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Abstract. In this paper, we systematically review mathematical models, theories and
numerical methods for ground states and dynamics of spinor Bose-Einstein conden-
sates (BECs) based on the coupled Gross-Pitaevskii equations (GPEs). We start with a
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ground states under different parameter regimes, (ii) ground state structures under
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1 Introduction

The remarkable experimental achievement of Bose-Einstein condensation (BEC) of dilute
alkali gases in 1995 [4,44,63] reached a milestone in atomic, molecular and optical (AMO)
physics and quantum optics, and it provided a unique opportunity to observe the mys-
terious quantum world directly in laboratory. The BEC phenomenon was predicted by
Einstein in 1924 [66, 67] when he generalized the studies of Bose [43] concerning pho-
tons to atoms which assume the same statistical rule. Based on the derived Bose-Einstein
statistics, Einstein figured that, there exits a critical temperature, below which a finite
fraction of all the particles “condense” into the same quantum state.

Einstein’s prediction was for a system of noninteracting bosons and did not receive
much attention until the observation of superfluidity in liquid 4He below the λ temper-
ature (2.17K) in 1938, when London [98] suggested that despite the strong interatomic
interactions, part of the system is in the BEC state resulting in its superfluidity. Over
the years, the major difficulty to realize BEC state in laboratory is that almost all the sub-
stances become solid or liquid (strong interatomic interactions) at low temperature where
the BEC phase transition occurs. With the development of magnetic trapping and laser
cooling techniques, BEC was finally achieved in the system of weakly interacting dilute
alkali gases [4,44,63] in 1995. The key is to bring down the temperature of the gas before
its relaxation to solid state. In most BEC experiments, the system reaches quantum de-
generacy between 50 nK and 2 µK, at densities between 1011 and 1015 cm−3. The largest
condensates are of 100 million atoms for sodium, and a billion for hydrogen; the smallest
are just a few hundred atoms. Depending on the magnetic trap, the shape of the conden-
sate is either approximately round, with a diameter of 10–15 µm, or cigar-shaped with
about 15 µm in diameter and 300 µm in length. The full cooling cycle that produces a
condensate may take from a few seconds to as long as several minutes [59,86]. For better
understanding of the long history towards the BEC and its physics study, we refer to the
Nobel lectures [59, 86] and several review papers [38, 42, 60, 69, 88, 90] as well as the two
books [109, 111] in physics.

The pioneering experiments [4, 44, 63] were conducted for single species of atoms,
which can be theoretically described by a scalar order parameter (or wavefunction) satis-
fying the Gross-Pitaevskii equation (GPE) (or the nonlinear Schrödinger equation (NLSE)
with cubic nonlinearity) [60,69,90,109,111]. For the mathematical models and numerical
methods of single-component BEC based on the GPE, we refer to [3,6,11,15,64,68,77,82,
92] and references therein. A natural generalization is to explore the multi-component
BEC system, where inter-species interactions lead to more interesting phases and involve
vector order parameters. In 1996, one year after the major breakthrough, an overlapping
two component BEC was produced with |F = 2, m= 2〉 and |F = 1, m =−1〉 spin states
of 87Rb [106], by employing a double magneto-optic trap. During the process, two con-
densates were cooled together and the interaction between different components was ob-
served. Later, it was proposed that the binary BEC system can generate coherent matter
wave (also called atom laser) analogous to the coherent light emitted from a laser. In view
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of such potential applications, multi-component BEC systems have attracted numerous
research interests [12, 78, 109, 111].

In the early experiments, magnetic traps were used and the spin degrees of the atoms
were then frozen. In 1998, by using an optical dipole trap, a spinor BEC was first pro-
duced with spin-1 23Na gases [121], where the internal spin degrees of freedom were
activated. In the optical trap, particles with different hyperfine states allow different
angular momentum in space, resulting in a rich variety of spin texture. Therefore, degen-
erate quantum spinor gases maintain both magnetism and superfluidity, and are quite
promising for many fields, such as topological quantum structure, fractional quantum
Hall effect [85, 122, 127]. For a spin-F Bose condensate, there are 2F+1 hyperfine states
and the spinor condensate can be described by a 2F+1 component vector wavefunc-
tion [76, 85, 107, 109, 111, 122].

Up to now, various spinor condensates including spin-1/2 87Rb condensate (pseudo
spin-1/2) [106], spin-1 23Na condensate [121], spin-1 87Rb condensate [39] and spin-2 87Rb
condensate [53], have been achieved in experiments. For the experimental and theoretical
studies of spinor BEC, we refer to the two recent review papers in physics [85, 122] and
references therein. In this growing research direction, mathematical models and analysis
as well as numerical simulation have been playing an important role in understanding
the theoretical part of spinor BEC and predicting and guiding the experiments. The goal
of this review paper is to offer a short survey on mathematical models and theories as
well as numerical methods for spinor BEC based on the coupled Gross-Pitaevskii equa-
tions (CGPEs) [15, 72, 85, 110, 111, 122].

The paper is organized as follows: In Section 2, we present the results on the ground
states and the dynamics for pseudo spin-1/2 BEC system with/without Josephson junc-
tion based on the CGPEs, including the semi-classical limit and the Bogoliubov excitation.
Both theoretical and numerical results will be shown. As a generalization, a spin-1/2 BEC
with spin-orbit-coupling is then discussed in Section 3. Section 4 is devoted to the study
of spin-1 system, and spin-2 system is considered in Section 5. Some perspectives on
spin-3 system and spinor dipolar BEC system are discussed in Section 6.

2 Pseudo-spin-1/2 system

In this section, we consider a two-component (pseudo spin-1/2) BEC system with/with-
out Josephson junction [10, 135] and discuss its ground state and dynamics based on the
mean-field theory [16]. In the derivation of the mean-field Gross-Pitaevskii (GP) theory
[15,92,93,109,111], the many body Hamiltonian of the system with two-body interaction
is approximated by a single particle Hamiltonian (mean field approximation), leading
to the time dependent GPE in Heisenberg picture and the associated Gross-Pitaevskii
(GP) energy functional. We refer to [15, 85, 92, 93, 109, 111] and references therein for the
derivation of GPE in single component and two component BECs.
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2.1 Coupled Gross-Pitaevskii equations

At temperature T much smaller than the BEC critical temperature Tc, a pseudo spin-
1/2 BEC with Josephson junction can be well described by the following coupled Gross-
Pitaevskii equations (CGPEs) in three dimensions (3D) [9, 12, 15, 16, 83, 110, 111]:

ih̄∂tψ↑=

[
− h̄2

2m
∇2+Ṽ↑(x)+

h̄δ̃

2
+(g↑↑|ψ↑|2+g↑↓|ψ↓|2)

]
ψ↑+

h̄Ω̃

2
ψ↓, x∈R

3,

ih̄∂tψ↓=

[
− h̄2

2m
∇2+Ṽ↓(x)−

h̄δ̃

2
+(g↓↑|ψ↑|2+g↓↓|ψ↓|2)

]
ψ↓+

h̄Ω̃

2
ψ↑, x∈R

3.

(2.1)

Here, t is time, x = (x,y,z)T ∈ R3 is the Cartesian coordinate vector, Ψ(x,t) :=
(ψ↑(x,t),ψ↓(x,t))T is the complex-valued macroscopic wave function corresponding to
the spin-up and spin-down components, ∇2=∆ is the Laplace operator, Ω̃ is the effective
Rabi frequency to realize the internal atomic Josephson junction by a Raman transition,

δ̃ is the Raman transition constant, and gjl =
4πh̄2

m ajl with ajl = alj (j,l =↑,↓) the s-wave
scattering lengths between the jth and lth component (positive for repulsive interaction
and negative for attractive interaction), m is the mass of the particle and h̄ is the reduced
Planck constant. Ṽj(x) (j=↑,↓) are the external trapping potentials and may vary in dif-
ferent applications, and the most commonly used ones in experiments are the following
harmonic potentials

Ṽj(x)=
m

2

[
ω2

x(x− x̃j)
2+ω2

yy2+ω2
zz2
]

, j=↑,↓, x=(x,y,z)T ∈R
3, (2.2)

with ωx, ωy and ωz being the trapping frequencies in x-, y- and z-directions, respectively,
and x̃j (j=↑,↓) are the shifts in the x-direction of Ṽj(x) from the origin.

The wavefunction Ψ is normalized as

‖Ψ(·,t)‖2 :=
∫

R3

[
|ψ↑(x,t)|2+|ψ↓(x,t)|2

]
dx=N, (2.3)

where N is the total number of particles in the condensate.
Nondimensionalization and dimension reduction. To nondimensionalize (2.1), introduce

t̃=
t

ts
, x̃=

x

xs
, Ψ̃(x̃, t̃)=

Ψ(x,t)

x−3/2
s N1/2

, (2.4)

where ts=1/ωs and xs=
√

h̄/mωs with ωs=min{ωx,ωy,ωz} are the time and length units,

respectively. Plugging (2.4) into (2.1), multiplying by t2
s /mx1/2

s N1/2 and then removing
all ,̃ we obtain the following dimensionless CGPEs for Ψ=(ψ↑,ψ↓)T as

i∂tψ↑=
[
−1

2
∇2+V↑(x)+

δ

2
+(κ↑↑|ψ↑|2+κ↑↓|ψ↓|2)

]
ψ↑+

Ω

2
ψ↓, x∈R

3,

i∂tψ↓=
[
−1

2
∇2+V↓(x)−

δ

2
+(κ↓↑|ψ↑|2+κ↓↓|ψ↓|2)

]
ψ↓+

Ω

2
ψ↑, x∈R

3,

(2.5)
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where κjl =
4πNajl

xs
(j,l=↑,↓), Ω= Ω̃

ωs
, δ= δ̃

ωs
and the trapping potentials are given as

Vj(x)=
1

2
(γ2

x(x−xj)
2+γ2

yy2+γ2
zz2), j=↑,↓, x=(x,y,z)T ∈R

3, (2.6)

with γx=ωx/ωs, γy=ωy/ωs, γz=ωz/ωs and xj= x̃j/xs (j=↑,↓). The normalization for
(2.5) becomes

‖Ψ‖2 :=‖ψ↑(·,t)‖2+‖ψ↓(·,t)‖2 :=
∫

R3

[
|ψ↑(x,t)|2+|ψ↓(x,t)|2

]
dx=1. (2.7)

In practice, when the harmonic traps (2.6) are strongly anisotropic, e.g. when
γx =O(1), γy =O(1) and γz ≫ 1, following the dimension reduction process for GPE
in [15, 40], the 3D CGPEs (2.8) can be reduced to a system in two dimensions (2D) under
effective trapping potentials Vj(x,y) = 1

2(γ
2
x(x−xj)

2+γ2
yy2) (j =↑,↓) and effective inter-

action strengths β jl =
√

γz√
2π

κjl (j,l =↑,↓); and respectively, when γx =O(1), γy ≫ 1 and

γz ≫ 1, the 3D CGPEs (2.8) can be reduced to a system in one dimension (1D) under ef-
fective trapping potentials Vj(x)= 1

2 γ2
x(x−xj)

2 (j=↑,↓) and effective interaction strengths

β jl =
√

γyγz

2π κjl (j,l=↑,↓).
In fact, the CGPEs (2.5) in 3D and the corresponding CGPEs in 2D and 1D obtained

from (2.5) by dimension reduction under strongly anisotropic trapping potentials can be
written in a unified form in d-dimensions (d=3,2,1) as

i∂tψ↑=
[
−1

2
∇2+V↑(x)+

δ

2
+(β↑↑|ψ↑|2+β↑↓|ψ↓|2)

]
ψ↑+

Ω

2
ψ↓, x∈R

d,

i∂tψ↓=
[
−1

2
∇2+V↓(x)−

δ

2
+(β↓↑|ψ↑|2+β↓↓|ψ↓|2)

]
ψ↓+

Ω

2
ψ↑, x∈R

d,

(2.8)

where the interaction strengths and harmonic trapping potentials are given as

β jl =





κjl =
4πNajl

xs
,

√
γz√
2π

κjl ,
√

γyγz

2π κjl ,

Vj(x)=





1
2 (γ

2
x(x−xj)

2+γ2
yy2+γ2

zz2), d=3,
1
2 (γ

2
x(x−xj)

2+γ2
yy2), d=2,

1
2 γ2

x(x−xj)
2, d=1,

j,l=↑,↓, (2.9)

with x = (x,y,z)T in 3D, x = (x,y)T in 2D, and x = x in 1D. The normalization for (2.8)
becomes

‖Ψ‖2 :=‖ψ↑(·,t)‖2+‖ψ↓(·,t)‖2 :=
∫

Rd

[
|ψ↑(x,t)|2+|ψ↓(x,t)|2

]
dx=1. (2.10)

Without loss of generality and for mathematical convenience, we shall assume Ω, δ and
β jl satisfying β jl =βlj (j,l=↑,↓) are given real constants, and Vj(x) (j=↑,↓) are given non-
negative real functions.
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Despite the normalization (or mass conservation) (2.10), the CGPEs (2.8) possess an-
other important conserved quantity, i.e. energy per particle,

E(Ψ)=
∫

Rd

[
∑

j=↑,↓

(
1

2
|∇ψj|2+Vj(x)|ψj|2

)
+

δ

2

(
|ψ↑|2−|ψ↓|2

)

+
1

2
β↑↑|ψ↑|4+

1

2
β↓↓|ψ↓|4+β↑↓|ψ↑|2|ψ↓|2+Ω Re(ψ↑ψ↓)

]
dx, (2.11)

where f̄ and Re( f ) denote the conjugate and the real part of a function f , respectively.

2.2 Ground states

The ground state Φg :=Φg(x)= (φ
g
↑(x),φ

g
↓(x))

T of the pseudo spin-1/2 BEC with an in-
ternal atomic Josephson junction governed by (2.8) is defined as the minimizer of the
following nonconvex minimization problem:

Find
(
Φg ∈S

)
, such that

Eg :=E
(
Φg

)
=min

Φ∈S
E(Φ), (2.12)

where S is a nonconvex set defined as

S :=

{
Φ=(φ↑,φ↓)

T | ‖Φ‖2 =
∫

Rd

(
|φ↑(x)|2+|φ↓(x)|2

)
dx=1, E(Φ)<∞

}
. (2.13)

It is easy to see that the ground state Φg satisfies the following Euler-Lagrange equations

µφ↑=
[
−1

2
∇2+V↑(x)+

δ

2
+(β↑↑|φ↑|2+β↑↓|φ↓|2)

]
φ↑+

Ω

2
φ↓, x∈R

d,

µφ↓=
[
−1

2
∇2+V↓(x)−

δ

2
+(β↓↑|φ↑|2+β↓↓|φ↓|2)

]
φ↓+

Ω

2
φ↑, x∈R

d,

(2.14)

under the constraint

‖Φ‖2 :=‖Φ‖2
2 =

∫

Rd

[
|φ↑(x)|2+|φ↓(x)|2

]
dx=1, (2.15)

with the eigenvalue µ being the Lagrange multiplier (or chemical potential in physics
literatures) corresponding to the constraint (2.15), which can be computed as

µ=µ(Φ)=E(Φ)+
∫

Rd

[
β↑↑
2

|φ↑|4+
β↓↓
2

|φ↓|4+β↑↓|φ↑|2|φ↓|2
]

dx. (2.16)

In fact, the above time-independent CGPEs (2.14) can also be obtained from the CGPEs
(2.8) by substituting the ansatz

ψ↑(x,t)= e−iµtφ↑(x), ψ↓(x,t)= e−iµtφ↓(x), x∈R
d. (2.17)

The eigenfunctions of the nonlinear eigenvalue problem (2.14) under the normalization
(2.15) are usually called as stationary states of the two-component BEC (2.8) [93, 96, 99].
Among them, the eigenfunction with the minimum energy is the ground state and those
whose energies are larger than that of the ground state are usually called as excited states.
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2.2.1 Mathematical theories

Before presenting mathematical theories on ground states, some notations are introduced
below. Define the function I(x) as

I(x)=
(
V↑(x)−V↓(x)+δ

)2
+(β↑↑−β↑↓)

2+(β↑↓−β↓↓)
2, x∈R

d, (2.18)

where I(x)≡ 0 means that the spin-1/2 BEC with Ω = 0 is essentially one component;
denote the interaction matrix as

B=

(
β↑↑ β↑↓
β↑↓ β↓↓

)
, (2.19)

and we say B is positive semi-definite iff β↑↑≥0 and β↑↑β↓↓−β2
↑↓≥0; and B is nonnegative

iff β↑↑≥0, β↑↓≥0 and β↓↓≥0. In 2D, i.e. d=2, let Cb be the best constant as [132]

Cb := inf
0 6= f∈H1(R2)

‖∇ f‖2
L2(R2)

‖ f‖2
L2(R2)

‖ f‖4
L4(R2)

=π ·(1.86225··· ). (2.20)

For the ground state of (2.12), we have [15, 16].

Theorem 2.1 (Existence and uniqueness of (2.12) [16]). Suppose Vj(x)≥0 (j=↑,↓) satisfying
lim|x|→∞Vj(x)=+∞ and at least one of the following conditions holds

(i) d=1;

(ii) d=2 and β↑↑>−Cb , β↓↓>−Cb , and β↑↓≥−Cb−
√

Cb+β↑↑
√

Cb+β↓↓;

(iii) d=3 and B is either positive semi-definite or nonnegative;

there exists a ground state Φg =(φ
g
↑,φ

g
↓)

T of (2.12). In addition, Φ̃g :=(eiθ↑ |φg
↑ |,eiθ↓ |φg

↓|) is also

a ground state of (2.12) with two constants θ↑, θ↓∈ [0,2π) satisfying θ↑−θ↓=±π when Ω>0
and θ↑−θ↓= 0 when Ω< 0. Furthermore, if the matrix B is positive semi-definite, Ω 6= 0 and
I(x) 6= 0, the ground state (|φg

↑ |,−sign(Ω)|φg
↓ |)T is unique. In contrast, if one of the following

conditions holds

(i)′ d=2 and β↑↑≤−Cb or β↓↓≤−Cb or β↑↓<−Cb−
√

Cb+β↑↑
√

Cb+β↓↓ ;

(ii)′ d=3 and β↑↑<0 or β↓↓<0 or β↑↓<0 with β2
↑↓>β↑↑β↓↓;

there exists no ground state of (2.12), i.e. infΦ∈S E(Φ)=−∞.

Theorem 2.2 (Limiting behavior when |Ω|→+∞ [16]). Suppose Vj(x)≥0 (j=↑,↓) satisfying
lim|x|→∞Vj(x)=+∞ and B is either positive semi-definite or nonnegative. For fixed Vj(x) (j=↑
,↓), B and δ, let ΦΩ = (φΩ

↑ ,φΩ
↓ )

T be a ground state of (2.12) with respect to Ω. Then when

|Ω|→+∞, we have

‖ |φΩ
j |−φg‖→0, j=↑,↓, E(ΦΩ)≈2E1(φ

g)−|Ω|/2, (2.21)
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where φg is the unique positive minimizer [92] of

E1(φ)=
∫

Rd

[
1

2
|∇φ|2+V(x)|φ|2+ β

2
|φ|4

]
dx, (2.22)

under the constraint

‖φ‖2 =
∫

Rd
|φ(x)|2 dx=

1

2
, (2.23)

with β=
β↑↑+β↓↓+2β↑↓

2 and V(x)= 1
2(V↑(x)+V↓(x)).

Theorem 2.3 (Limiting behavior when δ→±∞ [16]). Suppose Vj(x)≥0 (j=↑,↓) satisfying
lim|x|→∞Vj(x)=+∞ and B is either positive semi-definite or nonnegative. For fixed Vj(x) (j=↑
,↓), B and Ω, let Φδ=(φδ

↑,φδ
↓)

T be a ground state of (2.12) with respect to δ. Then when δ→+∞,
we have

‖φδ
↑‖→0, ‖|φδ

↓|−φg‖→0, E(Φδ)≈E2(φ
g)− δ

2
, (2.24)

and resp.; when δ→−∞, we have

‖ |φδ
↑|−φg‖→0, ‖φδ

↓‖→0, E(Φδ)≈E2(φ
g)+

δ

2
, (2.25)

where φg is the unique positive minimizer [92] of

E2(φ)=
∫

Rd

[
1

2
|∇φ|2+V∗(x)|φ|2+

β∗
2
|φ|4

]
dx, (2.26)

under the constraint

‖φ‖2 =
∫

Rd
|φ(x)|2 dx=1, (2.27)

with β∗=β↓↓ and V∗(x)=V↓(x) when δ>0, and resp., β∗=β↑↑, V∗(x)=V↑(x) when δ<0.

