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Summary

Solid-state dewetting is a ubiquitous physical phenomenon occurring in the solid-

solid-vapor system, describing the agglomeration of solid thin films on the substrate.

The thin films supported by the substrate are typically unstable and could exhibit

complex morphological evolutions, including hole formulation, edge retraction, rim

pinch-off and so on, while still remaining the state of solid. The capillary instability

is the driving force of this process and makes the thin film moving towards its

equilibrium by decreasing the total surface energy. Surface diffusion flow and contact

line migration have been recognised as the two main kinetic features for solid-state

dewetting.

The aim of this thesis is to develop mathematical models, propose efficient and

accurate numerical methods for simulating the solid-state dewetting both in two

dimensions and three dimensions. Moreover, extensive numerical simulation results

are presented to validate the convergence of the numerical schemes, show consis-

tent morphological evolutions observed in physics experiments, and demonstrate

the accuracy of the models.

Firstly, by using a Cahn-Hoffman ξ-vector formulation, we propose a sharp-

interface approach for solving solid-state dewetting problems in two dimensions.

Based on the thermodynamic variation and smooth vector-field perturbation method,

vi
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we rigorously derive a sharp-interface model with weakly anisotropic surface ener-

gies, and this model describes the interface evolution which occurs through surface

diffusion flow and contact line migration. What is more, a parametric finite element

method in terms of the ξ-vector formulation is proposed for numerically solving the

sharp-interface model. By performing numerical simulations, we examine several

specific evolution processes for solid-state dewetting of thin films, e.g., the evolu-

tion of small islands, pinch-off of large islands and power-law retraction dynamics of

semi-infinite step films, and these simulation results are consistent with experimen-

tal observations. Furthermore, we also include the strong surface energy anisotropy

into the sharp-interface model and design its corresponding numerical scheme via

the ξ-vector formulation.

Secondly, we extend our works from 2D to 3D. We present a three-dimensional

sharp interface approach for modelling the solid-state dewetting of thin films. The

film/vapor interface in this approach is treated as an open surface, i.e., two-dimensional

manifold with a plane curve boundary attached to the rigid flat substrate (x-y-

plane). Based on the energy variational method, the equilibrium shape that mini-

mizes the total surface energy has been derived rigorously by a mathematical descrip-

tion of the chemical potential together with the anisotropic Young-Dupre equation.

Besides, we have also proposed the kinetic sharp-interface model for simulating the

evolution of solid-state thin films via a Cahn-Hoffman ξ-vector formulation. The

governing equations belong to geometric evolution partial differential equations of

fourth-order, and are described by surface diffusion flow and contact line migration.

By adding a small surface diffusion regularization for the contact line migration,

we could apply the parametric finite element methods to solve both the surface

evolution and plane curve evolution.

Finally, the sharp interface model is extended to the cases when the surface en-

ergy is strongly anisotropic and when the substrate is curved. Besides, we study

capillarity-driven evolution of a solid toroidal island on a flat rigid substrate un-

der the axis-symmetry. We apply the Onsager’s variational principle to derive a
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simple, reduced-order model and obtain an analytical expression for the rate of is-

land shrinking and validate this prediction by numerical simulations based on a full,

sharp-interface model.
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Chapter 1
Introduction

1.1 Interface/surface Dynamics

1.1.1 Physics background

Interfacial problems are typical in material science for fluid or solid systems and

have been widely studied in different aspects. A drop of water on a leaf or a soap

bubble tend to form near-spherical shape, as the sphere has the smallest surface

area to volume ratio. This phenomenon, know as surface tension, results form the

cohesive forces among the liquid molecules. More precisely, molecules inside the

liquid are pulling equally in every direction by their neighbouring liquid molecules.

However, the molecules that wander to the surface will lose part of their cohesive

interactions from outside. Therefore, these molecules are pulled inwards and the

force the liquids to adjust their shapes such that the number of molecules on the

surface must be minimized. The minimization of the number of molecules on the

surface results in a minimization of the surface area, thus giving the spherical shape.

Several effects of the surface tension can be observed with the ordinary water in

our daily life, such as the beading of rain water on a leaf, the water dripping from a

tap. Although surface tension occurs on solid surface as well, yet few corresponding

effects of surface tension in solids has been observed in daily life. The is due to that

1
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the mechanism for solid surface is much more complicated than that of the fluid

interface. Different mechanisms are competing among each other to determine the

shape evolution for solid surface. In micro and nano-scale, surface tension could be

the dominant dynamics for solid surface.

Surface tension of a liquid, usually represented by γ, can be viewed as a force

per unit length or energy per unit area. The system is trying to find a state such

that the surface energy is minimized.

1.1.2 Interfacial energy density

Unlike liquid or amorphous solids, the interface energy for many materials could

be various for different crystallographic orientations, and this anisotropy in the

surface energy could lead faceting for crystals. Therefore, for anisotropic materials,

as most theories start with, the surface energy density, denoted by γ, is assumed

to be dependent on the direction n, the oriented normal of the interface. More

precisely, the interfacial energy density can be expressed as a function defined on

the surface of a unit sphere denoted by S2:

γ(n) : S2 → R, (1.1.1)

where n is the unit normal vector of the interface. Although there are cases when

the interface energy density depends on the temperature, position, curvature [61,

104,106] and so on, for simplicity, here we only restrict to the case when the interface

energy density is dependent on the orientation.

When γ(n) is smooth, many theories indicate that the derivatives of γ(n) play an

important role in studying the dynamics and equilibrium problems for the crystals

evolutions. However, calculating the derivative with respect to n restricts us on

the surface of a unit sphere, which could cause a lot of troubles. For convenience

and further discussion, we usually extend the domain of γ from S2 to the whole R3

homogeneously [34] in the following

γ̂(p) = |p|γ(
p

|p|
), ∀p ∈ R3\{0}. (1.1.2)
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Under this extension, γ̂ satisfies the following equation

γ̂(λp) = |λ|γ̂(p), ∀λ 6= 0,p ∈ R3\{0}. (1.1.3)

Moreover, if γ̂(p) ∈ C2(R3), we have

∇γ̂(p) · p = γ̂(p), ∇γ̂(λp) = sign(λ)∇γ̂(p),

Hγ(p)p · q = 0, Hγ(λp) =
1

|λ|
Hγ(p), ∀p,q ∈ R3\{0}, λ 6= 0. (1.1.4)

Here ∇γ̂ denotes the gradient of γ̂ and Hγ represents the Hessian of γ̂. It is easy

to show that the matrix Hγ is symmetric and has a zero eigenvalue: Hγ(p)p = 0.

Here are some examples of some choices of the anisotropy:

• Isotropic surface energy

γ(n) = |n| = 1. (1.1.5)

• Cubic surface energy

γ(n) = 1 + a[n4
1 + n4

2 + n4
3]. (1.1.6)

• Ellipsoidal surface energy

γ(n) =
»
a2

1n
2
1 + a2

2n
2
2 + a2

3n
2
3. (1.1.7)

• Facet/cusp surface energy

γ(n) = |n1|+ |n2|+ |n3|. (1.1.8)

The simplest case is the isotropic case when γ(n) is a constant. Some other anisotropies

are given such as the cubic crystalline surface energy (Eq. (1.1.6)) and ellipsoidal

surface energy (Eq. (1.1.7)). In application of materials science, the surface energy

is usually piecewise smooth and has some “cusped” points, where it is not differen-

tiable [61,89]. A typical example for this type anisotropy is given in Eq. (1.1.6). We

can regularize the energy as following to ensure the smoothness.

γ(n) =
»
ε2 + (1− ε2)n2

1 +
»
ε2 + (1− ε2)n2

2 +
»
ε2 + (1− ε2)n2

3. (1.1.9)
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The classification of anisotropies can be different due to different criteria. In

mathematics, we usually classify the anisotropies into two categories by checking

whether the following inequality is satisfied:

Hγ(p)q · q ≥ λ0, ∀q · p = 0, q,p ∈ S2. (1.1.10)

Here λ0 is a positive constant to be found. If the anisotropy satisfies Eq. (1.1.10),

we call it weak anisotropy. Otherwise, we call it strong anisotropy. Eq. (1.1.10),

also called convexity condition, is crucial to the stability of the Wulff shape [122],

well-posedness of the surface diffusion flow [67] and numerical analysis [34]. In ma-

terials science, some people may classify the facet anisotropy with cusps as strong

anisotropy [71]. The classification criteria could be better understood in two dimen-

sions where the anisotropy is given as γ(θ). Here θ satisfies n = (− sin θ, cos θ)T ,

τ = (cos θ, sin θ)T , we can easily obtain that

Hγ(n) = (γ(θ) + γ′′(θ))

Ö
n2

2 −n1n2

−n1n2 n2
1

è
. (1.1.11)

Thus we have Hγ(n)τ · τ = γ(θ) + γ′′(θ). This indicates that Eq. (1.1.10) is related

to the surface stiffness γ(θ)+γ′′(θ). In three dimensions, Hγ(n)τ ·τ can be regarded

as the surface stiffness in the τ direction.

Usually the anisotropy function γ(n) can be geometrically represented by the

radial plot of γ, and we call it γ−plot. The shape can be expressed as

F =
ß
x ∈ R3 : |x| ≤ γ(

x

|x|
)
™
. (1.1.12)

1.1.3 Cahn-Hoffman ξ−vector

Cahn and Hoffman developed the theory of Cahn-Hoffman ξ-vector [27, 65] to

describe the surface energies density instead of using the traditional scalar function

γ or γ-plot. It is mathematically defined as

ξ(n) = ∇(rγ) = ∇γ̂(n), with ξj(n) =
∂γ̂

∂pj

(n) where j = 1, 2, 3. (1.1.13)
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If the surface energy density is given in terms of the spherical coordinates, γ(θ, φ),

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, under the homogeneous extenstion, we have

γ̂(p) = |p|γ
Å

tan−1
Å»p2

1 + p2
2

p3

ã
, tan−1

Åp2

p1

ãã
. (1.1.14)

Thus the Cahn-Hoffman ξ−vector can be written as

ξ(n) = ∇γ̂(n) = γn + γθθ̂ +
1

sin θ
γφφ̂, (1.1.15)

where in this expressions,

n = (sin θ cosφ, sin θ sinφ, cos θ)T , (1.1.16a)

θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ)T , (1.1.16b)

φ̂ = (− sinφ, cosφ, 0)T . (1.1.16c)

This vector consists of the normal component and tangential component, with each

part representing the tendency of minimizing the surface energies by contraction or

rotation respectively [65].

1.1.4 Surface energy and evolution

Given the surface energy density γ(n), the total surface energy is a integration

over the interface S,

W =
∫∫

S
γ(n) dS. (1.1.17)

In polycrystalline material, the grain boundary migrations are driven by curvature,

where a grain boundary move with a velocity that is proportional to its mean cur-

vature [108]. This motion is called mean curvature flow and can be regarded as the

L2 gradient flow of the surface energy. Under the mean curvature flow, the surface

with isotropic surface energy will evolve into a spherical shape and shrink inward

uniformly.

Another important kinetic for surface evolution is surface diffusion flow [86],

which can be regarded as the H−1 gradient flow of the surface energy. This geometric

flow forces the surface to reduce the surface energy while fixing the enclosed volume

as a constant.
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1.2 Solid State Dewetting

Figure 1.1: Solid thin films dewet to from isolated islands, the image is taken from

[117].

1.2.1 Physical experiments and applications

Solid thin film on the substrate is typically unstable and can dewet or agglom-

erate to form isolated islands (see Fig. 1.1) when heated to sufficiently high temper-

ature, but well below the material’s melting point [117]. During this process, the

thin film remains in the solid state, thus it is called solid-state dewetting. Driven

by capillarity, solid-state dewetting is a process moving towards the equilibrium by

minimizing the total surface energy.

In recent physical experiments, some morphological features were observed in the

intermediate state of solid-state dewetting. These features include edge retraction,

rim growth, hole formation and growth and so on.

For solid-state dewetting, materials from the triple line (where the film, vapor

and substrate meet) and corner will be transported to the flat area. This mass

transport leads to the formation of rim and valley at edges. See Fig. 1.2(g), as

the edge retracts, the rim grows and the depth of the valley increases. For small

patches, the valley finally disappears. However, when the size of the patches is large

enough, the valley will reach the substrate before they merge and form hole (see

Fig. 1.2(e),(f))or edge pinch-off. Moreover, the finger instability can be observed
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Figure 1.2: Dewetting of Ni with different initial sizes. (e)-(h) shows the correspond-

ing height profile of the single thin film. The image is taken from [128].

during the edge retraction [33, 50, 68, 69, 77]. The thin film produces protruding

fingers at the edge by forming rims with different heights and triple lines at different

positions, see Fig. 1.3. Anisotropy can greatly influence the morphologies evolution

Figure 1.3: The left image taken from [68] shows the finger instability during dewet-

ting. The right image taken from [70] shows the corner instability.

of thin film by producing the faceting geometry. When there exist surfaces parallel
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to the substrate, and the orientations of these surfaces do not take a minimum for

the surface energy density, the thin film may develop a wave along the flat surface

during the edge retraction. This morphological evolution is called the faceting in-

stability. Corner instability is another morphological characteristic for solid-state

dewetting. Anisotropic thin films can dewet to form polygonal shaped holes, and

these holes can grow anisotropically with increasing annealing time. Physical ex-

periments demonstrate that corners retract faster than the centre of the edges, thus

causing dendritic or star-shaped holes [2, 139].

Figure 1.4: Faceting instability for long retracting edges. This image is taken from

[130].

In summary, the morphologies evolution of thin film could be affected by many

parameters.

• Thin film geometry: experiments by Ye and Thompson [128, 129] has shown

the geometry of the thin film, including the size, orientation, location of holes

and so on, could dramatically influence the shape evolution (see Fig. 1.5 for

an example).

• Substrate topology: the morphological evolution of the thin film could be

greatly influenced by the topology of the substrate [53, 83, 90, 112]. It shows

that ordered topologically substrate produces ordered dewetting structures.
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Figure 1.5: Dewetting of cross patches with pre-patterned internal circular holes.

The initial size of the patches and the size and location of holes are different. This

image is taken from [129].

• Anisotropic surface energies: the anisotropy of the surface energies produces

faceting geometry for the thin film and also influences the morphological evo-

lution of the thin film [127–130].

• Some other parameters such as the temperature, or outer environment and so

on.

Solid thin films are fundamental components of the microelectronic and opto-

electronic devices. The morphological evolution of the small thin film could be a

great issue and should be prevented in order to keep the reliability of the device.

Thus many research has been carried out to characterize and suppress dewetting in

this microsystem. However, the recent understanding of solid-state dewetting makes

it possible to provide positive influence. For example, it can be purposely induced

to produce catalysts for growth of carbon nanotubes and semiconductor nanowires.
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The wide applications of solid-state dewetting make it urgent to have a better

understanding of the kinetic patterns and features of solid-state dewetting.

1.2.2 Interfacial energies and surface diffusion

Substrate

Film

Vapor

γ
FS

γ
V S

γ
FV

= γ(n)

S
FV

= S

n

Γ

S
FS

S
V S

Lx

Ly

Figure 1.6: A schematical illustration of a solid thin film on a flat rigid substrate in

three dimensions.

