N × P should receive 4(MN + N P + M P ) cells of unknowns from the surrounding processes and should send the same 
number of unknowns to them. Therefore, the local communication/computation ratio can be characterized as follows:

communication

computation
= 4(MN + N P + M P )

MN P
≤ 12

min{M, N, P } , (4.1)

showing that the communication cost is one order of magnitude lower than the computation for interior processes. We 
use ghost cells to address the boundary conditions; therefore, the communication required for processes handling boundary 
conditions is less than the communication required for interior processes.

The communication for the potential φ is similar, but the communication stripes have a width of only one cell in most 
layers of the multigrid. The only exception is that at the coarsest layer of the multigrid preconditioner where a direct solver 
is used, gathering and broadcasting operations are still needed for a small amount of data.

5. Accuracy and stability as well as efficiency test

In this section, we first adopt a 1D dimensionless model to illustrate the convergence order and stability of our second-
order semi-implicit scheme. Then, we use a 3D problem to show the scalability of our simulator, and make a comparison 
between several algebraic elliptic solvers.

5.1. Comparison on convergence and stability

The following dimensionless model problem in 1D, which has a form similar to (1.1), is adopted to show that the 
proposed semi-implicit scheme is second-order accurate in time, and is more stable than the explicit schemes:⎧⎪⎨

⎪⎩
∂tne − ∂x(μe Ene) − De∂xx(ne) = S exp(−K/|E|)μe|E|ne,

∂tnp + ∂x(μp Enp) = S exp(−K/|E|)μe|E|ne, x ∈ I, t > 0,

− γ ∂xxφ = np − ne, E = −∂xφ,

(5.1)

where I = (0, 1). Dirichlet boundary conditions φ(0, t) = 1 and φ(1, t) = 0 are applied for φ = φ(x, t), while homogeneous 
Neumann boundary conditions are applied at all boundaries for ne = ne(x, t) and at inflow boundary for np = np(x, t). 
Parameters in (5.1) are given by μe = 1, μp = 0.09, De = 10−4, S = 1000 and K = 4, while constant γ will be given later. 
Constant time steps τn = τ are used, and the computation is performed until T = 0.05. It should be mentioned that the 
dimensionless dielectric relaxation time constraint for (5.1) is

τ ≤ τdiel = γ

max(μpnp + μene)
. (5.2)

Different temporal schemes introduced in Section 2.1 are implemented with the same spatial discretization.

Study of convergence In this testing example, we set γ = 10−3 in (5.1). The initial value is ne(x, t = 0) = np(x, t = 0) =
10−6 + 0.1 exp(−100(x − 0.5)2). For all the calculations in this example, we fix the ratio of the time step to the grid size 
at τ/�x = 0.25. The finite volume method with unlimited linear reconstruction is applied for spatial discretization. The 
“exact solution” for (ne)ref and (np)ref are calculated by second-order explicit scheme (2.2)–(2.4) with τ = 0.005/28 which 
is sufficiently small. The numeric results are given in Tables 5.1 and 5.2.

The results in Tables 5.1 and 5.2 clearly demonstrate that the proposed semi-implicit scheme (2.9)–(2.10) is indeed 
second order time accurate, while the previously used semi-implicit scheme (2.6) is only first order time accurate, though 
second-order spatial discretization is used.

It is worth emphasizing that the proposed second-order semi-implicit scheme needs to solve the elliptic equation only 
once during each time step, the same as the first-order semi-implicit scheme. To gain second order time accuracy, the only 
additional cost is an explicit stage for np and ne at each time step, which is relatively cheap compared with solving the 
elliptic equation.

Study of stability in terms of the dielectric relaxation time restriction To show that the semi-implicit scheme (2.9)–(2.10) is 
able to alleviate the dielectric relaxation time restriction, and is thus more stable than explicit schemes, we perform the 
calculation with γ = 10−5 in (5.1). The initial value is ne(x, t = 0) = np(x, t = 0) = 10−6 +exp(−100(x −0.5)2). Koren limiter 
is applied in finite volume discretization.