2.2.2 Numerical methods and results

In order to compute the ground state (2.12), we construct the following continuous nor-
malized gradient flow (CNGF) for Φ(x,t)=(φ↑(x,t),φ↓(x,t))T [16]:

∂φ↑(x,t)

∂t
=

[
1

2
∇2−V↑(x)−

δ

2
−(β↑↑|φ↑|2+β↑↓|φ↓|2)

]
φ↑−

Ω

2
φ↓+µΦ(t)φ↑,

∂φ↓(x,t)

∂t
=

[
1

2
∇2−V↓(x)+

δ

2
−(β↑↓|φ↑|2+β↓↓|φ↓|2)

]
φ↓−

Ω

2
φ↑+µΦ(t)φ↓,

(2.28)

with a prescribed initial data Φ(x,0)=Φ0(x)=(φ0
↑(x),φ

0
↓(x))

T satisfying ‖Φ0‖=1, where

µΦ(t) is chosen such that the above CNGF is mass (or normalization) conservative and
energy diminishing. By taking µΦ(t)=µ(Φ(·,t))/‖Φ(·,t)‖2 with µ(Φ) given in (2.16) [16],
one readily checks that the CNGF (2.28) conserves the mass and is energy diminishing
[16]. Therefore, one can compute ground sates of (2.12) by discretizing the CNGF (2.28).
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In practical computation, an efficient way to discretize the CNGF (2.28) is through
the construction of the following gradient flow with discrete normalization (GFDN) via a
time-splitting approach: let τ>0 be a chosen time step and denote tn =nτ for n≥0. One
solves

∂φ↑
∂t

=

[
1

2
∇2−V↑(x)−

δ

2
−(β↑↑|φ↑|2+β↑↓|φ↓|2)

]
φ↑−

Ω

2
φ↓,

∂φ↓
∂t

=

[
1

2
∇2−V↓(x)+

δ

2
−(β↑↓|φ↑|2+β↓↓|φ↓|2)

]
φ↓−

Ω

2
φ↑,

tn ≤ t< tn+1, (2.29)

followed by a projection step as

φl(x,tn+1) :=φl(x,t+n+1)=σn+1
l φl(x,t−n+1), l=↑,↓, n≥0, (2.30)

where φl(x,t±n+1)= limt→t±n+1
φl(x,t) and the projection constants σn+1

l (l=↑,↓) are chosen

such that
‖Φ(x,tn+1)‖2=‖φ↑(x,tn+1)‖2+‖φ↓(x,tn+1)‖2=1, n≥0. (2.31)

Since there are two projection constants to be determined, i.e. σn+1
↑ and σn+1

↓ in (2.30),
and there is only one equation, i.e. (2.31), to fix them, we need to find another condition
so that the two projection constants are uniquely determined. In fact, the above GFDN
(2.29)-(2.30) can be viewed as applying the first-order splitting method to the CNGF (2.28)
and the projection step (2.30) is equivalent to solving the following ordinary differential
equations (ODEs)

∂φ↑(x,t)

∂t
=µΦ(t)φ↑,

∂φ↓(x,t)

∂t
=µΦ(t)φ↓, tn ≤ t≤ tn+1, (2.32)

which immediately suggests that the projection constants in (2.30) could be chosen as [16]

σn+1
↑ =σn+1

↓ , n≥0. (2.33)

Plugging (2.33) and (2.30) into (2.31), we get

σn+1
↑ =σn+1

↓ =
1

‖Φ(·,t−n+1)‖
=

1√
‖φ↑(·,t−n+1)‖2+‖φ↓(·,t−n+1)‖2

, n≥0. (2.34)

In fact, the gradient flow (2.29) can be viewed as applying the steepest decent method
to the energy functional E(Φ) in (2.12) without the constraint, and then projecting the
solution back to the unit sphere S in (2.30). In addition, (2.29) can also be obtained from
the CGPEs (2.8) by the change of variable t →−i t, and thus this kind of algorithm is
usually called as the imaginary time method in the physics literature [88,90,106,122,133].

To fully discretize the GFDN (2.29), it is highly recommended to use backward Euler
scheme in temporal discretization [15,16,21] and adopt one’s favorite numerical method,
such as finite difference method, spectral method or finite element method, for spatial
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discretization. In practical computation, the GFDN (2.29) (or CNGF (2.28)) is usually
truncated on a bounded domain with either homogeneous Dirichlet boundary condi-
tions or periodic boundary conditions or homogeneous Neumann boundary conditions
due to the trapping potentials Vj(x) (j=↑,↓) which ensure the wave function decays expo-
nentially fast at far field. For the convenience of readers and simplification of notations,
here we only present a modified backward Euler finite difference (BEFD) discretization
of the GFDN (2.29) in 1D, which is truncated on a bounded domain U=(a,b) with homo-
geneous Dirichlet boundary condition

Φ(a,t)=Φ(b,t)=0, t≥0. (2.35)

Choose a mesh size h=(b−a)/L with L being a positive integer and denote xj = a+ jh,
(0≤ j≤ L) as the grid points, then the BEFD discretization reads

φ
(1)
↑,j −φn

↑,j

τ
=

1

2h2

[
φ
(1)
↑,j+1−2φ

(1)
↑,j +φ

(1)
↑,j−1

]
−
[

V↑(xj)+
δ

2
+α∗

]
φ
(1)
↑,j −

Ω

2
φ
(1)
↓,j

−
(

β↑↑|φn
↑,j|2+β↑↓|φn

↓,j|2
)

φ
(1)
↑,j +α∗φn

↑,j, 1≤ j≤ L−1, (2.36)

φ
(1)
↓,j −φn

↓,j

τ
=

1

2h2

[
φ
(1)
↓,j+1−2φ

(1)
↓,j +φ

(1)
↓,j−1

]
−
[

V↓(xj)−
δ

2
+α∗

]
φ
(1)
↑,j −

Ω

2
φ
(1)
↑,j

−
(

β↑↓|φn
↑,j|2+β↓↓|φn

↓,j|2
)

φ
(1)
↓,j +α∗φn

↓,j, 1≤ j≤ L−1, (2.37)

φn+1
l,j =

φ
(1)
l,j

‖Φ(1)‖h

, j=0,1,··· ,L, n≥0, l=↑,↓, (2.38)

where α∗≥0 is a stabilization parameter [27] chosen in such a way that the time step τ is
independent of the effective Rabi frequency Ω and

‖Φ(1)‖h :=

√√√√h
L−1

∑
j=0

[
|φ(1)

↑,j |2+|φ(1)
↓,j |2

]
. (2.39)

The initial and boundary conditions are discretized as

φ0
l,j=φ0

l (xj), j=0,1,··· ,L; φn
l,0=φn

l,L=0, n≥0; l=↑,↓ . (2.40)

We remark here that many other numerical methods proposed in the literatures for
computing the ground state of single-component BEC [2,7,8,18,19,33,36,49,52,54,56,61,
62, 65, 105, 113, 136] can be extended to compute numerically the ground state of pseudo
spin-1/2 BEC [12, 14].

Example 2.1. To demonstrate the efficiency of the BEFD method (2.36)-(2.40) for com-
puting the ground state of (2.12), we take d = 1, V↑(x) = V↓(x) = 1

2 x2+24cos2(x) and
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Figure 1: Ground states Φg =(φ
g
↑ ,φ

g
↓)

T in Example 2.1 with δ=0 and Ω=−2 for different β.

β↑↑ : β↑↓ : β↓↓=(1.03 : 1 : 0.97)β in (2.11) with β being a real constant. The computational
domain is U=[−16,16] with mesh size h= 1

32 and time step τ=0.1. Fig. 1 plots the ground
states Φg when δ=0 and Ω=−2 for different β, and Fig. 2 depicts similar results when
δ=0 and β=100 for different Ω.

2.2.3 Another type ground state without Josephson junction

If there is no internal atomic Josephson junction, i.e. Ω=0 in (2.8), then the mass of each
component is also conserved [16], i.e.

‖ψl(·,t)‖2 :=
∫

Rd
|ψl(x,t)|2 dx≡

∫

Rd
|ψl(x,0)|2 dx, t≥0, l=↑,↓ . (2.41)

Without loss of generality, we can assume δ=0. In this case, for any given ν∈[0,1], one can
consider another type ground state Φν

g(x)=(φν
↑(x),φ

ν
↓(x))

T of the spin-1/2 BEC, which is
defined as the minimizer of the following nonconvex minimization problem:

Find
(
Φν

g ∈Sν

)
, such that

Eν
g :=E0

(
Φν

g

)
=min

Φ∈Sν

E0(Φ) , (2.42)
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Figure 2: Ground states Φg=(φ
g
↑ ,φ

g
↓)

T in Example 2.1 with δ=0 and β=100 for different Ω.

where E0(·) is the energy in (2.11) with Ω=δ=0, i.e.

E0(Φ)

:=
∫

Rd

[

∑
j=↑,↓

(
1

2
|∇φj|2+Vj(x)|φj|2

)
+

1

2
β↑↑|φ↑|4+

1

2
β↓↓|φ↓|4+β↑↓|φ↑|2|φ↓|2

]
dx, (2.43)

and Sν is a nonconvex set defined as

Sν :=
{

Φ=(φ↑,φ↓)
T | ‖φ↑‖2=ν, ‖φ↓‖2=1−ν, E0(Φ)<∞

}
. (2.44)

Again, it is easy to see that the ground state Φν
g satisfies the following Euler-Lagrange

equations

µ↑φ↑=
[
−1

2
∇2+V↑(x)+(β↑↑|φ↑|2+β↑↓|φ↓|2)

]
φ↑, x∈R

d,

µ↓φ↓=
[
−1

2
∇2+V↓(x)+(β↑↓|φ↑|2+β↓↓|φ↓|2)

]
φ↓, x∈R

d,

(2.45)

under the two constraints

‖φ↑‖2 :=
∫

Rd
|φ↑(x)|2 dx=ν, ‖φ↓‖2 :=

∫

Rd
|φ↓(x)|2 dx=1−ν, (2.46)
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with µ↑ and µ↓ being the Lagrange multipliers or chemical potentials corresponding to
the two constraints in (2.46). Again, the above time-independent CGPEs (2.45) can also
be obtained from the CGPEs (2.8) with Ω=δ=0 by substituting the ansatz

ψ↑(x,t)= e−iµ↑tφ↑(x), ψ↓(x,t)= e−iµ↓tφ↓(x), x∈R
d. (2.47)

We remark here that, when Ω= δ=0 in (2.11), the ground state Φg defined in (2.12) can
be computed from the ground states Φν

g (0≤ν≤1) in (2.43) as

Eg :=E(Φg)=min
Φ∈S

E0(Φ)= min
0≤ν≤1

Eν
g = min

0≤ν≤1
E0(Φ

ν
g)= min

0≤ν≤1
min
Φ∈Sν

E0(Φ). (2.48)

If ν= 0 or 1 in the nonconvex minimization problem (2.42), it reduces to the ground
state of single-component BEC, which has been well studied in the literature [15, 92].
Thus here we assume ν∈ (0,1) and denote

β′
↑↑ :=νβ↑↑, β′

↓↓=(1−ν)β↓↓, β′
↑↓=

√
ν(1−ν)β↑↓, ν′=ν(1−ν),

and we have the following conclusions [16].

Theorem 2.4 (Existence and uniqueness of (2.42) [16]). Suppose Vj(x)≥0 (j=↑,↓) satisfying
lim|x|→∞Vj(x)=+∞ and at least one of the following conditions holds

(i) d=1;

(ii) d=2 and β′
↑↑>−Cb , β′

↓↓>−Cb , and β′
↑↓≥−

√
(Cb+β′

↑↑)(Cb+β′
↓↓);

(iii) d=3 and B is either positive semi-definite or nonnegative;

there exists a ground state Φν
g = (φν

↑,φν
↓)

T of (2.42) for any given ν ∈ (0,1). In addition,

Φ̃ν
g := (eiθ↑ |φν

↑|,eiθ↓ |φν
↓|) is also a ground state of (2.42) with two real phase constants θ↑ and

θ↓. Furthermore, if the matrix B is positive semi-definite, the ground state (|φν
↑|,|φν

↓|)T of (2.42)
is unique. In contrast, if one of the following conditions holds

(i)′ d=2 and β′
↑↑≤−Cb or β′

↓↓≤−Cb or β′
↑↓<− 1

2
√

ν′

(
νβ′

↑↑+(1−ν)β′
↓↓+Cb

)
;

(ii)′ d=3 and β↑↑<0 or β↓↓<0 or β↑↓<− 1
2ν′ (ν

2β↑↑+(1−ν)2β↓↓),

there exists no ground state of (2.42).

Similarly, the BEFD method for computing the ground state of (2.12) can be directly
extended to compute the ground state of (2.42) by replacing the projection step (2.38) by

φn+1
↑,j =

√
ν φ

(1)
↑,j

‖φ
(1)
↑ ‖h

, φn+1
↓,j =

√
1−ν φ

(1)
↓,j

‖φ
(1)
↓ ‖h

, j=0,1,··· ,L, n≥0, (2.49)
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where ‖φ
(1)
l ‖h :=

√
h∑

L−1
j=0 |φ

(1)
l,j |2 for l=↑,↓.

Phase separation. From Theorem 2.4, we know the positive ground state of (2.42) is
unique when B is positive semi-definite, i.e. the inter-component interaction strength
|β↑↓|≤

√
β↑↑β↓↓. When β↑↓>

√
β↑↑β↓↓, the large inter-component interaction will drive

the BEC to a segregated phase where the two components φ↑ and φ↓ tend to be separated
[16,48], especially when β↑↓→+∞, the two components tend to be completely separated.

For simplicity of notations, we take ν= 1/2, β↑↑= β↓↓= β> 0 and Ω= δ= 0 in (2.42)

with β↑↓ ≥ 0 as a parameter, i.e. each component has the same mass 1
2 with ‖φ1/2

↑ ‖2 =

‖φ1/2
↓ ‖2= 1

2 . From Theorem 2.4, we know for 0≤ β↑↓<
√

β↑↑β↓↓= β, the positive ground

state Φ1/2
g is unique and by symmetry there must hold φ1/2

↑ = φ1/2
↓ . To measure phase

separation for different inter-component interaction β↑↓≥0, we define the mixing factor

for the positive ground state Φ1/2
g =(φ1/2

↑ ,φ1/2
↓ )T ∈S1/2 as

0≤η :=2
∫

Rd
φ1/2
↑ φ1/2

↓ dx≤2‖φ1/2
↑ ‖×‖φ1/2

↓ ‖≤2× 1√
2
× 1√

2
=1. (2.50)

In fact, when η =1, it means that the two components are totally mixed, i.e. φ1/2
↑ ≡φ1/2

↓ ,
and resp., when η = 0, it indicates that the two components are totally separated, i.e.

φ1/2
↑ φ1/2

↓ ≡ 0. In this scenario, for a uniform spin-1/2 BEC system without kinetic en-

ergy terms, i.e. the problem (2.42) is defined on a bounded domain U⊂Rd with periodic

boundary condition and Vj(x)≡ 0 (j=↑,↓), then the ground state φ1/2
↑ and φ1/2

↓ are con-
stants. In this case, 0≤β↑↓≤=β is a sharp criteria for the phase separation, i.e. η=1 when
0≤ β↑↓≤ β, and resp., 0≤ η < 1 when β↑↓> β with η → 0 when β↑↓→+∞ [133]. How-
ever, as observed and proved in [133], when the BEC system is no longer uniform in the
presence of the external confinement, i.e. there exists kinetic energy, the phase separation
will be affected by the kinetic energy [133]. More specifically, we consider a box potential
V↑(x)=V↓(x)=V(x) taken as

V(x)=

{
0, x∈U⊂Rd,

+∞, otherwise.
(2.51)

In this case, there exists a constant βcr
↑↓>β, which depends on β and U, such that the total

mixing still holds, i.e. η = 1 for 0≤ β↑↓≤ βcr
↑↓, and resp., 0≤ η < 1 when β↑↓> βcr

↑↓ with
η→0 as β↑↓→+∞. In other words, the phase separation position is shifted from β↑↓= β
in the uniform case to β↑↓= βcr

↑↓> β in the nonuniform case due to the appearance of the
kinetic energy, which is illustrated in Fig. 3. In addition, the following result on phase
separation was established in [133].

Theorem 2.5 (Phase separation of (2.42) [133]). Suppose β↑↑= β↓↓= β≥ 0, Ω= δ= 0 and
Vj(x)=V(x) (j=↑,↓) in (2.51) with U sufficiently smooth, then there exists a constant βcr

↑↓>β,
which depends on β and U, such that the mixing factor η defined in (2.50) for the positive ground
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Figure 3: Illustration of the mixing factor η defined in (2.50) v.s. the inter-component interaction β↑↓≥0 for a
pseudo spin-1/2 BEC with β↑↑=β↓↓=β>0 and Ω=δ=0 under a uniform potential (dashed line I) and a box
potential (2.51) (solid line II).

state Φ1/2
g =(φ1/2

↑ ,φ1/2
↓ )T ∈S1/2 of (2.42) with ν=1/2 satisfies η=1 when 0≤ β↑↓≤ βcr

↑↓, and
resp., 0≤ η<1 when β↑↓> βcr

↑↓ with η →0 as β↑↓→+∞ (cf. Fig. 3 solid line). In other words,

the box potential confinement V(x) (by adjusting the size of U) can control phase separation of
the underlying pseudo spin-1/2 BEC system without the internal atomic Josephson Junction.

Remark 2.1. Theorem 2.5 can be extended to the pseudo spin-1/2 BEC system in the
whole space with the harmonic trapping potentials by using the fundamental gap result
of the Schrödinger operator, which was established in [5].

2.3 Dynamics

Here we discuss dynamical properties of a spin-1/2 BEC system described by the CG-
PEs (2.8), including the center-of-mass (COM) motion and the spin dynamics (or mass
transfer). For the study of dynamics, the initial condition for (2.8) is usually given as

Ψ(x,t=0)=Ψ0(x)=(ψ0
↑(x),ψ

0
↓(x))

T , x∈R
d with ‖Ψ0‖=1. (2.52)

2.3.1 Dynamical properties

Let Ψ(x,t)=(ψ↑(x,t),ψ↓(x,t))T be a solution of the CGPEs (2.8) with (2.52), and the total
mass is defined as

N(t)=‖Ψ(·,t)‖2 =N↑(t)+N↓(t), t≥0, (2.53)

where the mass of each component and their difference are defined as

Nj(t)=‖ψj(·,t)‖2 :=
∫

Rd
|ψj(x,t)|2dx, j=↑,↓; δN(t)=N↑(t)−N↓(t), t≥0. (2.54)
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Since N(t)= N↑(t)+N↓(t) is conserved, it suffices to consider the difference δN(t). The
condensate width is defined as

σα(t)=
√

δα(t), where δα(t)= 〈α2〉(t)=
∫

Rd
α2|Ψ(x,t)|2dx, t≥0, (2.55)

with α being either x,y or z; the center-of-mass is given as

xc(t)=
∫

Rd
x|Ψ(x,t)|2 dx, t≥0, (2.56)

and the momentum is defined as

P(t)=
∫

Rd
∑

j=↑,↓
Im(ψj(x,t)∇ψj(x,t))dx, t≥0, (2.57)

where Im( f ) denotes the imaginary part of f . Then we could obtain the following results.

Lemma 2.1 (Mass difference [16]). Suppose Ψ(x,t)=(ψ↑(x,t),ψ↓(x,t))T is a sufficiently reg-
ular solution of the CGPEs (2.8) with (2.52), then we have

δ̈N(t)=2Ω Re
∫

Rd

[(
V↑(x)−V↓(x)+δ+(β↑↑−β↑↓)|ψ↑|2+(β↑↓−β↓↓)|ψ↓|2

)
ψ↑ψ↓

]
dx

−Ω2δN(t), t≥0, (2.58)

with initial conditions

δN(0)=δ(0)=‖ψ↑(·,0)‖2−‖ψ↓(·,0)‖2, δ̇N(0)=δ(1)=2ΩIm
∫

Rd
ψ↑(x,0)ψ↓(x,0)dx.

Therefore, if Ω 6=0 and

V↑(x)−V↓(x)≡−δ, x∈R
d, β↑↑=β↑↓=β↓↓, (2.59)

we have

δN(t)=δ(0) cos(Ωt)+
δ(1)

Ω
sin(Ωt), t≥0, (2.60)

which implies the mass of each component is a periodic function with period T = 2π
|Ω| depending

only on Ω.

