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A PARAMETRIC FINITE ELEMENT METHOD FOR SOLID-STATE
DEWETTING PROBLEMS IN THREE DIMENSIONS\ast 

QUAN ZHAO\dagger , WEI JIANG\ddagger , AND WEIZHU BAO\dagger 

Abstract. We propose a parametric finite element method (PFEM) for efficiently solving the
morphological evolution of solid-state dewetting of thin films on a flat rigid substrate in three dimen-
sions (3D). The interface evolution of the dewetting problem in 3D is described by a sharp-interface
model, which includes surface diffusion coupled with contact line migration. A variational formula-
tion of the sharp-interface model is presented, and a PFEM is proposed for spatial discretization. For
temporal discretization, at each time step, we first update the position of the contact line according
to the relaxed contact angle condition; then, by using the position of the new contact line as the
boundary condition, we solve a linear system resulting from the discretization of PFEM to obtain
the new surface at the next step. The well-posedness of the solution of the PFEM is also established.
Extensive numerical results are reported to demonstrate the accuracy and efficiency of the proposed
PFEM and to show the complexities of the dewetting morphology evolution observed in solid-state
dewetting experiments.
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1. Introduction. Solid-state dewetting is a ubiquitous phenomenon in materials
science, and it describes the agglomeration of solid thin films into arrays of isolated
particles on a substrate (see, e.g., the review papers [48, 35]). In recent years, solid-
state dewetting has found wide applications in thin film technologies, and it can be
used to produce the controlled formation of an array of nanoscale particles, e.g., used
in sensors [37] and as catalysts for carbon [43] and semiconductor nanowire growth
[45]. Recently, it has attracted extensive attention of many research groups and has
been widely studied from the experimental (e.g., [55, 56, 1, 42, 39, 34]) and theoretical
(e.g., [46, 51, 17, 27, 49, 28, 5, 33, 60]) points of view.

The dewetting of thin solid films deposited on substrates is similar to the dewet-
ting phenomena of liquid films. Although liquid-state wetting/dewetting problems
have been extensively studied in fluid mechanics (e.g., [15, 41, 52, 53]), solid-state
dewetting problems (i.e., surface diffusion-controlled geometric evolution) pose a con-
siderable challenge in materials science, applied mathematics, and scientific comput-
ing. The major challenge comes from the difference of their mass transports. In
general, surface diffusion has been recognized as the dominant mass transport for
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solid-state dewetting and has played an essential role in determining the morphology
evolution of solid thin films during the dewetting. The surface diffusion equation for
the evolution of a solid film with isotropic surface energy (i.e., a constant, labeled as
\gamma 0) was given by Mullins [38]:

(1.1) vn = B\gamma 0\Delta S
\scrH , with B =

Ds\nu \Omega 
2
0

kBT
,

where vn is the normal velocity of the film/vapor interface (surface), Ds is the sur-
face diffusivity, kBT is the thermal energy, \nu is the number of diffusing atoms per
unit area, \Omega 0 is the atomic volume, \Delta S is the Laplace--Beltrami operator, and \scrH 
represents the mean curvature of the interface. For anisotropic surface energy (i.e., a
function, labeled as \gamma = \gamma (n) with n = (n1, n2, n3)

T representing the unit outward
normal orientation of the interface), it means that the surface energy (density) ex-
hibits dependence on the crystalline orientation, and (1.1) can be readily extended
to the anisotropic case by replacing the mean curvature \scrH with the weighted mean
curvature \scrH \gamma as [47, 14]

(1.2) \scrH \gamma = \nabla 
S
\cdot \bfitxi ,

where \nabla 
S
is the surface gradient operator, and \bfitxi := \bfitxi (n) is well known as the Cahn--

Hoffman \bfitxi -vector [13, 24, 29, 30] which can be defined based on the homogeneous
extension of \gamma (n) as

(1.3) \bfitxi (n) = \nabla \^\gamma (p)
\bigm| \bigm| \bigm| 
\bfp =\bfn 

, with \^\gamma (p) = | p| \gamma 
\biggl( 

p

| p| 

\biggr) 
, \forall p \in \BbbR 3\setminus \{ 0\} ,

with | p| :=
\sqrt{} 

p21 + p22 + p23, and p = (p1, p2, p3)
T \in \BbbR 3.

Numerical simulations of geometric evolution equations (e.g., surface diffusion)
have attracted considerate interest over the decades, and different methods have been
proposed in the literature for simulating the evolution of a closed curve/surface under
mean curvature flow, surface diffusion, Willmore flow, etc. For example, stable finite
element methods for solving the flows of graphs [2, 16, 54] have been well studied.
Unfortunately, these methods cannot be directly applied to the general curve/surface
evolution due to complicated governing equations and geometric changes. Other front-
tacking methods have been proposed to simulate evolutions for curves/surfaces, such
as the marker-particle method [18, 36, 25] and the parametric finite element method
(PFEM) [19, 3, 40, 21, 22]. These methods are very efficient and render a very accu-
rate representation of the interface compared to the phase-field or level-set methods.
However, throughout practical simulations, these algorithms generally need compli-
cated mesh regularizations or frequent remeshing to improve the mesh quality for the
discrete interface. To tackle this problem, Barrett, Garcke, and N\"urnberg proposed
a novel PFEM (e.g., [8, 7, 10, 9]) which has very good properties with respect to the
distribution of mesh points. Precisely, their scheme introduced an implicit tangential
motion for mesh points on the moving interface such that these mesh points auto-
matically move tangentially along the interface and maintain good mesh properties,
and this scheme has been extended for simulating the grain boundary motion and
applications to thermal grooving and sintering [12, 59].

Solid-state dewetting problems belong to the evolution of an open curve/surface
governed by surface diffusion and contact line migration [27, 49, 28, 5, 30]. In ear-
lier years, the marker-particle method was first presented for solving sharp-interface
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models of solid-state dewetting in two dimensions (2D) [51, 49] and three dimensions
(3D) [18]. This method can be thought of as an explicit finite difference scheme; thus
it imposes a very severe restriction on the time step for numerical stability. Further-
more, its extension to the 3D case is very tedious, inaccurate, and time-consuming.
For isotropic surface diffusion flow of a closed surface, B\"ansch, Morin, and Nochetto
proposed a PFEM together with a mesh regularization algorithm [3]; Barrett, Gar-
cke, and N\"urnberg then developed a simplified and novel variational formulation which
leads to good mesh distribution properties and unconditional stability [9, 8]. These
stable PFEMs were then generalized to the anisotropic case [6, 11] for a special kind of
anisotropy in terms of Riemannian metric form. Other related works for anisotropic
flows in the literature can be found in [22, 40, 23] and references therein. Further-
more, PFEMs have also been designed for simulating the evolution of thin solid films
on a substrate in the 2D [4, 29] and 3D cases with axisymmetric geometry [58]. But
how to design a PFEM for simulating solid-state dewetting problems in the full 3D
remains an urgent and challenging problem.

The goal of this paper is to extend our previous works [5, 29] from 2D to 3D by
using a variational formulation in terms of the Cahn--Hoffman \bfitxi -vector for simulating
solid-state dewetting of thin films. More precisely, the main objectives are as follows:
(1) to derive a variational formulation of the sharp-interface model for simulating solid-
state dewetting problems in 3D [30]; (2) to develop a PFEM for simulating the solid-
state dewetting of thin films in 3D; (3) to demonstrate the capability, efficiency, and
accuracy of the proposed PFEM; and (4) to investigate many of the complexities which
have been observed in experimental dewetting of patterned islands on substrates, such
as Rayleigh instability, pinch-off, edge retraction, and corner mass accumulation.