Note the goal of this example is to check the instability raised by the dielectric relaxation time restriction. As discussed 
at the end of Section 2, the constraints of the time step include the dielectric relaxation time constraint and the CFL-type 
stability condition. In this 1D setting, they can be represented, respectively, by (5.2) and
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Table 5.1
L2-norm error of the second-order semi-implicit scheme (2.9)–(2.10) in the 1D testing problem.

�t 0.005 0.005/2 0.005/22 0.005/23 0.005/24 0.005/25

‖ne − (ne)ref‖ 3.1660 × 10−4 8.3832 × 10−5 2.1650 × 10−5 5.5097 × 10−6 1.3876 × 10−6 3.4508 × 10−7

Order – 1.9171 1.9531 1.9743 1.9894 2.0075

‖np − (np)ref‖ 2.5303 × 10−4 6.3421 × 10−5 1.6028 × 10−5 4.0412 × 10−6 1.0134 × 10−6 2.5158 × 10−7

Order – 1.9962 1.9844 1.9877 1.9956 2.0101

Table 5.2
L2-norm error of the first-order semi-implicit scheme (2.6) in the 1D testing problem.

�t 0.005 0.005/2 0.005/22 0.005/23 0.005/24 0.005/25

‖ne − (ne)ref‖ 1.7405 × 10−3 9.9821 × 10−4 5.3935 × 10−4 2.8098 × 10−4 1.4349 × 10−4 7.2514 × 10−5

Order – 0.8021 0.8881 0.9408 0.9696 0.9846

‖np − (np)ref‖ 1.5186 × 10−3 8.8187 × 10−4 4.8021 × 10−4 2.5122 × 10−4 1.2856 × 10−4 6.5044 × 10−5

Order – 0.7841 0.8769 0.9347 0.9665 0.9830

Table 5.3
Stability of different temporal discretizations on a 1D testing problem.

Temporal scheme τ = 0.5τdiel τ = τdiel τ = 3τdiel τ = 10τdiel τ = 50τdiel

2nd order semi-implicit (2.9)–(2.10) stable stable stable stable stable
1st order semi-implicit (2.6) stable stable stable stable stable
2nd order explicit (2.2)–(2.4) stable stable unstable unstable unstable
1st order explicit (2.1) stable stable unstable unstable unstable

τ ≤ τCFL = �x

Cλμe|E|max + 2De/�x
. (5.3)

To get a good estimation of τdiel and τCFL for this test problem, we first perform the simulation on a very fine mesh 
�x = 1/12800 with τ = 1/128000, using second-order explicit scheme (2.2)–(2.4), and record the maximum values of |E|
and (μpnp + μene) throughout the simulation. Such results are considered to have sufficient accuracy, so that we can 
use these values to get a precise estimation of τdiel defined in (5.2), and the result is τdiel = 9.1736 × 10−6. To estimate 
τCFL, we insert the estimated value of |E|max into (5.3), with Cλ set to be 2 and �x chosen as a relatively larger cell size 
�x = 1/400, which yields τCFL = 4.7448 × 10−4. The numerical tests presented below will be carried out on the uniform 
grid with �x = 1/400. Thus we have τCFL ≈ 52τdiel, meaning that a much better efficiency can be achieved if we can break 
the dielectric relaxation time constraint.

Five different time steps, i.e., 0.5τdiel , τdiel, 3τdiel, 10τdiel and 50τdiel , are used to test the stability. All these five time 
steps are less than τCFL, and stability condition (5.3) is always satisfied for all simulations before numerical blow-up occurs. 
We consider a simulation to be unstable if ne > 10 is detected in this example. According to our experiments, this condition 
always leads to a quick numerical blow-up of the solution. In addition to the proposed semi-implicit scheme (2.9)–(2.10), 
we implemented three other temporal discretizations for comparisons: the first-order explicit scheme (2.1), the first-order 
semi-implicit scheme (2.6), and second-order explicit scheme (2.2)–(2.4).