Lemma 2.2 (Center-of-mass motion [16]). Assume V↑(x)=V↓(x) are harmonic potentials in
(2.9) with x↑=x↓=0, and Ψ(x,t) is a sufficiently regular solution of the CGPEs (2.8) with (2.52),
then we have

ẋc(t)=P(t), Ṗ(t)=−Λxc(t), t≥0, (2.61)

with the initial conditions

xc(0)=
∫

Rd
x|Ψ(x,0)|2 dx, ẋc(0)=P(0)=

∫

Rd
∑

j=↑,↓
Im(ψj(x,0)∇ψj(x,0))dx, (2.62)

where Λ=γ2
x in 1D, Λ=diag(γ2

x,γ2
y) in 2D and Λ=diag(γ2

x,γ2
y,γ2

z) in 3D.
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Lemma 2.3 (Condensate width [16]). Assume Ψ(x,t) = (ψ↑(x,t),ψ↓(x,t))T is a sufficiently
regular solution of the CGPEs (2.8) with (2.52), then we have

δ̈α(t)=
∫

Rd
∑

j=↑,↓

[
2|∂αψj|2−2α|ψj|2∂α(Vj(x))+|ψj|2 ∑

l=↑,↓
β jl |ψl |2

]
dx, t≥0, (2.63)

δα(0)=δ
(0)
α =

∫

Rd
α2
(
|ψ0

↑(x)|2+|ψ0
↓(x)|2

)
dx, α= x,y,z, (2.64)

δ̇α(0)=δ
(1)
α =2 ∑

j=↑,↓

∫

Rd
α
[
Im
(

ψ̄0
j ∂αψ0

j

)]
dx. (2.65)

Remark 2.2. The above results can be generalized to the case where an angular momen-
tum rotating term is added in the CGPEs (2.8), see [144] for more details.

2.3.2 Numerical methods and results

In order to solve the CGPEs (2.8) with (2.52) numerically, similar to the ground state case,
the CGPEs (2.8) with (2.52) are truncated onto a bounded computational domain U⊂Rd

with homogeneous Dirichlet boundary conditions:

i
∂ψ↑
∂t

=

[
−1

2
∇2+V↑(x)+

δ

2
+(β↑↑|ψ↑|2+β↑↓|ψ↓|2)

]
ψ↑+

Ω

2
ψ↓, x∈U, t>0, (2.66)

i
∂ψ↓
∂t

=

[
−1

2
∇2+V↓(x)−

δ

2
+(β↑↓|ψ↑|2+β↓↓|ψ↓|2)

]
ψ↓+

Ω

2
ψ↑, x∈U, t>0, (2.67)

ψj(x,t)=0, x∈∂U, j=↑,↓, t≥0, (2.68)

ψj(x,0)=ψ0
j (x), x∈U, j=↑,↓ . (2.69)

In practical computation, a large bounded computational domain U is usually taken such
that the truncation error can be neglected due to that the homogeneous Dirichlet bound-
ary conditions (2.68) are adopted. Different numerical methods have been proposed for
discretizing the problem (2.66)-(2.69) in the literature [6,14–16,144]. Here we only present
one of the most efficient and accurate time splitting spectral method (TSSP) [24,26,29,34].

Time-splitting procedure. For n≥0, from time t= tn =nτ to t= tn+1= tn+τ, the CGPEs
(2.66)-(2.67) are solved in two splitting steps. One first solves

i
∂ψ↑(x,t)

∂t
=−1

2
∇2ψ↑(x,t)+

Ω

2
ψ↓(x,t),

i
∂ψ↓(x,t)

∂t
=−1

2
∇2ψ↓(x,t)+

Ω

2
ψ↑(x,t),

(2.70)

for the time step of length τ, followed by solving

i
∂ψ↑(x,t)

∂t
=

(
V↑(x)+

δ

2
+β↑↑|ψ↑(x,t)|2+β↑↓|ψ↓(x,t)|2

)
ψ↑(x,t),

i
∂ψ↓(x,t)

∂t
=

(
V↓(x)−

δ

2
+β↑↓|ψ↑(x,t)|2+β↓↓|ψ↓(x,t)|2

)
ψ↓(x,t),

(2.71)
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for the same time step. For time t∈ [tn ,tn+1], the ODE system (2.71) leaves |ψ↑(x,t)| and
|ψ↓(x,t)| invariant in t, and thus it can be integrated exactly as [16]

ψ↑(x,t)=ψ↑(x,tn)exp

[
−i

(
V↑(x)+

δ

2
+β↑↑

∣∣ψ↑(x,tn)
∣∣2+β↑↓

∣∣ψ↓(x,tn)
∣∣2
)
(t−tn)

]
,

ψ↓(x,t)=ψ↓(x,tn)exp

[
−i

(
V↓(x)−

δ

2
+β↑↓

∣∣ψ↑(x,tn)
∣∣2+β↓↓

∣∣ψ↓(x,tn)
∣∣2
)
(t−tn)

]
.

(2.72)

For (2.70), it can be discretized in space by the sine spectral method and then integrated
(in phase space or Fourier space) in time analytically. For details, we refer the readers
to [6, 12, 15, 22] and references therein.

For the convenience of readers and simplicity of notations, here we present the meth-
od in 1D. Extensions to 2D and 3D are straightforward. In 1D, let h=∆x=(b−a)/L (L a
positive integer), xj= a+ jh (j=0,··· ,L), Ψn

j =(ψn
↑,j,ψ

n
↓,j)

T be the numerical approximation

of Ψ(xj,tn)= (ψ↑(xj,tn),ψ↓(xj,tn))T, and for each fixed l=↑,↓, denote ψn
l to be the vector

consisting of ψn
l,j for j=0,1,··· ,L. From time t=tn to t=tn+1, a second-order time-splitting

sine pseudospectral (TSSP) method for the CGPEs (2.66)-(2.69) in 1D reads

Ψ
(1)
j =

L−1

∑
k=1

sin(λk(xj−a))QT
0 e−

iτ
4 Uk Q0(Ψ̃n)k,

Ψ
(2)
j = e

−iτP
(1)
j Ψ

(1)
j , j=0,1,··· ,L,

Ψn+1
j =

L−1

∑
k=1

sin(λk(xj−a))QT
0 e−

iτ
4 Uk Q0(Ψ̃(2))k,

(2.73)

where λk =
kπ

b−a , (Ψ̃n)k =((ψ̃n
↑)k,(ψ̃n

↓)k)
T with (ψ̃n

l )k=
2
L ∑

L−1
j=1 (ψ

n
l )j sin(πjk/L) (k=1,2,··· ,

L−1) being the discrete sine transform coefficients of ψn
l (l=↑,↓), Uk=diag

(
λ2

k+Ω,λ2
k−Ω

)

is a diagonal matrix, P
(1)
j =diag

(
V↑(xj)+

δ
2+∑l=↑,↓β↑l|ψ(1)

l,j |2,V↓(xj)− δ
2+∑l=↑,↓β↓l|ψ(1)

l,j |2
)

for j=0,1··· ,L, and

Q0=

(
1√
2

1√
2

− 1√
2

1√
2

)
.

We remark here again that many other numerical methods proposed in the literatures
for computing the dynamics of single-component BEC [6,15,17,18,22–26,28–30,32,34,56,
64, 65, 77, 80, 103, 105, 126, 137] can be extended to compute numerically the dynamics of
pseudo spin-1/2 BEC, i.e. the problem (2.66)-(2.69).

Example 2.2. To demonstrate the efficiency of the TSSP method (2.73) for computing the
dynamics of (2.8) with (2.52), we take d=1, Ω=2, δ=0 and V↑(x)=V↓(x)= 1

2 x2 in (2.8)
and the initial data in (2.52) as

ψ0
↑(x)=

1

π1/4
e−(x−1)2/2, ψ0

↓(x)=0, x∈R. (2.74)
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Figure 4: Dynamics of xc(t), N(t) and δN(t) in Example 2.2 for β↑↑ = β↑↓ = β↓↓ = 20 (left) and β↑↑ = 20,
β↑↓=8, β↓↓=6 (right).

The computational domain is U=[−16,16] with mesh size h= 1
32 and time step τ=10−4.

Fig. 4 shows time evolution of the center-of-mass xc(t), the total mass N(t) and the mass
difference δN(t) for different interaction strengths, which confirms the conclusions in
Lemmas 2.1&2.2.

2.4 Bogoliubov excitation

In the mean field description of a BEC system, the many body effects are absent in the
mean field ground states. However, due to the interaction of the atoms, there are ex-
citations in the system even in the lowest energy state, which is a result of many body
effect. Such excitations could be regarded as quasi particles and are known as Bogoliubov
excitations (or collective excitation or linear response) [42].

To determine the Bogoliubov excitation spectrum, we consider small perturbations
around the ground state of the CGPEs (2.8) with Ω 6=0. Assume Φg(x)= (φ

g
↑(x),φ

g
↓(x))

T

is a ground state of the CGPEs (2.8) with chemical potential µg, we write the perturbed
wave function Ψ(x,t) as [11, 111]

Ψ(x,t)= e−iµg t
[
Φg(x)+u(x)e−iωt+v(x)eiωt

]
, (2.75)

where ω is the frequency of perturbation and u(x)=(u↑,u↓)T and v(x)=(v↑,v↓)T are the
two vector amplitude functions. Plugging (2.75) into the CGPEs (2.8) and keep only the
linear terms (w.r.t. u and v), separating the e−i(µg+ω)t and e−i(µg−ω)t parts, we could find




L1 β↑↓φ
g
↓φ

g
↑+

Ω
2 β↑↑(φ

g
↑)

2 β↑↓φ
g
↓φ

g
↑

β↑↓φ
g
↓φ

g
↑+

Ω
2 L2 β↑↓φ

g
↑φ

g
↓ β↓↓(φ

g
↓)

2

−β↑↑(φ
g
↑)

2 −β↑↓φ
g
↓φ

g
↑ −L1 −β↑↓φ

g
↓φ

g
↑− Ω

2

−β↑↓φ
g
↑φ

g
↓ −β↓↓(φ

g
↓)

2 −β↑↓φ
g
↓φ

g
↑− Ω

2 −L2







u↑
u↓
v↑
v↓


=ω




u↑
u↓
v↑
v↓


, (2.76)
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where

L1=−1

2
∇2+V↑+

δ

2
+2β↑↑|φg

↑ |2+β↑↓|φg
↓ |2−µg, (2.77)

L2=−1

2
∇2+V↓−

δ

2
+β↑↓|φg

↑ |2+2β↓↓|φg
↓ |2−µg. (2.78)

The Bogoliubov-de Gennes (BdG) equations (2.76), which can be numerically solved, de-
termine the spectrum of the quasi-particle excitations. The solution (ω,u(x),v(x)) is cru-
cial in understanding the collective excitations in the BEC system.

2.5 Semiclassical scaling and limits

Let βmax=max{β↑↑,β↑↓,β↓↓}. If βmax≫1, i.e. in the strongly repulsive interaction regime
or there are many particles in the condensate, under the normalization (2.10), the semi-
classical scaling for the CGPEs (2.8) with harmonic trapping potentials (2.9) is also very
useful in practice by choosing

x̃= ε−1/2x, Ψε = εd/4Ψ, ε=β
−2/(d+2)
max . (2.79)

Substituting (2.79) into (2.8) and then remove all ,̃ we get the CGPEs in the semiclassical
(or Thomas-Fermi) scaling under the normalization (2.10) with Ψ=Ψε:

iε∂tψ
ε
↑=
[
− ε2

2
∇2+V↑(x)+

εδ

2
+ ∑

j=↑,↓
βε
↑j|ψε

j |2
]

ψε
↑+

εΩ

2
ψε
↓,

iε∂tψ
ε
↓=
[
− ε2

2
∇2+V↓(x)−

εδ

2
+ ∑

j=↑,↓
βε
↓j|ψε

j |2
]

ψε
↓+

εΩ

2
ψε
↑,

(2.80)

where βε
jl =β jl/βmax with βε

jl →β0
jl as ε→0+.

If Ω=0 and 0< ε≪1 in (2.80), take the WKB ansatz [50, 71, 81]

ψε
j (x,t)=

√
ρε

j(x,t)exp

(
i

ε
Sε

j (x,t)

)
, j=↑,↓, (2.81)

where ρε
j=|ψε

j |2 and Sε
j=εarg

(
ψε

j

)
are the position density and phase of the wave function

ψε
j of j-component (j =↑,↓), respectively. Then the coupled transport equations for the

densities ρε
j and the Hamilton-Jacobi equations for the phases Sε

j (j=↑,↓) can be written
as:

∂tρ
ε
j+div

(
ρε

j∇Sε
j

)
=0,

∂tS
ε
j+

1

2
|∇Sε

j |2+Vj(x)+
εδj

2
+ ∑

l=↑,↓
βε

jlρ
ε
l =

ε2

2
√

ρε
j

∇2
√

ρε
j , j=↑,↓,
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where δ↑=δ and δ↓=−δ. As ε→0+, by formally dropping the ε terms, we have

∂tρ
0
j +div

(
ρ0

j ∇S0
j

)
=0,

∂tS
0
j +

1

2
|∇S0

j |2+Vj(x)+ ∑
l=↑,↓

β0
jlρ

0
l =0, j=↑,↓,

with ρ0
j = limε→0+ ρε

j and S0
j = limε→0+ Sε

j .

Introduce the current densities

Jε
j(x,t)=ρε

j∇Sε
j = εIm

[
ψε

j∇ψε
j

]
, j=↑,↓, (2.82)

we can obtain an Euler system for the densities ρ0
j and J0

j and the details are omitted here.

A rigorous proof can be found in [89]. We remark here that it is a tough problem to study
the semiclassical limit of the CGPEs (2.80) when Ω 6=0 since, in general, the ansatz (2.81)
is no longer valid. Wigner transform is another widely used tool in semiclassical analysis,
and will be discussed in Section 3.5 for a different system.

3 Spin-orbit-coupled BEC

Spin-orbit (SO) coupling is the interaction between the spin and motion of a particle, and
is crucial for understanding many physical phenomenon, such as quantum Hall effects
and topological insulators. However, the SO coupling is only for fermions in solid state
matters. In a recent experiment [97], Lin et al. have created a spin-orbit-coupled BEC
with two spin states of 85Rb: |↑〉 = |F = 1,m f = 0〉 and |↓〉 = |F = 1,m f =−1〉. It is then
desirable to study the SO coupling in the context of BEC.

3.1 The mathematical model

We focus on the experimental case, where the SO-coupled BEC is described by the macro-
scopic wave function Ψ:=Ψ(x,t)=(ψ↑(x,t),ψ↓(x,t))T :=(ψ↑,ψ↓)T governed by the CGPEs
in 3D [91, 97, 142, 143]

ih̄∂tψ↑=
[
− h̄2

2m
∇2+Ṽ↑(x)+

ih̄2k̃0

m
∂x+

h̄δ̃

2
+ ∑

l=↑,↓
g̃l↑|ψl |2

]
ψ↑+

h̄Ω̃

2
ψ↓,

ih̄∂tψ↓=
[
− h̄2

2m
∇2+Ṽ↓(x)−

ih̄2k̃0

m
∂x−

h̄δ̃

2
+ ∑

l=↑,↓
g̃l↓|ψl |2

]
ψ↓+

h̄Ω̃

2
ψ↑,

(3.1)

where k̃0 is the wave number of Raman lasers representing the SO coupling strength,
and all the other parameters are the same as those in pseudo spin-1/2 BEC system (2.1).
Again, here the wave function Ψ is normalized according to (2.3).
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Similar to the nondimensionalization and dimension reduction of (2.1), by introduc-
ing the same scaling as (2.4) and performing necessary dimension reduction process from
3D to 1D or 2D, we can obtain the CGPEs for Ψ=(ψ↑,ψ↓)T in d (d=1,2,3) dimensions as

i∂tψ↑=
[
−1

2
∇2+V↑(x)+ik0∂x+

δ

2
+(β↑↑|ψ↑|2+β↑↓|ψ↓|2)

]
ψ↑+

Ω

2
ψ↓,

i∂tψ↓=
[
−1

2
∇2+V↓(x)−ik0∂x−

δ

2
+(β↑↓|ψ↑|2+β↓↓|ψ↓|2)

]
ψ↓+

Ω

2
ψ↑,

(3.2)

where k0 = k̃0

√
h̄/mωs and all the rest parameters are the same as those in (2.8). The

normalization condition for Ψ becomes (2.10). The CGPEs (3.2) conserve the energy

E(Ψ)=
∫

Rd

[
∑

j=↑,↓

(
1

2
|∇ψj|2+Vj(x)|ψj|2

)
+

δ

2

(
|ψ↑|2−|ψ↓|2

)
+

1

2
β↑↑|ψ↑|4+

1

2
β↓↓|ψ↓|4

+β↑↓|ψ↑|2|ψ↓|2+ik0

(
ψ↑∂xψ↑−ψ↓∂xψ↓

)
+Ω Re(ψ↑ψ↓)

]
dx. (3.3)

Finally, by introducing the following change of variables

ψ↑(x,t)= ψ̃↑(x,t)ei(ωt+k0x), ψ↓(x,t)= ψ̃↓(x,t)ei(ωt−k0x), x∈R
d, (3.4)

with ω=
−k2

0
2 in the CGPEs (3.2), we obtain for x∈Rd and t>0

i∂tψ̃↑=
[
−1

2
∇2+V↑(x)+

δ

2
+β↑↑|ψ̃↑|2+β↑↓|ψ̃↓|2

]
ψ̃↑+

Ω

2
e−i2k0xψ̃↓,

i∂tψ̃↓=
[
−1

2
∇2+V↓(x)−

δ

2
+β↑↓|ψ̃↑|2+β↓↓|ψ̃↓|2

]
ψ̃↓+

Ω

2
ei2k0 xψ̃↑.

(3.5)

If Ω=0, (3.3) is equivalent to a pseudo-spin 1/2 BEC system without Josephson junc-
tion through transformation (3.4), which has been studied in Section 2. Therefore, we will
assume Ω 6=0 throughout this section.

3.2 Ground states

The ground state Φg := Φg(x) = (φ
g
↑(x),φ

g
↓(x))

T of a two-component SO-coupled BEC
based on (3.2) is defined as the minimizer of the energy functional (3.3) under the con-
straint (2.15), i.e.

Find Φg ∈S, such that
Eg :=E

(
Φg

)
=min

Φ∈S
E(Φ), (3.6)

where S is defined in (2.13). The ground state Φg is a solution of the following nonlinear
eigenvalue problem, i.e. Euler-Lagrange equation of the problem (3.6)

µφ↑=
[
−1

2
∇2+V↑(x)+ik0∂x+

δ

2
+(β↑↑|φ↑|2+β↑↓|φ↓|2)

]
φ↑+

Ω

2
φ↓,

µφ↓=
[
−1

2
∇2+V↓(x)−ik0∂x−

δ

2
+(β↑↓|φ↑|2+β↓↓|φ↓|2)

]
φ↓+

Ω

2
φ↑,

(3.7)



W. Bao and Y. Cai / Commun. Comput. Phys., 24 (2018), pp. 899-965 921

under the normalization constraint Φ∈S. For an eigenfunction Φ=(φ↑,φ↓)T of (3.7), its
corresponding eigenvalue (or chemical potential in the physics literature) µ := µ(Φ) =
µ(φ↑,φ↓) can be computed as

µ=E(Φ)+
∫

Rd

(
β↑↑
2

|φ↑|4+
β↓↓
2

|φ↓|4+β↑↓|φ↑|2|φ↓|2
)

dx. (3.8)

3.2.1 Mathematical theories

For the existence and uniqueness concerning the ground state, we have the following
results [14].

Theorem 3.1 (Existence and uniqueness [14]). If Vj(x)≥0 (j=↑,↓) and lim|x|→∞Vj(x)=+∞,

then there exists a minimizer Φg =(φ
g
↑, φ

g
↓)

T ∈S of (3.6) if one of the following conditions holds

(i) d=1;

(ii) d=2, β↑↑>−Cb, β↓↓>−Cb and β↑↓≥−Cb−
√
(Cb+β↑↑)(Cb+β↓↓);

(iii) d=3 and the matrix B in (2.19) is either positive semi-definite or nonnegative.

In addition, eiθ0 Φg is also a ground state of (3.6) for any θ0∈[0,2π). In particular, when k0=0 or
Ω=0, the ground state is unique up to a phase factor if the matrix B is positive semi-definite and
I(x) 6≡0 in (2.18). In contrast, there exists no ground state of (3.6) if one of the following holds

(i)′ d=2, β↑↑≤−Cb or β↓↓≤−Cb or β↑↓<−Cb−
√
(Cb+β↑↑)(Cb+β↓↓);

(ii)′ d=3, β↑↑<0 or β↓↓<0 or β↑↓<0 with β2
↑↓>β↑↑β↓↓.