The rest of the paper is organized as follows. In section 2, we briefly review a
sharp-interface model for simulating solid-state dewetting problems in 3D and then
present a variational formulation of this sharp-interface model. In section 3, we dis-
cretize the variational formulation with a semi-implicit, mixed-form PFEM. In section
4, extensive numerical results are reported to demonstrate the efficiency and accuracy
of the PFEM scheme and to show some interesting morphological evolutions of solid-
state dewetting in 3D. Finally, some conclusions are drawn in section 5.

2. The model and its variational formulation. In this section, we first re-
view a sharp-interface model obtained recently by the authors [30] for simulating
solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies
in 3D. Based on this model, we then propose a variational formulation via the Cahn--
Hoffman \bfitxi -vector.

2.1. The sharp-interface model. As illustrated in Figure 2.1, we consider
that a solid thin film (shaded in blue) lies on a flat, rigid substrate (shaded in gray).
(Color available online.) The moving film/vapor interface, labeled as S := S(t), is
represented by a time-dependent open surface with a plane curve boundary (i.e., the
moving contact line, labeled as \Gamma := \Gamma (t)) along the flat substrate Ssub (i.e., Oxy-
plane). Let U be a time-independent reference domain with u = (u1, u2)

T \in U \subseteq \BbbR 2,
and assume that the moving surface S(t) := X(u, t) (with X = (x1, x2, x3)

T or
(x, y, z)T ) can be parameterized as

(2.1) X(u, t) = (x(u, t), y(u, t), z(u, t))T : U \times [0, T ) \rightarrow \BbbR 3.
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Fig. 2.1. A schematic illustration of solid-state dewetting of thin films on a flat substrate in 3D.

Furthermore, the moving contact line \Gamma (t) := X\Gamma (\cdot , t) can be also parameterized over
\partial U as

(2.2) X
\Gamma 
(\cdot , t) = (x

\Gamma 
(\cdot , t), y

\Gamma 
(\cdot , t), z

\Gamma 
(\cdot , t))T : \partial U \times [0, T ) \rightarrow \BbbR 3.

By using the approach in [30], we can obtain a sharp-interface model for simulating
solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies
in 3D as the following dimensionless form:

\partial tX = \Delta 
S
\mu n, t > 0,(2.3)

\mu = \nabla 
S
\cdot \bfitxi , \bfitxi (n) = \nabla \^\gamma (p)

\bigm| \bigm| \bigm| 
\bfp =\bfn 

,(2.4)

where \mu is the chemical potential, n = (n1, n2, n3)
T is the unit outer normal vector

of the moving surface S, \bfitxi (n) = (\xi 1, \xi 2, \xi 3)
T represents the Cahn--Hoffman \bfitxi -vector

associated with the surface energy density \gamma (n) (see (1.3)), and \Delta 
S
:= \nabla 

S
\cdot \nabla 

S
is the

Laplace--Beltrami operator defined on S. The initial condition is given as S0 with
boundary \Gamma 0 such that

(2.5) S0 := X(u, 0) = X0(u) = (x0(u), y0(u), z0(u))
T .

The above governing equations are subject to the following boundary conditions:
(i) contact line condition

(2.6) z\Gamma (\cdot , t) = 0, t \geq 0;

(ii) relaxed contact angle condition

(2.7) \partial tX\Gamma =  - \eta 
\bigl( 
c\gamma 

\Gamma 
\cdot n\Gamma  - \sigma 

\bigr) 
n\Gamma , t \geq 0;

(iii) zero-mass flux condition

(2.8) (c\Gamma \cdot \nabla 
S
\mu )
\bigm| \bigm| \bigm| 
\Gamma 
= 0, t \geq 0.



A PFEM FOR SOLID-STATE DEWETTING IN 3D B331

Here, 0 < \eta < \infty represents the contact line mobility, and the vector c\gamma 
\Gamma 
is defined as

a linear combination of c
\Gamma 
and n,

(2.9) c\gamma 
\Gamma 
:= (\bfitxi \cdot n) c

\Gamma 
 - (\bfitxi \cdot c

\Gamma 
)n,

where c\Gamma = (c\Gamma ,1 , c\Gamma ,2 , c\Gamma ,3)
T is called the unit conormal vector, which is normal

to \Gamma , is tangent to the surface S, and points outwards, n\Gamma = (n\Gamma ,1 , n\Gamma ,2 , 0)T is
the unit outer normal vector of \Gamma on the substrate (as shown in Figure 2.1), and
\sigma := (\gamma 

V S
 - \gamma 

FS
)/\gamma 0 is a (dimensionless) material constant with \gamma 0 being the char-

acteristic unit for surface energy, where the two constants \gamma 
V S

and \gamma 
FS

represent the
vapor/substrate and film/substrate surface energy densities, respectively.

Condition (i) (i.e., (2.6)) ensures that the contact line moves along the substrate
during time evolution. Condition (ii) prescribes a contact angle condition along the
moving contact line. In order to understand this condition, we may consider two
limiting cases \eta = 0 and \eta = \infty : (1) when \eta = 0, the contact line moving velocity is
zero, and we prescribe a fixed boundary condition such that the contact line does not
move; and (2) when \eta \rightarrow \infty , as we always assume that the moving velocity should be
finite, condition (ii) will reduce to the so-called anisotropic Young equation [30, 4]

(2.10) c\gamma 
\Gamma 
\cdot n

\Gamma 
 - \sigma = 0,

which prescribes an equilibrium contact angle condition. Therefore, condition (ii)
actually allows a relaxation process for the dynamic contact angle evolving to its
equilibrium contact angle [49, 28]. Condition (iii) ensures that the total volume/mass
of the thin film is conserved during the evolution, i.e., zero-mass flux at the moving
contact line. We remark that if the moving surface has more than one closed curve as
its boundary (see examples in Figure 4.10), then the boundary conditions (2.6)--(2.8)
should be satisfied on each boundary curve.

The above sharp-interface model (2.3)--(2.4) with boundary conditions (2.6)--(2.8)
are derived based on the consideration of thermodynamic variation [4, 30], and there-
fore it naturally satisfies the thermodynamic-consistent physical law. More precisely,
the total (dimensionless) free energy of the system, including the interface energy Wint

and substrate energy Wsub, can be written as [4, 30]

(2.11) W (t) := Wint +Wsub =

\int 
S(t)

\gamma (n) dS  - \sigma A(\Gamma ),

where A(\Gamma ) denotes the surface area enclosed by the contact line curve \Gamma on the
substrate. It can be easily shown that during the evolution which is governed by the
above sharp-interface model [30], the total volume of the thin film is conserved and
the total free energy satisfies the following dissipation law:

(2.12)
d

dt
W (t) =  - 

\int 
S(t)

| \nabla 
S
\mu | 2 dS  - \eta 

\int 
\Gamma (t)

\Bigl( 
c\gamma 

\Gamma 
\cdot n

\Gamma 
 - \sigma 

\Bigr) 2

d\Gamma \leq 0, t \geq 0.