The results in Table 5.3 clearly show that the two semi-implicit methods remain stable when the time step exceeds τdiel
and reaches 50τdiel. In contrast, the two explicit methods exhibit instability. As indicated, the stability condition (5.3) is still 
fulfilled for all the time steps and schemes. Therefore the instability is caused by the violation of the dielectric relaxation 
time constraint, and the semi-implicit schemes truly allow larger time steps on this occasion.

Although we focus on the stability in this example, we can calculate the L2 errors for the stable schemes in Table 5.3 us-
ing the numerical solution on the fine mesh as the reference. The errors range from 8.3245 × 10−5 to 5.4554 × 10−4 for the 
second-order semi-implicit scheme (2.9)–(2.10), and from 1.8287 × 10−4 to 9.0213 × 10−3 for the first-order semi-implicit 
scheme (2.6), indicating that all stable results in Table 5.3 still make reasonable predictions even when a relatively large 
time step τ = 50τdiel is used with a coarse mesh size �x = 1/400.

As indicated in Section 2.2, the dielectric relaxation time constraint is not always the tightest time step constraint 
generally. However, the newly proposed semi-implicit method provides an alternative other than the explicit schemes. In 
addition, it requires solving the elliptic equation only once during each time step, while the explicit scheme (2.2)–(2.4)
requires twice, which outweigh its possible drawback in the slower computation of the variable coefficient elliptic equation, 
as will be shown in Section 5.3.
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Table 5.4
Mean time for 50 time steps on three different meshes, using second-order semi-implicit scheme with multigrid 
preconditioned FGMRES, with 20 cores in each node.

Number of nodes 1 2 4 8 16 32 64 128

Mesh size: 256 × 256 × 320 299.94 149.31 74.743 37.093 19.003 11.645 17.234 –
Mesh size: 512 × 512 × 640 3007.2 1261.3 609.70 305.39 156.41 79.722 49.806 –
Mesh size: 1024 × 1024 × 1280 – – – 3753.5 1375.1 560.89 305.13 181.97

5.2. Scalability of MPI parallelization

The scalability means the ability to reduce the execution time as the number of cores increases. Scalability can be 
measured by speedup S p , which is the ratio of the execution time of the sequential program to the execution time of the 
parallel program over p processes.

We developed our codes based on the well-known PETSc [3]. PETSc contains data structures and routines for both 
scalable and parallel solutions of partial differential equations, and it supports MPI parallelism. The simulations were 
performed on the cluster Tianhe2-JK located at Beijing Computational Science Research Center. It includes 514 com-
putational nodes, each of which is equipped with two Intel Xeon E5-2660 v3 CPUs (10 cores, 2.6 GHz) and 192 GB 
of memory. The nodes are connected by a TH high-speed network interface. More details can be found at https://
www.csrc .ac .cn /en /facility /cmpt /2015 -05 -07 /8 .html.

Unless otherwise stated, we used the following setup for a double-headed streamer in a homogeneous field between two 
parallel planes at atmospheric pressure P = 760 Torr in following testings and applications,

ñ(�x) = 108 + 1014 exp

(
−

(
z − 0.5

σz

)2

−
(

(x − 1)2 + (y − 1)2

σ 2
r

))
cm−3, (5.4)

where σz = 0.027 and σr = 0.021. The voltage applied is φ|z=z1 = φ0 = 52 kV. We adopt the same parameters as in [5,13]
hereafter: μe = −2.9 × 105/P cm2/(Vs) and μp = 2.6 × 103/P cm2/(Vs), respectively; α(|�E|) = 5.7P exp(−260P/|�E|) cm−1; 
and De = diag(De,x, De,y, De,z) = diag(2190, 2190, 1800) cm2/s.