Fig. 1.6 is a schematic illustration of a solid thin film on a flat rigid substrate

in three dimensions. The total surface energy of the solid-state dewetting, can be

expressed in the following

W =
∫∫

S
FV

γ
FV

dSFV +
∫∫

S
FS

γFS dSFS +
∫∫

S
V S

γ
V S
dS

V S︸ ︷︷ ︸
Substrate energy

. (1.2.1)

In these expressions, S
FV
, S

FS
and S

V S
represent the film/vapor, film/substrate and

and vapor/substrate interfaces. Here γ with the subscripts denote the corresponding

surface energy density respectively. The total surface energy includes the film/vapor

interface energies and substrate energies. Assume γ
FS
, γ

V S
are constants, while

γ
FV

= γ(n), choose a bounded domain with dimensions Lx × Ly on the substrate,
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then the total surface energy of the bounded system is given as

W =
∫∫

S
FV

γ
FV

dSFV +
∫∫

S
FS

γ
FS
dS

FS
+
∫∫

S
V S

γ
V S
dS

V S

=
∫∫

S
γ(n) dS + A(Γ)γ

FS
+ (LxLy − A(Γ))γ

V S

=
∫∫

S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ) + LxLyγV S . (1.2.2)

Here Γ is the contact line and A(Γ) represents the area enclosed by Γ on the sub-

strate. Since the term LxLyγV S is fixed as a constant, thus we can always omit it

and simplify the total energy as

W =
∫∫

S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ). (1.2.3)

Unlike liquid dewetting, surface diffusion is the dominant mass transport and

plays the essential role in determining the shape evolution of solid thin films com-

pared to other types of transport process: viscous flow, evaporation/condensation,

and volume diffusion. The surface normal velocity governed by surface diffusion

for isotropic materials (γ = γ0 is a constant) can be mathematically described by

Mullins [86] in the following

vn = B∇2
S
H, with B =

DsγΩ2ν

KBTe
. (1.2.4)

Here Ds is the surface diffusivity, kBTe is the thermal energy, Ω0 represents the

atomic volume, ν is the surface concentration of mobile atoms, H is the mean

curvature of the surface. ∇
S

is the surface gradient operator. In his derivation, the

chemical potential is given as

µ = Ω0H. (1.2.5)

Then by the Fick’s first law, the flux of the surface atoms is given by

J = − Dsν

KBTe
∇

S
µ. (1.2.6)

The normal velocity of the surface is given by multiplication of Ω0 and the surface

divergence of −J [4],

vn = −Ω0∇S
· J =

DsγΩ2ν

KBTe
∇2

S
H. (1.2.7)
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The surface diffusion flow, governed by fourth order geometric equations, was

analytically investigated for the existence in two dimensions [47,54,93]. They showed

the local existence, regularity and uniqueness of the solution for an initial smooth

curve and global existence for small perturbation of circles. Moreover, Escher et.al

[48] extended the theories to the three-dimensional hypersurfaces.

One of the fundamental properties for surface diffusion flow is the conservation of

the volume enclosed by the closed curves or surfaces. Besides, the arc length of the

closed curves or area of the closed surfaces is decreasing under the surface diffusion

flow. Actually, motion by surface diffusion can be regarded as the H−1 gradient flow

for the energy functional [29]. Eq. (1.2.4) can be extended to the anisotropic case

by replacing the mean curvature H with weighted mean curvature Hγ [115], which

is defined as

Hγ = ∇
S
· ξ, (1.2.8)

with ξ denoting the Cahn-Hoffman vector.

1.2.3 Contact line migration

In solid-state dewetting, the intersection of the thin film, vapor and substrate

produces contact line, see Fig. 1.6. Thus the migration for the contact line becomes

an additional kinetic feature for solid-state dewetting, in addition to the surface

diffusion flow.

When two immiscible fluids are placed on a solid substrate, the intersection of

the two fluid phases with the substrate forms a contact line. The moving contact

line problems for fluid mechanics have been widely studied in recent years [7, 37,

96–98, 100–103, 119]. In polycrystalline materials, similar problems have also been

discussed and studied in grain boundary systems for the migration of triple lines or

junctions [32,55,56,82,95,118,134].

For solid-state dewetting with isotropic surface energy, the equilibrium config-

uration for the static contact line is the same as that in fluid mechanics or grain
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Vapor

θc

Film

γ
FSγ

V S

γ
FV

Substrate

Figure 1.7: The cross-section profile of the equilibrium shape of a solid-thin film on

a substrate.

boundaries, where the equilibrium contact angle (see Fig. 1.7) is described by the

Young-Dupree equation [131]

γ
V S

= γ
FS

+ γ
FV

cos θc. (1.2.9)

Here θc is the static contact angle on the contact line. The static contact line

condition (Eq. (1.2.9)) has been widely adopted as the boundary condition for the

dynamic sharp interface model [41, 111, 125]. The static contact line condition can

be extended to the anisotropic case in two dimensions [9, 120]

γ
V S

= γ
FS

+ γ(θc) cos θc − γ′(θc) sin θc, (1.2.10)

where γFV = γ(θ) with θ representing the angle made by the normal vector of the

interface with respect to the +y direction. Similar static boundary conditions for

the contact line have also been proposed for phase field model [46,66].

When the static contact line condition is coupled as the boundary condition for

the dynamic model, the contact angle is assumed to be fixed at its equilibrium value

during the evolution. This assumption is reasonable when the thin film approaches

the equilibrium shape. However, experimental and atomistic simulations for fluid
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mechanics and grain boundary migrations [55, 56, 82, 95, 100, 102, 118] demonstrate

that the contact angle need not be in equilibrium. This deviation from the equilib-

rium angle could be explained by considering the atomic structure of the contact

line itself. A finite mobility of the contact line implies this deviation, while infi-

nite mobility implies that the contact angle is always at its equilibrium value. Thus,

instead of treating the static contact line condition as a boundary condition, the con-

tact line mobility was introduced recently with a relaxation kinetic (see Eq. (1.4.2b)

and Eq. (1.4.2c))for the contact point positions in two dimensions [67, 120]. Some

other treatments for the motion of the contact line have been presented by Dornel

et al. [40] and Klinger et al. [72, 73].

1.3 Equilibrium shapes

The equilibrium shape of solid-state dewetting is the minimization of the to-

tal surface energy while fixing the total volume of the thin film. The problem is

mathematically expressed in the following

min
Ω

Å ∫∫
S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ)

ã
s.t. |Ω| = const. (1.3.1)

Here Ω is the region enclosed by the film/vapor interface and substrate. If the thin

film is free standing and isolated, then the contribution to the total surface energy

is only the film/vapor surface energy. In other words, S is a closed surface, and the

minimization problem can be reduced to

min
Ω

Å ∫∫
S
γ(n) dS

ã
s.t. |Ω| = const. (1.3.2)

1.3.1 Wulff construction

After Gibbs first proposed the equilibrium problem Eq. (1.3.2), Wulff presented

a theory, known as Gibbs-Wulff theorem, for the equilibrium shape without proof in

1901 [126]. In the theory, he stated that the distance from the centre of the crystal

shape to the face is proportional to the surface energy density of that face. Later,
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(a) (b)

Figure 1.8: The Wulff construction for two-dimensional examples, where (a) γ(n) =

1 + 0.2(n4
1 + n4

2 − 6n2
1n

2
2), (b) γ(n) = |n1|+ |n2|. The blue line represents the γ-plot

and all the black lines represent the lines that perpendicular to n.

subsequent proofs of this theorem have been presented in many works [26,38,61,62,

75,81].

The equilibrium shape of the crystal can be geometrically constructed based on

the γ-plot, and the finally obtained shape is called Wulff shape denoted by W . The

procedure can be stated as following four steps:

1. Carry out the polar plot of γ(n) and obtain the γ-plot.

2. For each direction n, draw a plane perpendicular to n with distance to the

origin equaling to γ(n).

3. The plane draw from the step 2 divides the space into two regions, and the

region which is far from the origin is discarded.

4. When this has been done in all directions, the remaining convex region is called

the Wulff shape.

Fig. 1.8, is a schematic illustration of the Wulff construction in two dimensions for
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two anisotropies. In Fig. 1.8(b), γ(n) is chosen as cusp/facet surface energy density

γ(n) = |n1|+|n2|. As a consequence, the corresponding Wulff shape consists of sharp

corners and flat edges. Here γ(n) is not differentiable where n1, n2 are changing their

signs, which demonstrates that Wulff construction does not require the continuity

and smoothness of γ(n). Moreover, as can be seen from Fig. 1.8(a), the equilibrium

shape obtained via Wulff construction has some missing orientations on the corners.

This indicates that Wulff construction can be interpreted as a convexification of

the γ-plot by removing all the unstable orientations. Herring presented a geometric

criteria for occurrence of the missing orientation in the Wulff shape via Herring

sphere construction [61], see Fig. 1.9. The construction is based on the γ-plot and

can be stated as following:

1. Carry out the polar plot of γ(n) and obtain the γ-plot.

2. For any orientation n, construct a sphere that is tangent to the γ-plot at γ(n)

and passing through the origin.

3. If the sphere is totally inside the γ-plot, then orientation n appears on the

equilibrium shape. Otherwise it is missing on the equilibrium shape.

Figure 1.9: (a) A schematic illustration of Herring sphere construction. (b) 1/γ-plot.

Both figures are taken from [105].
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If the tangent sphere is totally inside the γ-plot, it is equivalent to that the plane

inverted from the sphere is totally outside the 1/γ−plot. Thus the non-convexity of

the 1/γ-plot can also be used to test the occurrence of the missing orientation [105].

The Wulff shape and the Frank shape (1/γ-plot) can be mathematically ex-

pressed as

W = {x ∈ R3 : x · n ≤ γ(n), ∀n ∈ S2}. (1.3.3a)

F = {x ∈ R3 : γ(
x

|x|
) ≤ 1)}. (1.3.3b)

As the magnitude of the normal component of ξ equals γ(n) (see Eq. (3.3.6)),

in view of the construction procedure of the Wulff shape, it is easy to know ξ-plot

shares similar geometry to the Wulff shape [65, 89]. Precisely speaking, the ξ-plot

is the mathematical representation of the boundary of the Wulff shape when no

missing orientation occurs on the Wulff shape. On the other hand, when certain

orientations are missing on the Wulff shape, the corresponding ξ-plot will have ears

and needed to be truncated in order to obtain the equilibrium shape. As depicted

in Fig. 1.11, it shows the γ-plot, 1/γ-plot and ξ-plot for the cubic surface energy

with different choices of the degree of anisotropy. When a = 0.3, the corresponding

1/γ-plot is convex and the ξ-plot is directly the boundary of the Wulff shape. When

a = 1.0, the anisotropy becomes strong, 1/γ-plot is no longer convex and the ξ-plot

forms some ears. We can summarise above results in Table. 1.1,

1.3.2 Winterbottom construction

Thin films are not always free standing and can be attached to a substrate. The

Wulff construction is not able to obtain the equilibrium shape which minimizes the

total surface energy in this case since the additional substrate energy should be

included, see Eq. (1.3.1). Based on the thermodynamic approach, Winterbottom

[123] derived that the equilibrium shape of problem defined in Eq. (1.3.1) is directly
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Figure 1.10: γ-plot, 1/γ-plot and ξ-plot for different anisotropies. (a) Isotropic

surface energy γ(n) = 1; (b) cubic anisotropic surface energy defined as γ(n) =

1 + a(n4
1 + n4

2 + n4
3) with a = 0.3; (c) ellipsoidal surface energy γ(n) =»

a1n2
1 + a2n2

2 + a3n2
3 with a1 = 4, a2 = a3 = 1; (d) facet/cusp surface energy defined

as γ(n) = |n1|+ |n2|+ |n3| with smooth regularization in Eq. (1.1.9).
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Table 1.1: Some distinguished properties between the strong anisotropy and weak

anisotropy for γ(n)

γ(n) Weak anisotorpy Strong anisotropy

W(Wulff shape) no missing orientation missing orientation exists

F(1/γ-plot) convex not convex

ξ-plot no ears forming ears

Math criteria (Hγ(n)τ ) · τ > 0 (Hγ(n)τ ) · τ < 0, for some τ

Figure 1.11: The γ-plot, 1/γ-plot and ξ-plot are shown in column 1,2,3 respectively.

The first row is for weak anisotropy: γ(n) = 1 + 0.3(n4
1 + n4

2 + n4
3) and the second

row is for strong anisotropy: γ(n) = 1 + (n4
1 + n4

2 + n4
3).
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Figure 1.12: A schematic illustration of a cylindrically symmetric thin film with a

hole of radius ρ on a substrate, the image is taken from [111].

the Wulff shape of a general surface tension γ∗, which is defined as

γ∗(n) =


γ(n), n corresponds to the film/vapor interface,

γ
FS
− γ

V S
, otherwise.

(1.3.4)

Thus the equilibrium shape for problem Eq. (1.3.1) can be obtained by cutting the

Wulff shape of γ(n) with the plane z = γ
V S
− γ

FS
.

1.4 Models and computational methods

The first sharp interface model for solid-state dewetting was proposed by Srolovitz

and Safran [111] to investigate the hole growth under the assumption of isotropic

surface energy and cylindrical symmetry. See Fig. 1.12, if the thin film profile is rep-

resented by (r, h(r)), in the small slop limit (∂h
∂r
� 1), the surface diffusion equation

will reduce to

∂h

∂t
= −B

r

∂

∂r

ï
r
∂

∂r

î1
r

∂

∂r
(r
∂h

∂r
)
óò
, r > ρ, t > 0, (1.4.1)
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with B =
DsνγFV Ω2

0

kBTe
. For the contact points, the following boundary conditions were

included

h(ρ, t) = −a, (1.4.2a)

∂h

∂r
(ρ, t) = tan θc, (1.4.2b)

∂3h

∂r3
(ρ, t) +

1

ρ

∂2h

∂t2
(ρ, t)− 1

ρ2

∂h

∂r
(ρ, t) = 0, (1.4.2c)

lim
r→∞

h(r, 0) = 0. (1.4.2d)

The boundary conditions Eq. (1.4.2a) and Eq. (1.4.2d) come directly from the coor-

dinate system. Eq. (1.4.2b) expresses the equilibrium contact angle at the boundary

while Eq. (1.4.2c) implies there is no source or sink for matter at the contact point.

Based on this model, they showed that large holes can migrates such that the edge

retraction distance can be scaled by t1/4 while small holes will shrink.

This model was then generalized to both the two-dimensional case [125] and

three-dimensional case with cylindrical symmetry [42] in Lagrangian representation.

Numerical results in [125] demonstrated that semi-infinite thin film undergoes a

periodic mass shedding. Moreover, the authors showed numerically and analytically

that the edge retraction distance could be scaled by t2/5 at a later time for the

semi-infinite film.

However, these models all start from the initial assumption that the surface

energy is isotropic, thus the influence of the crystalline anisotropy on the morpho-

logical evolution for solid-state dewetting could be ignored. Besides, physical ex-

periments [2, 127, 130, 139] have demonstrated that surface energy anisotropy could

greatly influence the kinetics of solid-state dewetting, such as the faceting instabil-

ity and corner instability. To include this crystalline anisotropy, recently some new

models have been proposed, including the discrete model by Dornel [40], a kinetic

Monte Carlo method [43, 92, 92] and the crystalline method [70, 138]. Some other

models have been presented to study kinetics of hole growth [2, 139]. While the

drawback of these approaches is that the evolution does not account for the full
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anisotropic free energy of the system or do not represent a completely mathematical

description.

Figure 1.13: A schematic illustration of a solid thin film on a flat rigid substrate in

two dimensions, this image is taken from [120].

More recently, based on thermodynamic variation, Wang et al. [120] derived

rigorously a continuum sharp interface model for simulating the solid-state dewetting

with weakly anisotropic surface energies. In their model, see Fig. 1.13, they assume

the moving film/vapor interface is given by an open curve X(x(s, t), y(s, t)), where

s is the arc lenght and t is time. Then the dimensionless sharp interface model with

weakly anisotropic surface energies in two dimensions can be described as

∂X

∂t
=

∂2

∂s2

ïÄ
γ(θ) + γ′′(θ)

ä
κ
ò
n. (1.4.3)

They also proposed the following boundary conditions

y(xlc, t) = y(xrc, t) = 0, (1.4.4a)

dxlc
dt

= η(γ(θld) cos θld − γ′(θld) sin θld − σ), (1.4.4b)

dxrc
dt

= −η(γ(θrd) cos θrd − γ′(θrd) sin θrd − σ), (1.4.4c)

∂µ

∂s
(xlc, t) =

∂µ

∂s
(xrc, t) = 0. (1.4.4d)
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They introduced the relaxation kinetics Eqs. (1.4.4b),(1.4.4c) for the contact point

position to replace the static contact angle equation Eq. (1.4.2b). The governing

equations of the models belong to a new type of 4th-order geometric evolution partial

differential equations about open curve interface tracking problems, which include

anisotropic surface diffusion flow and contact line migration. With Willmore energy

regularization, this model was then generallized to the strongly anisotropic case [67].