As observed in (3.5), the SO coupling k0 is competing with the Raman transition Ω. In-
deed, when letting either |Ω| or |k0| tend to infinity, the asymptotic profile of the ground
state can be classified. Introducing an auxiliary energy functional Ẽ0(Φ̃) for Φ̃=(φ̃↑,φ̃↓)T

Ẽ0(Φ̃)=
∫

Rd

[
∑

j=↑,↓

(
1

2
|∇φ̃j|2+Vj(x)|φ̃j|2

)
+

δ

2
(|φ̃↑|2−|φ̃↓|2)+

β↑↑
2

|φ̃↑|4+
β↓↓
2

|φ̃↓|4

+β↑↓|φ̃↑|2|φ̃↓|2
]

dx= Ẽ(Φ̃)−Ω

∫

Rd
Re(ei2k0xφ̃↑φ̃↓)dx, (3.9)

we know that the nonconvex minimization problem

Ẽ
(0)
g := Ẽ0(Φ̃

(0)
g )=min

Φ̃∈S
Ẽ0(Φ̃), (3.10)

admits a unique positive minimizer Φ̃
(0)
g =(φ̃

g,0
↑ ,φ̃

g,0
↓ )T∈S if the matrix B is positive semi-

definite and I(x) 6≡0 in (2.18). For a given k0∈R, let Φ̃k0 =(φ̃k0

↑ ,φ̃k0

↓ )
T∈S be a ground state

of (3.6) when all other parameters are fixed, then we can draw the conclusions as follows.
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Theorem 3.2 (Large k0 limit [14]). Suppose the matrix B is positive semi-definite and I(x) 6≡0

in (2.18), and Φk0 =(φk0

↑ ,φk0

↓ )
T is a ground state of (3.6). When k0 →∞, let Φ̃k0 =(φ̃k0

↑ ,φ̃k0

↓ )
T =

(e−ik0xφk0

↑ ,eik0xφk0

↓ )
T, then Φ̃k0 converges to a ground state of (3.10) in Lp1×Lp2 sense with p1,p2

satisfying (i) p1,p2∈ [2,6) when d=3, (ii) p1,p2∈ [2,∞) when d=2, and (iii) p1,p2∈ [2,∞] when

d=1. Equivalently speaking, there exist constants θk0
∈[0,2π) such that eiθk0 (φ̃k0

↑ ,φ̃k0

↓ )
T converges

to the unique positive ground state Φ̃
(0)
g of (3.10). In other words, large k0 in the CGPEs (3.2)

will remove the effect of Raman coupling Ω, i.e. large k0 limit is effectively letting Ω→0.

When either Ω or δ tends to infinity, similar results as Theorems 2.2&2.3 hold and
they are omitted here for brevity. Indeed, large Raman coupling Ω will remove the effect
of SO coupling k0 in the asymptotic profile of the ground states of (3.6) and the reverse is
true, i.e. there is a competition between these two parameters.

Theorem 3.3 (Ground states property [14]). Suppose lim|x|→∞Vj(x)=+∞ (j=↑,↓), the ma-
trix B is either positive semi-definite or nonnegative, then we have

(i) If |Ω|/|k0|2 ≫ 1, |Ω| →+∞, the ground state Φg = (φ
g
↑,φ

g
↓)

T of (3.6) for the CGPEs

(3.2) converges to a state (φg,sgn(−Ω)φg)T, where φg minimizes the energy (2.22) under the

constraint ‖φg‖=1/
√

2.

(ii) If |Ω|/|k0|≪1, |k0|→+∞, the ground state Φg=(φ
g
↑,φ

g
↓)

T of (3.6) for the CGPEs (3.2)

converges to a state (e−ik0xφ̃
g,0
↑ ,eik0xφ̃

g,0
↓ )T, where Φ̃

(0)
g =(φ̃

g,0
↑ ,φ̃

g,0
↓ )T is a ground state of (3.10)

for the energy Ẽ0(·) in (3.9).

(iii) If |k0|≪ |Ω|≪ |k0 |2 and |k0|→+∞, the leading order of the ground state energy Eg :=

E(Φg) of (3.6) for the CGPEs (3.2) is given by Eg =− k2
0

2 −C0
|Ω|2
|k0|2 +o

( |Ω|2
|k0|2
)
, where C0 > 0 is a

generic constant.

Remark 3.1. For |k0| ≪ |Ω| ≪ |k0|2, the ground state of (3.6) is very complicated. The
ground state energy expansion indicates that −k2

0/2 is the leading order term and is
much larger than the next order term. In such situation, the above theorem shows that
the ground state Φg≈(eik0x|φg

↑|,e−ik0x|φg
↓ |)T, and oscillation of ground state densities |φg

j |2
(j=↑,↓) may occur at the order of O(|Ω|/|k0 |2) in amplitude and k0 in frequency. Such
density oscillation is predicted in the physics literature [91], known as the density mod-
ulation.

3.2.2 Numerical methods and results

Similar to the pseudo spin-1/2 case in Section 2.2.2, we construct a GFDN to compute the
ground state Φg=(φ

g
↑ ,φ

g
↓)

T of (3.6) for a SO-coupled BEC. Let tn=nτ (n=0,1,2,···) be the

time steps with τ>0 as the time step size and we evolve an initial state Φ0 :=(φ
(0)
↑ ,φ

(0)
↓ )T
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through the following GFDN

∂tφ↑=

[
1

2
∇2−V↑(x)−ik0∂x−

δ

2
− ∑

l=↑,↓
β↑l |φl|2

]
φ↑−

Ω

2
φ↓, t∈ [tn ,tn+1),

∂tφ↓=

[
1

2
∇2−V↓(x)+ik0∂x+

δ

2
− ∑

l=↑,↓
β↓l |φl|2

]
φ↓−

Ω

2
φ↑, t∈ [tn ,tn+1),

φ↑(x,tn+1)=
φ↑(x,t−n+1)

‖Φ(·,t−n+1)‖
, φ↓(x,tn+1)=

φ↓(x,t−n+1)

‖Φ(·,t−n+1)‖
, x∈R

d,

φ↑(x,0)=φ
(0)
↑ (x), φ↓(x,0)=φ

(0)
↓ (x), x∈R

d.

(3.11)

The above GFDN (3.11) is then truncated on a bounded large computational domain U,
e.g. an interval [a,b] in 1D, a rectangle [a,b]×[c,d] in 2D and a box [a,b]×[c,d]×[e, f ] in
3D, with periodic boundary conditions. The GFDN on U can be further discretized in
space via the pseudospectral method with the Fourier basis or second-order central finite
difference method and in time via backward Euler scheme as discussed in Section 2.2.2.
For more details, we refer to [16–19, 21, 28] and references therein.

Remark 3.2. If the box potential (2.51) is used in the CGPEs (3.2) instead of the harmonic
potentials (2.9), due to the appearance of the SO coupling, in order to compute the ground
state, it is better to construct the GFDN based on CGPEs (3.5) (imaginary time) and then
discretize it via the backward Euler sine pseudospectral (BESP) method due to that the
homogeneous Dirichlet boundary conditions on ∂U must be used in this case. Again, for
details, we refer to [16, 18, 21, 28] and references therein.

Example 3.1. To verify the asymptotic property of the ground states in Theorem 3.2, we
take d=2, δ=0, β↑↑ :β↑↓ :β↓↓=(1:0.9:0.9)β with β=10 in (3.2). The potential Vj(x) (j=↑,↓)
are taken as the box potential given in (2.51) with U = [−1,1]×[−1,1]. We compute the
ground state via the above BESP method with mesh size h= 1

128 and time step τ = 0.01
(τ = 0.001 for large Ω). For the chosen parameters, it is easy to find that when Ω = 0,
the ground state Φg satisfies φ

g
↑ = 0. Fig. 5 shows the profile of Φ̃g = (e−ik0xφ

g
↑ ,eik0xφ

g
↓)

T

where Φg =(φ
g
↑,φ

g
↓)

T is a ground state of (3.6) with Ω=50 for different k0, which clearly
demonstrates that as k0→+∞, effect of Ω disappears. This is consistent with Theorem 3.2.

3.3 Dynamics

For a SO-coupled BEC described by the CGPEs (3.2), we consider the dynamics charac-
terized by the center-of-mass xc(t) in (2.56), momentum P(t) in (2.57) and spin density
δN in (2.54).
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Figure 5: Modulated ground state Φ̃g =(φ̃
g
↑ ,φ̃

g
↓)

T in Example 3.1 for a SO-coupled BEC in 2D with Ω= 50,

δ=0, β11 =10, β12 = β21 = β22 =9 for: (a) k0 =0, (b) k0 =1,(d) k0 =10 and (e) k0 =50. In each subplot, top

panel shows densities and bottom panel shows phases of φ̃
g
↑ (left column) and φ̃

g
↓ (right column).

3.3.1 Dynamical properties

For the center-of-mass motion, we have the lemma.

Lemma 3.1 (Dynamics of center-of-mass [14]). Let V↑(x)=V↓(x) be the d-dimensional (d=
1,2,3) harmonic potentials given in (2.9), then the motion of the center-of-mass xc(t) for the
CGPEs (3.2) is governed by

ẍc(t)=−Λxc(t)−2k0ΩIm

(∫

Rd
ψ↑(x,t)ψ↓(x,t)dx

)
ex, t>0, (3.12)

where Λ is a d×d diagonal matrix with Λ=γ2
x in 1D (d= 1), Λ=diag(γ2

x,γ2
y) in 2D (d= 2)

and Λ=diag(γ2
x,γ2

y,γ2
z) in 3D (d=3), ex is the unit vector for x-axis. The initial conditions for

(3.12) are given as

xc(0)=
∫

Rd
x ∑

j=↑,↓
|ψj(x,0)|2 dx, ẋc(0)=P(0)−k0δN(0)ex.
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In particular, (3.12) implies that the center-of-mass xc(t) is periodic in y-component with fre-
quency γy when d=2,3, and in z-component with frequency γz when d=3. If k0Ω=0, xc(t) is
also periodic in x-component with frequency γx.

The above lemma leads to the following approximations of xc(t).

Theorem 3.4 (Approximation of center-of-mass [14]). Let V↑(x) =V↓(x) be the harmonic
potential as (2.9) in d dimensions (d=1,2,3) and k0Ω 6=0. For the x-component xc(t) of the center-
of-mass xc(t) of the CGPEs (3.2) with any initial data Ψ(x,0) :=Ψ0(x) satisfying ‖Ψ0‖=1, we
have

xc(t)= x0cos(γxt)+
Px

0

γx
sin(γxt)−k0

∫ t

0
cos(γx(t−s))δN(s)ds, t≥0, (3.13)

where x0=
∫

Rd x∑j=↑,↓ |ψj(x,0)|2 dx and Px
0 =
∫

Rd ∑j=↑,↓ Im(ψj(x,0)∂xψj(x,0))dx. In addition,
if δ≈0, |k0| is small, β↑↑≈ β, β↑↓= β↓↑≈ β and β↓↓≈ β with β being a fixed constant, we can
approximate the solution xc(t) as follows: (i) If |Ω|=γx, we can get

xc(t)≈
(

x0−
k0

2
δN(0)t

)
cos(γxt)+

1

γx

(
Px

0 −
k0

2
δN(0)−sgn(Ω)

γxk0C0

2
t

)
sin(γxt), (3.14)

where C0=2Im
∫

Rd ψ↑(x,0)ψ↓(x,0)dx. (ii) If |Ω| 6=γx, we can get

xc(t)≈
(

x0+
k0C0

γ2
x−Ω2

)
cos(γxt)+

1

γx

(
Px

0 −
γ2

xk0δN(0)

γ2
x−Ω2

)
sin(γxt)

− k0C0

γ2
x−Ω2

cos(Ωt)+
k0δN(0)Ω

γ2
x−Ω2

sin(Ωt). (3.15)

Based on the above approximation, if |Ω|=γx or Ω
γx

is an irrational number, xc(t) is not periodic;

and if |Ω| 6= γx and Ω
γx

is a rational number, xc(t) is a periodic function, but its frequency is

different from the trapping frequency γx.

As in the experiments, the initial data of CGPEs (3.2) are usually prepared in a special
form, e.g. shift of the ground state Φg = (φ

g
↑,φ

g
↓)

T of (3.6) for the CGPEs (3.2), i.e., the
initial condition for (3.2) is chosen as

ψ↑(x,0)=φ
g
↑(x−x0), ψ↓(x,0)=φ

g
↓(x−x0), x∈R

d, (3.16)

where x0 = x0 in 1D, x0 = (x0,y0)T in 2D and x0 = (x0,y0,z0)T in 3D. Then we have the
approximate dynamical law for the center-of-mass in x-direction xc(t).

Theorem 3.5 (Approximation of center-of-mass [14]). Suppose V↑(x)=V↓(x) for x∈Rd are
harmonic potentials given in (2.9), and the initial data for the CGPEs (3.2) is taken as (3.16), then

we have (i) when |k0|2
|Ω| ≫1, the dynamics of the center-of-mass xc(t) can be approximated by the

ODE
ẍc(t)=−γ2

xxc(t), xc(0)= x0, ẋc(0)=0, (3.17)
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i.e., xc(t)=x0cos(γxt), which is the same as the case without SO coupling k0; (ii) when |k0|2
|Ω| ≪1,

β↑↑≈ β, β↑↓= β↓↑≈ β and β↓↓≈ β with β a fixed constant, the dynamics of the center-of-mass
xc(t) can be approximated by the following ODE

ẋc(t)=Px(t)− k0[2k0Px(t)−δ]√
[2k0Px(t)−δ]2+Ω2

, Ṗx(t)=−γ2
xxc(t), t≥0, (3.18)

with xc(0) = x0 and Px(0) = k0δN(0). In particular, the solution to (3.18) is periodic, and, in
general, its frequency is different from the trapping frequency γx.

3.3.2 Numerical methods and results

Different from the pseudo spin-1/2 case in Section 2.3.2, we propose a time splitting
Fourier spectral (TSFP) scheme for solving the CGPEs (3.2). Similarly, we truncate the
equations onto a bounded computational domain U, e.g. an interval [a,b] in 1D, a rectan-
gle [a,b]×[c,d] in 2D and a box [a,b]×[c,d]×[e, f ] in 3D, equipped with periodic boundary
conditions. Then from tn to tn+1, the CGPEs (3.2) can be solved in two steps. One first
solves for x∈U

i∂tψ↑=
(
−1

2
∇2+ik0∂x+

δ

2

)
ψ↑+

Ω

2
ψ↓,

i∂tψ↓=−
(

1

2
∇2+ik0∂x+

δ

2

)
ψ↓+

Ω

2
ψ↑,

(3.19)

for time step τ, followed by solving

i∂tψj=
(
Vj(x)+β j↑ |ψ↑|2+β j↓|ψ↓|2

)
ψj, j=↑,↓, x∈U, (3.20)

for another time step τ. Eq. (3.19) with periodic boundary conditions can be discretized
by the Fourier spectral method in space and then integrated in time exactly. Eq. (3.20)
leaves the densities |ψ↑| and |ψ↓| unchanged and it can be integrated in time exactly.
Then a full discretization scheme can be constructed via a combination of the splitting
steps (3.19) and (3.20) with a second-order or higher-order time-splitting method.

For the convenience of the readers, here we present the method in 1D for the simplic-
ity of notations. Extensions to 2D and 3D are straightforward. In 1D, let h=∆x=(b−a)/L
(L an even positive integer), xj = a+ jh (j=0,··· ,L), Ψn

j =(ψn
↑,j,ψ

n
↓,j)

T be the numerical ap-

proximation of Ψ(xj,tn)= (ψ↑(xj,tn),ψ↓(xj,tn))T, and for each fixed l =↑,↓, denote ψn
l to

be the vector consisting of ψn
l,j for j=0,1,··· ,L. From time t= tn to t= tn+1, a second-order

time-splitting Fourier pseudospectral (TSFP) method for the CGPEs (3.2) in 1D reads

Ψ
(1)
j =

L/2−1

∑
k=−L/2

eiµk(xj−a)QT
k e−

iτ
4 Uk Qk(Ψ̃n)k,

Ψ
(2)
j = e

−iτP
(1)
j Ψ

(1)
j , j=0,1,··· ,L,

Ψn+1
j =

L/2−1

∑
k=−L/2

eiµk(xj−a)QT
k e−

iτ
4 Uk Qk(Ψ̃(2))k,

(3.21)
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where for each fixed k=− L
2 ,− L

2+1,··· , L
2−1, µk=

2kπ
b−a , (Ψ̃n)k=((ψ̃n

↑)k,(ψ̃n
↓)k)

T with (ψ̃n
l )k=

1
L ∑

L−1
j=0 (ψ

n
l )je

i
2π jk

L being the discrete Fourier transform coefficients of ψn
l (l =↑,↓), Uk =

diag
(
µ2

k+2λk,µ2
k−2λk

)
is a diagonal matrix, and

Qk =




√
λk−χk√

2λk

Ω
2√

2λk(λk−χk)

−√
λk+χk√
2λk

Ω
2√

2λk(λk+χk)


 with χk= k0µk−

δ

2
, λk =

1

2

√
4χ2

k+Ω2,

and P
(1)
j =diag

(
V↑(xj)+ ∑

l=↑,↓
β↑l|ψ(1)

l,j |2,V↓(xj)+ ∑
l=↑,↓

β↓l|ψ(1)
l,j |2

)
for j=0,1··· ,L.

Example 3.2. To verify the asymptotic (or approximate) results for xc(t) in Theorem 3.4,
we take d=2, δ=0 and β↑↑=β↑↓=β↓↓=1 in (3.2), and choose the initial data as

ψ↑(x,0)=π−1/2e−
|x−x0|2

2 , ψ↓(x,0)=0, x∈R
2, (3.22)

where x0 =(1,1)T . The problem is solved numerically on a bounded domain [−16,16]2

by the TSFP method (3.21) with mesh size h=1/128 and time step τ=10−4. Fig. 6 depicts
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Figure 6: Time evolution of xc(t) for the CGPEs (3.2) as in Example 3.2 obtained numerically from its numerical
solution (i.e. labeled by ’xc(t)’ with solid lines) and asymptotically as Eqs. (3.14) and (3.15) in Theorem 3.4
(i.e. labeled by ’Eq.’ with ‘+ + +’) with Ω=20 and k0=1 for different γx: (a) γx=1, (b) γx=5, (c) γx=3π,
and (d) γx =20.
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Figure 7: Time evolution of xc(t) for the CGPEs (3.2) as in Example 3.2 obtained numerically from its numerical
solution (i.e. labeled as xc(t) with solid lines) and asymptotically as Eqs. (3.17) and (3.18) in Theorem 3.5 (i.e.
labeled as ’Eq.’ with ‘+ + +’) for different sets of parameters: (a) (Ω,k0)=(50,20), (b) and (c) (Ω,k0)=(2,2),
and (d) (Ω,k0)=(50,2).

time evolution of xc(t) obtained numerically and asymptotically as in Theorem 3.4 with
Ω = 20 and k0 = 1 for different γx. From this figure, we see that: for short time t, the
approximation given in Theorem 3.4 is very accurate; and when t≫1, it becomes inaccu-
rate. Similarly, to verify the asymptotic (or approximate) results for xc(t) in Theorem 3.5,
we take d= 2, δ= 0, γx =γy = 2 and β↑↑= β↑↓= β↓↓= 10 in the CGPEs (3.2), and choose
the initial data in (2.9) as (3.16) with x0 =(2,2)T and the ground state computed numer-
ically. Fig. 7 depicts time evolution of xc(t) obtained numerically and asymptotically as
in Theorem 3.5 with different Ω and k0.