The convergence criterion for the iterative algebraic elliptic solver Aφ̃ = β is given by a tolerance of the relative residual, 
i.e., the iteration continues until

‖Aφ̃ − β‖2

‖β‖2
< ε, (5.5)

where the tolerance ε is set to ε = 10−8 in all the simulations hereafter.
The scalability of our simulator, which is the second-order semi-implicit scheme (2.9)–(2.10) combined with multigrid 

preconditioned FGMRES elliptic solver, is tested. We consider a domain � = (0, 1) × (0, 1) × (0, 1) cm3, with three different 
mesh sizes: 256 × 256 × 320, 512 × 512 × 640 and 1024 × 1024 × 1280. The time step is chosen to be proportional to the 
mesh size, which is τn = �z/vch with vch being the maximum characteristic speed. Here we choose vch = 3|μe Ez| and 
Ez = 208 kV·cm−1 to ensure stability. Using a fixed time step τ = τn , we execute the code for 50 time steps, and record 
the elapsed wall-clock time for the whole run. Additionally, to obtain a more reliable result, we execute the same code five 
times and take the average at each mesh size.

The code is executed over different numbers of nodes, using all 20 cores in each node. This mode (in which all available 
cores are used in each node) is called the “compact mode” in [28]. The average elapsed times are given in Table 5.4.

Note that the times shown in the tables are the average values over five runs, each with 50 time steps, instead of the 
average times for a single time step. The data are summarized in Fig. 5.1 for clarity, where relative speedup denotes the 
speedup with respect to the execution time using the smallest number of nodes in Table 5.4.

Generally the satisfactory scalability of our program can be seen in Fig. 5.1. Fig. 5.1a shows a nearly linear speedup when 
the number of nodes is small. When 32 or more nodes are used, the speedup obviously becomes sublinear. In particular, 
the time consumed for 64 nodes is even larger than that for 32 nodes. The reason is that the ratio of communication to 
computation becomes larger as the number of nodes increases. This tendency is visible in Figs. 5.1b and 5.1c even though 
the larger computational work load postpones the significant drop of the parallel efficiency. It is interesting that in these two 
figures, we sometimes obtain a performance even better than the ideal case. One possible explanation for this phenomenon 
is that when the number of nodes is small, each node is heavily loaded, causing a lower cache hit ratio [18, Overview & 
Chapter 1]; while for each process, the amount of data required for communication is relatively large, causing more network 
latency. Such a phenomenon can also be observed clearly in Table 5.4.

5.3. Comparison of different algebraic elliptic solvers

In this subsection, we first study the performance of multigrid preconditioned FGMRES solver and then compare it with 
R&B SOR and other multigrid preconditioned Krylov subspace methods.

https://www.csrc.ac.cn/en/facility/cmpt/2015-05-07/8.html
https://www.csrc.ac.cn/en/facility/cmpt/2015-05-07/8.html
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Fig. 5.1. Scalability of the second-order semi-implicit scheme using the multigrid preconditioned FGMRES solver over three meshes. Summarized from 
Table 5.4.

Fig. 5.2. Iteration step for multigrid preconditioned FGMRES solver at each time step by the second-order semi-implicit scheme, on three different meshes.

Fig. 5.3. Relative residual at each iteration for the multigrid preconditioned FGMRES solver in first step on three different meshes.

We again adopt the double-headed streamer in homogeneous field for testing purposes, using the same configuration as 
in Section 5.2 and three different mesh sizes 256 × 256 × 320, 512 × 512 × 640 and 1024 × 1024 × 1280. As mentioned 
in Section 3.2, a zero initial guess and the FMG preconditioner are used in the first time step; subsequently, the V-cycle 
multigrid preconditioner is applied. We simulate the double-headed streamer until 2.5 ns, using a fixed time step of τn = 2
ps. Therefore, 1250 time steps are required to finish the simulation.

We execute our program on 640 cores, distributed among 32 nodes, with 20 cores on each node. We record the max-
imum wall-clock time consumed by the elliptic solver over all cores, including both the computation and communication 
in the solver as well as the assembly of the coefficient matrix and the right-hand side. The total times consumed by the 
elliptic solver are 320.76 s, 1813.2 s and 14001 s for the three aforementioned mesh sizes, respectively, and these do not 
exceed linear growth with the number of DOFs. Note that these times do not include the computation for quantities other 
than φ.