Besides, a new zero-curvature boundary condition was included to ensure the energy

dissipation and wellposedness for the new 6th-order PDEs.

There is a long history in the numerical simulations of moving interfacial prob-

lems, and different numerical methods have been proposed in the literature for sim-

ulating the evolution of a closed curve/surface under mean curvature flow, surface

diffusion flow, Willmore flow and so on. Some theories on the stable finite element

method based on the graph representation of the surface [5, 34–36] were well devel-

oped, and corresponding error analysis was derived. However, the condition that

the evolution surface can be explicitly parameterized on some base domain in Rn is

so harsh to satisfy in most cases. Numerical methods that could be applied to more

general curves/surfaces became more popular, such as the marker-particle meth-

ods [63, 78, 79], and the parametric finite element methods [6, 58, 94]. Among these

methods, the main issue is that mesh quality during the curve/surface evolution

could not be preserved and can deteriorate to make the scheme unstable; thus these

algorithms need some kinds of mesh regularizations or re-meshing to maintain the

mesh quality. Recently, this mesh issue has been well overcome by J.W. Barrett et

al. [16,17,19,20] with a new novel parametric finite element method, which has very

good properties with respect to the distribution of the mesh points. Precisely, this

scheme introduced a particular tangential motion for the mesh points such that these

mesh points automatically moved tangentially over the surface and maintained good

mesh properties. Therefore the discrete scheme can be performed without any mesh

regularization. More recently, this scheme has been extended for simulating the

grain boundary motion and application of thermal grooving and sintering [24,134].
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For solid-state dewetting, i.e., the evolution of an open curve/surface under sur-

face diffusion flow and contact line migration, based on the previous mathematical

models and numerical simulations, different numerical algorithms have been devel-

oped in the literature [8, 9, 40, 42, 67, 120, 125]. Generally these numerical methods

can be classified into two main categories: interface-tracking methods and interface-

capturing methods.

In the interface tracking methods, the moving interface is simulated by the sharp

interface model. Numerically, it is explicitly represented by the computational mesh,

and the mesh is updated when the interface evolves. The marker-particle meth-

ods [42,125] were firstly presented for solving the sharp interface model of solid-state

dewetting problems. This method is an explicit finite difference scheme, thus pos-

ing a very severe restriction on the numerical stability. Besides, at each time step,

this algorithm requires re-meshing to redistribute the mesh points for the numerical

stability. In consideration of these factors, the marker-particle method is tedious to

perform and time-consuming, and the extension to the three dimensions is awkward.

In [8], the authors recently have presented a parametric semi-implicit mixed finite

element method for solving the sharp interface models, which they rigorously derived

from the variation of the energy functionals. The numerical scheme they proposed

is based on the automatically mesh-distributing scheme in [16], thus inheriting the

good properties for mesh distribution. Their scheme can be applied to the case when

the surface energy is weakly anisotropic and strongly anisotropic. Their ample nu-

merical simulations and reports of some interesting theories on the two-dimensional

solid-state dewetting demonstrate the parametric finite element method is powerful

for the simulation of this problem.

The interface-capturing methods include the level set method and phase field

method. They are based on an implicit representation of the surface by using the

auxiliary function (level set function for level set method and phase function for

phase field method) over a global domain, such that surface is implicitly captured

via the zero contour of the auxiliary function. The interface-capturing methods to
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compute the surface diffusion have been studied in the literature for level set meth-

ods [31,74,107] and phase field methods [13–15,25,124]. However, in the solid-state

dewetting problem, in addition to the surface diffusion, the main difficulty for these

interface-capturing methods lies in how to deal with the complex boundary condi-

tions which result from the contact line migration. To our knowledge, the level set

approach for solids-state dewetting problem is still a big challenge due to the com-

plicated boundary conditions. On the other hand, Jiang et al. [66] first proposed a

phase field model for simulating the solid-state dewetting with isotropic surface en-

ergy. The model includes the Cahn-Hilliard equation with degenerate mobility and

nonlinear boundary conditions along the substrate. By making use of discrete cosine

transforms (DCT) and discrete sine transforms (DST), they also proposed a highly

efficient, stabilized, semi-implicit algorithm for solving the model. The numerical

simulations obtained via this phase field approach showed qualitatively excellent

agreement with physical experiments. The extended model for weakly anisotropic

surface energy has been recently presented in [46] together with a matched asymp-

totic analysis for the sharp interface limit.

For comparisons between the interface-tracking and interface-capturing methods,

each one has its own advantages and disadvantages. The interface-tracking methods

via the sharp-interface model can always give the correct physics about surface

diffusion together with contact line migration for the solid-state dewetting, and it

is computationally efficient since it is one dimension less in space compared to the

phase field model. But it is very tedious and troublesome to handle topological

changes, e.g., pinch-off events. On the other hand, the interface-capturing methods

via the phase field model can in general handle automatically topological changes and

complicated geometries, but the sharp-interface limits of these phase field models

are still unclear [76], and efficient and accurate simulations for surface diffusion and

solid-state dewetting problems by using these models are still not well developed.
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1.5 Scope of this thesis

Solid-state dewetting problems have been extensively studied with different mod-

els and numerical methods. However, there are still some limitations for these ap-

proaches. Firstly, the sharp interface model in two dimensions has been rigorously

derived and an efficient parametric finite element method has been proposed to solve

it. However, their models are not easy to be extended to the full three dimensions.

Secondly, the extension of the parametric finite element method to three dimensions

is not straightforward. This motives us to focus the following issues in this thesis,

• In chapter 2, we study the solid-state dewetting via thermodynamic variation

in two dimensions as a start. The equilibrium shape and its linear stability

has been well analysed. The sharp interface model with anisotropic surface

energies is derived based on the thermodynamic variation via Cahn-Hoffman

vector formulation. Efficient and stable numerical scheme is designed to solve

the fourth-order geometric curve evolution equations.

• In chapter 3, based on the velocity speed method and shape derivatives, we de-

rive the fully three-dimensional sharp interface model for solid-state dewetting

with anisotropic surface energy and rigid flat substrate. The model includes

the anisotropic surface diffusion flow and contact line migrations.

• In chapter 4, we present parametric finite element methods for solving the

sharp the sharp interface model in both isotropic and anisotropic case. Ex-

tensive numerical results are presented to show the convergence of the numer-

ical methods, the morphological characteristics for thin film during solid-state

dewetting, and so on.

• In chapter 5, we extend our sharp interface model to the cases when the

anisotropy is strong and and when the substrate is curved. Besides, the mi-

gration laws for the toroidal thin film on a flat substrate have been investigated

and a reduced model will be obtained via Onsager’s principle for describing
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the migration.

The main works of this thesis are based on the papers [10, 11,135,136].



Chapter 2
Modeling and Simulation in Two

Dimensions

The solid-state dewetting problems in two dimensions have been well studied

recently [8, 9, 67, 120] via the sharp interface models. In these works, the authors

presented the chemical potential in the form of a multiplication of the surface stiff-

ness and the curve curvature, that is

µ = (γ(θ) + γ′′(θ))κ Ω0, (2.0.1)

where γ(θ)+γ′′(θ) is the surface stiffness, κ is the curvature, Ω0 is the atomic volume.

Based on the expression, a generalized Winterbottom construction was proposed for

the anisotropic particles on substrates via the variational approach, and conditions

for the stable equilibrium were presented [9]. The theory was then numerically val-

idated by solving these sharp interface models with the parametric finite element

method [8]. Moreover, many physical phenomena of the solid-state dewetting have

been investigated, such as the Rayleigh instability and power law retraction. How-

ever, the extensions of this mathematical representation for the chemical potential as

well as the numerical methods to three dimensions are tedious although a similar rep-

resentation is presented by Herring [60] for the three-dimensional Gibbs-Thompson

28
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equation in local coordinates

µ =
ï
(γ +

∂2γ

∂n2
x

)κx + (γ +
∂2γ

∂n2
y

)κy

ò
Ω0, (2.0.2)

where κx, κy are the two principle curvatures, nx, ny are the two corresponding angles

in the two principle directions.

Therefore in this chapter, based on the Cahn-Hoffman ξ-vector, we will present

a new approach to studying the solid-state dewetting in two dimensions, and this

approach is easily generalised to the three-dimensional case. In addition, we will

consider the equilibrium problems via the variational approach and predicate the

equilibrium shape as well as its stability conditions. Based on this variation we can

derive the dynamic, sharp interface model via the form of the Cahn-Hoffman ξ-vector

formulation. This model includes the surface diffusion flow and relaxed contact

angle conditions for describing the motion of the interface curve and migrations of

the contact points, respectively. Moreover, a variational formulation of the model

is proposed, and then a new parametric finite element method is applied to solve

it. The strongly anisotropic surface energy will also be considered via the Willmore

energy regularization. Extensive numerical results will be shown afterwards.

2.1 Interfacial energy and thermodynamic varia-

tion

As illustrated in Fig. 2.1, in two dimensions, we consider that an open curve

Γ = X(x(s), y(s)), parameterized by the arc length s, which separates the vapor

and the thin film, attaches on a flat rigid substrate (x−axis) with two contact points

xrc and xlc. Here n is the unit normal vector that points to the vapor phase and τ is

the unit tangential vector. The total interfacial energy of the system can be written

as

W (Γ) =
∫

Γ
FV

γ
FV

dΓ
FV

+
∫

Γ
FS

γ
FS
dΓ

FS
+
∫

Γ
V S

γ
V S
dΓ

V S
. (2.1.1)
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Figure 2.1: A schematic illustration of solid thin film on a rigid, flat substrate

(x-axis) in two dimensions with two contact points xlc and xrc.

Here, Γ
FV

:= Γ,Γ
FS

and Γ
V S

represent the film/vapor, film/substrate and va-

por/substrate interface, respectively, and γ
FV
, γ

FS
, γ

V S
represent their corresponding

surface energy densities (surface energy per unit length). For solid-state dewetting

problems, we often assume that γ
FS
, γ

V S
are two constants, while γ

FV
= γ(n) ∈

C2(S1) depends on the orientation of the film/vapor interface. By dropping off a

constant part, the total interfacial energy can be simplified as the following form

(still labeled as W (Γ)):

W (Γ) =
∫

Γ
γ(n) ds− (γ

V S
− γ

FS
)(xrc − xlc), (2.1.2)

where the first term refers to the film/vapor interfacial energy part, and the second

term represents the substrate energy part. In the following, we will introduce a

smooth vector-field perturbation method to obtain the first variation of the above

energy functional with respect to the open curve Γ.

First, we introduce an independent parameter ρ ∈ I = [0, 1] to parameterize a

family of perturbed curves {Γε}ε∈[0,ε0], where the parameter ε controls the amplitude

of the perturbation and ε0 is the maximum perturbation amplitude, i.e.,

Γε = X(ρ, ε) : [0, 1]× [0, ε0]→ R2, (2.1.3)

and Γ := Γ0 = X(ρ, 0). In order to calculate the variation of a shape functional, we
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introduce a smooth perturbation vector-field as follows:

V(ρ, ε) =
∂X(ρ, ε)

∂ε
, ∀ ε ∈ [0, ε0], (2.1.4)

and each point on the curve Γ is continuously deformed by the above equation

defined by the perturbation vector-field V. Note that if the vector-field V is smooth

enough, the family of perturbed curves {Γε} preserve the regularity of the original

curve Γ: if Γ is of class Ck-curves, for any ε ∈ [0, ε0], Γε is also of class Ck-curves.

Then, assume that given an arbitrary shape functional F (Γ), we can define its

first variation with respect to any smooth perturbation vector-field V as

δF (Γ; V) = lim
ε→0

F (Γε)− F (Γ)

ε
. (2.1.5)

Lemma 2.1.1. Assume that Γ = X(s) ∈ C2([0, L])× C2([0, L]) is an open smooth

curve with its two endpoints locating at s = 0 and s = L, where s := s(ρ), ρ ∈ [0, 1]

represents the arc length of the curve. If the shape functional F (Γ) =
∫

Γ γ(n) ds,

then its first variation can be written as:

δF (Γ; V) = −
∫

Γ
[(∂sξ)⊥ · n] (V0 · n) ds+

ï
ξ⊥ ·V0

ò∣∣∣∣s=L
s=0

, (2.1.6)

where ⊥ represents the clockwise rotation of a vector by 90 degrees, ξ = ξ(n) is the

Cahn-Hoffman vector and the deformation velocity is denoted as V0 = V(ρ, 0), and

V0 · n represents the deformation velocity along the outer normal direction of the

interface.

Proof. We first extend the definition domain of the surface energy density function

γ(n) from unit vectors n to arbitrary non-zero vectors p as below

γ̂(p) = |p|γ(
p

|p|
), ∀p ∈ R2\{0}, (2.1.7)

where γ̂(p) extends γ as a homogeneous function of the first degree.

The perturbed curve is labeled as Γε := X(ρ, ε). By using the identity ∂ρs =

|∂ρX|, we can have the following expression

F (Γε) =
∫ 1

0
γ(nε)|∂ρX(ρ, ε)| dρ. (2.1.8)
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Note that the following expressions hold:

τ ε =
∂ρX(ρ, ε)

∂ρs(ρ, ε)
, nε = −(τ ε)⊥ = − [∂ρX(ρ, ε)]⊥

|∂ρX(ρ, ε)|
,

∇γ̂(p) · p = γ̂(p), V0 = V(ρ, 0) = ∂εX(ρ, ε)
∣∣∣
ε=0
. (2.1.9)

Denote X = X(ρ, 0), then we can take the Taylor expansion for the following terms

at ε = 0,

|∂ρX(ρ, ε)| = |∂ρX|+
∂ρX · ∂ρV0

|∂ρX|
ε+O(ε2), (2.1.10a)

nε = n+
ï∂ρX · ∂ρV0

|∂ρX|3
(∂ρX)⊥ − (∂ρV0)⊥

|∂ρX|

ò
ε+O(ε2), (2.1.10b)

γ(nε) = γ(n) +∇γ̂(n)·
ï∂ρX · ∂ρV0

|∂ρX|3
(∂ρX)⊥ − (∂ρV0)⊥

|∂ρX|

ò
ε+O(ε2). (2.1.10c)

The first variation of the shape functional can be written as

δF (Γ; V) = lim
ε→0

F (Γε)− F (Γ)

ε
=
∫ 1

0
lim
ε→0

1

ε

ï
γ(nε)|∂ρX(ρ, ε)|−γ(n)|∂ρX(ρ, 0)|

ò
dρ.

By substituting Eqs. (2.1.10a) - (2.1.10c) into the above equation, and using the

identity ∇γ̂(n) · n = γ(n), we can obtain

δF (Γ; V) =
∫ 1

0
∇γ̂(n)·

ï∂ρX · ∂ρV0

|∂ρX|3
(∂ρX)⊥ − (∂ρV0)⊥

|∂ρX|

ò
|∂ρX| dρ

+
∫ 1

0
γ(n)

∂ρX · ∂ρV0

|∂ρX|
dρ

= −
∫ 1

0
∇γ̂(n) · (∂ρV0)⊥ dρ =

∫ 1

0
∇γ̂(n)⊥ · ∂ρV0 dρ. (2.1.11)

By using integration by parts, and Cahn-Hoffman vector ξ = ∇γ̂(n), we can obtain

δF (Γ; V) = −
∫ 1

0
(∂ρξ)⊥ ·V0 dρ+

ï
ξ⊥ ·V0

ò∣∣∣∣ρ=1

ρ=0

= −
∫

Γ
(∂sξ)⊥ ·V0 ds+

ï
ξ⊥ ·V0

ò∣∣∣∣s=L
s=0

. (2.1.12)

Making use of the expressions: ∂sξ � τ and (∂sξ)⊥ � n, we can immediately obtain

the conclusion from the above Eq. (2.1.12).