3.4 Bogoliubov excitation

Similar to Section 2.4, to determine the Bogoliubov excitation spectrum, we consider
small perturbations around the ground state of the CGPEs (3.2) with Ω 6= 0. Assume
Φg(x)= (φ

g
↑(x),φ

g
↓(x))

T is a ground state of the CGPEs (3.2) with chemical potential µg,

we write perturbed wave function Ψ(x,t) as

Ψ(x,t)= e−iµg t
[
Φg(x)+u(x)e−iωt+v(x)eiωt

]
, (3.23)
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where ω is the frequency of perturbation and u(x)=(u↑,u↓)T and v(x)=(v↑,v↓)T are the
two vector amplitude functions. Plugging (3.23) into the CGPEs (3.2) and keep the linear
terms (w.r.t u and v), separating the e−i(µg+ω)t and e−i(µg−ω)t parts, we could find




L1+ik0∂x β↑↓φ
g
↓φ

g
↑+

Ω
2 β↑↑(φ

g
↑)

2 β↑↓φ
g
↓φ

g
↑

β↑↓φ
g
↓φ

g
↑+

Ω
2 L2−ik0∂x β↑↓φ

g
↑φ

g
↓ β↓↓(φ

g
↓)

2

−β↑↑(φ
g
↑)

2 −β↑↓φ
g
↓φ

g
↑ −L1+ik0∂x −β↑↓φ

g
↓φ

g
↑− Ω

2

−β↑↓φ
g
↑φ

g
↓ −β↓↓(φ

g
↓)

2 −β↑↓φ
g
↓φ

g
↑− Ω

2 −L2−ik0∂x







u↑
u↓
v↑
v↓


=ω




u↑
u↓
v↑
v↓


, (3.24)

where

L1=−1

2
∇2+V↑+

δ

2
+2β↑↑|φg

↑ |2+β↑↓|φg
↓ |2−µg, (3.25)

L2=−1

2
∇2+V↓−

δ

2
+β↑↓|φg

↑|2+2β↓↓|φg
↓ |2−µg. (3.26)

The Bogoliubov excitations are then determined by the Bogoliubov-de Gennes (BdG)
Eqs. (3.24).

3.5 Semiclassical scaling and limits

For strong interactions β jl≫1 (j,l=↑,↓) and harmonic trapping potentials (2.9), we rescale

(3.2) by choosing x→xε−1/2, ψj →ψε
j ε

d/4, ε=1/β
2/(d+2)
max , βmax =max{|β↑↑|,|β↑↓|,|β↓↓|},

which gives the following CGPEs

iε∂tψ
ε
↑=
[
− ε2

2
∇2+V↑(x)+ik0ε3/2∂x+

εδ

2
+ ∑

j=↑,↓
βε
↑j|ψε

j |2
]

ψε
↑+

εΩ

2
ψε
↓,

iε∂tψ
ε
↓=
[
− ε2

2
∇2+V↓(x)−ik0ε3/2∂x−

εδ

2
+ ∑

j=↑,↓
βε
↓j|ψε

j |2
]

ψε
↓+

εΩ

2
ψε
↑,

(3.27)

where βε
jl =

β jl

βmax
with βε

jl → β0
jl as ε→0+ and the potential functions are given in (2.9). It

is of great interest to study the behavior of (3.27) when the small parameter ε tends to 0,
i.e. the semiclassical limit. In the linear case, i.e. βε

jl =0 for j,l=↑,↓, (3.27) collapses to

iε∂tΨ
ε =

[
−ε2

2 ∆+ik0ε3/2∂x+
εδ
2 +V↑

εΩ
2

εΩ
2

−ε2

2 ∆−ik0ε3/2∂x− εδ
2 +V↓

]
Ψε, (3.28)

where Ψε = (ψε
↑,ψε

↓)
T. We now describe the limit as ε→ 0+ using the Wigner transform

instead of WKB approach in Section 2,

Wε(Ψε)(x,ξ)=(2π)−d
∫

Rd
Ψε(x−εv/2)⊗Ψε(x+εv/2)eiv·ξ dv, (3.29)
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where Wε is a 2×2 matrix-valued function. The symbol corresponds to (3.28) can be
written as

Pε(x,ξ)=
i

2
|ξ|2+i

[
k0ε1/2ξ1+V↑(x)+

εδ
2

εΩ
2

εΩ
2 −k0ε1/2ξ1+V↓(x)− εδ

2

]
, (3.30)

where ξ=(ξ1,ξ2,··· ,ξd)
T. Let us consider the principal part P of Pε=P+O(ε), i.e., we omit

small O(ε) terms, and we know that −iP(x,ξ) has two eigenvalues λ↑(x,ξ) and λ↓(x,ξ).
Let Πj (j=↑,↓) be the projection matrix from C2 to the eigenvector space associated with
λj. If λ↑,↓ are well separated, then Wε(Ψε) converges to the Wigner measure W0 which
can be decomposed as

W0=u↑(x,ξ,t)Π↑+u↓(x,ξ,t)Π↓ , (3.31)

where uj(x,ξ,t) (j=↑,↓) satisfies the Liouville equation

∂tuj(x,ξ,t)+∇ξ λj(x,ξ,t)·∇xuj(x,ξ,t)−∇xλj(x,ξ,t)·∇ξ uj(x,ξ,t)=0. (3.32)

It is known that such semi-classical limit fails at regions when λ↑ and λ↓ are close.
Specifically, when k0=O(1), δ=O(1) and Ω=O(1), the limit of the Wigner transform

Wε(Ψε) only has diagonal elements, and we have

P=
i

2
|ξ|2+i

[
V↑(x) 0

0 V↓(x)

]
, λ↑=

1

2
|ξ|2+V↑(x), λ↓=

1

2
|ξ|2+V↓(x). (3.33)

In the limit of this case, W0 in (3.31), Π↑ and Π↓ are diagonal matrices, which means
the two components of Ψε in (3.28) are decoupled as ε→ 0+. In addition, the Liouville
equation (3.32) is valid with λ↑ and λ↓ defined in (3.33).

Similarly, when k0=O(1/ε1/2), δ=O(1/ε) and Ω=O(1/ε), e.g. k0=
k∞

ε1/2 , Ω= Ω∞

ε and

δ= δ∞

ε with k∞, Ω∞ and δ∞ nonzero constants, the limit of the Wigner transform Wε(Ψε)
has nonzero diagonal and off-diagonal elements, and we have

P=
i

2
|ξ|2+i

[
k∞ξ1+V↑(x)+

δ∞

2
Ω∞

2
Ω∞

2 −k∞ξ1+V↓(x)− δ∞

2

]
, (3.34)

and

λ↑,↓=
|ξ|2

2
+

V↑(x)+V↓(x)
2

±

√
[V↑(x)−V↓(x)+2k∞ξ1+δ∞]2+Ω2

∞

2
. (3.35)

In the limit of this case, W0 in (3.31), Π1 and Π2 are full matrices, which means that the
two components of Ψε in (3.28) are coupled as ε→0+. Again, the Liouville equation (3.32)
is valid with λ↑ and λ↓ defined in (3.35).

Of course, for the nonlinear case, i.e. β0
jl 6= 0 for j,l =↑,↓, only the case when Ω= 0

has been addressed [89]. For Ω 6=0, it is still not clear about the semi-classical limit of the
CGPEs (3.27).
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4 Spin-1 BEC

When an optical trap is used to confine the particles instead of a magnetic trap, a spinor
condensate can be achieved experimentally. In current experiments, alkali atoms are
widely used and have an electron spin of 1/2 with a nuclear spin of 3/2 for 23Na, 87Rb
and 41Kb. Therefore, the hyperfine spin for these atoms as a consequence of the interac-
tion between the electron spin and the nuclear spin can be 1 or 2. In this section, we focus
on the spin-1 BEC.

4.1 The mathematical model

At temperature T much lower than the critical temperature Tc, a spin-1 condensate sub-
ject to an external uniform magnetic field B, can be described by the three-component
wave functions Ψ(x,t) = (ψ1(x,t),ψ0(x,t),ψ−1(x,t)T) (x ∈ R3) (ψl for the mF = l state,
l=−1,0,1) governed by the following CGPEs in 3D [76, 85, 107, 122] as

ih̄∂tψ1=
[

H̃−p0+q0+c0ρ+c1(ρ1+ρ0−ρ−1)
]

ψ1+c1 ψ̄−1ψ2
0,

ih̄∂tψ0=
[

H̃+c0ρ+c1(ρ1+ρ−1)
]

ψ0+2c1 ψ−1 ψ̄0ψ1,

ih̄∂tψ−1=
[

H̃+p0+q0+c0ρ+c1(ρ−1+ρ0−ρ1)
]

ψ−1+c1 ψ2
0 ψ̄1,

(4.1)

where the single particle Hamiltonian H̃ =− h̄2

2m∇2+Ṽ(x) with the trapping potential

Ṽ(x) usually chosen as the harmonic potential in (2.2), p0 =− µBB

2 and q0 =
µ2

BB2

4Ehfs
are the

linear and quadratic Zeeman energy shifts, respectively. Here µB = eh̄/me is the Bohr
magneton, e> 0 is the elementary charge and me is the electron mass, Ehfs is the hyper-
fine energy splitting [85]. ρ=∑l=−1,0,1ρl and ρl = |ψl |2 (l =−1,0,1) is the density of l-th

component; c0 =
g0+2g2

3 characterizes the spin-independent interaction (positive for re-

pulsive interaction and negative for attractive interaction) while c1 =
g2−g0

3 characterizes
the spin-exchange interaction (negative for ferromagnetic interaction and positive for an-

tiferromagnetic interaction) with g0 =
4πh̄2

m a0 (g2 =
4πh̄2

m a2), and a0 (a2) being the s-wave
scattering length for scattering channel of total hyperfine spin 0 (spin 2).

Similar to the CGPEs (2.1) for pseudo spin-1/2 condensate, introducing the scaling:

t → t/ωs with ωs = min{ωx,ωy,ωz}, x → x/xs with xs =
√

h̄
mωs

, ψl → ψl x
3/2
s /

√
N (l =

−1,0,1) with N being the total number of particles in the system, after a proper dimension
reduction process in 1D and 2D, the dimensionless CGPEs are obtained in d dimensions
(d=1,2,3) for Ψ=(ψ1,ψ0,ψ−1)

T as

i∂tψ1=[H+q−p+β0ρ+β1(ρ1+ρ0−ρ−1)]ψ1+β1 ψ̄−1ψ2
0,

i∂tψ0=[H+β0ρ+β1(ρ1+ρ−1)]ψ0+2β1 ψ−1 ψ̄0ψ1,

i∂tψ−1=[H+q+p+β0ρ+β1(ρ−1+ρ0−ρ1)]ψ−1+β1 ψ2
0 ψ̄1,

(4.2)
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where H=− 1
2∇2+V(x) and the dimensionless harmonic trapping potential V(x) is given

in (2.6). The linear and quadratic Zeeman terms are scaled according to p = p0

h̄ωs
and

q= q0

h̄ωs
. The dimensionless mean-field and spin-exchange interaction terms are now given

by β0 =
Nc0

x3
s h̄ωs

= 4πN(a0+2a2)
3xs

and β1 =
Nc2

x3
s h̄ωs

= 4πN(a2−a0)
3xs

in 3D; β0 =
4πN(a0+2a2)

3xs

√
γz√
2π

and

β1=
4πN(a2−a0)

3xs

√
γz√
2π

in 2D; β0=
4πN(a0+2a2)

3xs

√
γzγy

2π and β1=
4πN(a2−a0)

3xs

√
γzγy

2π in 1D.

Introduce the spin-1 matrices f=(fx,fy,fz)T as

fx =
1√
2




0 1 0
1 0 1
0 1 0


, fy=

i√
2




0 −1 0
1 0 −1
0 1 0


, fz =




1 0 0
0 0 0
0 0 −1


, (4.3)

and the spin vector F(Ψ)=(Fx(Ψ),Fy(Ψ),Fz(Ψ))T =(Fx,Fy,Fz)T =(Ψ∗fxΨ,Ψ∗fyΨ,Ψ∗fzΨ)T

(Ψ∗=Ψ
T

is the conjugate transpose) of the condensate can be expressed as

Fx =
1√
2

[
ψ1ψ0+ψ0(ψ1+ψ−1)+ψ−1ψ0

]
,

Fy=
i√
2

[
−ψ1ψ0+ψ0(ψ1−ψ−1)+ψ−1ψ0

]
,

Fz= |ψ1|2−|ψ−1|2,

(4.4)

and the CGPEs (4.2) can be written in the compact form as

i∂tΨ=[H+β0ρ−pfz+qf2
z+β1F·f]Ψ, (4.5)

where F·f=Fxfx+Fyfy+Fzfz and ρ= |Ψ|2 =∑
1
l=−1 |ψl |2.

The CGPEs (4.2) (or (4.5)) conserve the following three important quantities, i.e. the
mass (or normalization)

N(Ψ(·,t)) :=‖Ψ(·,t)‖2 =
∫

Rd
∑

l=−1,0,1

|ψl(x,t)|2 dx=N(Ψ(·,0))=1, (4.6)

the magnetization (with M∈ [−1,1])

M(Ψ(·,t)) :=
∫

Rd
∑

l=−1,0,1

l|ψl(x,t)|2 dx=M(Ψ(·,0))=M, (4.7)

and the energy per particle

E(Ψ(·,t))=
∫

Rd

{
1

∑
l=−1

(
1

2
|∇ψl |2+(V(x)−pl+ql2)|ψl |2

)

+
β0

2
|Ψ|4+ β1

2
|F|2

}
dx≡E(Ψ(·,0)), t≥0. (4.8)

In practice, introducing ψl→e−ilptψl in the CGPEs (4.2) (or (4.5)), the system is unchanged
and it is thus reasonable to assume the linear Zeeman term p= 0 in the subsequent dis-
cussion. On the other hand, it is easy to observe from (4.8) that the linear Zeeman term
does not contribute to the energy due to the magnetization conservation (4.7).
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4.2 Ground states

The ground state Φg(x) of the spin-1 BEC described by the CGPEs (4.2) is obtained from
the minimization of the energy functional subject to the conservation of total mass and
magnetization:

Find
(
Φg ∈SM

)
such that

Eg :=E
(
Φg

)
= min

Φ∈SM

E(Φ) , (4.9)

where the nonconvex set SM is defined as

SM=

{
Φ=(φ1,φ0,φ−1)

T | ‖Φ‖=1,
∫

Rd

[
|φ1(x)|2−|φ−1(x)|2

]
dx=M, E(Φ)<∞

}
. (4.10)

This is a nonconvex minimization problem and the Euler-Lagrange equations associated
to the minimization problem (4.9) read:

(µ+λ)φ1(x)=

[
−1

2
∇2+V(x)−p+q+(β0+β1)

(
|φ1|2+|φ0|2

)
+(β0−β1)|φ−1|2

]
φ1

+β1 φ̄−1φ2
0, (4.11)

µ φ0(x)=

[
−1

2
∇2+V(x)+(β0+β1)

(
|φ1|2+|φ−1|2

)
+β0|φ0|2

]
φ0

+2β1 φ−1 φ̄0φ1, (4.12)

(µ−λ)φ−1(x)=

[
−1

2
∇2+V(x)+p+q+(β0+β1)

(
|φ−1|2+|φ0|2

)
+(β0−β1)|φ1|2

]
φ−1

+β1 φ2
0φ̄1. (4.13)

Here µ and λ are the Lagrange multipliers (or chemical potentials) corresponding to the
normalization constraint (5.8) and the magnetization constraint (5.9), respectively.

4.2.1 Mathematical theories

We collect the existence and uniqueness results on the ground state (4.9) below.

Theorem 4.1 (Existence and uniqueness [95]). Suppose lim|x|→∞V(x)=+∞, there exists a

ground state Φg =(φ
g
1 ,φ

g
0 ,φ

g
−1)

T ∈SM of (4.9) for the spin-1 BEC governed by the CGPEs (4.2),
if one of the following conditions holds

(i) d=1;

(ii) d = 2, M =±1 and β0+β1 >−Cb or M ∈ (−1,1) and β0+β1 >−Cb with β1 ≤ 0, or

M∈ (−1,1), β0+β1>
−2Cb

1+|M| and β0 ≥− C2
b+β1Cb

β1(1−M2)+Cb
with β1 >0;

(iii) d=3, M=±1 and β0+β1≥0 or M∈ (−1,1) and β0≥0, β0+β1≥0.
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In particular, (eiθ1 φ
g
1 ,eiθ0 φ

g
0 ,eiθ−1 φ

g
−1)

T ∈SM with real constants θ1+θ−1−2θ0 =2kπ (k∈Z) if
β1 6=0 or arbitrary constants θl (l=−1,0,1) if β1 =0, is also a ground state of (4.9). Moreover,
the ground state can be chosen as (|φg

1 |,−sgn(β1)|φg
0 |,|φ

g
−1|)T (β1 6=0) and (|φg

1 |,|φ
g
0 |,|φ

g
−1|)T

(β1=0). These special ground states are unique if one of the following conditions holds

(i)′ when M=±1, β0+β1≥0;

(ii)′ when M∈ (−1,1) and q=0, β1>0 and β0≥0 or β1<0 and β0+β1≥0.

When M∈ (−1,1), q=0 and β1 =0, the ground states with nonnegative components are of the
form (

√
1+M−α0/2φ,

√
α0φ,

√
1−M−α0/2φ) with φ:=φ(x)≥0 and 0≤α0≤1−|M|. On the

other hand, there exists no ground state of (4.9), i.e. infΦ∈SM
E(Φ)=−∞, if one of the following

conditions holds

(i)′′ d= 2, if M=±1 and β0+β1 ≤−Cb or M∈ (−1,1) and β0+β1 ≤−Cb with β1 ≤ 0, or

M∈ (−1,1), β1>0, β0+β1≤ −2Cb

1+|M| or β0<−Cb−M2β1;

(ii)′′ d=3, β0+β1<0 or M∈ (−1,1) and β0<0.

When M=±1, the ground state of (4.9) collapses to a single component case which
has been widely studied [15]. Most of the results in Theorem 4.1 can be drawn from the
following observations when the quadratic Zeeman term is absent in the CGPEs (4.2),
i.e. q = 0. Firstly, when q = 0 and M ∈ (−1,1), for the ferromagnetic system β1 < 0, we
have the single mode approximation (SMA), i.e. each component of the ground state Φg

is identical up to a constant factor [20, 95].

Theorem 4.2 (Single mode approximation (SMA) [95]). Suppose lim|x|→∞V(x)=+∞, q=0,
M ∈ (−1,1), β1 < 0 and the existence conditions in Theorem 4.1 hold, the ground state Φg =

(φ
g
1 ,φ

g
0 ,φ

g
−1)

T ∈SM satisfies φ
g
l = eiθl αlφg, (θ1+θ−1−2θ0 =2kπ, k∈Z), where φg is the unique

positive minimizer of the energy functional

ESMA(φ)=
∫

Rd

[
1

2
|∇φ|2+V(x)|φ|2+ β0+β1

2
|φ|4

]
dx, (4.14)

under the constraint ‖φ‖=1, and α1=
1+M

2 , α−1=
1−M

2 , α0=
√

1−M2

2 .

Secondly, when q = 0 and M ∈ (−1,1), for the anti-ferromagnetic system β1 > 0, we
have the vanishing phenomenon, i.e. the ground state Φg =(φ

g
1 ,φ

g
0 ,φ

g
−1)

T satisfies φ
g
0 =0.

Theorem 4.3 (Two-component case [95]). Suppose lim|x|→∞V(x)=+∞, q≤0, M∈(−1,1),

β1>0 and the existence conditions in Theorem 4.1 hold, the ground state Φg=(φ
g
1 ,φ

g
0 ,φ

g
−1)

T∈SM

satisfies φ
g
0 = 0, and Φ̃g = (φ

g
1 ,φ

g
−1)

T is a minimizer of the pseudo spin-1/2 system given in

Section 2 described by (2.42) with δ=0, ν= 1+M
2 and β↑↑=β↓↓=β0+β1, β↑↓=β0−β1.

When quadratic Zeeman effects are considered, the above Theorems 4.2 and 4.3 are
generally no longer valid, more rich phases will appear in the spin-1 system.
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4.2.2 Numerical methods and results

To compute the ground state (4.9), we generalize the GFDN method in Section 2.2.2. We
start with the following CNGF for Φ=(φ1,φ0,φ−1)

T [35]

∂tφ1(x,t)=

[
1

2
∇2−V(x)−q−(β0+β1)

(
|φ1|2+|φ0|2

)
−(β0−β1)|φ−1|2

]
φ1

−β1 φ̄−1φ2
0+[µΦ(t)+λΦ(t)]φ1, (4.15)

∂tφ0(x,t)=

[
1

2
∇2−V(x)−(β0+β1)

(
|φ1|2+|φ−1|2

)
−β0|φ0|2

]
φ0

−2β1 φ−1 φ̄0φ1+µΦ(t)φ0, (4.16)

∂tφ−1(x,t)=

[
1

2
∇2−V(x)−q−(β0+β1)

(
|φ−1|2+|φ0|2

)
−(β0−β1)|φ1|2

]
φ−1

−β1 φ2
0 φ̄1+[µΦ(t)−λΦ(t)]φ−1, (4.17)

where µΦ(t) and λΦ(t) are Lagrange multipliers such that the normalization condition
(4.6) and the magnetization constraint (4.7) are preserved during the evolution. For given
initial data Φ(x,t=0)=Φ(0) satisfying ‖Φ(x,t=0)‖=1 and M(Φ(·,t=0))=M, the above
CNGF (4.15)-(4.17) will preserve the constraints (4.6) and (4.7), while the energy is dimin-
ishing.