The number of iterations at each time step, for the multigrid preconditioned FGMRES solver in second-order semi-
implicit scheme (2.9)–(2.10), is shown in Fig. 5.2, with the tolerance of the residual is set to 10−8. Except the first time step, 
the elliptic solver requires only 2 to 4 iterations, and the number of iterations does not increase as the mesh is refined. 
Fig. 5.3 shows the rapid reduction of the relative residual.

Next, we compare our FGMRES solver with other multigrid preconditioned Krylov subspace methods [30, Chapter 6–9], 
including Conjugate Gradient (CG), Conjugate Gradient Squared (CGS), Bi-CGSTAB (BiCGSTAB), GMRES, and Flexible Conjugate 
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Table 5.5
Time costs of different elliptic solvers using 640 cores over 50 time steps using the proposed second-order semi-implicit 
scheme.

Mesh size: 256 × 256 × 320

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 10.589 12.588 12.584 12.415 14.084 14.044
Ratio (on FGMRES) 1 1.1888 1.1884 1.1724 1.3301 1.3263

Mesh size: 512 × 512 × 640

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 75.401 91.058 91.696 91.913 103.19 103.31
Ratio (on FGMRES) 1 1.2076 1.2161 1.2190 1.3685 1.3701

Mesh size: 1024 × 1024 × 1280

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 511.38 654.50 655.65 659.29 741.57 740.00
Ratio (on FGMRES) 1 1.2799 1.2821 1.2892 1.4501 1.4471

Table 5.6
Time costs of different elliptic solvers using 640 cores over 50 time steps by the second-order explicit scheme.

Mesh size: 256 × 256 × 320

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 10.306 13.550 13.724 13.941 17.039 17.014
Ratio (on FGMRES) 1 1.3148 1.3317 1.3527 1.6533 1.6509

Mesh size: 512 × 512 × 640

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 61.028 94.798 95.294 95.398 119.30 119.61
Ratio (on FGMRES) 1 1.5534 1.5615 1.5632 1.9548 1.9599

Mesh size: 1024 × 1024 × 1280

Method FGMRES GMRES CG FCG CGS BiCGSTAB

Mean time [s] 352.88 694.12 689.98 695.97 867.26 865.01
Ratio (on FGMRES) 1 1.9670 1.9553 1.9723 2.4577 2.4513

Gradients (FCG). For all these algebraic solvers, we use the same geometric multigrid preconditioner described in Section 3.2, 
with the same convergence criterion ε = 10−8. From the previous test, we can see that the number of iteration steps does 
not vary significantly in the evolutionary process. Hence, for a quick test, we run the same simulation using the same 
parallel settings but for only 50 steps with a slightly larger time step (τn = 3.2811 ps). Table 5.5 shows the times consumed 
by the different Krylov subspace solvers; each time is the average of five runs. Manifestly, FGMRES works best with the 
multigrid preconditioner, consuming the least computation time in all cases.

We also implement and test the second-order explicit scheme (2.2)–(2.4) using the same configurations. The results 
are shown in Table 5.6, and the FGMRES solver still performs outstandingly. Here we emphasize again that in the explicit 
scheme, we need to solve the constant coefficient Poisson equation that requires matrix assembly only at the initial step. 
Even so, for most of the Krylov subspace solvers, the times shown in Table 5.6 are larger than the times in Table 5.5. This 
result occurs because in each time step, our second-order semi-implicit method needs to solve the elliptic problem only 
once, while the explicit method needs twice, provided that our solver is efficient for both coefficient constant or varied 
Poisson equation. The only exception is the FGMRES method, in which the explicit scheme has better performance.

As Tables 5.5 and 5.6 show, the time consumption is roughly proportional to the number of DOFs, indicating the excellent 
performance of the multigrid preconditioner. In fact, the mean time for all the solvers scales sublinearly. One possible reason 
is that the average number of iterative steps for a small grid size may be larger, as shown in Fig. 5.2. In addition, the 
communication time may grow only sublinearly, especially when the amount of data being transferred is small.