By using the above Lemma. 2.1.1, we can easily obtain the following theorem

about the first variation of the free energy functional (2.1.2):
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Theorem 2.1.1. The first variation of the free energy functional (2.1.2) used in

solid-state dewetting problems with respect to any smooth deformation field V can

be written as:

δW (Γ; V) = −
∫

Γ
[(∂sξ)⊥ ·n] (V0 ·n) ds+

ïÄ
ξ2−(γ

V S
−γ

FS
)
ä

(V0 ·e1)
ò∣∣∣∣s=L
s=0

, (2.1.13)

where ξ = (ξ1, ξ2), e1 = (1, 0) represents the unit vector along the x-coordinate (or

the substrate line), and (V0 · e1)
∣∣∣s=L
s=0

represents the deformation velocity along the

substrate line at two contact points.

Proof. For solid-state dewetting problems, as shown in Fig. 2.1, the contact points

must move along the substrate. Under the assumption that the substrate is flat, the

velocity field V(ρ, 0) at the two contact points (i.e., the two endpoints of the curve

Γ) must satisfy the constraints: V0(s = 0) � e1 and V0(s = L) � e1.

By using the above Eq. (2.1.6), and ξ⊥ = (ξ2,−ξ1), we can obtain

δW (Γ; V) = −
∫

Γ
[(∂sξ)⊥ · n] (V0 · n) ds+

ï
(ξ⊥ · e1) (V0 · e1)

ò∣∣∣∣s=L
s=0

−
ï
(γ

V S
− γ

FS
) (V0 · e1)

ò∣∣∣∣s=L
s=0

,

= −
∫

Γ
[(∂sξ)⊥ · n] (V0 · n) ds+

ïÄ
ξ2 − (γ

V S
− γ

FS
)
ä

(V0 · e1)
ò∣∣∣∣s=L
s=0

.

2.2 Equilibrium and its stability condition

Physical systems tend to move towards their equilibriums in the direction of

decreasing the total energy. This principle can be mathematically formulated via

the thermodynamic variation. The equilibrium shape equation can be obtained via

the first variation of the energy functional. The second variation of the energy is

often used to study the stability. So in this section, we will consider the equilibrium

shape of solid-state dewetting via the thermodynamic variation approach.
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2.2.1 Equilibrium shapes

The solid-state dewetting equilibrium problem can be written as a minimization

of the total surface energy subject to the constraint of constant volume:

min
Ω
W :=

∫
Γ
γ(n)ds− σ(xrc − xlc) s.t. |Ω| = const. (2.2.1)

We first give a lemma about the first variation of area of the enclosed region Ω.

Lemma 2.2.1. Suppose Γ = X(s) = (x(s), y(s)) ∈ C1([0, L]) × C1([0, L]) is an

open curve with two endpoints attached to the x−axis. Let A denote the total area

enclosed by Γ and the x-axis, then we have

A(Γ) =
∫

Γ
y∂sx ds, dA(Γ; V) =

∫
Γ

V0 · n ds. (2.2.2)

Proof. The enclosed area can be obtain based on the divergence theorem

A(Γ) =
1

2

∫
Γ

X · n ds. (2.2.3)

The unit normal vector can be expressed as n = (−∂sy, ∂sx). Besides, noting that

y(0) = y(L) = 0, then integrating by part, we can obtain

A(Γ) =
1

2

∫
Γ
(y∂sx− x∂sy) ds

=
1

2

∫
Γ
y∂sx ds+

1

2

∫
Γ
∂sxy ds− (xy)s=Ls=0 =

∫
Γ
y∂sx ds. (2.2.4)

Now based on the perturbation defined in Eq. (2.1.3) and the corresponding parametriza-

tion of Γε on [0, 1], we have

dA(Γ; V) = lim
ε→0

A(Γε)− A(Γ)

ε
=
∫ 1

0
lim
ε→0

1

ε
[y(ρ, ε)∂ρx(ρ, ε)− y(ρ, 0)∂ρx(ρ, 0)] dρ

=
∫ 1

0
Vy∂ρx dρ−

∫ 1

0
Vx∂ρy dρ+ yVx

∣∣∣∣ρ=1

ρ=0
=
∫

Γ
V0 · n ds. (2.2.5)

This directly gives the first variation of enclosed area.

The equilibrium shape is obtained when the first variation of the total surface

energy vanishes, thus we have the following lemma from [9]:
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Definition 2.2.1 (Equilibrium shapes [9]). If an open curve Γe = (x(s), y(s)) ∈

C2([0, L]) × C2([0, L]), where L is the arc length of Γe, satisfies dW (Γe; V) ≡ 0,

where V is a smooth vector field satisfying
∫

Γe
n·V0 ds ≡ 0, then it is the equilibrium

shape of solid-state dewetting problem (2.2.1).

Based on the definition of equilibrium shape of solid state dewetting problem [9],

we have

Lemma 2.2.2. Assume there is a curve satisfies Γe = (x(s), y(s)) ∈ C2[0, L], where

L is the arc length of Γe. Then if Γe is an equilibrium shape of solid state dewetting

problem (2.2.1) if and only if the following two conditions are satisfied:

−∂s(ξ)⊥ · n = C, ∀s ∈ [0, L], (2.2.6)

ξ2

∣∣∣
s=0
− σ = 0, ξ2

∣∣∣∣
s=L
− σ = 0. (2.2.7)

Here the constant C is determined by the total volume of the thin film.

Proof. The procedure of the proof for this lemma is similar to the proof in [9], so

we omit it.

The above lemma is expressed in the form of the Cahn-Hoffman ξ- vector, which

is the same as the lemma given in [9]. Eq. (2.2.6) could be written in a different

expression

∇s · ξ = (∂sξ) · τ = C, ∀s ∈ [0, L], (2.2.8)

which can be extended to the three-dimensional case directly, see Chapter 3. Eq. (2.2.7)

can be regarded as the anisotropic Young equation. If the interfacial energy is

isotropic, we obain that ξ = n, and on the boundary (two contact points), Eq. (2.2.7)

collapses to cos θc = σ with θc denoting the contact angle.

2.2.2 Stability condition

In absence of the substrate, the equilibrium shape that minimise the energy

functional
∫

Γ γ(n) ds while preserving the total volume is given by Wulff shape [126].
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When γ(n) = 1, this problem reduces to the well-known isopermetric problem. The

stability of the corresponding equilibrium shape: sphere has been proved [12, 121]

based on the second variational approach. The stability of Wulff shape for general

anisotropy has been widely studied [87,122]. The result can be concluded as : if the

anisotropy satisfies the convexity assumption, that is

Hγ(p)q · q ≥ λ0|q|, ∀q ∈ S1,p · q = 0, (2.2.9)

where λ0 is a positive constant, then only closed, orientated, stable critical points

of the energy functional is Wulff shape, up to scaling and translation. However,

when the convexity condition is not satisfied, we knew that ears appear in the

Wulff envelope (ξ-plot) as some orientations are missing on the Wulff shape. The

Wulff envelope truncated by a flat substrate line could produce multiple equilibrium

shapes [67]. On the other hand, the condition for the stable equilibrium is that

its second variation of the energy functional is non-negative for all variations that

preserving the area. So in this section, we perform the second variation of the

energy functional and derive the stability conditions of the equilibrium shape for

solid-state dewetting. For simplicity, and avoiding using the Jacobia operator for

a vector varaition field, we assume the perturbation is expressed in one parameter,

that is

X(ρ, ε) = X(ρ, 0) + εX1(ρ). (2.2.10)

Thus we have V0 = X1(ρ), and we can define the second variation

d2F (Γ; V) =
d2F (Γε)

dε2

∣∣∣∣
ε=0

. (2.2.11)

We have the following lemma for the second variation.

Lemma 2.2.3. Suppose Γ = X(s) ∈ C2([0, L])× C2([0, L]) is an open curve where

s(0 ≤ s ≤ L) is the arc length and assume the perturbation is given by. (2.2.10). Let

F (Γ) =
∫
Γ γ(n)ds, then we have

d2F (Γ; V) =
∫

Γ
Hγ(n)τ · τ (∂sV0 · n)2 ds, (2.2.12)

where τ is the unit tangential vector.
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Proof. Here we can write the second variation as

d2F (Γ; V) =
d2

dε2

∣∣∣∣
ε=0

∫ 1

0
γ(nε)|∂ρX(ρ, ε)| dρ. (2.2.13)

Expand Γ(nε) and |∂ρX(ρ, ε)| up to second order under the perturbation defined in

Eq. (2.2.10), we obtain (see Appendix. A for detailed derivation),

|∂ρX(ρ, ε)|
|∂ρX|

= 1 + (τ · ∂sV0)ε+
1

2

Ä
∂sV0 · ∂sV0 − (τ · ∂sV0)2

ä
ε2 +O(ε3), (2.2.14a)

γ(nε) = γ(n) +
[
−γ(n)(τ · ∂sV0)−∇γ̂(n) · (∂sV0)⊥

]
ε

+
1

2

[
2∇γ̂(n) · (∂sV0 · τ )(∂sV0)⊥ − γ(n)(∂sV0 · ∂sV0)

+ 3γ(n)(τ · ∂sV0)2 + Hγ(n)(∂sV0)⊥ · (∂sV0)⊥
]
ε2 + O(ε3). (2.2.14b)

Extracting all O(ε) terms of γ(nε)|∂ρX(ρ, ε|, we get

d2

dε2

Å
γ(nε)|∂ρX(ρ, ε)|

ã∣∣∣∣
ε=0

= −2|∂ρX|
ï
γ(n)(τ · ∂sV0) +∇γ̂(n) · (∂sV0)⊥

ò
(τ · ∂sV0)

+ |∂ρX|γ(n)
ï
∂sV0 · ∂ρV0 − (τ · ∂sV0)2

ò
+ |∂ρX|

ï
2∇γ̂(n) · (∂sV0 · τ )(∂sV0)⊥ − γ(n)(∂sV0 · ∂sV0)

+ 3γ(n)(τ · ∂sV0)2 + Hγ(n)(∂sV0)⊥ · (∂sV0)⊥
ò

= Hγ(n)(∂sV0)⊥ · (∂sV0)⊥|∂ρX|. (2.2.15)

The last equality of above equations is due to a simple reduction. Thus we can

directly obtain that

d2F (Γ; V) =
∫ 1

0
Hγ(n)(∂sV0)⊥ · (∂sV0)⊥|∂ρX| dρ

=
∫

Γ
Hγ(n)(∂sV0)⊥ · (∂sV0)⊥ ds. (2.2.16)

Express (∂sV0)⊥ into the linear combination of normal and tangential parts

(∂sV0)⊥ = [(∂sV0)⊥ · n]n + [(∂sV0)⊥ · τ ]τ

= [∂sV0 · τ ]n− [∂sV0 · n]τ . (2.2.17)

Note that Hγ(n)n = 0, we obtain

d2F (Γ; V) =
∫

Γ
Hγ(n)τ · τ (∂sV0 · n)2 ds. (2.2.18)
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According to lemma. 2.2.3, we know that the second variation under the pertur-

bation Eq. (2.2.10) is given directly as

d2W (Γ; V) =
∫

Γ
Hγ(n)τ · τ (∂sV0 · n)2 ds. (2.2.19)

Thus the stability condition for an equilibrium shape is given by

Hγ(n)τ · τ > 0. (2.2.20)

The same stability condition for an equilibrium shape has been derived in [9] with

the surface stiffness γ(θ) + γ′′(θ) > 0. Here the condition is presented in a different

form. These two forms are equivalent. Based on this stability condition, the au-

thor proposed a generalized Winterbottom construction to include all the possible

multiple equilibrium shapes for strongly anisotropic case.

2.3 The sharp interface model

In this section, based on thermodynamic variation, the sharp interface model

will be developed. The mass conservation and energy dissipation for the dynamic

model will be shown afterwards.

By using the above Theorem 2.1, the first variation of the total energy functional

(2.1.2) with respect to the interface Γ and two contact points xlc and xrc can be written

as:

δW

δΓ
= −(∂sξ)⊥ ·n, δW

δxlc
= −

Å
ξ2|s=0−(γ

V S
−γ

FS
)
ã
,

δW

δxrc
= ξ2|s=L−(γ

V S
−γ

FS
).

(2.3.1)

From the Gibbs-Thomson relation [86,113], the chemical potential µ of the sys-

tem is defined as

µ = Ω0
δW

δΓ
, (2.3.2)
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where Ω0 represents the atomic volume of the thin film material. The normal velocity

of the interface curve Γ, labeled as vn, is expressed by the following surface diffusion

flow [27,86]:

j = − Dsν

kB Te
∇s µ, vn = −Ω0(∇s · j) =

DsνΩ0

kB Te
∂ssµ, (2.3.3)

where j is the mass flux along the interface, ∇s is the surface gradient operator, Ds

is the surface diffusivity, ν is the number of diffusing atoms per unit length, and

kB Te is the thermal energy. Furthermore, the motion of the two contact points

are given by the energy gradient flow, which is determined by the time-dependent

Ginzburg-Landau kinetic equations [120], i.e.,

dxlc(t)

dt
= −ηδW

δxlc
,

dxrc(t)

dt
= −ηδW

δxrc
, (2.3.4)

with η ∈ (0,+∞) representing the finite contact point mobility. For the physical

explanation behind this approach, please refer to the recent paper [?].

2.3.1 The dimensionless equations

We choose the characteristic length scale and characteristic surface energy scale

as h0 and γ0 respectively, the time scale as
h4

0

Bγ0
with B =

DsνΩ2
0

kB Te
, and the contact

line mobility is scaled by B
h3

0
. Then, we can obtain a dimensionless sharp-interface

model again [8, 120] for solid-state dewetting via a ξ-vector formulation, which can

be written as follows (for simplicity, we still use the same notations for the variables):

∂tX = ∂ssµ n, 0 < s < L(t), t > 0, (2.3.5)

µ = − (∂sξ)⊥ · n, ξ = ∇γ̂(p)
∣∣∣∣
p=n

; (2.3.6)

where Γ := Γ(t) = X(s, t) = (x(s, t), y(s, t)) represents the moving film/vapor

interface, s is the arc length or distance along the interface, t is the time, n =

(−∂sy, ∂sx) is the interface outer unit normal vector, µ := µ(s, t) is the chemical

potential, ξ = (ξ1, ξ2) is the dimensionless Cahn-Hoffman vector (scaled by γ0) and
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L := L(t) represents the total length of the moving interface. The initial condition

is given as

X(s, 0) := X0(s) = (x(s, 0), y(s, 0)) = (x0(s), y0(s)), 0 ≤ s ≤ L0 := L(0), (2.3.7)

satisfying y0(0) = y0(L0) = 0 and x0(0) < x0(L0), and the boundary conditions are:

(i) contact point condition

y(0, t) = 0, y(L, t) = 0, t ≥ 0; (2.3.8)

(ii) relaxed contact angle condition

dxlc
dt

= η(ξ2|s=0 − σ),
dxrc
dt

= −η(ξ2|s=L − σ), t ≥ 0; (2.3.9)

where the dimensionless material constant σ =
γ
V S
−γ

FS

γ0
, and γ0 is the dimen-

sionless unit of surface energy density.