2.2. The variational formulation. Let S := S(t) \in C2(U) be a smooth sur-
face with smooth boundary \Gamma := \Gamma (t) , and assume that f \in C( \=S). Denote the surface
gradient operator as \nabla 

S
:= (D1, D2, D3)

T ; then the integration by parts on an open
smooth surface S with smooth boundary \Gamma can be written as [30, 20]

(2.13)

\int 
S

Dif dS =

\int 
S

f\scrH ni dS +

\int 
\Gamma 

fc
\Gamma ,i d\Gamma ,
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where \scrH = \nabla 
S
\cdot n is the mean curvature of the surface S and c

\Gamma 
= (c

\Gamma ,1 , c
\Gamma ,2 , c

\Gamma ,3)
T

is the conormal vector defined above. Following the above formula, we can naturally
define the derivative \nabla 

S
f in the weak sense. Then, we can define the functional space

L2(S) as

(2.14) L2(S) :=
\Bigl\{ 
f : S \rightarrow \BbbR , and \| f\| L2(S) =

\Bigl( \int 
S

f2 dS
\Bigr) 1

2

< +\infty 
\Bigr\} 
,

equipped with the L2 inner product for any scalar- or vector-valued functions f1, f2
defined over the surface S as follows:

(2.15)
\bigl\langle 
f1, f2

\bigr\rangle 
S
:=

\int 
S

f1 \cdot f2 dS.

The Sobolev space H1(S) can be naturally defined as

(2.16) H1(S) :=
\Bigl\{ 
f : S \rightarrow \BbbR , f \in L2(S), Dif \in L2(S) \forall 1 \leq i \leq 3

\Bigr\} 
,

equipped with the norm \| f\| H1(S) := (\| f\| 2L2(S) + \| \nabla 
S
f\| 2L2(S))

1
2 . Furthermore, if

we denote T
S
: H1(S) \rightarrow L2(\Gamma ) as the trace operator, we can define the following

functional space with the homogeneous Dirichlet boundary condition:

(2.17) H1
0 (S) :=

\Bigl\{ 
f : f \in H1(S), T

S
f = 0

\Bigr\} 
.

Then, we can define a subset of the functional space H1(U) which is used for the
solid-state dewetting problem

(2.18) H1
\alpha (U) :=

\Bigl\{ 
\varphi \in H1(U), \varphi 

\bigm| \bigm| \bigm| 
\partial U

= \alpha 
\Bigr\} 
,

where the function \alpha \in L2(\partial U) is given. We note that H1
0 (U) denotes the functions

in H1(U) with traces being zeros.
We now propose the following variational formulation for the sharp-interface

model (2.3)--(2.4) with the boundary conditions (2.6)--(2.8): given the initial sur-
face S0 := X0(U) with its boundary \Gamma 0 defined in (2.5), find its evolution surfaces
S(t) := X(U, t) \in H1

\alpha (U)\times H1
\beta (U)\times H1

0 (U) and the chemical potential \mu (\cdot , t) \in H1(S)
such that \bigl\langle 

\partial tX \cdot n, \varphi 
\bigr\rangle 
S
+
\bigl\langle 
\nabla 

S
\mu , \nabla 

S
\varphi 
\bigr\rangle 
S
= 0 \forall \varphi \in H1(S),(2.19a) \bigl\langle 

\mu , n \cdot \bfitomega 
\bigr\rangle 
S
 - 

3\sum 
k=1

\bigl\langle 
\gamma (n)\nabla 

S
xk, \nabla 

S
\omega k

\bigr\rangle 
S

+

3\sum 
k,l=1

\bigl\langle 
\xi k\nabla S

xk, nl\nabla S
\omega l

\bigr\rangle 
S
= 0 \forall \bfitomega \in [H1

0 (S)]
3,(2.19b)

where \alpha , \beta represent the x-, y-coordinates of the moving contact line at time t, i.e.,
\alpha = x

\Gamma 
(\cdot , t), \beta = y

\Gamma 
(\cdot , t), and \bfitxi (n) = (\xi 1, \xi 2, \xi 3)

T represents the Cahn--Hoffman
\bfitxi -vector associated with the surface energy density \gamma (n) (see the definition in (1.3)).
Here, \Gamma (t) := X

\Gamma 
(\cdot , t) = (x

\Gamma 
(\cdot , t), y

\Gamma 
(\cdot , t), 0)T is jointly determined by the relaxed

angle boundary condition (2.7) in the above weak formulation.
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In the above weak formulation, (2.19a) can be obtained by reformulating (2.3)
as \partial tX \cdot n = \Delta 

S
\mu , multiplying a scalar test function \varphi \in H1(S), integrating over

S(t), integrating by parts, and noting the zero-mass flux boundary condition (2.8).
Similarly, by multiplying nl and (2.4), we obtain the following equation [16]:

(2.20) \mu nl = (\nabla 
S
\cdot \bfitxi )nl = Dk(\xi k nl) - Dk(\gamma (n)Dk xl) - \gamma (n)\scrH nl, l = 1, 2, 3,

where summation over k is from 1 to 3. By multiplying (2.20) with \omega l on both sides,
summing over l = 1, 2, 3, integrating over S, and integrating by parts, we can obtain
(2.19b). For more details, please refer to [16]. We note that (2.19b) has also been used
in some works related to anisotropic geometric evolution equations [16, 22, 11, 40].

In the isotropic case, i.e., \gamma (n) \equiv 1, we have \bfitxi (n) = n. By using the fact that

Dkxl = \delta kl  - nk nl, we can obtain
\sum 3

k,l=1

\bigl\langle 
nk\nabla S

xk, nl\nabla S
\omega l

\bigr\rangle 
S

= 0. Therefore,
(2.19b) will reduce to the variational formulation of the curvature term related to the
Laplace--Beltrami operator [3, 9]

(2.21)
\bigl\langle 
\mu , n \cdot \bfitomega 

\bigr\rangle 
S
 - 

3\sum 
k=1

\bigl\langle 
\nabla 

S
xk, \nabla 

S
\omega k

\bigr\rangle 
S
= 0 \forall \bfitomega \in (H1

0 (S))
3.

In general, it is not easy to obtain the energy stability based on the discretization of
the variational formulation defined in (2.19a)--(2.19b). Specifically, in the isotropic
case, the stability bound for the discretization of (2.21) has been established for
the evolution of a closed surface [3, 9]. Based on our numerical experiments, the
variational formulation defined in (2.19a)--(2.19b) and its PFEM perform very well in
terms of stability, efficiency, and accuracy in practical computations.

3. The parametric finite element approximation. In this section, based
on the variational formulation (2.19a)--(2.19b), we discretize the problem via a semi-
implicit PFEM and prove the well-posedness of the discrete scheme.

To present the PFEM for the variational problem, we first take the discrete time
as 0 = t0 < t1 < t2 < \cdot \cdot \cdot < tM and denote time steps as \tau m = tm+1  - tm for
0 \leq m \leq M - 1. In the spatial level, we assume that the evolution surfaces \{ S(tm)\} Mm=0

are discretized by polygonal surfaces \{ Sm\} Mm=0 such that

(3.1) Sm =

N\bigcup 
j=1

\=Dm
j , where \{ Dm

j \} Nj=1 are mutually disjoint triangles.