We approximate the CNGF (4.15)-(4.17) following the spin-1/2 system case in Sec-
tion 2.2.2, resulting in the GFDN below, for t∈ [tn−1,tn) (n≥1), one solves

∂tφ1=

[
1

2
∇2−V(x)−q−(β0+β1)(|φ1|2+|φ0|2)−(β0−β1)|φ−1|2

]
φ1−β1 φ̄−1φ2

0, (4.18)

∂tφ0=

[
1

2
∇2−V(x)−(β0+β1)

(
|φ1|2+|φ−1|2

)
−β0|φ0|2

]
φ0−2β1 φ−1 φ̄0φ1, (4.19)

∂tφ−1=

[
1

2
∇2−V(x)−q−(β0+β1)(|φ−1|2+|φ0|2)−(β0−β1)|φ1|2

]
φ−1−β1 φ2

0 φ̄1, (4.20)

followed by a projection step as

φl(x,tn) :=φl(x,t+n )=σn
l φl(x,t−n ), x∈R

d, n≥1, l=−1,0,1, (4.21)

where φl(x,t±n )= limt→t±n φl(x,t) (l =−1,0,1) and the projection constants σn
l (l =−1,0,1)

are chosen such that

‖Φ(·,tn)‖2=
1

∑
l=−1

‖φl(·,tn)‖2=1, ‖φ1(·,tn)‖2−‖φ−1(·,tn)‖2=M. (4.22)

Similar to the pseudo spin-1/2 BEC case, there are three projection constants to be de-
termined, i.e. σn

l (l =−1,0,1) in (4.21), and there are only two equations, i.e. (4.22), to
fix them, we need to find another condition so that the three projection constants are
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uniquely determined. Again, in fact, the above GFDN can be viewed as a split-step
discretization of the CNGF (4.15)-(4.17) and the projection step is equivalent to solve
∂tφl(x,t)=[µΦ(t)+lλΦ(t)]φl(x,t) (l=−1,0,1). From this observation, we can find another
condition for the projection constants in (4.21) as [27, 94]

σn
1 σn

−1=(σn
0 )

2. (4.23)

Solving (4.22)-(4.23), we get explicitly the projection constants

σn
0 =

√
1−M2

[
‖φ0(·,t−n )‖2+

√
4(1−M2)‖φ1(·,t−n )‖2‖φ−1(·,t−n )‖2+M2‖φ0(·,t−n )‖4

]1/2
, (4.24)

and

σn
1 =

√
1+M−(σn

0 )
2‖φ0(·,t−n )‖2

√
2 ‖φ1(·,t−n )‖

, σn
−1=

√
1−M−(σn

0 )
2‖φ0(·,t−n )‖2

√
2 ‖φ−1(·,t−n )‖

. (4.25)

To fully discretize the GFDN (4.18)-(4.21) together with the projection constants (4.24)-
(4.25), we use backward Euler scheme in temporal discretization and one can choose fi-
nite difference method, or spectral method or finite element method for spatial discretiza-
tion [27, 35]. For simplicity, we omit the detail here.

Example 4.1. To show the ground states of the spin-1 BEC, we take d = 1, p = q = 0,
V(x)=x2/2+25sin2

(
πx
4

)
in (4.2). Two different types of interaction strengths are chosen

as

• Case I. For 87Rb with dimensionless quantities in (4.2) used as β0 = 0.0885N, and
β1 =−0.00041N with N the total number of atoms in the condensate and the di-
mensionless length unit xs =2.4116×10−6 [m] and time unit ts =0.007958 [s].

• Case II. For 23Na with dimensionless quantities in (4.2) used as β0 = 0.0241N, and
β1=0.00075N, with N the total number of atoms in the condensate and the dimen-
sionless length unit xs =4.6896×10−6 [m] and time unit ts =0.007958 [s].

The ground states are computed numerically by the backward Euler sine pseudospec-
tral method presented in [27]. Fig. 8 shows the ground state solutions of 87Rb in case I
with N=104 for different magnetizations M. Fig. 9 shows similar results for 23Na in case
II. For the cases when q = 0 in Theorems 4.2&4.3, the minimization problem (4.9) can
be reduced to a single component and a two component system, respectively, where the
numerical methods could be simplified [20].

We remark here that there is another type of ground state of the spin-1 BEC, especially
with an Ioffe-Pritchard magnetic field B(x), in the literatures [20, 70], which is defined as
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Figure 8: Wave functions of the ground state, i.e., φ
g
1 (x) (dashed line), φ

g
0 (x) (solid line), and φ

g
−1(x) (dotted

line), of 87Rb in Example 4.1 case I with a fixed number of particles N = 104 for different magnetizations
M=0,0.2,0.5,0.9 in an optical lattice potential.
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line), of 23Na in Example 4.1 case II with N=104 for different magnetizations M=0,0.2,0.5,0.9 in an optical
lattice potential.
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the minimizer of the energy functional subject to the conservation of total mass:
Find

(
Φ̃g ∈S

)
such that

Ẽg :=E
(
Φ̃g

)
=min

Φ∈S
E(Φ), (4.26)

where the nonconvex set S is defined as

S=
{

Φ=(φ1,φ0,φ−1)
T | ‖Φ‖=1, E(Φ)<∞

}
. (4.27)

For the analysis and numerical simulation of this type of the ground state of spin-1 BEC,
we refer to [20,57,70] and references therein. In addition, when there is no Ioffe-Pritchard
magnetic field in the spin-1 BEC, the ground state Φ̃g defined in (4.26) can be computed
from the ground state Φg in (4.9) as

Ẽg :=E
(
Φ̃g

)
=min

Φ∈S
E(Φ)= min

−1≤M≤1
E
(
Φg

)
= min

−1≤M≤1
min

Φ∈SM

E(Φ) . (4.28)

4.3 Dynamics

For a spin-1 system governed by the CGPEs (4.2) (or (4.5)), define the mass (or density)
of each spin component as

Nl(t) :=
∫

Rd
|ψl(x,t)|2 dx, t≥0, l=−1,0,1, (4.29)

and the condensate width as

σα(t)=
√

δα(t)=
√

δα,1(t)+δα,0(t)+δα,−1(t), α= x,y,z, (4.30)

where

δα,l(t)= 〈α2〉l(t)=
∫

Rd
α2|ψl(x,t)|2dx, t≥0, l=1,0,−1. (4.31)

4.3.1 Dynamical properties

The most interesting property would be the change of density Nl(t) w.r.t time t [37].

Lemma 4.1. Suppose Ψ(x,t) is the solution of the CGPEs (4.2) for spin-1 BEC, then we have

Ṅ1(t)= Ṅ−1(t)= F̃(t), Ṅ0(t)=−2F̃(t), (4.32)

with Nl(0)=
∫

Rd |ψl(x,0)|2 dx (l=−1,0,1) and

F̃(t)=2β1 Im
∫

Rd
ψ̄−1ψ2

0ψ̄1 dx, t≥0. (4.33)

For the condensate width, we have the following results.
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Lemma 4.2. Suppose Ψ(x,t) is the solution of the CGPEs (4.2), then we have

δ̈α(t)=
∫

Rd

[
1

∑
l=−1

(
2|∂αψl |2−2α|ψl |2∂αV(x)

)
+β0|Ψ|2+β1|F(Ψ)|2

]
dx, t≥0, (4.34)

δα(0)=
∫

Rd
α2
(
|ψ1(x,0)|2+|ψ0(x,0)|2+|ψ−1(x,0)|2

)
dx, α= x,y,z, (4.35)

δ̇α(0)=2
1

∑
l=−1

∫

Rd
αIm

(
ψl(x,0)∂αψl(x,0)

)
dx. (4.36)

Lemma 4.3. Suppose Ψ(x,t) is the solution of the CGPEs (4.2), q=0 and V(x) is the harmonic
potential in (2.9), then we have

(i) In 1D without nonlinear terms, i.e. d=1, β0=β1=0 in (4.2), for any initial data Ψ(x,0)=
Ψ(0)(x), we have,

δx(t)=
E(Ψ(0))

γ2
x

[1−cos(2γxt)]+δx(0)cos(2γxt)+
δ̇x(0)

2γx
sin(2γxt). (4.37)

(ii) In 2D with a radially symmetric trap, i.e. d=2, γx=γy :=γr and β1=0 in (5.7), for any

initial data Ψ(x,0)=Ψ(0)(x,y), we have, for any t≥0,

δr(t)=
E(Ψ(0))

γ2
r

[1−cos(2γrt)]+δ
(0)
r cos(2γrt)+

δ
(1)
r (0)

2γr
sin(2γrt), (4.38)

where δr(t)=δx(t)+δy(t), δ
(0)
r :=δx(0)+δy(0) and δ

(1)
r := δ̇x(0)+ δ̇y(0).

Let Φs := Φs(x) be a stationary state of the CGPEs (4.2), i.e. Φs solves the Euler-
Lagrange system (4.11)-(4.13) with chemical potentials µs and λs. If the initial data Ψ(x,0)
for the CGPEs (4.2) is chosen as a stationary state with its center-of-mass shifted from
the trap center, we can construct an exact solution of the CGPEs (4.2) with a harmonic
oscillator potential (2.9).

Lemma 4.4. If the initial data Ψ(x,0) for the CGPEs (4.2) is chosen as

Ψ(x,0)=Φs(x−x0)e
i(a(0)·x+b(0)), x∈R

d, (4.39)

where x0 is a given point in Rd, a(0)=(a
(0)
1 ,··· ,a(0)d )T is a given vector in Rd and b(0) is a given

real number, then the exact solution of (4.2) with the initial data (4.39) satisfies:

ψl(x,t)=φs
l (x−xc(t)) e−i(µs+lλs)t ei(a(t)·x+b(t)), x∈R

d, t≥0, l=−1,0,1, (4.40)

where for any time t≥0, xc(t) satisfies the following second-order ODE system:

ẍc(t)+Λxc(t)=0, (4.41)

xc(0)=x0, ẋc(0)=a(0). (4.42)
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In addition, a(t)=(a1(t),··· ,ad(t))
T and b(t) satisfy

ȧ(t)=−Λxc(t), ḃ(t)=−1

2
|a(t)|2− 1

2
xc(t)

T Λxc(t), t>0, (4.43)

with initial data a(0)= a(0), b(0)= b(0) and Λ=diag(γ2
x) in 1D, Λ=diag(γ2

x,γ2
y) in 2D and

Λ=diag(γ2
x,γ2

y,γ2
z) in 3D.

4.3.2 Numerical methods and results

To compute the dynamics, we numerically solve the Cauchy problem for the CGPEs (4.2).
The time splitting technique can be used here, and the basic idea is to divide the evolution
of the CGPEs (4.2) into several subproblems which are much easier to deal with. In
[37,129], the nonlinear subproblem are not integrated exactly and are solved by numerical
quadratures. Recently, Symes et al. [124] proposed a time-splitting scheme where the
nonlinear subproblem are solved exactly and we will introduce the procedure below.

After truncating the CGPEs (4.2) (or (4.5)) onto a bounded domain with homogeneous
Dirichlet boundary conditions or periodic boundary conditions, we solve (4.2) (or (4.5))
from time tn =nτ to tn+1= tn+τ through the following subproblems. One first solves

i
∂ψl

∂t
=
(
− 1

2
∇2−pl+ql2

)
ψl, l=−1,0,1, (4.44)

for the time step of length τ, followed by solving

i∂tΨ=[V(x)+β0|Ψ|2+β1(Fxfx+Fyfy+Fzfz)]Ψ, (4.45)

for the same time step. Again, (4.44) can be integrated exactly in phase space. For (4.45),
noticing fα (α=x,y,z) are Hermitian matrices and satisfy the commutator relations [fx,fy]=
fxfy−fyfx = ifz, [fy,fz] = ifx and [fz,fx] = ify, we find ∂t|Ψ(x,t)|2 = 0 (t∈ (tn ,tn+1)) and for
α= x,y,z,

∂t(Ψ
∗ fαΨ)=Im(Ψ∗ fα[V(x)+β0|Ψ|2+β1(Fx(Ψ)fx+Fy(Ψ)fy+Fz(Ψ)fz)]Ψ)

−Im(Ψ∗[V(x)+β0|Ψ|2+β1(Fx(Ψ)fx+Fy(Ψ)fy+Fz(Ψ)fz)]
∗ fαΨ)

=2Im
(

Fx(Ψ)Ψ∗[fα,fx]Ψ+Fy(Ψ)Ψ∗[fα,fy]Ψ+Fz(Ψ)Ψ∗[fα,fz]Ψ
)
=0,

which implies that the spin vector components Fα(Ψ(x,t)) = Fα(Ψ(x,tn)) (t ∈ (tn,tn+1)).
Now, it is clear that (4.45) becomes a linear ODE with solution

Ψ(x,t)= e−i(t−tn)[V(x)+β0|Ψ(x,tn)|2+β1(Fn
x fx+Fn

y fy+Fn
z fz)]Ψ(x,tn), t∈ [tn ,tn+1], (4.46)

where the spin vector Fn =(Fn
x ,Fn

y ,Fn
z )

T is evaluated using Ψ(x,tn), i.e. Fn
α = Fα(Ψ(x,tn)).

Denote the matrix Sn =Fn
x fx+Fn

y fy+Fn
z fz with detailed form as

Sn=




Fn
z

1√
2

Fn
− 0

1√
2

Fn
+ 0 1√

2
Fn
−

0 1√
2

Fn
+ −Fn

z


, Fn

+=F
n
−=Fn

x +iFn
y , (4.47)
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and then Ψ̃(x,t)= ei(t−tn)(V(x)+β0|Ψ(x,tn)|2)Ψ(x,t) (t∈ [tn ,tn+1]) satisfies

Ψ̃(x,t)= e−i(t−tn)β1Sn
Ψ̃(x,tn), t∈ [tn ,tn+1]. (4.48)

Now Sn has eigenvalues 0 and ±|Fn|, and the eigenvector corresponding to 0 is

en =
1

|Fn|

(
− 1√

2
Fn
−,Fn

z ,
1√
2

Fn
+

)T

. (4.49)

By computation, it is easy to verify (en)∗Ψ̃(x,t)=(en)∗Ψn=0 (t∈ [tn ,tn+1]). Therefore, we
have (Sn)2Ψ̃= |Fn|2Ψ̃ and the exponential of Sn can be computed as

Ψ̃(x,t)=cos(β1(t−tn)|Fn|)Ψ(x,tn)−i
sin(β1(t−tn)|Fn|)

|Fn| SnΨ(x,tn), (4.50)

where we used the fact that Ψ̃(x,tn)=Ψ(x,tn). The ODE (4.45) can be solved exactly as

Ψ(x,tn+1)= e−iτ(V(x)+β0|Ψ(x,tn)|2)
(

cos(β1τ|Fn|)Ψ(x,tn)−i
sin(β1τ|Fn|)

|Fn| SnΨ(x,tn)
)

. (4.51)

Let Ψn =(ψn
1 ,ψn

0 ,ψn
−1)

T be the numerical approximation of Ψ(x,t) at tn =nτ. Combining
the subproblems (4.44) and (4.45) via Strang Splitting, we obtain a second order semi-
discretization in time as: from tn to tn+1,

ψ
(1)
l = eiτ( 1

2∇2+pl−ql2)/2ψn
l , l=−1,0,1, (4.52)

Ψ(2)= e−iτ(V(x)+β0|Ψ(1)|2)
(

cos(β1τ|F(1)|)Ψ(1)−i
sin(β1τ|F(1)|)

|F(1)| S(1)Ψ(1)

)
, (4.53)

ψn+1
l = eiτ( 1

2∇2+pl−ql2)/2ψ
(2)
l , l=−1,0,1, (4.54)

where the spin vector F(1) = F(Ψ(1)) = (F
(1)
x ,F

(1)
y ,F

(1)
z )T and S(1) is given in (4.47) with

elements computed from F(1). The above splitting procedure (4.52)-(4.54) can be imple-
mented with Fourier/sine/cosine spectral method for periodic/homogeneou Dirichlet/
homogeneous Neumann boundary conditions for spatial discretizations, respectively,
and we refer to [15] for detail.

Example 4.2. To show the dynamics of spin-1 BEC, we take d=1, p=q=0, β0=100, β1=2
and V(x)= 1

2 x2 in the CGPEs (4.2). The initial data is taken as

ψ1(x,0)=ψ−1(x,0)=

√
0.05

π
1
4

e
−x2

2 , ψ0(x,0)=

√
0.9

π
1
4

e
−x2

2 , x∈R.

The problem is solved on a bounded domain [−10,10] with h= 5/128 and τ = 10−3 by
the TSSP method [15]. Fig. 10 shows that the total normalization N=N1+N0+N−1, the
magnetization M(t)=N1−N−1 and the energy E :=E(t) are conserved very well.
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Figure 10: Time evolutions of the total normalization N(t) and the magnetization M(t)=N1−N−1 (left); and
the energy E and condensate width δ := δx (right) in Example 4.2.

5 Spin-2 BEC

In recent experiments, spin-2 BEC has been realized in 87Rb and 23Na systems with F=
2. The spin-2 condensates exhibit rich phenomenon, and many properties have been
investigated including magnetic phases, charged vortices, and the phase separation, etc.
Below, we briefly discuss the mathematical model, mathematical theories and numerical
methods.

5.1 The mathematical model

At temperature T much smaller than the critical temperature Tc [85], a spin-2 BEC can
be well described by the spin-2 vector wave function Ψ :=Ψ(x,t)= (ψ2,ψ1,ψ0,ψ−1,ψ−2)T

(ψl for mF = l state, l =−2,−1,0,1,2) governed by the CGPEs in the compact form as
[76, 85, 107, 122]:

ih̄∂tΨ=[H̃+c0ρ− p̃fz+ q̃f2
z+c1F·f]Ψ+c2 A00AΨ, (5.1)

where as described in section 4.1, H̃ =− h̄2

2m∇2+Ṽ(x) is the single particle Hamiltonian,
p̃ and q̃ are the linear and quadratic Zeeman energy shifts, respectively. ρ = |Ψ|2 =
∑

2
l=−2 |ψl |2 is the total density. c0 =

4g2+3g4

7 , c1 =
g4−g2

7 and c2 =
7g0−10g2+3g4

7 characterizes
the spin-independent interaction, spin-exchange interaction and spin-singlet interaction,

respectively, with gk =
4πh̄2

m ak (k = 0,2,4) and ak being the s-wave scattering length for
scattering channel of total hyperfine spin k. The spin-2 matrices f=(fx,fy,fz)T are given
as

fx =




0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0




, fy= i




0 −1 0 0 0

1 0 −
√

3
2 0 0

0
√

3
2 0 −

√
3
2 0

0 0
√

3
2 0 −1

0 0 0 1 0




(5.2)
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and
fz =diag(2,1,0,−1,−2), (5.3)

and the spin vector F=F(Ψ)=(Fx,Fy,Fz)T with Fα=Ψ∗fαΨ (α= x,y,z) is given as

Fx =ψ2ψ1+ψ1ψ2+ψ−2ψ−1+ψ−1ψ−2+

√
6

2
(ψ1ψ0+ψ0ψ1+ψ0ψ−1+ψ−1ψ0),

Fy= i

[
ψ1ψ2−ψ2ψ1+ψ−2ψ−1−ψ−1ψ−2+

√
6

2
(ψ0ψ1−ψ1ψ0+ψ−1ψ0−ψ0ψ−1)

]
,

Fz =2|ψ2|2+|ψ1|2−|ψ−1|2−2|ψ−2|2,

(5.4)

with F·f=Fxfx+Fyfy+Fzfz. The matric A is

A=
1√
5




0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0




, (5.5)

and A00 :=A00(Ψ)=ΨTAΨ with

A00=
1√
5
(2ψ2ψ−2−2ψ1ψ−1+ψ2

0). (5.6)

Here, we adopt notations similar to the spin-1 case, while there should be no confusion
about such abuse of notations.