(iii) zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0. (2.3.10)

For the above boundary conditions, condition (i) ensures that the contact points

always move along the substrate, condition (ii) allows for the relaxation of the

contact angle, and condition (iii) ensures that the total area/mass of the thin film is

conserved, implying that there is no mass flux at the contact points. We note here

that the above governing equations (2.3.5)-(2.3.6) are mathematically well-posed

when the surface energy is isotropic or weakly anisotropic; if the surface energy is

strongly anisotropic, the above equations will become anti-diffusion type, and they

are ill-posed. In the strongly anisotropic case, we need to regularize these equations

by adding some high-order terms, and we will discuss this case later.
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2.3.2 Mass conservation and energy dissipation

In this section, we show that the mass is conserved and total energy is decreasing

under the dynamics of the above sharp-interface model.

Proposition 2.3.1 (Mass conservation and energy dissiaption). Let Γ(t) = X(s, t)

be the exact solution of Eqs. (2.3.5), (2.3.6) coupled with the boundary conditions

(2.3.8)-(2.3.10), and the initial curve is given by Γ(0) = (x0(s), y0(s)). Then the

total mass of the thin film is conserved during the evolution, i.e.,

A(t) ≡ A(0) =
∫

Γ(0)
y0(s)∂sx0(s) ds, t ≥ 0. (2.3.11)

and the total energy of the thin film is decreasing during the evolution, i.e.,

W (t) ≤ W (t1) ≤ W (0) =
∫

Γ(0)
γ(n) ds−(xrc(0)−xlc(0))σ, t ≥ t1 ≥ 0. (2.3.12)

Proof. From Eq. (2.2.2), by directly calculating the time derivative of A(t) and using

lemma 2.2.1, we can obtain the following expression

d

dt
A(t) =

∫
Γ(t)

Xt · n ds =
∫

Γ(t)
µss ds = 0. (2.3.13)

The last equality follows from the zero-mass flux boundary condition, and it indicates

that the mass is conserved.

To obtain the time derivative of W (t), we can make use of the Eq. (2.1.13), but

replace the perturbation parameter by the time t, then we get:

d

dt
W (t) = −

∫
Γ
(∂sξ)⊥ ·Xtds+ (ξ2|s=L(t) − σ)

dxrc
dt
− (ξ2|s=0 − σ)

dxlc
dt
. (2.3.14)

Now use (2.3.5) and (2.3.6) and the contact line moving boundary conditions (2.3.9),

also note that ∂sξ · n = 0, we have

d

dt
W (t) =

∫
Γ(t)

µ∂ssµ ds−
1

η

ïÅdxlc
dt

ã2

+
Ådxrc
dt

ã2ò
= −

∫
Γ(t)

(∂sµ)2 ds− 1

η

ïÅdxlc
dt

ã2

+
Ådxrc
dt

ã2ò
≤ 0. (2.3.15)

The last inequality immediately implies the energy dissipation.
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2.4 A parametric finite element method (PFEM)

In this section, motivated by the parametric finite element method (PFEM)

recently used for solving a class of geometric partial differential equations (e.g.,

[6,8,16,17,36]), we propose a parametric finite element numerical scheme for solving

the above proposed sharp-interface mathematical model, i.e., Eqs. (2.3.5)-(2.3.6)

coupled with the boundary conditions Eqs. (2.3.8)-(2.3.10).

2.4.1 Variational formulation

Following the previous notions, we assume that Γ(t) is a family of open evolution

curves in the plane which intersect with the substrate line (x-axis) at the two contact

points, then we can parameterize the curves as

Γ(t) = X(ρ, t) : I × [0, T ]→ R2, (2.4.1)

where t ∈ [0, T ] represents the time, the time-independent spatial variable ρ ∈ I, and

I denotes a fixed reference spatial domain. For simplicity, we choose it as I := [0, 1].

In order to briefly present its variational formulation of the sharp-interface model,

we introduce the following L2 inner product which depends on the evolution curve

Γ(t) as¨
u, v
∂

Γ
:=
∫
I
u(ρ) · v(ρ)|∂ρX(ρ, t)| dρ, (2.4.2)

where u, v ∈ L2(I) are any scalar (or vector) functions. In addition, here we al-

ways assume that ∂ρs(ρ, t) = |∂ρX(ρ, t)| ∈ L∞(I). On the other hand, when the

interface curve Γ(t) evolves, the x-coordinates of two contact points at which Γ(t)

intersects with the x-axis will evolve according to the relaxed contact angle condi-

tion Eq. (2.3.9), and therefore, we can define the following Dirichlet-type functional

space of the solutions for the proposed sharp-interface model as

H1
a,b(I) = {u ∈ H1(I) : u(0) = a, u(1) = b}, (2.4.3)
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where a and b are two preassigned constants which are related to x-coordinates (or

y-coordinates) of the two contact points at a fixed time, respectively. For simplicity,

we denote H1
0 (I) := H1

0,0(I).

Now, we can define the variational formulation of the above sharp-interface model

for simulating the solid-state dewetting of thin films: given an initial curve Γ(0) =

X(ρ, 0) = X0(s) with s = L0ρ for ρ ∈ I (defined in Eq. (2.3.7)), for any time

t ∈ (0, T ], find the evolution curves Γ(t) = X(ρ, t) ∈ H1
a,b(I) × H1

0 (I) with the x-

coordinate positions of moving contact points a = xlc(t) ≤ xrc(t) = b, the chemical

potential µ(ρ, t) ∈ H1(I) such that¨
∂tX, ϕn

∂
Γ

+
¨
∂sµ, ∂sϕ

∂
Γ

= 0, ∀ ϕ ∈ H1(I), (2.4.4)¨
µn, ω

∂
Γ
−
¨
ξ⊥, ∂sω

∂
Γ

= 0, ∀ ω ∈ H1
0 (I)×H1

0 (I), (2.4.5)

coupled with that the positions of the moving contact points, i.e., xlc(t) and xrc(t), are

updated by the relaxed contact angle boundary condition, i.e., Eq. (2.3.9). Here, the

Cahn-Hoffman ξ-vector is determined from the surface energy density γ(n) and the

curve orientation n, i.e., ξ = ∇γ̂(p)
∣∣∣∣
p=n

. It is noted that Eq. (2.4.4) is obtained by

reformulating Eq. (2.3.5) as ∂tX ·n = ∂ssµ, then multiplying a scalar test function ϕ

on the both sides and integrating over the interface curve Γ(t), and finally using the

integration by parts and the zero-mass flux boundary condition (2.3.10). Similarly,

Eq. (2.4.5) can be obtained by reformulating Eq. (2.3.6) as µ n = −∂sξ⊥ because

∂sξ
⊥ � n, multiplying a vector- valued test function ω on its both sides, and the

integration by parts.

2.4.2 Fully-discrete scheme

A uniform partition of I is given as: ρ ∈ I = [0, 1] =
⋃N
j=1 Ij =

⋃N
j=1[ρj−1, ρj],

where N denotes the number of divided small intervals, and ρj = jh denotes the

interval nodes with the uniform interval length h = 1/N . In addition, we subdivide

the time interval as 0 = t0 < t1 < . . . < tM−1 < tM = T with τm = tm+1 − tm.
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Define the finite dimensional spaces to approximate H1(I) and H1
a,b(I) as

V h := {u ∈ C(I) : u |Ij∈ P1, ∀ j = 1, 2, . . . , N} ⊆ H1(I), (2.4.6)

Vha,b := {u ∈ V h : u(0) = a, u(1) = b} ⊆ H1
a,b(I), (2.4.7)

where a and b are two given constants, P1 denotes the polynomial with degrees at

most 1. And again, for simplicity, we denote Vh0 = Vh0,0.

Since we use the P1 (linear) elements to approximate the moving curves, the

numerical solutions for the moving interfaces are polygonal curves. If we introduce

that, hmj := Xm(ρj)−Xm(ρj−1), is a straight line (or a vector) which connects with

the marker points Xm(ρj) and Xm(ρj−1), where j = 1 → N , then we can denote

the evolution curve at time t = tm as: Xm =
⋃N
j=1 hmj , and its tangential, normal

vector of the numerical solution Γm are step functions with possible discontinuities

or jumps at nodes ρj. For two piecewise continuous scalar or vector functions u and

v defined on the interval I, with possible jumps at the nodes {ρj}N−1
j=1 , we can define

the mass lumped inner product
¨
·, ·
∂h

Γm
over Γm as¨

u, v
∂h

Γm
:=

1

2

N∑
j=1

∣∣∣∣Xm(ρj)−Xm(ρj−1)
∣∣∣∣ïÄu · vä(ρ−j ) +

Ä
u · v

ä
(ρ+
j−1)
ò
, (2.4.8)

where u(ρ±j ) = lim
ρ→ρ±j

u(ρ). The unit tangential vector can be computed as τmj =

τm|Ij =
hmj
|hmj |

, and the normal vector can be numerically computed as nm = −(τm)⊥.

Let Γm := Xm, nm and µm be the numerical approximations of the mov-

ing curve Γ(tm) := X(·, tm), the normal vector n and the chemical potential µ

at time tm, respectively. For simplicity, we denote Xm(ρj) = (xmj , y
m
j ). Take

Γ0 = X0 ∈ Vhx0(0),x0(L0) × Vh0 such that X0(ρj) = X0(s0
j) with s0

j = jL0/N = L0ρj

for j = 0, 1, . . . , N , then a semi-implicit parametric finite element method (PFEM)

for the variational problem (2.4.4)-(2.4.5) can be given as: for m ≥ 0, find Γm+1 =

Xm+1 ∈ Vha,b × Vh0 with the x-coordinate positions of the moving contact points

a := xlc(tm+1) ≤ b := xrc(tm+1) and µm+1 ∈ V h such that¨Xm+1 −Xm

τm
, ϕhn

m
∂h

Γm
+
¨
∂sµ

m+1, ∂sϕh
∂h

Γm
= 0, ∀ ϕh ∈ V h, (2.4.9a)¨

µm+1nm, ωh
∂h

Γm
−
¨
(ξm+ 1

2 )⊥, ∂sωh
∂h

Γm
= 0, ∀ ωh ∈ Vh0 × Vh0 , (2.4.9b)
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where the x-coordinates of the two contact point positions xlc(tm+1) and xrc(tm+1)

are updated via the relaxed contact angle condition Eq. (2.3.9) by using the forward

Euler numerical approximation,

xlc(tm+1)− xlc(tm)

τm
= η
ï
ξm2

∣∣∣∣
ρ=0
−σ
ò
,

xrc(tm+1)− xrc(tm)

τm
= −η

ï
ξm2

∣∣∣∣
ρ=1
−σ
ò
. (2.4.10)

According to the specific form of the surface energy density, we can define the

numerical approximation term ξm+ 1
2 in the above scheme as follows: If the surface

energy density is expressed as the form of γ(n), the numerical approximation term

ξm+ 1
2 can be defined as:

ξm+ 1
2 = γ(nm)nm+1 + (ξm · τm)τm+1, (2.4.11)

where nm+1 and τm+1 are numerically approximated by −(∂sX
m+1)⊥ and ∂sX

m+1

respectively. The main idea comes from that the Cahn-Hoffman vector can be

decomposed as: ξ = γ(n)n+ (ξ ·τ )τ , where ξ ·n = γ(n), and then we use the semi-

implicit discretization. Furthermore, in some literatures, the surface energy density

function γ(n) can be chosen as a special form, e.g., Riemannian metric form [19,36]

γ(n) =
K∑
k=1

»
Gkn · n, ξ(n) =

K∑
k=1

ï»
Gkn · n

ò−1

Gkn, (2.4.12)

where Gk, k = 1, · · · , K, is a symmetric positive definite matrix. In this special

case, the numerical approximation term ξm+ 1
2 can be defined as:

ξm+ 1
2 =

K∑
k=1

ï»
Gknm · nm

ò−1

Gkn
m+1. (2.4.13)

On the other hand, in two dimensions, the surface energy density function

γ(n) can be equivalently expressed as the form of γ(θ), where n = (− sin θ, cos θ),

θ ∈ [−π, π] represents the local orientation (i.e., the angle between the interface

outer normal n and y-axis), and by simple calculations we can evaluate the linear

approximation ξm+ 1
2 in Eq. (2.4.9b) to the Cahn-Hoffman vector as

ξm+ 1
2 = γ(θm)nm+1 − γ ′(θm)τm+1, (2.4.14)
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where the value of the orientation angle θ is explicitly calculated at time t = tm,

and we have used ξ · τ = −γ ′(θ) in Eq. (2.4.11).

For the above semi-implicit parametric finite element scheme, we have the fol-

lowing theorem:

Theorem 2.4.1 (Well-posedness for the PFEM scheme). The above discrete vari-

ational problem Eqs. (2.4.9a)-(2.4.9b) admits a unique solution (i.e., well-posed).

Proof. Note that the two moving contact points is first updated explicitly according

to the relaxed boundary condition, and therefore, the boundary conditions of the

variables for the above discrete variational problem can be regarded as the Dirichlet

type. Proving that the resulted linear system has a unique solution is equivalent to

proving that the corresponding homogeneous linear system has zero solutions, i.e.,

the system can be reduced to: find {Xm+1, µm+1} ∈ {Vh0 × Vh0 , V h} such that¨
Xm+1, ϕhn

m
∂h

Γm
+
¨
∂sµ

m+1, ∂sϕh
∂h

Γm
= 0, ∀ ϕh ∈ V h, (2.4.15a)¨

µm+1nm, ωh
∂h

Γm
−
¨
(ξm+ 1

2 )⊥, ∂sωh
∂h

Γm
= 0, ∀ ωh ∈ Vh0 × Vh0 , (2.4.15b)

with ξm+ 1
2 = γ(θm)(−∂sXm+1)⊥− γ′(θm)∂sX

m+1 defined in Eq. (2.4.14). Now if we

set ϕh = µm+1,ωh = Xm+1 and by noting that (∂sX
m+1)⊥ · ∂sXm+1 = 0, we can

obtain≠
∂sµ

m+1, ∂sµ
m+1
∑h

Γm
+
≠
γ(θm)∂sX

m+1, ∂sX
m+1
∑h

Γm
= 0. (2.4.16)

Because the surface energy density γ(θ) is always non-negative, the above equation

directly tells us that Xm+1 = 0, µm+1 = 0. Therefore, the corresponding homoge-

neous linear system only has zero solutions, which indicates the discrete scheme has

a unique solution.

Note that in the above proof, we assume that the surface energy density is of

the γ(θ) form; if it is written as the γ(n) form, the proof is the same. On the other

hand, if the surface energy density is specially chosen as the Riemannian metric

form, the proof can be found in [19].
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The above proposed PFEM scheme via the Cahn-Hoffman ξ has many advan-

tages over the PFEM scheme previously proposed by us in [8]: (a) first, in the

present PFEM, we only need to solve a linear algebra system which includes the

unknown variables {Xm+1, µm+1}, while it includes {Xm+1, µm+1, κm+1} in the pre-

vious one; (b) second, the present PFEM is well-posed and can work for any form

of the surface energy density function, while the previous one only works for the

γ(θ) form and can be proved to be well-posed only in the isotropic surface energy

case; (c) third, the present scheme only needs to deal with the first derivative of

γ(θ), while the previous needs to compute its second derivative. In addition, we

note here that in practical simulations, when the surface energy anisotropy becomes

stronger and stronger, the interface curve will form sharper and sharper corners.

Under these circumstances, we need to redistribute mesh points at evenly spaced

arc lengths, and a kind of mesh redistribution algorithm which can conserves the

total area can be found in the reference [6].

For any form of γ(n), how to prove that the above fully-discrete scheme Eqs. (2.4.9a)-

(2.4.9b) preserves the discrete energy-dissipation property seems difficult. But in

some special forms, for example, if γ(n) is chosen as the Riemannian metric form

with K = 1, i.e., Eq.(2.4.12), Barrett et al. [19] can prove a stronger conclusion

that the scheme is unconditionally energy-stable (i.e., energy-dissipative regardless

of how to choose τm and h) for closed evolution curves with periodical boundary

conditions. Some more generalized PFEM schemes which can ensure the stability

and are applicable for all types of anisotropy have been discussed and developed in

the reference [36]. The main idea behind these schemes is to explicitly evaluate the

nonlinear term ξ by adding a stabilized term to Eq. (2.4.15b) on the right hand side.