Our results also show that the proposed algebraic elliptic solver outperforms the R&B SOR solver introduced in [28], 
which consumes approximately 55 seconds on 200 cores to converge to a relative residual lower than 10−6 on an 8003 grid 
(see Figure 6(c) in [28]). For comparison purposes, we assume a linear speedup for R&B SOR; then, the same solver costs 
55/(640/200) ≈ 17.2 seconds on 640 cores. In our numerical test, even for a much larger grid size 1024 × 1024 × 1280
(≈ 2.62 × 8003), solving a single linear system to a tolerance of 10−8 requires only 352.88/(50 × 2) = 3.52 seconds. Here, 
we use the value from Table 5.6 because the constant coefficient Poisson equation was solved in [28]. In addition, Figure 
6(b) and Figure 6(c) in [28] imply that the time complexity of the R&B SOR method is higher than O (N) (even higher than 
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O (N log N)) where N is the total number of DOFs. It should be remarked that the performance depends on the hardware 
and network, and this comparison is based on the data obtained on two independent high performance clusters. The cluster 
in [28] is built using Intel Xeon E5-2680 v2 processors (10 cores, 2.8 GHz) and that of Tianhe2-JK are Intel Xeon E5-2660 
v3 CPUs (10 cores, 2.6 GHz).

6. Applications

In this section, we carry out two applications with different initial settings to compare the 3D results with the re-
sults obtained by the 2D moving mesh method, and to study the interactions of two streamers. The semi-implicit method 
(2.9)–(2.10) with adaptive time stepping (2.17) is used. When choosing the time step for our second-order semi-implicit 
scheme, we are unable to choose τn according to (2.17) directly because τn should be given before we solve φn+1/2 in 
(2.14), and �En+1/2 can be computed only after obtaining φn+1/2. Therefore, as an alternative, we may choose a relatively 
small τ0 at the first step, and then update time step by (2.17) with �En+1/2 is replaced as �En−1/2 and multiplying a safety 
factor 0.5 to it. We use simplified conditions without considering detailed models like the chemical reactions, because we 
aim towards code verification and proof of principle, which is by itself already very challenging for streamer simulations.

6.1. Double-headed streamer propagation

The first application is the double-headed streamer in a homogeneous field. A computational domain � = (0, 1) ×(0, 1) ×
(0, 1) cm3 is used; however, the numerical results are nearly indistinguishable from the results computed on a larger domain 
(0, 2) × (0, 2) × (0, 1) cm3. The initial charge ñ(�x) is a Gaussian located at the center of the domain (see (5.4)). The transport 
coefficients are the same as that are used in Section 5.2 and shown below (5.4).

A very fine mesh with 2048 × 2048 × 2560 cells is used in the simulation, comprising a total of more than 10.7 billion 
cells. For MPI parallelism, 1280 CPU cores (64 nodes) are used. The initial time step is set to 2 ps, and the adaptive time 
step is subsequently selected. The simulation requires 1558 steps to reach the final time 2.5 ns, resulting in an average time 
step of 1.6 ps.

Fig. 6.1 shows the electric field along the z-axis at the center of the streamer channel (x = y = 0.5). The result in [5], 
which used moving mesh method in 2D simulation, is provided as a reference, and the two are in close agreement. At 
t = 2 ns, the positive (cathode-directed) and the negative (anode-directed) streamer move approximately 0.19 and 0.26 cm, 
respectively, measured using the position of the highest electric field strength. At t = 2.5 ns, they move approximately 0.28 
and 0.36 cm. Hence, the average velocities of negative and positive streamer from 2 to 2.5 ns are estimated approximately 
2.0 × 108 and 1.95 × 108 cm/s, in other words, no obvious difference. Although the negative streamer propagates faster than 
the positive streamer at the beginning of the propagation, the difference in velocity becomes much smaller after 1.5 ns. The 
experimentally measured velocities of streamers vary under different experimental conditions by an order of magnitude 
[46], but the typical measured velocities are similar to those obtained in this simulation.