Here, we assume that the discrete surface Sm has K different vertices (labeled as

\{ qm
k \} Kk=1), and the boundary of Sm is a closed polygonal curve \Gamma m =

\bigcup Nc

j=1
\=hm
j , where

\{ hm
j \} Nc

j=1 are a sequence of connected line segments that is positively oriented; i.e., if
you walk along the direction of the oriented boundary, the surface is at your left side.
Moreover, we have the following assumption about the polygonal surface at each time
step:

(3.2) | Dm
j | > 0, 1 \leq j \leq N, 0 \leq m \leq M,

which ensures that vertices of polygonal surface will not merge during the evolution.
We can define the following finite dimensional spaces over \Gamma m and Sm:

V h(\Gamma m) :=
\Bigl\{ 
\varphi \in C(\Gamma m, \BbbR ) : \varphi 

\bigm| \bigm| \bigm| 
hm
j

\in \bfitP 1 \forall 1 \leq j \leq Nc

\Bigr\} 
\subset H1(\Gamma m),(3.3a)

V h(Sm) :=
\Bigl\{ 
\varphi \in C(Sm, \BbbR ) : \varphi 

\bigm| \bigm| \bigm| 
Dm

j

\in \bfitP 1 \forall 1 \leq j \leq N
\Bigr\} 
\subset H1(Sm),(3.3b)
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where \bfitP 1 denotes all polynomials with degree at most 1, which yields piecewise linear
functions on each element. If \alpha \in V h(\Gamma m), we can define a subset of the space V h(Sm)
on Sm with boundary value given by a function \alpha as

(3.4) \scrV h
\alpha (S

m) :=
\Bigl\{ 
\varphi \in V h(Sm) : \varphi 

\bigm| \bigm| \bigm| 
\Gamma m

= \alpha 
\Bigr\} 
.

Again, for simplicity of notation, we denote \scrV h
0 as the space V h(Sm) with zero values

on the boundary \Gamma m.
Now, we can define the following mass-lumped inner product to approximate the

integration on Sm:

\bigl\langle 
f1, f2

\bigr\rangle h
m

=
1

3

N\sum 
j=1

| Dm
j | 

3\sum 
k=1

f1

\Bigl( 
(qm

j
k
) - 

\Bigr) 
\cdot f2

\Bigl( 
(qm

j
k
) - 

\Bigr) 
,(3.5)

where | Dm
j | is the area of the triangleDm

j , and f1, f2 are two scalar or vector functions
defined on Sm with possible jumps across each edge of the triangle in 3D. We define
the one-sided limit f1((q

m
j
k
) - ) as the limit of f1(x) when x approaches qm

j
k
from the

triangle surface Dm
j , i.e., f1((q

m
j
k
) - ) = limDm

j \ni \bfx \rightarrow \bfq m
j
k

f1(x).

We assume that \{ qm
j1
, qm

j2
, qm

j3
\} are the three vertices of the triangle surface Dm

j

and are ordered in the anticlockwise direction when viewing from top to bottom. It
should be noted that the normal vector nm = (nm

1 , nm
2 , nm

3 )T of the surface Sm is
a step function with discontinuities across the edges of each triangle surface. Let nm

j

be the unit normal vector on Dm
j ; we can numerically evaluate it as

(3.6) nm
j := nm

\bigm| \bigm| \bigm| 
Dm

j

=
(qm

j2
 - qm

j1
)\times (qm

j3
 - qm

j1
)

| (qm
j2
 - qm

j1
)\times (qm

j3
 - qm

j1
)| 

\forall 1 \leq j \leq N.

For the discrete boundary curve \Gamma m, it is a closed plane curve and consists of a
sequence of connected line segments on the substrate (Oxy-plane). We assume that
\{ pm

j1
, pm

j2
\} are the two vertices of a line segment hm

j which are ordered according to
the orientation of the curve. Let nm

\Gamma 
denote the unit normal vector of the boundary

curve \Gamma m along the substrate; then nm
\Gamma 

is also a step function with discontinuities
across the vertices of each line segment. Let nm

\Gamma ,j
represent the unit normal vector of

\Gamma m on the line segment hm
j ; then

(3.7) nm
\Gamma ,j

= nm
\Gamma 

\bigm| \bigm| \bigm| 
hm
j

=
(pm

j2
 - pm

j1
)\times e3

| (pm
j2
 - pm

j1
)\times e3| 

\forall 1 \leq j \leq Nc,

where the unit vector e3 = (0, 0, 1)T . Similarly, cm
\Gamma 

is the unit conormal vector
defined on the polygonal curve \Gamma m along the substrate, and it is also a step function
which can be numerically evaluated as

(3.8) cm
\Gamma ,j

= cm
\Gamma 

\bigm| \bigm| \bigm| 
hm
j

=
(pm

j2
 - pm

j1
)\times nm

kj

| (pm
j2
 - pm

j1
)\times nm

kj
| 

\forall 1 \leq j \leq Nc,

where nm
kj

is the unit outer normal vector of the triangle surface Dm
kj

which contains

the line segment hm
j (as shown in Figure 3.1(b)).

Let Sm := Xm(U) and \Gamma m := Xm
\Gamma 
(\partial U) = (xm

\Gamma 
, ym

\Gamma 
, 0)T be the numerical

approximations of the moving surface S(tm) := X(U, tm) and its boundary line
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Fig. 3.1. A schematic illustration of surface triangle mesh when viewing from top to bottom:
(a) A triangle mesh with no edges on the boundary; (b) a triangle mesh with an edge (shown in
blue) on the boundary. (Color available online.)

\Gamma (tm) := X
\Gamma 
(\partial U, tm), respectively. Take S0 = X0(U) with \alpha 0, \beta 0 \in V h(\Gamma 0) as the

numerical approximations of x\Gamma (\cdot , 0), y\Gamma (\cdot , 0), respectively.
Then, a semi-implicit PFEM for the variational problem (2.19a)--(2.19b) can be

stated as: given S0 =
\bigcup N

j=1
\=D0
j which is an initial polygonal surface and its boundary

curve \Gamma 0 =
\bigcup Nc

j=1
\=h0
j , for m \geq 0, find a sequence of polygonal surfaces Sm+1 :=

Xm+1(U) \in \scrV h
\alpha (S

m) \times \scrV h
\beta (S

m) \times \scrV h
0 (S

m) and chemical potentials \mu m+1 \in V h(Sm)
such that

\Bigl\langle Xm+1  - Xm

\tau m
, \varphi hn

m
\Bigr\rangle h

m
+
\bigl\langle 
\nabla 

S
\mu m+1, \nabla 

S
\varphi h

\bigr\rangle h
m

= 0 \forall \varphi h \in V h(Sm),

(3.9a)

\bigl\langle 
\mu m+1, nm \cdot \bfitomega h

\bigr\rangle h
m
 - 

3\sum 
l=1

\bigl\langle 
\gamma m\nabla 

S
xm+1
l ,\nabla 

S
\omega h,l

\bigr\rangle h
m

= \scrG m(\bfitomega h) \forall \bfitomega h \in [\scrV h
0 (S

m)]3,

(3.9b)

where \gamma m and \scrG m are explicitly calculated as

(3.10) \gamma m = \gamma (nm), \scrG m(\bfitomega h) =  - 
3\sum 

k,l=1

\bigl\langle 
\xi mk \nabla 

S
xm
k , nm

l \nabla 
S
\omega h,l

\bigr\rangle h
m
,

with \bfitxi m = \bfitxi (nm) = (\xi m1 , \xi m2 , \xi m3 )T , \bfitomega \bfith = (\omega h,1, \omega h,2, \omega h,3)
T , and \alpha , \beta are the x-,

y-coordinates of the contact line \Gamma m+1, i.e., \alpha := xm+1
\Gamma 

, \beta := ym+1
\Gamma 

.
We note here that the boundary curve \Gamma m+1 is first updated from \Gamma m by explicitly

solving the relaxed contact angle condition defined in (2.7), and then by using \Gamma m+1

as the Dirichlet boundary condition, we solve the above PFEM to obtain the new
polygonal surface Sm+1. More precisely, the algorithm for updating \Gamma m+1 can be
described as follows (shown in Figure 3.2):