The fully-discrete stabilized PFEM scheme for solving the sharp-interface model can

be written as: for m ≥ 0, find Γm+1 = Xm+1 ∈ Vha,b × Vh0 with the x-coordinate po-

sitions of the moving contact points a := xlc(tm+1) ≤ b := xrc(tm+1) and µm+1 ∈ V h
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such that

〈Xm+1 −Xm

τm
, ϕhn

m
〉h

Γm
+
〈
∂sµ

m+1, ∂sϕh
〉h

Γm
= 0, ∀ ϕh ∈ V h, (2.4.17a)¨

µm+1nm, ωh
∂h

Γm
−
〈

(ξm)⊥, ∂sωh
〉h

Γm

− λ
〈
γ(nm) ∂s(X

m+1 −Xm), ∂sωh
〉h

Γm
= 0, ∀ ωh ∈ Vh0 × Vh0 ,

(2.4.17b)

where the two contact point positions xlc(tm+1) and xrc(tm+1) are first determined

by Eq. (2.4.10) via forward Euler scheme. Here, λ is a stabilized parameter (often

chosen as a positive constant). This stabilized PFEM is also a good candidate

numerical method for solving our proposed model. But, since the stabilized term

may influence the accuracy of the scheme, especially when the stabilized parameter λ

is chosen to be large to control the stability, so in real simulations this scheme is not

our first option compared to the former PFEM scheme, i.e., Eqs. (2.4.9a)-(2.4.9b).

2.5 Numerical results

Based on the mathematical model and numerical methods presented above, we

will test the convergence order of our PFEM Eqs. (2.4.9a),(2.4.9b) and (2.4.10).

For comparison, the convergence order of PFEM for closed curve (periodical bound-

ary conditions) will also be presented. In addition, we will present the numerical

simulation results in this section from simulating solid-state dewetting in several

different thin-film geometries with several kinds of anisotropic surface energy in 2D.

For simplicity, we set the initial thin film thickness to unity in the following simula-

tions. The contact line mobility η determines the relaxation rate of the dynamical

contact angle to the equilibrium contact angle, and in principle, it is a material pa-

rameter and should be determined either from physical experiments or microscopic

(e.g., molecular dynamical) simulations. Here we will always choose the contact line

mobility as η = 100 in numerical simulations, and the detailed discussion about
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its influence to solid-state dewetting evolution process can be found in the refer-

ence [120]. The first type of anisotropic surface energy density we will investigate

is the k-fold smooth crystalline surface energy, which is usually defined as the γ(θ)

form

γ(θ) = 1 + β cos(kθ), θ ∈ [−π, π], (2.5.1)

where β ≥ 0 controls the degree of the anisotropy, k is the order of the rotational

symmetry (usually taken as k = 2, 3, 4, 6 for crystalline materials). For this surface

energy, when β = 0, it is isotropic; when 0 < β < 1
k2−1

, it is weakly anisotropic; and

when β > 1
k2−1

, it is strongly anisotropic.

Another type of surface energy density we will focus on is of the Riemannian

metric form defined in Eq. (2.4.12), i.e.,

γ(n) =
K∑
k=1

»
Gkn · n, Gk = R(−φk)D(δk)R(φk), k = 1, · · · , K, (2.5.2)

where the matrices D and R are defined as

D(δ) =

Ö
1 0

0 δ2

è
, R(φ) =

Ö
cosφ sinφ

− sinφ cosφ

è
. (2.5.3)

Here, the matrix D is positive definite, and the regularization parameter δ can be

viewed as a kind of smooth regularization for this type of surface energy anisotropy

(i.e., used for smoothing sharp corners which will appear in equilibrium shapes).

When δ decrease from a small positive number to zero, its corresponding equilibrium

shape will exhibit sharper and sharper corners.

2.5.1 Convergence test

Firstly we apply our PFEM on the closed curve evolution and open curve evo-

lution (solid-state dewetting problem) under surface diffusion both in isotropic and

weakly anisotropic cases. The uniform time step is used during the numerical sim-

ulation.
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For closed curve evolution, including the isotropic (shown in Table 2.1) and

anisotropic (shown in Table 2.2) cases, the initial shape of thin film is chosen as a

closed tube, i.e., a rectangle of length 4 and width 1 added by two semi-circles with

radii of 0.5 to its left and right sides, and the parameters h0 = (8 + π)/120 and

τ0 = 0.01; for an open curve evolution, including the isotropic (shown in Table 2.3)

and anisotropic (shown in Table 2.4) cases, the initial shape of thin film is chosen

as a rectangle island of length 5 and thickness 1, and h0 = 0.05 and τ0 = 0.005.

In order to compute the convergence order at any fixed time, we can define the

following numerical approximation solution in any time interval as

Xh,τ (ρj , t) =
t− tm−1

τ
Xm(ρj)+

tm − t
τ

Xm−1(ρj), j = 0, 1, . . . , N, t ∈ [tm−1, tm], (2.5.4)

where h and τ denote the uniform grid size and time step that we used in the

numerical simulations. The numerical error eh,τ (t) in the L∞ norm can be defined

as

eh,τ (t) =‖ Xh,τ −Xh
2
, τ
4
‖L∞= max

0≤j≤N
min
ρ∈[0,1]

|Xh,τ (ρj, t)−Xh
2
, τ
4
(ρ, t)|, (2.5.5)

where the curve Xh
2
, τ
4
(ρ, t) belongs to the piecewise linear finite element vector spaces

and at the interval nodes ρ = ρj, its values are equal to the values of numerical

solutions Xh
2
, τ
4
(ρj, t).

We compute the convergence rate of the scheme at three different times t =

0.5, t = 2.0, t = 5.0. The results are shown in Table. 2.1-2.4. From the table,

we can clearly observe that for closed curve evolution under surface diffusion, the

convergence order is second order when the surface energy is isotropic. However,

the anisotropic surface energy can decrease the convergence order to around 1.7

(Table. 2.2). This deterioration may be caused by the linearization of ξ (ξm+ 1
2 =

γ(θm)(−∂sXm+1)⊥ − γ ′(θm)∂sX
m+1)). For the open curves, the convergence order

further reduce to first order both for the isotropic and anisotropic cases. This

deterioration may be due to that the forward Euler scheme was applied to discretize

the relaxed contact angle boundary condition, ie Eq. (2.3.9).

Compared to the traditional explicit finite difference method (e.g., marker-particle

methods) for computing the fourth-order geometric evolution PDEs [42, 120, 125],
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Table 2.1: Convergence rates in the L∞ norm for a closed curve evolution under the

isotropic surface diffusion flow, that is the surface energy density γ = 1

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3 h0/2

4

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6 τ0/2

8

eh,τ (t = 0.5) 4.58E-3 1.09E-3 2.63E-4 6.40E-5 1.58E-5

order – 2.07 2.05 2.04 2.02

eh,τ (t = 2.0) 3.61E-3 9.43E-4 2.45E-4 6.31E-5 1.61E-5

order – 1.94 1.95 1.96 1.97

eh,τ (t = 5.0) 3.63E-3 9.47E-4 2.46E-4 6.33E-5 1.62E-5

order – 1.94 1.95 1.96 1.97

Table 2.2: Convergence rates in the L∞ norm for a closed curve evolution under the

anisotropic surface diffusion flow, where γ(θ) = 1 + 0.05 cos(4θ)

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3 h0/2

4

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6 τ0/2

8

eh,τ (t = 0.5) 1.24E-2 2.25E-3 6.71E-4 2.48E-4 7.10E-5

order – 2.46 1.74 1.44 1.80

eh,τ (t = 2.0) 4.86E-3 1.44E-3 4.57E-4 1.37E-4 3.71E-5

order – 1.76 1.66 1.74 1.89

eh,τ (t = 5.0) 4.88E-3 1.44E-3 4.58E-4 1.37E-5 3.74E-5

order – 1.76 1.66 1.74 1.89
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Table 2.3: Convergence rates in the L∞ norm for an open curve evolution under the

isotropic surface diffusion flow (solid-state dewetting with isotropic surface energy),

where γ(θ) = 1, σ = cos(5π/6).

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6

eh,τ (t = 0.5) 2.59E-2 1.32E-2 6.52E-3 3.29E-3

order – 0.97 1.01 0.99

eh,τ (t = 2.0) 2.39E-2 1.22E-2 6.10E-3 3.07E-3

order – 0.97 1.00 0.99

eh,τ (t = 5.0) 1.91E-2 9.67E-3 4.84E-3 2.43E-3

order – 0.98 1.00 0.99

Table 2.4: Convergence rates in the L∞ norm for an open curve evolution under

the anisotropic surface diffusion flow (solid-state dewetting with anisotropic surface

energy), where γ(θ) = 1 + 0.05 cos(4θ), σ = cos(5π/6).

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6

eh,τ (t = 0.5) 2.82E-2 1.41E-2 6.88E-3 3.44E-3

order – 0.99 1.04 1.00

eh,τ (t = 2.0) 2.71E-2 1.37E-2 6.78E-3 3.40E-3

order – 0.98 1.02 0.99

eh,τ (t = 5.0) 2.32E-2 1.12E-3 5.80E-3 2.92E-3

order – 1.00 1.00 0.99



2.5 Numerical results 53

which imposes the extremely strong stability restriction on the time step, i.e.,

τ ∼ O(h4), the proposed semi-implicit PFEM can greatly alleviate the stability

restriction and our numerical experiments indicate that the time step only needs

to be chosen as τ ∼ O(h2) to maintain the numerical stability. Of course, rigorous

numerical analysis for these observations including convergence rates and stability

condition of PFEM is very important and challenging, while its mathematical study

is ongoing.

2.5.2 Small islands
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Figure 2.2: Several steps in the evolution of small, initial rectangle islands (shown

in red) towards their equilibrium shapes (shown in blue) for different degrees of the

anisotropy β with the crystalline symmetry order k = 4, where the parameters are

chosen as σ = cos 3π
4

, and the degree of the anisotropy: (a) β = 0, (b) β = 0.02, (c)

β = 0.04, (d) β = 0.06.

We start with the numerical examples for the 4-fold anisotropy under four differ-

ent degrees β. As depicted in Fig. 2.2, it shows the evolution process of an initially
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Figure 2.3: Several steps in the evolution of small initial rectangle islands (shown

in red) towards their equilibrium shapes (shown in blue), where the parameters are

chosen as σ = cos 3π
4

, (a) k = 3, β = 0.1; (b) k = 6, β = 0.022.
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Figure 2.4: (a) The temporal evolution of the normalized total free energy and

the normalized total area/mass; (b) the temporal evolution of the mesh distribution

function ψ(t). The computational parameters are chosen as the same as Fig. 2.2(c).
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rectangular thin film (in red solid lines) towards its equilibrium shapes (in blue solid

lines). The initial rectangular island film is chosen as the length 5 and height 1.

From Fig. 2.2(a) to Fig. 2.2(d), the material constants are all chosen σ = cos(3π
4

),

while the degree of the anisotropy β increases gradually from β = 0 to β = 0.06.

The number of the grid points is chosen as N = 400, and the time step is chosen as

a fixed value τ = 2×10−4. As can be seen clearly in Fig. 2.2, the equilibrium shapes

(in blue solid lines) gradually change from a circular arc to an anisotropic shape

with increasingly sharper and sharper corners, and the number of “facets” in the

equilibrium shape also exhibits the 4-fold geometric symmetry. Moreover, we also

test the numerical examples by choosing different symmetry orders k, and observe

that the k-fold symmetry appears in the equilibrium shape (as shown in Fig. 2.3).

Fig. 2.4(a) shows the temporal evolution of the normalized free energyW (t)/W (0)

and the normalized area/mass A(t)/A(0) defined in the previous section. As clearly

shown in Fig. 2.4(a), the horizontal black dash line implies that our PFEM has

a very good property which ensures that the total area/mass of the thin film con-

serves, and the monotonically decreasing red solid line implies the energy dissipation

property during the whole evolution process. We also investigate the mesh quality

by defining the mesh distribution function ψ(t) as

ψ(tm) =
max1≤j≤N |hmj |
min1≤j≤N |hmj |

, where Γm = ∪Nj=1h
m
j . (2.5.6)

Fig. 2.4(b) shows the temporal evolution of the mesh distribution function ψ(t).

As shown in the figure, we can clearly observe that the distribution function first

quickly increases from 1 to about 3 and then gradually decreases to a value around

2, and its value is always not big during the evolution. We find that the mesh quality

is always preserved well during the simulation when the surface energy anisotropy

is not very strong (i.e., β is not very big). Some theoretic analysis for the mesh-

distribution property in the isotropic surface energy case can be found in the refer-

ence [16], and an intuitive explanation is because Eq. (2.4.9a) allows the tangential

velocity of mesh points which does not change the shape of the interface curve, while

this tangential velocity tends to distribute the mesh points uniformly according to
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the arc length due to Eq. (2.4.9b).
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Figure 2.5: Equilibrium island morphologies for a small, initially rectangular island

film under several different crystalline rotations φ (phase shifts):(a) φ = 0; (b) φ =

π/6; (c) φ = π/4; (d) φ = π/3. The other computational parameters are chosen as:

k = 4, β = 0.06, σ = cos(5π/6).

To observe rotation effects of the crystalline axis of the island relative to the

substrate normal, we also performed numerical simulations of the evolution of small

islands with different phase shifts φ for the weakly anisotropic cases under the com-

putational parameters: k = 4, β = 0.06, σ = cos(5π/6). As shown in Fig. 2.5, the

asymmetry of the equilibrium shapes is clearly observed, which can be explained

as breaking the symmetry of the surface energy anisotropy (defined in Eq. (2.5.1))

with respect to the substrate normal.

Under the above type of surface energy defined in Eq. (2.5.2), we perform nu-

merical simulations for investigating the kinetic evolution of solid-state dewetting.

Fig. 2.6 shows the kinetic evolution of a small initial rectangular island (in red)

towards its equilibrium shape (in blue), where the material constant is chosen as

σ = cos 3π
4

, and the parameters that control the surface energy anisotropy are chosen

as: (a) K = 2, φ1 = 0, φ2 = π
2
, δ1 = δ2 = 0.1, and (b) K = 3, φ1 = 0, φ2 = π

3
, φ3 =
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Figure 2.6: Several steps in the evolution of small, initially rectangular island

(shown in red) towards their equilibrium shapes (shown in blue) where the anisotropy

is given by Eq. (2.5.2), σ = 3π
4

with (a) L = 1, φ0 = 0, φ1 = π
2
, δ0 = δ1 = 0.1 (b)

L = 2, φ0 = 0, φ1 = π
3
, φ2 = 2π

3
, δ0 = δ1 = δ2 = 0.1.
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Figure 2.7: The temporal evolution of the normalized free energy and normalized

mass, where the anisotropy is given by Eq. (2.5.2). The computational parameters

are chosen as same as Fig. 2.6(a).
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Figure 2.8: Several snapshots in the evolution of a small, initially rectangular island

film towards its equilibrium shape:(a) t = 0; (b) t = 0.1; (c) t = 0.6; (d) t = 7.5. The

anisotropy is chosen γ(θ) = 1 + 0.19| cos(5
2
θ)| with smooth regularization parameter

δ = 0.1. The computational parameter is chosen as σ = cos(3π/4), λ = 20.