The contours of the electron density and net charge densities on the plane y = 0.5 are shown in Fig. 6.2 and Fig. 6.3, 
respectively. The results in Fig. 6.2 are very similar to the results obtained in [5]. Fig. 6.3 clearly shows that at the front 
of the streamers’ head, a thin layer of net charge that has the same polarity as the streamer exists. The thickness of this 
layer is approximately 0.2 mm to 0.3 mm, and the maximum net charge density is on the order of 1 μC/cm3, which is 
approximately between 1012 and 1013 charged particles per cm3.

6.2. Interactions of two cathode-directed streamers

The second application considers the interactions of two cathode-directed streamers. A 3D simulation enables study of 
streamer discharges without assuming the axisymmetry. The settings of these simulations are the same as those described 
in Section 6.1 and 5.2, except that the initial conditions are set to be the sum of two Gaussians:

ñ(�x) = 108 + 1014
[

exp

(
−

(
(x − 0.5 − x0)

2 + (y − 0.5)2 + (z − 1)2

σ 2

))

+exp

(
−

(
(x − 0.5 + x0)

2 + (y − 0.5)2 + (z − 1)2

σ 2

))]
cm−3,

(6.1)

where 2x0 describes the distance between the centers of the two Gaussian-shaped seed charges, and σ = 0.03. We set x0
to σ and 3σ , to study the effects of different distances between the two streamers on the interactions.

Fig. 6.4 show the evolution of the electric field, net charge and electron density when time t = 3.5 ns. When the two 
Gaussians are close (e.g., x0 = σ ), the two streamers clearly merge into one. When the distance between the two Gaussians 
is slightly larger (e.g., x0 = 3σ ), the strong repulsion resulting from the net charge layer at the fronts of the streamers 
causes the streamers no longer propagating in the direction of the applied field; however, the distribution of positive ions 
has already merged by t = 3.5 ns, and the two streamers become closer as they propagate.

This may be partly explained as follows. The electric field in the center of the two streamers (i.e., at x = 0.5 cm) is 
along the direction of the applied field and perpendicular to the electrodes, while the electric fields on the left and right 
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Fig. 6.1. Electric field Ez along the line x = 0.5, y = 0.5 in a double-headed streamer (reference data taken from [5]).

Fig. 6.2. Electron density on the y = 0.5 plane in a double-headed streamer at 1.5 and 2.5 ns. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 6.3. Net charge density (in terms of charge per unit volume) on the y = 0.5 planes in a double-headed streamer at 1.5 and 2.5 ns. Here net charge 
density equals to the density of the charge carriers (np − ne ) times the elementary charge (1.602 × 10−13μC).
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Fig. 6.4. Electron density, net charge density and electric field (Ex, Ez) for the interaction between two streamers when time t = 3.5 ns, for x0 = σ (left 
column) and x0 = 3σ (right column).

sides of this line have opposite directions, both pointing away from the streamers, which drives the electrons toward the 
streamers and leaves behind the positive ions in this area. However, this positive net charge greatly enhances the local 
electric field and attracts the seed electrons (which may be generated by nonlocal photoionization [23]) ahead of it to this 
area. Hence, the electron density gradually increases due to the collision ionization, which causes the possible merging of 
the two streamers.
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To more focus on the simulator, we here have used a background photoionization rate for simplicity [13]. However, 
the basic observations are consistent with those in [23] which indicates that two adjacent streamers can interact through 
electrostatic repulsion and through attraction due to nonlocal photoionization. We will study this using a more detailed 
photoionization model in future.

7. Conclusion

In this paper, we have proposed a simulator using a second-order semi-implicit scheme with multigrid preconditioned 
FGMRES elliptic solver for 3-dimensional streamer discharge simulations under MPI, which contributes in three main as-
pects. First, the semi-implicit temporal discretization achieves second-order accuracy; however, it requires solving an elliptic 
equation only once during each time step. Compared with the explicit schemes, this scheme has better stability because 
it allows the use of time steps larger than the dielectric relaxation time. Second, we adopt a geometric multigrid precon-
ditioned FGMRES solver to solve the variable coefficient elliptic equation. Throughout our simulations, the elliptic solver 
requires a small number of iterations (typically 3 to 4) to converge to a relative tolerance of 10−8. It is numerically ver-
ified that FGMRES is faster than R&B SOR and five other Krylov subspace solvers. Third, our simulations show that our 
MPI implementation achieves high parallel efficiency and significantly reduces the computation time when the number of 
cores increases. We conducted two simulations to study the propagation of a double-headed streamer and the interactions 
between two streamers using more than 10.7 billion grid cells.