\bullet Calculate nm
kj
, nm

\Gamma ,j
, and cm

\Gamma ,j
via (3.6), (3.7), and (3.8), and then, by using

forward Euler scheme to approximate the relaxed contact angle condition, we
can obtain \lambda m

j and Vm
j for each line segment hm

j as

\lambda m
j :=  - \tau m \eta (c\gamma ,m

\Gamma ,j
\cdot nm

\Gamma ,j
 - \sigma ), Vm

j := \lambda m
j nm

\Gamma ,j , 1 \leq j \leq Nc,

where c\gamma ,m
\Gamma ,j

:= (\bfitxi (nm
kj
) \cdot nm

kj
) cm

\Gamma ,j
 - (\bfitxi (nm

kj
) \cdot cm

\Gamma ,j
) nm

kj
.
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\bullet If nm
\Gamma ,j - 1

\| nm
\Gamma ,j , we update the segmentation point pm

j1
by moving along the

displacement vector 1
2 (V

m
j - 1 +Vm

j ).
\bullet If nm

\Gamma ,j - 1
\nparallel nm

\Gamma ,j , we first move each line segment hm
j along its normal direction

by an increment vector Vm
j = \lambda m

j nm
\Gamma ,j , then calculate the intersection point

of the updated adjacent edges, and take it as the new segmentation point.
In summary, the new segmentation point pm+1

j1
can be updated as the following

formula:

(3.11) pm+1
j1

=

\left\{       
pm
j1
+ 1

2 (V
m
j - 1 +Vm

j ) if nm
\Gamma ,j - 1

\| nm
\Gamma ,j ,

pm
j1
+

\lambda m
j - 1 - \lambda m

j Rm
j

1 - | Rm
j | 2 nm

\Gamma ,j - 1
+

\lambda m
j  - \lambda m

j - 1 Rm
j

1 - | Rm
j | 2 nm

\Gamma ,j if nm
\Gamma ,j - 1

\nparallel nm
\Gamma ,j ,

where Rm
j = nm

\Gamma ,j - 1
\cdot nm

\Gamma ,j . By making use of

(3.12)
\Bigl( 
pm+1
j1

 - pm
j1

\Bigr) 
\cdot nm

\Gamma ,j - 1
= \lambda m

j - 1,
\Bigl( 
pm+1
j1

 - pm
j1

\Bigr) 
\cdot nm

\Gamma ,j = \lambda m
j ,

it is easy to obtain the above formula.

Γ
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Γ
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p
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p
m
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V
m
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V
m
j

Fig. 3.2. The boundary curve is determined by a polygonal line, which can be updated in the
following two steps: (1) Shift each line segment hm

j of the curve \Gamma m along its normal direction

by a displacement vector Vm
j = \lambda m

j nm
\Gamma ,j

via the relaxed contact angle condition; (2) calculate

the intersection point of the updated adjacent edges, and take it as the segmentation point of the
polygonal line \Gamma m+1. In particular, if nm

\Gamma ,j - 1
�nm

\Gamma ,j
, we move the point pm

j1
by a displacement vector

1
2
(Vm

j - 1 +Vm
j ).

We remark that the above discrete problem results in a linear algebra system
which can be efficiently solved via the sparse LU decomposition or GMRES method.
Moreover, we have the following theorem for the well-posedness of the proposed dis-
crete scheme.

Theorem 3.1 (well-posedness of the PFEM). The above discrete variational
problem (3.9a)--(3.9b) admits a unique solution (i.e., it is well-posed).

Proof. To prove the well-posedness of the PFEM scheme, we need to prove that
the linear system obtained from (3.9a)--(3.9b) has a unique solution. By noting that
the moving contact line \Gamma m+1 is first updated via the relaxed angle boundary condition
in the above PFEM, we can regard it as a Dirichlet-type boundary condition for the
variational problem (3.9a)--(3.9b). It is equivalent to proving that the corresponding
homogeneous linear system has only the zero solution.
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Therefore, the well-posedness of the discrete problem (3.9a)--(3.9b) is equiva-
lent to that of the following homogeneous linear system: find \{ Xm+1, \mu m+1\} \in 
\{ [\scrV h

0 (S
m)]3, V h(Sm)\} such that\bigl\langle 

Xm+1 \cdot nm, \varphi h

\bigr\rangle h
m
+ \tau m

\bigl\langle 
\nabla 

S
\mu m+1, \nabla 

S
\varphi h

\bigr\rangle h
m

= 0 \forall \varphi h \in V h(Sm),(3.13a) \bigl\langle 
\mu m+1, nm \cdot \bfitomega h

\bigr\rangle h
m
 - 
\bigl\langle 
\gamma (nm)\nabla 

S
Xm+1, \nabla 

S
\bfitomega h

\bigr\rangle h
m

= 0 \forall \bfitomega h \in (\scrV h
0 (S

m))3.(3.13b)

By choosing the test functions as \varphi h = \mu m+1,\bfitomega h = Xm+1, we can immediately obtain

(3.14) \tau m
\bigl\langle 
\nabla 

S
\mu m+1,\nabla 

S
\mu m+1

\bigr\rangle h
m
+
\bigl\langle 
\gamma (nm)\nabla 

S
Xm+1,\nabla 

S
Xm+1

\bigr\rangle h
m

= 0.

By noting that \gamma (nm) > 0 for all nm \in S2, we obtain directly Xm+1 = 0 by us-
ing the zero boundary condition, and, moreover, we have \mu \equiv \mu c (i.e., a constant).
Furthermore, by substituting Xm+1 = 0 into (3.13b), we have

(3.15) \mu c
\bigl\langle 
nm, \bfitomega h

\bigr\rangle h
m
= 0.

By choosing \bfitomega h = gm
j \phi m

j with the weighted normal vector gm
j defined as

(3.16) gm
j :=

\sum 
Dm

k \in \scrT m
j

| Dm
k | nm

k\sum 
Dm

k \in \scrT m
j

| Dm
k | 

, with \scrT m
j := \{ Dm

k : qm
j \in \=Dm

k \} ,

and \phi m
j \in V h(Sm) being the nodal basic function at point qm

j , it immediately yields
\mu c = 0 by noting the assumption (3.2) and (3.5).

Therefore, the corresponding homogeneous linear system only has the zero solu-
tion, which indicates the existence and uniqueness of solution for our PFEM.

The above-proposed PFEM via the \bfitxi -vector formulation is an extension to the
3D case based on our previous works in 2D [29]. The idea behind the variational
formulation is using the decomposition of the Cahn--Hoffman \bfitxi -vector into the nor-
mal and tangential components [29]. In the discrete scheme, the normal component
is discretized implicitly, while the tangential components are explicitly discretized.
During the practical computation, we need to redistribute mesh points uniformly in
2D according to the arc-length for the polygonal boundary line in each time step;
similarly, we also use the mesh redistribution algorithm discussed in [3] to prevent the
mesh distortion for the triangular surface mesh.