2π
3
, δ1 = δ2 = δ3 = 0.1. As clearly shown in Fig. 2.6, it can be observed that the

evolution shape for this type of anisotropy seems to be more “faceting” than the

smooth k-fold anisotropy, and the equilibrium shape for Fig. 2.6(a) is a truncation

of a square while it is a truncation of a hexagon for Fig. 2.6(b), which implies that

the parameter K plays the same role in determining the symmetry as it does in

the smooth k-fold anisotropy. The small regularization parameter δ is here used to

smoothen sharp corners which connect with two different facets.

Fig. 2.7 shows the temporal evolution of the normalized free energy W (t)/W (0)

and normalized mass A(t)/A(0). It clearly indicates that our discrete scheme has

the same good properties of maintaining mass conservation and energy dissipation

under this cusps surface energy density.

The last type of surface energy anisotropy we consider in this section is defined
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as [?],

γ(θ) = 1 + β | cos
kθ

2
|, (2.5.7)

and this type of surface energy is not smooth at the points where the function cos kθ
2

changes its sign. A smooth regularization technique can be done as follows because

the proposed PFEM needs γ(θ) ∈ C1[−π, π],

γ(θ) = 1 + β

 
δ2 + cos2

kθ

2
, (2.5.8)

where β controls the degree of anisotropy. During our practical simulations, we

find that in this case when β becomes very large (but still in the weakly anisotropic

regime, i.e., γ(θ)+γ ′′(θ) > 0), the PFEM scheme (2.4.9a)-(2.4.10) does not work bet-

ter than the stabilized PFEM scheme (2.4.17a)-(2.4.17b) in the sense that we use the

same number of grid points. So here, we use the stabilized PFEM scheme (2.4.17a)-

(2.4.17b) for simulating solid-state dewetting with this special type of anisotropy.

As shown in Fig. 2.8, the interface curve evolves from a small rectangular island to

its equilibrium shape (a regular k-polygon truncated by a flat substrate). Here, the

computational parameter about this type of anisotropy is chosen as β = 0.19, k = 5,

δ = 0.1 and the stabilized parameter is chosen as λ = 20.

2.5.3 Large islands

As widely discussed in the papers [8, 40, 66, 120], when the aspect ratios of thin

island films are larger than a critical value, the large islands will pinch-off to form

small separated islands.

In order to obtain a qualitative comparison with other numerical methods, we

choose the same computational parameters as in the paper [8, 120]. The numerical

computation is set up as follows: the initial thin film is chosen as a very large thin

island with length L = 60 and height h = 1. The anisotropy is given as 4-fold

anisotropic surface energy density with β = 0.06 and the material constant is given

by σ = cos 5π/6.
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Figure 2.9: Several snapshots in the evolution of a long, thin island film (aspect

ratio of 60) with k-fold anisotropic surface energy (k = 4, β = 0.06, φ = 0) and the

material parameter σ = cos(5π/6). (a) t = 0; (b) t = 10; (c) t = 240; (d) t = 320;

(e) t = 371; (f) t = 711. Note the difference in vertical and horizontal scales.
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Figure 2.10: The corresponding temporal evolution in Fig. 2.9 for the normalized

total free energy and the normalized area (mass).
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Figure 2.11: Several snapshots in the evolution of a long, thin island film (aspect ra-

tio of 40) for surface energy defined in (2.5.2), with L = 1, φ0 = π/4, φ1 = 3π/4, δ0 =

δ1 = 0.1. The material parameter is choen as σ = cos(5π/6): (a) t = 0; (b) t = 10;

(c) t = 50; (d) t = 100; (e) t = 140; (f) t = 400. Note the difference in vertical and

horizontal scales.
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Fig. 2.9 depicts the temporal geometric evolution of this initially rectangular

island during the solid-state dewetting. As can be seen in the figure, solid-state

dewetting very quickly leads to the formation of ridges at the island edges followed by

two valleys. As time evolves, the ridges and valleys become increasingly exaggerated,

then the two valleys merge near the island center. At the time t = 371, the valley at

the center of the island hits the substrate, leading to a pinch-off event that separates

the initial island into a pair of islands. Finally, the two separated islands continue

to evolve until they reach their equilibrium shapes. The corresponding evolution

of the normalized total free energy and normalized total area (mass) are shown in

Fig. 2.10. An interesting phenomenon here is that the total energy undergoes a

sharp drop at t = 371, the moment when the pinch-off event occurs.

The pinch-off time t = 371 we obtained by using our PFEM for this particular

example is very close to the result t = 374 by using marker-particle methods in [?].

But under the same computational resource, the computational time by using PFEM

for this example is about two hours, while it is about two weeks by using marker-

particle methods [120]. Besides, the obtained pinch-off time is exactly the same as

the result by using another PFEM method recently proposed in [8] which does not

use ξ-vector and has more unknown variables in its variational form, and it validates

the accuracy of the new PFEM from one side. Note here that once the interface

curve hits the substrate somewhere in the simulation, it means that a pinch-off

event has happened and a new contact point is generated, then after the pinch-off,

we compute each part of the pinch-off curve separately.

The pinch-off event is not limited to the smooth k-fold anisotropy, and it can

also be observed for other types of surface energy, e.g., Eq. (2.5.2). Fig. 2.11 shows

the geometric evolution of a large, initially rectangular island with aspect ratio of

40. The material constant σ is chosen as the same as Fig. 2.9. The parameters

which control the surface energy anisotropy are chosen as K = 2, φ1 = π/4, φ2 =

3π/4, δ1 = δ2 = 0.1. As shown in the figure, we can clearly observe that the thin film

quickly forms valleys and ridges at its edges and then the pinch-off event happens
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at about the time t = 140. Subsequently, the thin film breaks up into two small

thin island pieces which finally evolve into their corresponding equilibrium shapes.

This evolution process shares a similar geometric evolution with the smooth k-fold

anisotropy.

2.5.4 Semi-infinite films

For the retraction of a semi-infinite step film, a lot of earlier studies have shown

that the retraction distance R(t) of a semi-infinite step film as a function of time

satisfies a power-law relation [66,70,111,125], i.e., R(t) ∼ tα. But most of the above

studies focused on the isotropic surface energy case [66, 110, 125] or some specific

forms of surface energy anisotropy [120, 138, 139]. For any form of surface energy

anisotropy, does the power law exponent α depend on the type of surface energy

anisotropy? this is still a question. Here, we want to investigate this power-law

relation by performing ample numerical simulations on semi-infinite thin step films

with the surface energy anisotropy defined in Eq. (2.5.2). As illustrated in Fig. 2.12

and Fig. 2.13, we simulate the retraction evolution process of a semi-infinite step film

in two different cases. In both cases, the material constant is chosen as σ = cos 5π
6

,

while the anisotropies are chosen as two different parameters: for Case A, γ(n) is

chosen as the form of Eq. (2.5.2) with the parameters (φ1, φ2) = (0, π
2
), δ1 = δ2 = 0.1;

for Case B, γ(n) is chosen as the form of Eq. (2.5.2) with the parameters (φ1, φ2) =

(π
4
, 3π

4
), δ1 = δ2 = 0.1. The surface energy density in Case B can be viewed as the

rotation of π
4

for Case A.

As is clearly shown in Fig. 2.12, a ridge quickly forms at the retracting edge but

no valley appears behind the ridge, and the whole semi-infinite step film gradually

moves towards the right direction along the substrate. As time evolves, the ridge

becomes higher and higher, but because no valley forms, the pinch-off will never

happen. This can be explained as because the surface energy density attains its

minimum at the orientations n = (0, 1), (1, 0), (−1, 0), and the step film quickly
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evolves to its “quasi-equilibrium” shape, i.e., preferring its minimum energy orien-

tations, and the oblique direction is not the most favorable energy directions, so

valleys never form for this kind of surface energy. On the other hand, if we use

another kind of surface energy (e.g. taking a 45 degrees rotation to the minimal

energy orientations), as shown in Fig. 2.13, a valley will quickly form behind the

ridge, and as time evolves, the valley sinks with time and eventually touches with

the substrate, then the pinch-off will happen. It should be noted that, for isotropic

surface energy, a lot of research works have shown that valleys always form ahead

of retracting ridges and can eventually lead to the pinch-off phenomena [40,66,125].

However, for anisotropic surface energy, the situation is totally different, and valleys

may appear or be absent at retracting edges according to different surface energies

(shown in Fig. 2.12). This observation is consistent with experimental studies for

single crystal thin films, and the formation of valleys ahead of the ridges can be

observed or not observed in real experiments with different set-ups [138,139].

,

(d)

(e)

(c)

(b)

(a)

Figure 2.12: The evolution of semi infinite long film with parameter chosen as:

σ = cos(5π
6

), γ is chosen as Eq. (2.5.2) with L = 2; φ = (0, π
2
), δ1 = δ2 = 0.1, where

(a) t = 0; (b) t = 10; (c) t = 100; (d) t = 500; (e) t = 2500.

Figs. 2.14 and ig. 2.15 depict the log-log plots of the retraction distance R(t)

versus time t under different material constants σ, and the surface energy is cho-

sen as the form of Eq. (2.5.2) with different controlled parameters: (a) (φ1, φ2) =
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Figure 2.13: The evolution of semi infinite long film with parameter chosen as:

σ = cos(5π
6

), γ is chosen as Eq. (2.5.2) with L = 2; φ = (π
4
, 3π

4
), δ1 = δ2 = 0.1, where

(a) t = 0; (b) t = 10; (c) t = 100; (d) t = 200; (e) t = 445.
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Figure 2.14: The retraction distance versus time t of a semi-infinite step film with

the form of surface energy anisotropy defined in Eq. (2.5.2) under different material

constants σ, where : (φ1, φ2) = (0, π
2
), δ1 = δ2 = 0.1,.
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Figure 2.15: The retraction distance till the pinch off happening versus time t

of a semi-infinite step film with the form of surface energy anisotropy defined in

Eq. (2.5.2) under different material constants σ , where (φ1, φ2) = (π
4
, 3π

4
), δ1 =

δ2 = 0.1.

(0, π
2
), δ1 = δ2 = 0.1; (b) (φ1, φ2) = (π

4
, 3π

4
), δ1 = δ2 = 0.1. The numerical results

clearly show that the retraction distance R(t) can be well described by a power-law

relation, and the power-law exponent α ≈ 2/5 is insensitive to the material constant

and surface energy anisotropy.

2.6 Extension to strongly anisotropic case

Sharp corners would appear in the equilibrium shape when the surface stiffness

Hγ(n)τ · τ = γ(θ) + γ′′(θ) < 0 for some orientations θ, i.e., the strongly anisotropic

case. In this case, the sharp-interface governing equations (2.3.5)-(2.3.6) becomes

ill-posed. These governing equations can be regularized by adding regularization

terms such that the regularized sharp-interface model is well-posed. In this section,

we regularize the total interfacial energy W (Γ) defined in Eq. (2.1.2) by adding the

well-known Willmore energy [57,80], which is defined as

Wr =
δ2

2

∫
Γ
κ2 ds, (2.6.1)
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where κ is curvature of the curve and δ is a small regularization parameter. With

this regularization, the dimensionless total energy can be written as follows

W δ
reg = W +Wr =

∫
Γ
(γ(n) +

δ2

2
κ2) ds− σ(xrc − xlc). (2.6.2)

2.6.1 The regularized energy and thermodynamic variation

In order to perform the first variation of the total surface energy defined in

Eq. (2.6.2), we need the following lemma.

Lemma 2.6.1. Suppose Γ = X(s) ∈ C4([0, L])× C4([0, L]) is an open curve where

s(0 ≤ s ≤ L) is the arc length. Consider a perturbation for Γ with V(ρ, ε) represent-

ing the smooth variational vector field defined in Eq. (2.1.4). Let F (Γ) =
∫

Γ κ
2 ds,

then we have

dF (Γ; V) = −
∫

Γ
(κ3 + 2∂ssκ) (n ·V0 )ds

−
Ä
2κn · ∂sV0 − 2∂sκ (n ·V0) + κ2 (τ ·V0)

ä∣∣∣∣s=L
s=0

. (2.6.3)

Proof. If we define θε = θ(ρ, ε) = arctan ∂ρy(ρ,ε)
∂ρx(ρ,ε)

, then κ can be expressed as

κε = −∂sεθε = − ∂ρθ
ε

|∂ρX(ρ, ε)|
. (2.6.4)

From the parameterization defined in Eq. (??), F (Γε) is given by

F (Γε) =
∫ 1

0
(κε)2|∂ρX(ρ, ε)| dρ. (2.6.5)

By taking derivative of F (Γε) with respect to ε and noting the independence between

ε and ρ, based on Eq. (2.6.4), we have

d

dε
F (Γε) =

∫ 1

0
2κε∂εκ

ε|∂ρX(ρ, ε)| dρ+
∫ 1

0
(κε)2∂ε|∂ρX(ρ, ε)| dρ

= −2
∫ 1

0
κε∂ε∂ρθ

ε dρ− 2
∫ 1

0
κ∂ρθ

ε∂ε
1

|∂ρX(ρ, ε)|
|∂ρX(ρ, ε)| dρ

+
∫ 1

0
κ2∂ε|∂ρX(ρ, ε)| dρ

= I + II + III. (2.6.6)
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Note that the expansion of θε and 1
|∂ρX(ρ,ε)| at ε = 0 give us

θε = θ − ∂ρX
⊥ · ∂ρV0

|∂ρX|2
ε+O(ε2) = θ + θ′ε+O(ε2). (2.6.7a)

1

|∂ρX(ρ, ε)|
=

1

|∂ρX|
− ∂ρX · ∂ρV0

|∂ρX|3
ε+O(ε2). (2.6.7b)

Using above expansion and Eq. (2.1.10a), and for the three parts I, taking value at

ε = 0 and then integration by parts, we have

I
∣∣∣∣
ε=0

=
∫ 1

0
2κ(−∂ρθ′) dρ = −

Å
2κθ′

ã∣∣∣∣ρ=1

ρ=0
−
∫ 1

0
2∂ρκ

Å∂ρX⊥ · ∂ρV0

|∂ρX|2
ã
dρ

= −
Å

2κθ′
ã∣∣∣∣ρ=1

ρ=0
−
∫ 1

0
2∂ρκ

Å∂ρX⊥ · ∂ρV0

|∂ρX|2
ã
dρ

= −
Å

2κθ′
ã∣∣∣∣ρ=1

ρ=0
−
Å2∂ρκ∂ρX

⊥ ·V0

|∂ρX|2
ã∣∣∣∣ρ=1

ρ=0
+
∫ 1

0
∂ρ

Å2∂ρκ∂ρX
⊥

|∂ρX|2
ã
·V0 dρ

= −
Å

2κθ′
ã∣∣∣∣ρ=1

ρ=0
−
Å2∂ρκ∂ρX

⊥ ·V0

|∂ρX|2
ã∣∣∣∣ρ=1

ρ=0
+
∫

Γ
(2∂ssκ∂sX

⊥ + 2∂sκ∂ssX
⊥) ·V0 ds

=
Å
−2κθ′ + 2∂sκn ·V0

ã∣∣∣∣s=L
s=0
− 2

∫
Γ
(∂ssκn + ∂sκκτ ) ·V0 ds. (2.6.8)

II
∣∣∣∣
ε=0

=
∫ 1

0
2κ∂ρθ

∂ρX · ∂ρV0

|∂ρX|2
dρ = 2

Å
κ∂ρθ

∂ρX ·V0

|∂ρX|2
ã∣∣∣∣ρ=1

ρ=0
−
∫ 1

0
2∂ρ

Å
κ∂ρθ

∂ρX

|∂ρX|2
ã
V0 dρ

= 2
Å
κ∂ρθ

∂ρX ·V0

|∂ρX|2
ã∣∣∣∣ρ=1

ρ=0
+
∫

Γ
2∂s(κ

2∂sX) ·V0 ds

= 2
Å
κ∂ρθ

∂ρX ·V0

|∂ρX|2
ã∣∣∣∣ρ=1

ρ=0
+
∫

Γ
(4κ∂sκ∂sX + 2κ2∂ssX) ·V0 ds

= −2
Å
κ2τ ·V0

ã∣∣∣∣s=L
s=0

+ 2
∫

Γ
(2κ∂sκτ − κ3n) ·V0 ds. (2.6.9)

III
∣∣∣∣
ε=0

=
∫ 1

0
κ2∂ρX · ∂ρV0

|∂ρX|
dρ =

Å
κ2∂ρX ·V0

|∂ρX|

ãρ=1

ρ=0
−
∫ 1

0
∂ρ

Å
κ2 ∂ρX

|∂ρX|

ã
V0 dρ

=
Å
κ2∂ρX ·V0

|∂ρX|

ã∣∣∣∣ρ=1

ρ=0
−
∫

Γ
∂s

Å
κ2∂sX

ã
·V0 ds

=
Å
κ2∂ρX ·V0

|∂ρX|

ã∣∣∣∣ρ=1

ρ=0
−
∫

Γ
(2κ∂sκ∂sX + κ2∂ssX) ·V0 ds

=
Å
κ2τ ·V0

ã∣∣∣∣s=L
s=0
−
∫

Γ
(2κ∂sκτ − κ3n) ·V0 ds. (2.6.10)
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Summarising them together, so we obtain

dF (Γ; V0) = (I + II + III)
∣∣∣∣
ε=0

= −
∫

Γ
(κ3 + 2∂ssκ) n ·V0 ds−

Å
2κθ′

ã∣∣∣∣s=L
s=0

+
Å

(2∂sκn− κ2τ ) ·V0

ã∣∣∣∣s=L
s=0

.