Our future work includes a generalization to curved boundaries, and the use of adaptive mesh strategies which will 
further accelerate the computation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This paper is partly supported by the National Science Foundation of China under Grant 51577098 (C. Zhuang), National 
University of Singapore Startup Fund under Grant No. R-146-000-241-133 (Z. Cai) and the Academic Research Fund of 
Ministry of Education of Singapore under Grant No. R-146-000-247-114 (W. Bao). Beijing Computational Science Research 
Center (CSRC) is acknowledged for providing the Tianhe2-JK computing resource. The first author is grateful to Dr. Yongyong 
Cai and Dr. Lizhen Chen for their help in CSRC.

Appendix A. Explicit multigrid preconditioned matrix

Following the same notation in Section 3.2, one step of the V-cycle geometric multigrid solver with two layers in Fig. 3.1
can be expressed as follows:

x(3)
2 = Q 2[Q 2x(0)

2 + P2b2 + P1,2 A−1
1 R2,1(b2 − A2 Q 2x(0)

2 − A2 P2b2)] + P2b2, (A.1)

which represents the iteration between x(0)
2 and x(3)

2 . Simplifying (A.1) we obtain

x(3)
2 = [Q 2

2 − Q 2 P1,2 A−1
1 R2,1 A2 Q 2]x(0)

2 + [Q 2 P2 + P2 + Q 2 P1,2 A−1
1 R2,1(I2 − A2 P2)]b2. (A.2)

Then we denote M2 = Q 2 P2 + P2 + Q 2 P1,2 A−1
1 R2,1(I2 − A2 P2). Note that here, M2 is the same as the one defined in (3.5). 

The matrix in front of x(0)
2 in (A.2) is

Q 2
2 − Q 2 P1,2 A−1

1 R2,1 A2 Q 2 = I2 + Q 2
2 − I2 − Q 2 P1,2 A−1

1 R2,1 A2 Q 2

= I2 + (Q 2 + I2)(Q 2 − I2) − Q 2 P1,2 A−1
1 R2,1 A2 Q 2

= I2 + (Q 2 + I2)(−P2 A2) + Q 2 P1,2 A−1
1 R2,1 A2(P2 A2 − I2),

(A.3)

where Q 2 = I2 − P2 A2 is used in the last line of (A.3) by denoting of Q 2 = qn+1(A) = (I2 − pn(A)A) and P2 = pn(A). Then,

I2 + (Q 2 + I2)(−P2 A2) + Q 2 P1,2 A−1
1 R2,1 A2(P2 A2 − I2)

=I2 − (Q 2 P2 + P2)A2 + Q 2 P1,2 A−1
1 R2,1(A2 P2 − I2)A2

=I2 − [(Q 2 P2 + P2) + Q 2 P1,2 A−1
1 R2,1(I2 − A2 P2)]A2 = I2 − M2 A2.

(A.4)

Now it is clear that the V-cycle geometric multigrid method (A.2) is
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x(3)
2 = [I2 − M2 A2]x(0)

2 + M2b2 = x(0)
2 + M2(b2 − A2x(0)

2 ), (A.5)

which is a Richardson iteration with the multigrid preconditioner M2. (A.5) shows (3.5). If more than one layer is taken in 
a multigrid, we can obtain the preconditioner matrix recursively. The only difference is that we use the multigrid again to 
obtain the solution on the coarse mesh rather than the inverse of the matrix. Therefore, the multigrid preconditioner matrix 
Ml for l layers V-cycle multigrid can be expressed recursively as follows:

M1 = A−1
1 ,

Ml = Q l Pl + Pl + Q l Pl−1,l Ml−1 Rl,l−1(Il − Al Pl), (l ≥ 2).
(A.6)
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