Furthermore, in the PFEM, since Sm+1 := Xm+1(Sm) is assumed to be parame-
terized over Sm, the operator\nabla 

S
can then be very easily numerically calculated. More

precisely, consider the triangular surface Dm
j with vertices \{ qm

j1
, qm

j2
, qm

j3
\} ordered in

the anticlockwise direction; we then have

(3.17) \nabla 
S
Bj1(S

m)
\bigm| \bigm| \bigm| 
Dm

j

=
(qm

j3
 - qm

j2
)\times nm

j

2| Dm
j | 

,

where Bj1 \in V h(Sm) is the nodal basis function defined at point qm
j1
. Similarly, we

can easily obtain \nabla 
S
Bj2 and \nabla 

S
Bj3 . Therefore, for any piecewise linear function

\phi \in V h(Sm), we can have

(3.18) \nabla 
S
\phi 
\bigm| \bigm| \bigm| 
Dm

j

=

3\sum 
i=1

\phi (qm
ji )\nabla S

Bji .
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4. Numerical results. In this section, we implement the proposed PFEM, show
some equilibrium convergence results, and perform many numerical simulations to
demonstrate the efficiency and accuracy of the proposed scheme. In the following
simulations, we use the uniform time step, i.e., \tau = \tau m, m = 0, 1, 2, . . . .

4.1. Equilibrium convergence. The mathematical description of the equilib-
rium shape has been investigated in [30]. Here, we present some numerical equilib-
rium convergence results by solving the kinetic sharp-interface model via the proposed
PFEM scheme.

From the relaxed contact angle boundary condition (2.7), we know that the con-
tact line mobility \eta precisely controls the relaxation rate of the contact angle towards
its equilibrium state. The large \eta will accelerate the relaxation process [49, 27, 26].
Here, we numerically investigate the effect of \eta on the evolution of the dynamic con-
tact angles. We numerically define the following average contact angle \=\theta m as the
indicator:

(4.1) \=\theta m =
1

Nc

Nc\sum 
j=1

arccos(cm
\Gamma ,j

\cdot nm
\Gamma ,j

),

where nm
\Gamma ,j

and cm
\Gamma ,j

are the unit normal and conormal vectors defined on the jth line
segment hm

j of the boundary curve \Gamma m.
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Fig. 4.1. (a) The temporal evolution of the average contact angle \=\theta m defined in (4.1); (b)
the temporal evolution of the normalized energy W (t)/W (0) for different choices of mobility, where
the initial shape of the island film with isotropic surface energy is chosen as a unit cube, and the
computational parameters are chosen as \sigma = cos(3\pi /4).

Figure 4.1 shows the temporal evolution of \=\theta m and the normalized energy
W (t)/W (0) under different choices of the contact line mobility \eta . The initial shape of
the island film is chosen as a unit cube, and \sigma = cos(3\pi /4). From the figure, we can
observe that the larger mobility \eta will accelerate the process of relaxation such that
the contact angles evolve faster towards its equilibrium contact angle 3\pi /4. As shown
in Figure 4.1, the energy decays faster for larger mobility but finally converges to the
same equilibrium state. It indicates that the equilibrium contact angle, as well as the
equilibrium shape, is independent of the choice of the contact line mobility \eta . Mean-
while, the total volume loss (not shown here) of the island film is always below 0.5\%
during the numerical simulations. In the following numerical simulations, the contact
line mobility is chosen to be very large (e.g., \eta = 100). This choice of \eta will result
in a very quick convergence to the equilibrium contact angle (defined in (2.10)). The
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detailed investigation of the influence of the parameter \eta on the solid-state dewetting
evolution process and equilibrium shapes was performed in 2D [49].
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Fig. 4.2. Comparisons of the cross-section profiles along the x-direction of the numerical
equilibrium shapes under different meshes with its theoretical equilibrium shape, where the initial
shape is chosen as a (1, 2, 1) cuboid, the surface energy \gamma (n) = 1 + 0.25(n4

1 + n4
2 + n4

3), and \sigma =
cos(15\pi /36). The theoretical equilibrium shape (black line) is constructed by the Winterbottom
construction [50, 4].

We next show a convergence result between the numerical equilibrium shapes by
solving the proposed sharp-interface model and its theoretical equilibrium shape. Fig-
ure 4.2 depicts equilibrium shapes under different mesh sizes, where \sigma = cos(15\pi /36),
\gamma (n) = 1+0.25(n4

1+n4
2+n4

3). The initial shape is chosen as a (1, 2, 1) cuboid; then we
numerically evolve it until the equilibrium state by using different meshes, which are
given by a set of small isosceles right triangles. If we define the mesh size indicator h as
the length of the hypotenuse of the isosceles right triangle, then ``Mesh 1"" represents
the initial mesh with h = h0 = 0.125, and the time step is chosen as \tau = \tau 0 = 0.00125
for numerical computation. Meanwhile, the time steps for ``Mesh 2"" (h = h0/2) and
``Mesh 3"" (h = h0/4) are chosen as \tau = \tau 0/4 and \tau = \tau 0/16, respectively. For a better
comparison, we plot the cross-section profiles along the x-direction for the numerical
equilibrium shapes and the theoretical equilibrium shape. As shown in Figure 4.2,
we can clearly observe that as the computational mesh size gradually decreases, the
numerical equilibrium shapes uniformly converge to the theoretical equilibrium shape.

4.2. For the isotropic case. We first focus on the isotropic surface energy
case, i.e., \gamma (n) \equiv 1. We start with a numerical example by initially choosing a
small cuboid island with (1, 4, 1) representing its width, length, and height, and the
material constant is chosen as \sigma = cos(3\pi /4). The cuboid is initially almost uniformly
discretized into 3584 small isosceles right triangles with a total of 1833 vertices and 80
vertices on the boundary curve. The time step is chosen uniformly as \tau = 2 \times 10 - 4.
As is shown in Figure 4.3, it depicts several snapshots of the triangular surface mesh
of the island towards its equilibrium shape. We can clearly observe that the sharp
corner of the island gradually disappears and becomes smoother and smoother, and
finally, the island evolves into a perfect spherical shape which is truncated by the flat
substrate.

In general, a short island film tends to form a single spherical shape in order to
arrive at its lowest energy state, while a long island film will pinch off and agglomerate
into pieces of small isolated islands before it reaches a single spherical shape. This



B340 QUAN ZHAO, WEI JIANG, AND WEIZHU BAO

Fig. 4.3. Several snapshots in the evolution of an initial (1, 4, 1) cuboid island towards its
equilibrium shape: (a) t = 0; (b) t = 0.10; (c) t = 0.20; (d) t = 1.94, where the material constant is
chosen as \sigma = cos(3\pi /4).