Similar to Section 4.1, introducing the scaling: t → t/ωs with ωs = min{ωx,ωy,ωz},

x → x/xs with xs =
√

h̄
mωs

, ψl → ψlx
3/2
s /

√
N (l = −2,−1,0,1,2) with N being the total

number of particles in the system, after a proper dimension reduction process in 1D and
2D, the dimensionless CGPEs for spin-2 BEC are obtained in d dimensions (d=1,2,3) for
Ψ=(ψ2,ψ1,ψ0,ψ−1,ψ−2)T as

i∂tΨ=[H+β0ρ−pfz+qf2
z+β1F·f]Ψ+β2 A00AΨ, (5.7)

where the Hamiltonian H, linear and quadratic Zeeman parameters p and q, ρ= |Ψ|2 are
the same as the spin-1 case in Section 4.1, and interaction parameters

β0 =
4πN(4a2+3a4)

7xs
, β1 =

4πN(a4−a2)

7xs
, β2=

4πN(7a0−10a2+3a4)

7xs
in 3D;

β0 =
4πN(4a2+3a4)

7xs

√
γz√
2π

, β1=
4πN(a4−a2)

7xs

√
γz√
2π

,

β2 =
4πN(7a0−10a2+3a4)

7xs

√
γz√
2π

in 2D;

β2 =
4πN(7a0−10a2+3a4)

7xs

√
γzγy

2π
, β0=

4πN(4a2+3a4)

7xs

√
γzγy

2π
,
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β1=
4πN(a4−a2)

7xs

√
γzγy

2π
in 1D.

The CGPEs (5.7) conserve the following three important quantities, i.e. the mass (or nor-
malization)

N(Ψ(·,t)) :=‖Ψ(·,t)‖2 =
∫

Rd

2

∑
l=−2

|ψl(x,t)|2 dx=N(Ψ(·,0))=1, (5.8)

the magnetization (with M∈ [−2,2])

M(Ψ(·,t)) :=
∫

Rd

2

∑
l=−2

l|ψl(x,t)|2 dx=M(Ψ(·,0))=M, (5.9)

and the energy per particle

E(Ψ(·,t))=
∫

Rd

{ 2

∑
l=−2

(1

2
|∇ψl |2+(V(x)−pl+ql2)|ψl |2

)

+
β0

2
|Ψ|4+ β1

2
|F|2+ β2

2
|A00|2

}
dx≡E(Ψ(·,0)). (5.10)

In practice, introducing ψl → e−ilptψl in the CGPEs (5.7), the system is unchanged and it
is thus reasonable to assume the linear Zeeman term p=0 in the subsequent discussion.
On the other hand, it is easy to observe from (5.10) that the linear Zeeman term does not
contribute to the energy due to the magnetization conservation (5.9).

5.2 Ground states

The ground state Φg(x) of the spin-2 BEC described by the CGPEs (5.7) can be obtained
from the minimization of the energy functional (5.10) subject to the conservation of total
mass and magnetization:

Find
(
Φg ∈SM

)
such that

Eg :=E
(
Φg

)
= min

Φ∈SM

E(Φ) , (5.11)

where the nonconvex set SM is defined as

SM =

{
Φ=(φ2,φ1,φ0,φ−1,φ−2)

T | ‖Φ‖=1,
∫

Rd

2

∑
l=−2

l|φl(x)|2 dx=M, E(Φ)<∞

}
. (5.12)

This is a nonconvex minimization problem and the Euler-Lagrange equations associated
to the minimization problem (4.9) read:

(µ±2λ)φ±2(x)= [H∓2p+4q+β0ρ±2β1Fz]φ±2+β1 F∓φ±1+
β2√

5
A00φ∓2, (5.13)
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(µ±λ)φ±1(x)= [H∓p+q+β0ρ±β1Fz]φ±1+β1

(√
6

2
F∓φ0+F±φ±2

)
− β2√

5
A00φ∓1,

µ φ0(x)= [H+β0ρ]φ0+

√
6

2
β1(F+φ1+F−φ−1)+

β2√
5

A00φ0, (5.14)

where H =− 1
2∇2+V(x), F+ = F− = Fx+iFy. Here µ and λ are the Lagrange multipli-

ers (or chemical potentials) corresponding to the normalization constraint (5.8) and the
magnetization constraint (5.9), respectively.

5.2.1 Mathematical theories

We collect the existence and uniqueness results on the ground state (5.11) below.

Theorem 5.1 (Existence and uniqueness [45]). Suppose lim|x|→∞V(x) = +∞, there exists

a ground state Φg = (φ
g
2 ,φ

g
1 ,φ

g
0 ,φ

g
−1,φ

g
−2)

T ∈ SM of (5.11) of the spin-2 BEC governed by the
CGPEs (5.7), if one of the following conditions holds

(i) d=1;

(ii) d=2, if M=±2 and β0+4β1 >−Cb; or M∈ (−2,2), β0+4β1>−Cb

with β2/20>β1 and β1<0; or M∈ (−2,2), β0+4β1>−4Cb/(2+|M|),

β0≥−C2
b+4Cbβ1+((4−M2)/100)β2(20β1−β2)

Cb+((4−M2)/20)(20β1−β2)

with β2<0 and β2/20≤β1; or M∈ (−2,2), β0+4β1>−4Cb/(2+|M|),

β0≥− C2
b+4β1Cb

β1(4−M2)+Cb
with β1≥0 and β2≥0;

(iii) d=3, M=±2 and β0+4β1≥0; or M∈(−2,2) β0+4β1≥0 with β2/20>β1 and β1<0;
or M∈ (−2,2), β0+β2/5≥0 with β2<0 and β2/20≤β1; or M∈ (−2,2), β0≥0, β1≥0
and β2≥0.

In particular, (ei(θ1+2θ2)φ
g
2 ,ei(θ1+θ2)φ

g
1 ,eiθ1 φ

g
0 ,ei(θ1−θ2)φ

g
−1,ei(θ1−2θ2)φ

g
−2)

T ∈ SM with real con-
stants θ1 and θ2 is also a ground state of (5.11). We could obtain uniqueness of the ground
state under the constant phase factors satisfying the aforementioned conditions in the following
cases:

(i)′ M = ±2, β0+4β1 ≥ 0, the ground state can be chosen as (|φg
2 |,0,0,0,0)T (M = 2) or

(0,0,0,0,|φg
−2|)T (M=−2), and such special form is unique.

(ii)′ M∈(−2,2) and q=0, for the ferromagnetic interactions, i.e., β1<0 and β1≤β2/20. Under
the above conditions for the existence, the ground state can be chosen as~αφg∈SM with~α=

(α2,α1,α0,α−1,α−2)T, α2=
(2+M)2

16 , α1=
(2+M)

√
4−M2

8 , α0=
√

6(4−M2)
16 , α−1=

(2−M)
√

4−M2

8

and α−2=
(2−M)2

16 , where φg is a positive function satisfying ‖φg‖=1. If β0+4β1 ≥0, φg

is unique.
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(iii)′ M∈ (−2,2) and q= 0, for the nematic interactions, i.e. β2 < 0 and β1 > β2/20. Under
the above conditions for the existence, when M 6= 0, the ground state (real valued) can be
chosen as (|φg

2 |,0,0,0,|φg
−2|)T∈SM and such ground state is unique if β0+β1/5≥0. When

M= 0, the ground state (real valued) can be chosen as (α2,α1,α0,−α1,α2)Tφg ∈ SM with
2α2

2+2α2
1+α2

0=1 (αl∈R, l=0,1,2) or (α2,α1,0,α1,−α2)Tφg∈SM if α0=0. φg is a positive
function satisfying ‖φg‖=1 and is unique if β0+β1/5≥0.

(iv)′ M ∈ (−2,2) and q = 0, for the cyclic interactions, i.e. β2 ≥ 0 and β1 ≥ 0. Under the
above conditions for the existence, if M=0, the ground state (real valued) can be chosen as
(α2,α1,α0,α−1,α−2)Tφg∈SM (αl∈R, l=−2,··· ,2) such that with ∑l |αl |2=1, ∑l l|α|2l =0,

α2
0−2α1α−1+2α2α−2=0 and α1α2+α−2α−1+

√
6(α0α1+α0α−1)/2=0 and φg is a positive

function satisfying ‖φg‖=1 and is unique if β0≥0.

On the other hand, there exists no ground state of (5.11) if one of the following conditions holds,
i.e. infΦ∈SM

E(Φ)=−∞

(i)′′ d=2, M=±2 and β0+4β1≤−Cb; or M∈(−2,2), β0+4β1≤−Cb with β2/20≤β1 and

β1<0; or M∈ (−2,2), β0+4β1 ≤−4Cb/(2+|M|) or β0<−M2β1− 4−M2

20 β2−Cb, with
β2<0 and β2/20≤β1; or M∈(−2,2), β0+4β1≤−4Cb/(2+|M|) or β0<−M2β1−Cb

with β1≥0 and β2≥0.

(ii)′′ d=3, M=±2 and β0+4β1<0; or M∈(−2,2) β0+4β1<0 with β2/20>β1 and β1<0;
or M∈ (−2,2), β0+β2/5<0 with β2<0 and β2/20≤β1; or M∈ (−2,2), β0<0, β1≥0
and β2≥0.

As in Section 4.2 for the spin-1 case, most of the results in Theorem 5.1 can be derived
from the following observations when the quadratic Zeeman term is absent in the CGPEs
(5.7), i.e. q=0. Firstly, when q=0 and M∈(−2,2), for the ferromagnetic interactions β1<0
and β1 ≤ β2/20, we have the single mode approximation (SMA), i.e. each component of
the ground state Φg is identical up to a constant factor.

Theorem 5.2 (Single mode approximation [45]). Suppose lim|x|→∞V(x) = +∞, q = 0,
M∈ (−2,2), β1 < 0, β1 ≤ β2/20 and the existence conditions in Theorem 5.1 hold, the ground

state Φg = (φ
g
2 ,φ

g
1 ,φ

g
0 ,φ

g
−1,φ

g
−2)

T ∈ SM satisfies φ
g
l = eiθ1+ilθ2 αlφg with α2 =

(2+M)2

16 , α1 =
(2+M)

√
4−M2

8 , α0 =
√

6(4−M2)
16 , α−1 =

(2−M)
√

4−M2

8 and α−2=
(2−M)2

16 and θ1,θ2 ∈R, and φg is
the unique positive minimizer of the energy functional

ẼSMA(φ)=
∫

Rd

[
1

2
|∇φ|2+V(x)|φ|2+ β0+4β1

2
|φ|4

]
dx, (5.15)

under the constraint ‖φ‖=1.

Secondly, when q= 0 and M∈ (−2,2), for the anti-ferromagnetic interactions β2 < 0
and β1≥β2/20, we have similar simplification for the ground state Φg.
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Theorem 5.3 (Two-component case [45]). Suppose lim|x|→∞V(x)=+∞, q≤0, M∈ (−2,2)

and M2+q2 6= 0, β1 < 0, β1 ≥ β2/20 and the existence conditions in Theorem 5.1 hold, the
ground state Φg =(φ

g
2 ,φ

g
1 ,φ

g
0 ,φ

g
−1,φ

g
−2)

T ∈SM satisfies φ
g
0 =φ

g
1 =φ

g
−1=0, and Φ̃g =(φ

g
2 ,φ

g
−2)

T

is a minimizer of the pseudo spin-1/2 system given in Section 2 described by (2.42) with δ= 0,
ν= 2+M

4 and β↑↑=β↓↓=β0+4β1, β↑↓=β0−4β1+
2
5 β2.

If M=q=0, the ground state satisfies φ
g
l =eiθ1+ilθ2 αlφg (θ1,θ2∈R) where α1=−α−1, α2=α−2

or α1=α−1, α2=−α−2 if α0=0, with 2α2
2+2α2

1+α2
0=1, and φg is the unique positive minimizer

of the energy functional

Ec(φ)=
∫

Rd

[
1

2
|∇φ|2+V(x)|φ|2+ β0

2
|φ|4

]
dx, (5.16)

under the constraint ‖φ‖=1.

For the cyclic interactions β2 ≥ 0 and β1 ≥ 0, the classification of the ground states
becomes more complicated and we leave the discussion somewhere else.

5.2.2 Numerical methods and results

To compute the ground state (5.11), we generalize the GFDN method in Section 2.2.2 for
M∈ (−2,2). We start with the following CNGF for Φ=(φ2,φ1,φ0,φ−1,φ−2)T [131]

∂tΦ=−[H+β0ρ−pfz+qf2
z+β1F·f]Φ−β2 A00AΦ+µΦ(t)Φ+λΦ(t)fzΦ, (5.17)

where F=F(Φ) is given in (5.4) and A00=A00(Φ) is defined in (5.6), µΦ(t) and λΦ(t) are
the Lagrange multipliers to make the flow preserve the mass constraint (5.8) and mag-
netization constraint (5.9), respectively. It is not difficult to see that if initially Φ(x,0)
satisfies (5.8) and (5.9), the continuous flow (5.17) is globally wellposed under appropri-
ate assumptions. Moreover, the CNGF (5.17) is energy diminishing.

The GFDN method to compute the ground state (5.11) then can be regarded as ap-
plying a first order splitting algorithm to discretize the above CNGF. We present a semi-
discretization in time as follows. Let Φn =(φn

2 ,φn
1 ,φn

0 ,φn
−1,φn

−2)
T be the numerical approx-

imation of Φ(·,tn), from tn to tn+1, we first solve

Φ(1)−Φn

τ
=−[H+β0ρn−pfz+qf2

z+β1Fn ·f]Φ(1)−β2 An
00AΦ(1), (5.18)

where ρn = |Φn|2, Fn = F(Φn) and An
00 = A00(Φn). Then we have the projection step for

Φ(1)=(φ
(1)
2 ,φ

(1)
1 ,φ

(1)
0 ,φ

(1)
−1,φ

(1)
−2)

T

Φn+1=diag(α2,α1,α0,α−1,α−2)Φ
(1), (5.19)

and the projection constants αl (−2≤ l ≤ 2) are chosen such that Φn+1 satisfies the con-
straints (5.8) and (5.9).
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Similar to the spin-1 BEC, here there are five projection constants to be determined, i.e.
αl (−2≤l≤2) in (5.19), and there are only two equations to fix them, we need to find three
more conditions so that the five projection constants are uniquely determined. Again, in
fact, the projection step (5.19) can be regarded as an approximation of the ODE ∂tΦ =

(µΦ(t)+λΦ(t)fz)Φ whose solution can be written as Φ(t)=e
∫ t

tn
(µΦ(s)+λΦ(s)fz)ds

Φ(tn). From
this observation, three additional equations are proposed for determining the projection
constants in (5.19) as [31]

α2α−2=α2
0, α1α−1=α2

0, α2α0=α2
1. (5.20)

The above equations suggest that the projection constants can be assumed as αl = c̃0c̃l
1

(l=−2,··· ,2) with c̃0, c̃1>0 [31] satisfying

c̃2
0

(
c̃4

1‖φ
(1)
2 ‖2+ c̃2

1‖φ
(1)
1 ‖2+‖φ

(1)
0 ‖2+ c̃−2

1 ‖φ
(1)
−1‖2+ c̃−4

1 ‖φ
(1)
−2‖2

)
=1,

c̃2
0

(
2c̃4

1‖φ
(1)
2 ‖2+ c̃2

1‖φ
(1)
1 ‖2− c̃−2

1 ‖φ
(1)
−1‖2−2c̃−4

1 ‖φ
(1)
−2‖2

)
=M.

(5.21)

It is proved that the Eqs. (5.21) admit a unique positive solution (c̃0, c̃1) [31]. Of course, it
is a little tedious to write down the solution explicitly since it can be reduced to find the
positive root of a fourth-order polynomial and this approach is very hard and/or tedious
to be extended to the computation of the ground state of spin-F (F≥3) BEC.

Based on the observation that Φ(t)=e
∫ t

tn
(µΦ(s)+λΦ(s)fz)ds

Φ(tn) can be approximated (by

Taylor expansion) as Φ(t)≈ (I5+
∫ t

tn
(µΦ(s)I5+λΦ(s)fz)ds)Φ(tn) with I5 being the 5-by-

5 identity matrix and the projection step (5.19) can be regarded as an approximation of

Φ(t) = e
∫ t

tn
(µΦ(s)+λΦ(s)fz)ds

Φ(tn), alternatively, here we propose the following three addi-
tional equations to determine the projection constants in (5.19) as [47]

α2+α−2=2α0, α1+α−1=2α0, α2+α0=2α1. (5.22)

Again, the above equations suggest that the projection constants can be assumed as αl =
c0+lc= c0(1+lc1) (l=−2,··· ,2) with c0,c1>0 satisfying

(1+2c1)
2‖φ

(1)
2 ‖2+(1+c1)

2‖φ
(1)
1 ‖2+‖φ

(1)
0 ‖2+(1−c1)

2‖φ
(1)
−1‖2+(1−2c1)

2‖φ
(1)
−2‖2=

1

c2
0

, (5.23)

2(1+2c1)
2‖φ

(1)
2 ‖2+(1+c1)

2‖φ
(1)
1 ‖2−(1−c1)

2‖φ
(1)
−1‖2−2(1−2c1)

2‖φ
(1)
−2‖2=

M

c2
0

. (5.24)

The above equations turn out that c1 satisfies a quadratic equation which can be solved
very easily [47]. Thus, (5.19) with αl = c0+lc= c0(1+lc1) (l =−2,··· ,2) and (5.23)-(5.24)
complete the projection step. Then a full discretization can be constructed similarly as
the pseudo spin-1/2 case in Section 2, and we omit the details here.

Remark 5.1. The idea of determining the projection constants through (5.23)-(5.24) can
be generalized to other spin-F system very easily [47].
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Figure 11: Ground states of spin-2 BEC in Example 5.1 for different magnetization M= 0 (left column) and
M=0.5 (right column). The set of parameters are those in case (i) for the top panel, case (iii) for the bottom
panel and case (ii) for the middle panel.

Example 5.1. To show the ground state of a spin-2 BEC, we take d = 1, p = q = 0 and
V(x) = 1

2 x2 in (5.7) and consider three types of interactions: (i) β0 = 100, β1 =−1 and
β2 =2 (ferromagnetic interaction); (ii) β0 =100, β1 =1 and β2 =−2 (nematic interaction);
(iii) β0=100, β1 =10 and β2=2 (cyclic interaction). Fig. 11 depicts the numerical ground
state profiles under different types of interactions, which shows very rich structures. In
particular, we find that the single mode approximation in Theorem 5.2 and the vanishing
components approximation in Theorem 5.3 holds for the ferromagnetic interactions and
the nematic interactions, respectively.

5.3 Dynamics

For the CGPEs (5.7), we consider the mass (or density) of each component as

Nl(t) :=
∫

Rd
|ψl(x,t)|2 dx, t≥0, l=−2,−1,0,1,2, (5.25)
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and the condensate width as

σα(t)=
√

δα(t)=

√√√√
2

∑
l=−2

δα,l(t), α= x,y,z, (5.26)

where

δα,l(t)=
∫

Rd
α2|ψl(x,t)|2dx, t≥0, l=2,1,0,−1,−2. (5.27)

5.3.1 Dynamical properties

We have the spin dynamics of spin-2 BEC as follows.

Lemma 5.1. Suppose Ψ(x,t) is the solution of the CGPEs (5.7), then we have

Ṅl(t)= F̃l(t), l=−2,−1,0,1,2, (5.28)

with Nl(0)=
∫

Rd |ψl(x,0)|2 dx and

F̃2(t)=2β1 Im
∫

Rd
F−(Ψ)ψ1ψ̄2dx+

2√
5

β2 Im
∫

Rd
A00(Ψ)ψ̄−2ψ̄2 dx,

F̃1(t)=2β1 Im
∫

Rd

(√
6

2
F−(Ψ)ψ0ψ̄1+F+(Ψ)ψ2ψ̄1

)
dx− 2√

5
β2 Im

∫

Rd
A00(Ψ)ψ̄−1ψ̄1 dx,

F̃0(t)=2β1 Im
∫

Rd

(√
6

2
F+(Ψ)ψ1ψ̄0+

√
6

2
F−(Ψ)ψ−1ψ̄0

)
dx− 2√

5
β2 Im

∫

Rd
A00(Ψ)ψ̄2

0 dx,

F̃−1(t)=2β1 Im
∫

Rd

(√
6

2
F+(Ψ)ψ0ψ̄−1+F−(Ψ)ψ−2ψ̄−1

)
dx

− 2√
5

β2 Im
∫

Rd
A00(Ψ)ψ̄−1ψ̄1 dx,

F̃−2(t)=2β1 Im
∫

Rd
F+(Ψ)ψ−1ψ̄−2dx+

2√
5

β2 Im
∫

Rd
A00(Ψ)ψ̄−2ψ̄2 dx.

For the condensate width, we have the following results.