Fig. 4.4. Several snapshots in the evolution of an initial (1, 12, 1) cuboid island until its pinch-
off: (a) t = 0; (b) t = 0.01; (c) t = 0.75; (d) t = 1.07, where the material constant is chosen
as \sigma = cos(3\pi /4). The initial surface mesh consists of 9728 triangles and 4969 vertices with 208
vertices on the boundary, and the time step is uniformly chosen as \tau = 10 - 4.

pinch-off phenomenon has often been identified as the Rayleigh-like instability [32, 44]
governed by surface diffusion. To study this particular phenomenon for solid-state
dewetting problems, we perform many numerical simulations with different initial
islands given by different lengths of (1, L, 1) cuboids. As shown in Figures 4.4 and
4.5, for an initial (1, 12, 1) cuboid island with material constant \sigma = cos(3\pi /4), we
can observe that the island evolves and breaks up into two small isolated islands,
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Fig. 4.5. Several snapshots in the evolution of an initial (1, 16, 1) cuboid island until its pinch-
off: (a) t = 0; (b) t = 0.20; (c) t = 0.90; (d) t = 1.14, where the material constant is chosen as
\sigma = cos(3\pi /4). The initial surface mesh consists of 12800 triangles and 6537 vertices with 272
vertices on the boundary, and the time step is uniformly chosen as \tau = 10 - 4.

Fig. 4.6. Several snapshots in the evolution of an initial (1, 16, 1) cuboid island until its pinch-
off: (a) t = 0; (b) t = 0.50; (c) t = 2.00; (d) t = 3.40, where \sigma = cos(\pi /2). The initial surface mesh
consists of 12800 triangles and 6537 vertices with 272 vertices on the boundary, and the time step
is uniformly chosen as \tau = 10 - 4.

and an initial (1, 16, 1) cuboid island could break up into three pieces. Furthermore,
by changing \sigma = cos(\pi /2), we observe that an initial (1, 16, 1) cuboid island only
breaks up into two small isolated islands (cf. Figure 4.6). This indicates that when \sigma 
increases, a cuboid island will become more difficult to pinch off.

From the above numerical simulations, we observe that there exist two critical
lengths L1, L2 such that when L1 < L < L2, an initial (1, L, 1) cuboid island will
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Fig. 4.7. (a) The number of islands formed from an initial (1, L, 1) cuboid island with
material constant \sigma , where the 1-2 islands' and 2-3 islands' boundaries (solid lines) are lin-
ear curve fittings to our numerical simulations given by L = 3.98 + 4.64/sin(arccos\sigma /2) and
L = 6.84 + 6.73/sin(arccos\sigma /2). (b) The first pinch-off time tp for an initial (1, L, 1) cuboid is-
land under three different material constants \sigma .

break up into two small isolated particles; and when L > L2, the cuboid island will
break up into three or more particles. Furthermore, we also observe that these two
critical lengths are highly dependent on the material constant \sigma . By performing
ample numerical simulations, as shown in Figure 4.7(a), we plot the phase diagram
for the numbers of islands formed from an initial (1, L, 1) cuboid island under different
material constants \sigma . From the figure, we can observe that the critical lengths L1 and
L2 both exhibit the reciprocal linear relationship with the variable sin(arccos\sigma /2).
We note that several similar relationships have also been observed and reported for
the solid-state dewetting in 2D [49, 17]. Moreover, we plot the first pinch-off time
tp for an initial (1, L, 1) cuboid island under three different material constants, i.e.,
\sigma = cos(\pi /3), cos(\pi /2), cos(2\pi /3). As shown in Figure 4.7(b), we can observe that
when L increases, the first pinch-off time tp first increases quickly to a maximum value
and then decreases slowly to a constant. This is certainly reasonable because for an
infinitely long (1, L, 1) cuboid island, its first pinch-off time should be a constant
which is only dependent on \sigma .

Motivated by recent experiments by Thompson's group [48, 57], we next numer-
ically investigate morphology evolutions for island films initially with some special
geometries, such as the cross shape and square-ring shape. In the following simula-
tions, the height of the initial island film is always chosen to be 1, and the material
constant is fixed at \sigma = cos(3\pi /4) unless otherwise stated.

To compare the evolution process with the recent experiments [48, 57], we first
choose the initial geometry of the island film as a unit cube plus four equal limbs which
are given by four (1, L, 1) cuboids (shown in Figure 4.8(a)). We test two numerical
examples with length parameters L = 4 and L = 6. As can been seen in Figure 4.8,
when the limbs are chosen to be shorter (i.e., L = 4), we observe that the four limbs
of the islands shrink, and then the cross-shaped island eventually evolves into a single
island with spherical geometry as its equilibrium shape. However, when the four limbs
are chosen to be longer (i.e., L = 6), the kinetic evolution of the island could be quite
different. As depicted in Figure 4.9, instead of eventually forming a single spherical
island, the cross-shaped island undergoes the pinch-off somewhere and finally breaks
up into five small isolated solid particles.
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Fig. 4.8. Several snapshots in the evolution of an initially cross-shaped island towards its
equilibrium, where the initial island consists of four (1,4,1) cuboids forming the limbs and one
(1,1,1) cube sitting in the center: (a) t = 0; (b) t = 0.15; (c) t = 0.50; (d) t = 1.40. The initial
surface mesh consists of 13568 triangles and 6929 vertices with 289 vertices on the boundary, and
the time step is uniformly chosen as \tau = 10 - 4.

Fig. 4.9. Several snapshots in the evolution of an initially cross-shaped island before its pinch-
off, where the initial island consists of four (1,6,1) cuboids forming the limbs and one (1,1,1) cube
sitting in the center: (a) t = 0; (b) t = 0.05; (c) t = 0.15; (d) t = 0.386. The initial surface mesh
consists of 19712 triangles and 10065 vertices with 416 vertices on the boundary, and the time step
is uniformly chosen as \tau = 10 - 4.

We next consider the evolution of an island film which is initially chosen as a
square-ring shape. First, we choose an initial ``fat"" square-ring island, which is given
by a (5, 5, 1) cuboid by cutting out a (3, 3, 1) cuboid from the center (shown in Fig-
ure 4.10). Its geometry evolution together with the cross-section profile of the island
are shown in Figure 4.10 and Figure 4.11, respectively. From these figures, we clearly
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Fig. 4.10. Several snapshots in the evolution of an initial island of square-ring obtained from a
(5, 5, 1) cuboid by cutting out a (3, 3, 1) cuboid from the center: (a) t = 0; (b) t = 0.15; (c) t = 1.00;
(d) t = 1.50. The initial surface mesh consists of 12288 triangles and 6272 vertices with 96 and 160
vertices for the inner and outer contact lines, respectively, and the time step is uniformly chosen as
\tau = 5\times 10 - 4.
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Fig. 4.11. The corresponding cross-section profiles of the island geometry in the evolution
shown in Figure 4.10: (a) t = 0; (b) t = 0.15; (c) t = 1.00; (d) t = 1.50.

observe that the square-ring island quickly evolves into a ring-like shape with different
thickness along different cross-section directions (see Figure 4.11(b)). Subsequently,
as time evolves, this ring-like shape evolves into a toroidal shape (i.e., its thickness
is the same along each cross-section direction) (see Figure 4.11(c)); then the toroidal
island shrinks towards the center in order to reduce the total free energy.

Furthermore, if we choose an initial ``thin"" square-ring island (i.e., enlarge the
length of outer edge of the island, while fixing the inner width of the square-ring island
as 1), the pinch-off events will occur as expected due to Rayleigh-like instability, as
shown in Figures 4.12 and 4.13. Figure 4.12 depicts the morphology evolution and
contact line migration (including inner and outer contact lines) when the length of
the outer edge is chosen as 7. From this figure, we clearly see that the inner width
of the island very quickly becomes wavy along its different azimuthal directions; and
as time evolves, the place where its inner width is thick becomes thicker and thicker,
while the place where it is thin becomes thinner and thinner. Finally, when the width
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Fig. 4.12. Several snapshots in the evolution of an initial square-ring island obtained from a
(7, 7, 1) cuboid by cutting out a (5, 5, 1) cuboid from the center: (a) t = 0; (b) t = 0.15; (c) t = 0.40;
(d) t = 0.61.

of the thin place approaches zero, the pinch-off events will happen such that it breaks
up into four small particles. On the other hand, if we continue to enlarge the length
of outer edge (e.g., choose it as 12), as shown in Figure 4.13, we can observe that the
square-ring island will finally split into eight small particles.

From the above numerical simulations, we can observe that the Rayleigh-like in-
stability in the azimuthal direction and the shrinking instability in the radial direction
are competing with each other to determine the solid-state dewetting evolution of a
square-ring island. This is a competition between the two time scales: one for toroid
shrinkage towards its center and the other for neck pinch-off along the azimuthal di-
rection. When the square-ring island is very thin (shown in Figures 4.12 and 4.13), the
Rayleigh-like instability dominates its kinetic evolution and makes the island break
up into small isolated particles; when it is very fat (shown in Figure 4.10), the shrink-
ing instability dominates the evolution and makes it shrink towards the center. The
shrinking instability for a toroidal island on a substrate has been studied in [31, 58]
under the assumption of axis-symmetric geometry. But it is still an open problem
about quantitatively studying the competition effect by a simultaneous consideration
of the shrinking instability and Rayleigh-like instability. Our proposed approach could
be a good avenue for exploring this problem.

4.3. For the weakly anisotropic case. In this subsection, we perform some
numerical simulations to investigate solid-state dewetting of thin films with anisotropic
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Fig. 4.13. Several snapshots in the evolution of an initial square-ring island obtained from a
(12, 12, 1) cuboid by cutting out a (10, 10, 1) cuboid from the center: (a) t = 0; (b) t = 0.15; (c)
t = 0.70; (d) t = 1.00.

Fig. 4.14. Several snapshots in the evolution of an initially (1, 2, 1) cuboid island towards its
equilibrium under the cubic anisotropy with a = 0.3: (a) t = 0; (b) t = 0.02; (c) t = 0.10; (d)
t = 0.21, where \sigma = cos(5\pi /6), and the initial surface mesh consists of 2048 triangles and 1049
vertices with 48 vertices on the boundary, and the time step is uniformly chosen as \tau = 10 - 4.
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surface energies. We first focus on the following cubic anisotropy:

(4.2) \gamma (n) = 1 + a[n4
1 + n4

2 + n4
3],  - 2

9
< a <

1

3
,

where a represents the degree of the anisotropy.
We start the numerical experiment for an initial (1, 2, 1) cuboid island. The

surface energy is chosen as the cubic anisotropy with a = 0.3, and the material
constant is chosen as \sigma = cos(5\pi /6). Several snapshots of the morphology evolution
of the island film are shown in Figure 4.14. From the figure, we can observe that the
island film evolves towards a nonspherical shape with ``sharp"" corners.

Fig. 4.15. The equilibrium geometry of islands under the cubic anisotropy with different mate-
rial constants \sigma . From (a)--(c), the material constant is fixed as \sigma = cos(5\pi /6), and the degrees of
anisotropy are chosen as a = 0.1, 0.2, 0.3; from (d)--(f), the degree of anisotropy is fixed at a = 0.3,
and the material constants are chosen as \sigma = cos(\pi /3), cos(\pi /2), cos(2\pi /3).

By performing numerical simulations, we next examine the equilibrium geometry
under different degrees of cubic anisotropy and different material constants. As clearly
shown in Figure 4.15(a)--(c), when the degree of the anisotropy is increased from
0.1 to 0.3 with a material constant \sigma = cos(5\pi /6), the equilibrium shape exhibits
increasingly sharper and sharper corners. Furthermore, from Figure 4.15(d)-(f), when
we change the value of the material constant, we also clearly observe the corresponding
change in its equilibrium shape.

Under the cubic surface energy, as expected, the long island film will also exhibit
Rayleigh-like instability and could pinch off into small pieces of islands. We consider
the evolution of an initial (1, 12, 1) cuboid island, and the degree of the cubic surface
energy is chosen as a = 0.25, and the material constant is chosen as \sigma = cos(2\pi /3).
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As can be seen in Figure 4.16, the long cuboid island pinches off, and finally dewets
to three pieces of small islands.

Fig. 4.16. Several snapshots in the evolution of an initially (1, 12, 1) cuboid island until its
pinch-off under the cubic anisotropy with a = 0.25: (a) t = 0; (b) t = 0.30; (c) t = 0.60; (d)
t = 0.90; (e) t = 1.40; (f) t = 1.58. The material constant is chosen as \sigma = cos(2\pi /3).

In addition to the cubic anisotropy, we also perform numerical simulations for the
ellipsoidal anisotropy, which is defined as

(4.3) \gamma (n) =
\sqrt{} 
a21n

2
1 + a22n

2
2 + a23n

2
3,

where a1, a2, a3 are the ratios in each direction component. The corresponding equi-
librium shape for this type of anisotropy is self-similar to an ellipsoid with semimajor
axes a1, a2, a3 (see [30]), i.e.,

(4.4)
x2

a21
+

y2

a22
+

z2

a23
= 1.

Figure 4.17 depicts the morphology evolution of an initial cuboid island towards its
equilibrium shape. The surface energy anisotropy is chosen as \gamma (n) =

\sqrt{} 
2n2

1 + n2
2 + n2

3.
From the figure, we can see that the island film eventually reaches its equilibrium with
an ellipsoidal shape. This is consistent with the theoretical prediction since the corre-
sponding equilibrium shape for the anisotropy \gamma (n) =

\sqrt{} 
2n2

1 + n2
2 + n2

3 is self-similar

to an ellipsoid x2

2 + y2 + z2 = 1.
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Fig. 4.17. Several snapshots in the evolution of an initially (1, 2, 1) cuboid island towards its
equilibrium under the ellipsoidal anisotropy with a1 =

\surd 
2, a2 = 1, a3 = 1: (a) t = 0; (b) t = 0.01;

(c) t = 0.05; (d) t = 0.20, where the material constant is chosen as \sigma = cos(3\pi /4), and the initial
surface mesh consists of 2048 triangles and 1049 vertices with 48 vertices on the boundary, and the
time step is uniformly chosen as \tau = 10 - 4.

5. Conclusions. Based on a novel variational formulation in terms of \bfitxi -vector
formulation, we developed a parametric finite element method (PFEM) for solving
solid-state dewetting problems in three dimensions (3D). In each time step, the con-
tact line \Gamma m+1 is first updated according to the relaxed contact angle condition; then,
by prescribing the boundary curve \Gamma m+1 as the explicit boundary condition, the vari-
ational formulation is discretized by a semi-implicit PFEM in order to obtain the new
surface Sm+1. The resulting system is a system of linear and sparse algebra equa-
tions which can be efficiently solved by many existing fast algorithms. We performed
ample numerical examples for investigating solid-state dewetting of thin films with
isotropic/weakly anisotropic surface energies. We observed that small islands tend
to form spherical shapes as the equilibrium in the isotropic case, while long islands
could break up into pieces of small isolated islands, and islands with some special
geometries exhibit interesting phenomena and complexities. Numerical results have
demonstrated high efficiency and accuracy of the proposed PFEM scheme for solving
solid-state dewetting problems with isotropic/weakly anisotropic surface energies in
3D.
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