Lemma 5.2. Suppose Ψ(x,t) is the solution of the CGPEs (5.7), then we have

δ̈α(t)=
∫

Rd

[(
2|∂αΨ|2−2α|Ψ|2∂αV(x)

)
+β0|Ψ|2+β1|F|2+β2|A00|2

]
dx, t≥0, (5.29)

δα(0)=
∫

Rd
α2

2

∑
j=−2

|ψj(x,0)|2 dx, α= x,y,z, (5.30)

δ̇α(0)=2
2

∑
j=−2

∫

Rd
αIm

(
ψj(x,0)∂αψj(x,0)

)
dx, (5.31)

where F(Ψ) and A00(Ψ) are defined in (5.4) and (5.6), respectively.



W. Bao and Y. Cai / Commun. Comput. Phys., 24 (2018), pp. 899-965 951

Lemma 5.3. Suppose Ψ(x,t) is the solution of the CGPEs (5.7), q=0 and V(x) is the harmonic
potential in (2.9), then we have

(i) In 1D without nonlinear terms, i.e. d= 1, β0 = β1 = β2 = 0 in (4.2), for any initial data
Ψ(x,0)=Ψ(0)(x), we have

δx(t)=
E(Ψ(0))

γ2
x

[1−cos(2γxt)]+δx(0)cos(2γxt)+
δ̇x(0)

2γx
sin(2γxt). (5.32)

(ii) In 2D with a radial symmetric trap, i.e. d=2, γx =γy :=γr and β1 =0 in (4.2), for any

initial data Ψ(x,0)=Ψ(0)(x,y), we have, for any t≥0,

δr(t)=
E(Ψ(0))

γ2
r

[1−cos(2γrt)]+δ
(0)
r cos(2γrt)+

δ
(1)
r (0)

2γr
sin(2γrt), (5.33)

where δr(t)=δx(t)+δy(t), δ
(0)
r :=δx(0)+δy(0) and δ

(1)
r := δ̇x(0)+ δ̇y(0).

Let Φs :=Φs(x)=(φs
2(x),φ

s
1(x),φ

s
0(x),φ

s
−1(x),φ

s
−2(x))

T be a stationary state of the CG-
PEs (5.7), i.e. Φs solves the Euler-Lagrange system (5.13)-(5.14) with chemical potentials
µs and λs. If the initial data Ψ(x,0) for the CGPEs (5.7) is chosen as a stationary state with
its center-of-mass shifted from the trap center, we can construct an exact solution of the
CGPEs (5.7) with a harmonic potential (2.9).

Lemma 5.4. If the initial data Ψ(x,0) for the CGPEs (5.7) is chosen as

Ψ(x,0)=Φs(x−x0)e
i(a(0)·x+b(0)), x∈R

d, (5.34)

where x0 is a given point in Rd, a(0)=(a
(0)
1 ,··· ,a(0)d )T is a given vector in Rd and b(0) is a given

real number, then the exact solution of (5.7) with the initial data (5.34) satisfies:

ψl(x,t)=φs
l (x−xc(t)) e−i(µs+lλs)t ei(a(t)·x+b(t)), x∈R

d, t≥0, l=−2,−1,0,1,2, (5.35)

where for any time t≥0, xc(t) satisfies the following second-order ODE system:

ẍc(t)+Λxc(t)=0, (5.36)

xc(0)=x0, ẋc(0)=a(0). (5.37)

In addition, a(t)=(a1(t),··· ,ad(t))
T and b(t) satisfy

ȧ(t)=−Λxc(t), ḃ(t)=−1

2
|a(t)|2− 1

2
xc(t)

T Λxc(t), t>0, (5.38)

with initial data a(0)= a(0), b(0)= b(0) and Λ= diag(γ2
x) in 1D, Λ= diag(γ2

x,γ2
y) in 2D and

Λ=diag(γ2
x,γ2

y,γ2
z) in 3D.
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5.3.2 A numerical method

To compute the dynamics of spin-2 system governed by the CGPEs (5.7) with prescribed
initial data

Ψ(x,0)=Ψ0(x), (5.39)

we adopt the time splitting technique [123, 130]. The key idea is to split the Hamilto-
nian into the linear and nonlinear parts. Recently, Symes et al. [123] introduced a time-
splitting scheme where only two subproblems are involved and the nonlinear subprob-
lem is solved exactly and we will sketch the procedure below.

After truncating the CGPEs (5.7) onto a bounded domain with homogeneous Dirich-
let boundary conditions or periodic boundary conditions, we solve (5.7) from time tn=nτ
to tn+1= tn+τ through the following subproblems. One first solves

i
∂ψl

∂t
=(−1

2
∇2−pl+ql2)ψl, l=−2,−1,0,1,2, (5.40)

for the time step of length τ, followed by solving

i∂tΨ=[V(x)+β0|Ψ|2+β1(Fxfx+Fyfy+Fzfz)]Ψ+β2 A00AΨ, (5.41)

for the same time step. (5.40) can be integrated exactly in phase space.
For (5.41), noticing fα (α = x,y,z) are Hermitian matrices and A00(Ψ) = ΨTAΨ, we

find ∂t|Ψ(x,t)|2 = 0 (t ∈ (tn,tn+1)). Similar to the spin-1 case, the commutator relations
[fx,fy]= fxfy−fyfx = ifz, [fy,fz]= ifx and [fz,fx]= ify hold and fαA=−Afα (α= x,y,z ), then
we can compute that

∂t(Ψ
∗ fαΨ)=Im(Ψ∗ fα[β2 A00AΨ])−Im(ΨT[β2 Ā00A] fαΨ)

=−Im(β2 A00Ψ∗AfαΨ)−Im(ΨT [β2 Ā00A] fαΨ)=0,

which implies that the spin vector components Fα(Ψ(x,t))=Fα(Ψ(x,tn)) (t∈(tn ,tn+1)) are
independent of t. Similar computations show that

∂t A00(Ψ)(t)=∂tΨ
TAΨ+ΨTA∂tΨ=−2i(V(x)+β0|Ψ|2+β2|Ψ|2)A00,

and thus
A00(x,t)= e−2i(t−tn)(V(x)+(β0+β2)|Ψ(x,tn)|2)An

00, tn ≤ t≤ tn+1, (5.42)

where An
00=A00(Ψ(x,tn)). Now, it is clear that (5.41) becomes a linear ODE

i∂tΨ=[V(x)+β0|Ψ(x,tn)|2+β1(Fn
x fx+Fn

y fy+Fn
z fz)]Ψ+β2 A00(t)AΨ, (5.43)

where the spin vector Fn =(Fn
x ,Fn

y ,Fn
z )

T is evaluated using Ψ(x,tn), i.e. Fn
α = Fα(Ψ(x,tn)),

and A00(t) is given in (5.42). Introducing

Ψ̃(1)(x,t)=ei(t−tn)(V(x)+(β0+β2)|Ψ(x,tn)|2)Ψ(x,t), t∈ [tn ,tn+1], (5.44)

Ψ̃(2)(x,t)=ei(t−tn)(β1Fn·f)Ψ̃(1)(x,t), t∈ [tn ,tn+1], (5.45)
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and plugging the above equalities into (5.43), noticing that (Fn ·f)A=−A(Fn ·f), which

implies Ae−i(t−tn)(β1Fn·f)Ψ(1)= e−i(t−tn)(β1Fn·f)AΨ(1), we can derive that

i∂tΨ̃
(1)(x,t)=

[
β1Fn ·f−β2|Ψ(x,tn)|2

]
Ψ̃(1)+β2 An

00AΨ̃(1),

i∂tΨ̃
(2)(x,t)=−β2|Ψ(x,tn)|2Ψ̃(2)+β2 An

00AΨ̃(2),

and

∂ttΨ̃
(2)(x,t)=−β2

2(|Ψ(x,tn)|4−|An
00|2)Ψ̃(2), t∈ [tn ,tn+1],

with solution given by

Ψ̃(2)(x,t)=cos(β2(t−tn)κ
n(x))Ψ(x,tn)

+
i

κn(x)
sin(β2(t−tn)κ

n(x))
[
|Ψ(x,tn)|2Ψ(x,tn)−An

00AΨ(x,tn)
]

, (5.46)

where κn(x)=
√
|Ψ(x,tn)|4−|An

00|2. Combining (5.44)-(5.46), we find the solution to (5.41)

as [123]

Ψ(x,t)= e−i(t−tn)(V(x)+(β0+β2)|Ψ(x,tn)|2)e−i(t−tn)(β1Fn·f)
(

cos(β2(t−tn)κ
n(x))Ψ(x,tn)

+
i

κn(x)
sin(β2(t−tn)κ

n(x))
[
|Ψ(x,tn)|2Ψ(x,tn)−An

00AΨ(x,tn)
])

, (5.47)

where the exponential e−it(β1Fn·f) is calculated as

e−it(β1Fn·f)=I5+i

(
1

6
sin(2β1|Fn|t)− 4

3
sin(β1|Fn|t)

)
Fn ·f
|Fn|

+

(
4

3
cos(β1|Fn|t)− 1

12
cos(2β1|Fn|t)− 5

4

)
(Fn ·f)2

|Fn|2

+i

(
1

3
sin(β1|Fn|t)− 1

6
cos(2β1|Fn|t)

)
(Fn ·f)3

|Fn|3

+

(
1

12
cos(2β1|Fn|t)− 1

3
cos(β1|Fn|t)+ 1

4

)
(Fn ·f)4

|Fn|4 .

Now, we are able to solve the two subproblems (5.40)-(5.41), and a standard splitting
procedure such as second order Strang splitting or fourth-order partitioned Runge-Kutta
time splitting method [101] can be applied to construct a numerical scheme for solv-
ing the CGPEs (5.7). Fourier/sine spectral discretizations can be used according to the
periodic/homogeneous Dirichlet boundary conditions, respectively, and the details are
omitted here for brevity.



954 W. Bao and Y. Cai / Commun. Comput. Phys., 24 (2018), pp. 899-965

6 Summary and future perspectives

In the previous sections, we have briefly reviewed the mathematical models, theories
and numerical methods for the pseudo spin-1/2 system, spin-orbit coupled BEC, spin-1
and spin-2 systems. When higher spin and/or other effects such as rotating frame, non-
local dipole-dipole interactions and random potentials are relevant, more complicated
structure and interesting phenomenons would emerge and mathematical and numerical
studies would be quite challenging [15, 18, 28, 103]. As examples, we will present the
mean field models for spin-3 BEC and spinor dipolar BEC below.

6.1 Spin-3 BEC and beyond

For a spin-3 BEC system [85, 108, 127] at zero temperature, the condensate can be de-
scribed by the vector wave function Ψ := Ψ(x,t) = (ψ3,ψ2,ψ1,ψ0,ψ−1,ψ−2,ψ−3)T (ψl for
mF = l state, l=−3,−2,−1,0,1,2,3) satisfying the CGPEs as [76, 85, 122]:

ih̄∂tΨ=[H̃+c0ρ− p̃fz+ q̃f2
z+c1F·f]Ψ+c2 A00AΨ+c3

2

∑
l=−2

A2lAlΨ, (6.1)

where as described in Section 4.1, H̃=− h̄2

2m∇2+Ṽ(x) is the single particle Hamiltonian, p̃

and q̃ are the linear and quadratic Zeeman energy shifts, respectively, ρ=|Ψ|2=∑
3
l=−3 |ψl |2

is the total density. c0=
9g4+2g6

11 , c1=
g6−g4

11 , c2=
11g0−21g4+10g6

11 and c3=
11g2−18g4+7g6

11 char-
acterize the spin-independent interaction, spin-exchange interaction, spin-singlet interac-

tion and spin-quintet interaction, respectively, with gk =
4πh̄2

m ak (k=0,2,4,6) and ak being
the s-wave scattering length for scattering channel of total hyperfine spin k. The spin-3
matrices f=(fx,fy,fz)T are given as

fx =




0
√

3/2 0 0 0 0 0√
3/2 0

√
5/2 0 0 0 0

0
√

5/2 0
√

3 0 0 0

0 0
√

3 0
√

3 0 0

0 0 0
√

3 0
√

5/2 0

0 0 0 0
√

5/2 0
√

3/2

0 0 0 0 0
√

3/2 0




, (6.2)

fy=




0 i
√

3/2 0 0 0 0 0

−i
√

3/2 0 i
√

5/2 0 0 0 0

0 −i
√

5/2 0 i
√

3 0 0 0

0 0 −i
√

3 0 i
√

3 0 0

0 0 0 −i
√

3 0 i
√

5/2 0

0 0 0 0 −i
√

5/2 0 i
√

3/2

0 0 0 0 0 −i
√

3/2 0




, (6.3)
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and

fz =diag(3,2,1,0,−1,−2,−3). (6.4)

The spin vector F=F(Ψ)=(Fx,Fy,Fz)T with Fα=Ψ∗fαΨ (α= x,y,z) is given as

Fx =Re(F+), Fy= Im(F+),

F+=
√

6ψ3ψ2+
√

10ψ2ψ1+2
√

3ψ1ψ0+2
√

3ψ0ψ−1+
√

10ψ−1ψ−2+
√

6ψ−2ψ−3,

Fz =3|ψ3|2+2|ψ2|2+|ψ1|2−|ψ−1|2−2|ψ−2|2−3|ψ−3|2,

with F·f=Fxfx+Fyfy+Fzfz. The matrices A and A0 are defined as

A=
1√
7




0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0




,

A0=
1√
7




0 0 0 0 0 0 5
2
√

3

0 0 0 0 0 0 0

0 0 0 0 −
√

3
2 0 0

0 0 0
√

2
3 0 0 0

0 0 −
√

3
2 0 0 0 0

0 0 0 0 0 0 0
5

2
√

3
0 0 0 0 0 0




.

Al = (al,jk)7×7 (l = ±1,±2) and al,jk is zero except for those j+k = 8−l; for the sim-

plicity of notations, we denote ~al = (al,1(7−l),al,2(6−l),··· ,al,(7−l)1)
T ∈R7−l for l = 1,2 and

~al =(al,(1−l)7,al,(2−l)6,··· ,al,7(1−l))
T ∈R7+l for l=−1,−2 with

~a±1=
1√
7

(
5

2
√

3
,−

√
5

2
,

1√
6

,
1√
6

,−
√

5

2
,

5

2
√

3

)T

,

~a±2=
1√
7

(√
5

6
,−
√

5

3
,
√

2,−
√

5

3
,

√
5

6

)T

.
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A00 :=A00(Ψ)=ΨTAΨ and A2l :=A2l(Ψ)=ΨTAlΨ can be expressed as

A00=
1√
5
(2ψ3ψ−3−2ψ2ψ−2+2ψ1ψ−1−ψ2

0), (6.5)

A20=
1√
21

(5ψ3ψ−3−3ψ1ψ−1+
√

2ψ2
0), (6.6)

A2±1=
1√
21

(5ψ±3ψ∓2−
√

15ψ±2ψ∓1+
√

2ψ±1ψ0), (6.7)

A2±2=
1√
21

(
√

10ψ±3ψ∓1−
√

20ψ±2ψ0+
√

2ψ2
±1). (6.8)

Similar to the spin-2 case, after nondimensionalization and proper dimension reduction,
the CGPEs (6.1) can be written as

i∂tΨ=
[
− 1

2
∇2+V(x)+β0ρ−pfz+qf2

z+β1F·f
]

Ψ+β2 A00AΨ+β3

2

∑
l=−2

A2lAlΨ, (6.9)

where x∈Rd, d= 1,2,3, βk (k= 0,1,2,3) are real constants. The CGPEs (6.9) conserve the
following three important quantities, i.e. the mass (or normalization)

N(Ψ(·,t)) :=‖Ψ(·,t)‖2 =
∫

Rd

3

∑
l=−3

|ψl(x,t)|2 dx=N(Ψ(·,0))=1, (6.10)

the magnetization (with M∈ [−3,3])

M(Ψ(·,t)) :=
∫

Rd

3

∑
l=−3

l|ψl(x,t)|2 dx=M(Ψ(·,0))=M, (6.11)

and the energy per particle

E(Ψ(·,t))=
∫

Rd

{ 3

∑
l=−3

(
1

2
|∇ψl |2+(V(x)−pl+ql2)|ψl |2

)
+

β0

2
|Ψ|4

+
β1

2
|F|2+ β2

2
|A00|2+

β3

2

2

∑
l=−2

|A2l|2
}

dx≡E(Ψ(·,0)). (6.12)

For a spin-F BEC system within the mean field regime, the order parameter has 2F+1
components as Ψ=(ψF,ψF−1,··· ,ψ−F)

T ∈C2F+1, and the corresponding CGPEs could be
similarly derived [85]. Understanding the ground state pattern and the dynamics of such
higher spin BEC system requires extensive mathematical and numerical studies.
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6.2 Spinor dipolar BEC

In a spinor condensate, the dipole-dipole interaction (DDI) due to the atomic spin or
magnetization emerges and the DDI could affect the spin texture of the system for a DDI
strength comparable to the spin-dependent interactions. For example, the DDI plays a
crucial role in the spin-3 52Cr system [108]. For a spinor dipolar BEC where the spin is
not polarized by an external magnetic field and can vary in space, the mean-field CGPEs
will include a nonlocal term. Here, we present the CGPEs for spin-1 dipolar BEC in 3D
as [38, 85, 122]

ih̄∂tΨ=

[
− h̄2

2m
∇2+Ṽ(x)+c0ρ−p0fz+q0f2

z+c1F·f+cddV(Ψ)·f
]

Ψ, (6.13)

where Ψ :=Ψ(x,t) = (ψ1,ψ0,ψ−1)
T, cdd =

µ0(gµB)
2

4π is the DDI interaction strength with µ0

being the magnetic permeability of vacuum, µB being the Bohr magneton and g being
the Landé g-factor for the particle, V :=V(Ψ)= (Vx,Vy,Vz)T is a vector-valued function
representing the DDI interaction induced potential, V·f=Vxfx+Vyfy+Vzfz and the rest pa-
rameters are the same as those in the CGPEs (4.1). In detail, for spin vector F=(Fx,Fy,Fz)T,
the DDI interaction is given as

Vα=
∫

R3
∑

α′=x,y,z

Uαα′(x−x′)Fα′(x′)dx′, α= x,y,z, (6.14)

and the DDI kernel U=(Uαα′) [38, 88] is a 3×3 matrix with

Uαα′(x)=
eα ·eα′−3(eα ·x)(eα′ ·x)/|x|2

|x|3 , x=(x,y,z)T ∈R
3, α,α′= x,y,z, (6.15)

where ex =(1,0,0)T, ey =(0,1,0)T and ez =(0,0,1)T are the corresponding unit vectors for
x-, y- and z- axes, respectively.

After proper scaling, the dimensionless spin-1 dipolar Gross-Pitaevskii equations re-
ad as

i∂tΨ(x,t)=
[
− 1

2
∇2+V(x)+β0ρ−pfz+qf2

z+β1F·f+λV(Ψ)·f
]

Ψ, x∈R
3, (6.16)

where V(x) is the real-valued trapping potential, β0 denotes the spin-independent con-
tact interaction, β1 represents the spin-dependent interaction, λ is the DDI parameter, the
spin vector F and the DDI potential V(Ψ) are given in (4.4) and (6.14), respectively. The
important conserved quantities of (6.16) include the mass (or normalization)

N(Ψ(·,t)) :=‖Ψ(·,t)‖2 =
∫

R3

1

∑
l=−1

|ψl(x,t)|2 dx=N(Ψ(·,0))=1, (6.17)
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the magnetization (with M∈ [−1,1])

M(Ψ(·,t)) :=
∫

R3

1

∑
l=−1

l|ψl(x,t)|2 dx=M(Ψ(·,0))=M, (6.18)

and the energy per particle

E(Ψ(·,t))=
∫

R3

{ 1

∑
l=−1

(
1

2
|∇ψl |2+(V(x)−pl+ql2)|ψl|2

)

+
β0

2
|Ψ|4+ β1

2
|F|2+ λ

2
V(Ψ)·F

}
dx≡E(Ψ(·,0)). (6.19)

Similarly, the CGPEs with nonlocal DDI can be obtained for spin-2 (or higher spin-
F) dipolar BEC by including the cdd (or λ) term (the same form as above, see [85]) into
the spin-2 CGPEs (6.13) (or (6.16)) and we omit the details here. For lower dimensions
(1D and 2D), dimension reduction of the CGPEs with nonlocal DDI in 3D could be done
following [13, 46, 112]. Similarly, the efficient and accurate numerical methods for com-
puting the ground state and dynamics of single-component dipolar BEC [18, 32, 80, 125],
especially the methods for handling the DDI, can be extended directly for spinor dipo-
lar BEC. In presence of the long range DDI, the ground state structure and dynamical
properties of the spinor dipolar BEC would be very rich and complicated, which require
further mathematical and numerical studies.
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