Note that θ′ is defined as

θ′ = −∂ρX
⊥ · ∂ρV0

|∂ρX|2
= n · ∂sV0, (2.6.11)

thus we have

dF (Γ; V0) = −
∫

Γ
(κ3 + 2∂ssκ) (n ·V0 )ds

−
Å

2κn · ∂sV0 − 2∂sκ (n ·V0) + κ2 (τ ·V0)
ã∣∣∣∣s=L
s=0

. (2.6.12)

Proposition 2.6.1. Suppose Γ = X(s) ∈ C4([0, L]) × C4([0, L]) is a closed curve

where s(0 ≤ s ≤ L) is the arc length. Let F (Γ) =
∫

Γ κ
2 ds, then we have

dF (Γ; V) = −
∫

Γ
(κ3 + 2∂ssκ) n ·V0 ds. (2.6.13)

Proof. The proof is similar to that of the lemma 2.6.1, but integration by parts will

not give us any boundary terms due to the periodic boundary conditions.

2.6.2 The regularized model

Now, based on the energy form Eq. (2.6.2), from the lemma. 2.6.1, the first

variation of the regularized term is given by

dWr(Γ; V) = −δ2
∫

Γ
(
κ3

2
+ ∂ssκ) n ·V0 ds

+ δ2
Å
κn · ∂sV0 − ∂sκ (n ·V0) +

κ2

2
τ ·V0

ã∣∣∣∣s=L
s=0

. (2.6.14)

The boundary term −
Å

2κn · ∂sV0

ã∣∣∣∣s=L
s=0

inspires us to include the zero curvature

boundary conditions into the model to ensure the energy decay for any arbitrary

ε. In addition, the variation vector field is assume to satisfy (Vx, Vy) = V0 � x+ on
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the boundary. Combined with the Eq. (3.2.11), the first variation of the strongly

anisotropic surface energy is given by

dW δ
reg(Γ; V) =

ï
Vx(ξ2 − σ + δ2n1∂sκ)

ò∣∣∣∣
s=L
−
ï
Vx(ξ2 − σ + δ2n1∂sκ)

ò∣∣∣∣
s=0

−
∫

Γ

Ä
∂sξ

⊥ + δ2(
κ3

2
+ ∂ssκ)n

ä
·V0 ds. (2.6.15)

Thus we obtain the first variation of the strongly anisotropic surface energy with

respect to the curve Γ and the two contact points are given as follows

δW δ
reg

δΓ
= −[∂sξ]⊥ · n− δ2(

κ3

2
+ ∂ssκ), (2.6.16)

δW δ
reg

δxlc
= −

ï
ξ2 − σ + δ2n1∂sκ

ò∣∣∣∣
s=0

, (2.6.17)

δW δ
reg

δxrc
=
ï
ξ2 − σ + δ2n1∂sκ

ò∣∣∣∣
s=L

. (2.6.18)

Similar to the weakly anisotropic case and by using the same dimensionless scale

units, we can obtain a dimensionless sharp-interface model again [8, 67] for solid-

state dewetting of thin films with strongly anisotropic surface energy via a ξ-vector

formulation, which can be written as follows (for simplicity, we still use the same

notations for the variables):

∂tX = ∂ssµ n, 0 < s < L(t), t > 0, (2.6.19)

µ = − [∂sξ]⊥ · n− δ2
Åκ3

2
+ ∂ssκ

ã
, κ = − (∂ssX) · n, (2.6.20)

where Γ := Γ(t) = X(s, t) = (x(s, t), y(s, t)) represents the moving film/vapor

interface, s is the arc length or distance along the interface, t is the time, n =

(n1, n2) = (−∂sy, ∂sx) is the interface outer unit normal vector, µ := µ(s, t) is the

chemical potential, ξ = (ξ1, ξ2) is the Cahn-Hoffman vector and L := L(t) represents

the total length of the moving interface, ε is a small regularization parameter. The

initial condition is given as

X(s, 0) := X0(s) = (x(s, 0), y(s, 0)) = (x0(s), y0(s)), 0 ≤ s ≤ L0 := L(0), (2.6.21)

satisfying y0(0) = y0(L0) = 0 and x0(0) < x0(L0), and the boundary conditions are:
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(i) contact point condition:

y(0, t) = 0, y(L, t) = 0, t ≥ 0, (2.6.22)

(ii) relaxed (or dissipative) contact angle condition:

dxlc
dt

= η
ï
ξ2−σ0+δ2∂sκn1

ò∣∣∣∣
s=0

,
dxrc
dt

= −η
ï
ξ2−σ0+δ2∂sκn1

ò∣∣∣∣
s=L

, (2.6.23)

(iii) zero-mass flux condition:

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0, (2.6.24)

(iv) zero-curvature condition

κ(0, t) = 0, κ(L, t) = 0, t ≥ 0. (2.6.25)

In the following we will show that the total mass of the thin film is always conserved

during the evolution, and the total free energy of the system decreases monotonically

at all times.

Proposition 2.6.2 (Mass conservation and energy dissipation). Let Γ(t) = X(s, t)

be the exact solution of the Eqs. (2.6.19)-(2.6.20) coupled with boundary conditions

Eqs. (2.6.22)-(2.6.25). Given the initial curve Γ(0) = (x0(s), y0(s)), then the total

mass of the thin film is conserved during the evolution, i.e.,

A(t) ≡ A(0) =
∫

Γ(0)
y0(s)∂sx0(s) ds, t ≥ 0, (2.6.26)

and the total energy of the thin film is decreasing during the evolution, i.e.,

W δ
reg(t) ≤ W δ

reg(t1) ≤ W δ
reg(0) =

∫
Γ(0)

(γ(θ) + δ2κ
2

2
)ds− (xrc(0)− xlc(0))σ,

t ≥ t1 ≥ 0. (2.6.27)

Proof. The proof for the mass conservation is the same as that for the weak case.

For the energy, based on the variation form in Eq. (2.6.15), we have:

d

dt
W δ
reg = −

∫
Γ

î
∂sξ

⊥ + δ2(
κ3

2
+ ∂ssκ)n

ó
·Xt ds

+
dxrc
dt

î
ξ2 − σ + δ2∂sκn1

ó∣∣∣
s=L
− dxlc

dt

î
ξ2 − σ + δ2∂sκn1

ó∣∣∣
s=0

. (2.6.28)



2.6 Extension to strongly anisotropic case 72

Using the Eq. (2.6.19), Eq. (2.6.20) and the contact line moving boundary conditions,

we have:

d

dt
W δ
reg =

∫
Γ(t)

µµss ds−
1

η

î
(
dxlc
dt

)2 + (
dxrc
dt

)2
ó

= −
∫

Γ(t)
(µs)

2 ds− 1

η

î
(
dxlc
dt

)2 + (
dxrc
dt

)2
ó
≤ 0. (2.6.29)

Note the last identity follows from the zero mass flux boundary condition.

2.6.3 A discretization by PFEM

In order to obtain the variational formulation for equations (2.6.19),(2.6.20) with

the boundary conditions (2.6.22)-(2.6.25), we need to introduce a new vector I. Here

we assume I is parallel to n, thus we are able to rewrite the equations in the following

form

∂tX · n = ∂ssµ, µ n = − [∂sξ]⊥ − δ2I, (2.6.30)

I · n = (
1

2
κ3 + ∂ssκ), κ n = −∂ssX. (2.6.31)

By using the integration by parts, the weak formulation for solid-state dewetting

problems with strongly anisotropic surface energy can be stated as the following

variational problem: given the initial curve Γ(0) = X(ρ, 0), ρ ∈ I, for every time

t ∈ (0, T ], find the evolution curves Γ(t) = X(ρ, t) ∈ H1
a,b(I) × H1

0 (I) with the x-

coordinate positions of moving contact points a = xlc(t) ≤ xrc(t) = b, the chemical

potential µ(ρ, t) ∈ H1(I), I(ρ, t) ∈ H1(I)×H1(I) and the curvature κ(ρ, t) ∈ H1
0 (I)

such that¨
∂tX, ϕn

∂
Γ

+
¨
∂sµ, ∂sϕ

∂
Γ

= 0, ∀ ϕ ∈ H1(I), (2.6.32a)¨
µn, ω1

∂
Γ
−
¨
ξ⊥, ∂sω1

∂
Γ
− δ2

¨
I, ω1

∂
Γ

+ (ξ⊥ · ω1)|s=L(t)
s=0 = 0,

∀ω1 ∈ (H1(I))2, (2.6.32b)¨
I, nφ

∂
Γ
− 1

2

¨
κ3, φ

∂
Γ

+
¨
∂sκ, ∂sφ

∂
Γ

= 0, ∀φ ∈ H1
0 (I), (2.6.32c)¨

κn, ω2

∂
Γ
−
¨
∂sX, ∂sω2

∂
Γ

= 0, ∀ω2 ∈ (H1
0 (I))2. (2.6.32d)
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After temporal and spatial discretization, the full-discrete finite element scheme

for the variational formulation (2.6.32a)-(2.6.32d) then can be described as: given

the curve Γm = Xm (m = 0, 1, . . . ,M − 1), for the next time level tm+1, find the

numerical solution for evolution curves Γm+1 = Xm+1 ∈ Vha,b × Vh0 with the x-

coordinate positions of moving contact points a = xlc(tm+1) ≤ xrc(tm+1) = b, the

numerical solution for Im+1 ∈ V h × V h, chemical potential µm+1 ∈ V h and the

numerical solution for curvature κm+1 ∈ Vh0 such that:¨Xm+1 −Xm

τm
, ϕhn

m
∂h

Γm
+
¨
∂sµ

m+1, ∂sϕh
∂h

Γm
= 0, ∀ ϕh ∈ V h, (2.6.33a)¨

µm+1nm − δ2Im+1, ω1h

∂h
Γm
−
¨
(ξm+ 1

2 )
⊥
, ∂sω1h

∂h
Γm

= −(ξm)⊥ · ω1h

∣∣∣∣ρ=1

ρ=0
,

∀ω1h ∈ (V h)2, (2.6.33b)¨
Im+1, nmφh

∂h
Γm
− 1

2

¨
(κm)2κm+1, φh

∂h
Γm

+
¨
∂sκ

m+1, ∂sφh
∂h

Γm
= 0,

∀φh ∈ Vh0 , (2.6.33c)¨
κm+1nm, ω2h

∂h
Γm
−
¨
∂sX

m+1, ∂sω2h

∂h
Γm

= 0, ∀ω2h ∈ (Vh0 )2. (2.6.33d)

Here xlc(tm+1) and xrc(tm+1) are updated from Eqs. (2.6.23) by Euler forward scheme.

2.6.4 Numerical results

In the following, we will present some numerical convergence tests of our fully dis-

crete scheme (2.6.33a),(2.6.33b),(2.6.33c),(2.6.33d). Similar to the weak anisotropy,

we perform our numerical scheme on both closed curve evolution and open curve

evolution (solid-state dewetting). For closed curve evolution, shown in Table. 2.5,

the initial shape of thin film is chosen as a closed tube, i.e., a rectangle of length 4

and width 1 added by two semi-circles with radii of 0.5 to its left and right sides,

and the parameters are chosen as h0 = (8+π)/120 and τ0 = 0.005; for an open curve

evolution, shown in Table 2.4, the initial shape of thin film is chosen as a rectangle

island of length 5 and thickness 1, and h0 = 0.1 and τ0 = 0.0005 = 0.05h2
0. Table. 2.5

shows the convergence rate in the L∞ norm for a closed curve evolution under the

strongly anisotropic surface diffusion flow, where γ(θ) = 1 + 0.1 cos(4θ), δ = 0.1.

It clearly shows that the convergence order is around second order, while for open
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curves, the convergence order decrease to first order. Same as the isotropic/weakly

anisotropic case, the decrease of the convergence order may due to the application

of the forward Euler scheme on the relaxed contact angle conditions.

Table 2.5: Convergence rates in the L∞ norm for a closed curve evolution under the

anisotropic surface diffusion flow, where γ(θ) = 1 + 0.1 cos(4θ), δ = 0.1.

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6

eh,τ (t = 0.5) 1.54E-3 6.22E-4 1.57E-4 3.80E-5

order – 1.31 1.98 2.07

eh,τ (t = 2.0) 7.66E-4 2.21E-4 5.51E-4 1.30E-5

order – 1.79 2.01 2.06

eh,τ (t = 5.0) 7.52E-4 2.10E-4 5.32E-4 1.30E-5

order – 1.84 1.98 2.03

Table 2.6: Convergence rates in the L∞ norm for an open curve evolution under

the strongly anisotropic surface diffusion flow (solid-state dewetting with isotropic

surface energy), where γ(θ) = 1 + 0.1 cos(4θ), δ = 0.1, σ = cos(5π/6).

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6

eh,τ (t = 0.5) 3.25E-2 1.60E-2 8.14E-3 4.16E-3

order – 1.02 0.98 0.97

eh,τ (t = 2.0) 2.67E-2 1.41E-2 7.23E-3 3.70E-3

order – 0.92 0.97 0.97

eh,τ (t = 5.0) 2.33E-2 1.18E-3 6.02E-3 3.05E-3

order – 0.98 0.98 0.98
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Figure 2.16: Comparison of the numerical equilibrium shapes of thin island film

with its theoretical equilibrium shape for several values of regularization parameter

δ, where the solid black lines represent the theoretical equilibrium and colored lines

represent the numerical equilibriums, and γ(θ) = 1 + 0.2 cos(4θ), σ = cos(2π/3).

Fig. 2.16 plots the numerical equilibrium shapes for δ = 0.2, 0.1, 0.05 as well

as the theoretical equilibrium shape (show in solid blue line) under the parameter

σ = cos(2π/3), γ(θ) = 1+0.2 cos(4θ). The numerical equilibrium shapes converge to

the theoretical equilibrium shape when the regularization parameter ε approaches

zero. As illustrated in Fig. 2.17, we also compute the equilibrium shape for a

small, initially rectangular island film with different strongly anisotropic smooth k-

fold surface energy under the parameters σ = cos(3π/4), δ = 0.1. Fig. 2.17(a)-(b)

depict the effect of increasing the degree of anisotropy from β = 0.1 to β = 0.3

for 4-fold crystalline symmetry, and we can see that the equilibrium shape becomes

more and more faceting. The effect of increasing the rotational symmetry, which

is reflected from increasing the parameter k, can be observed from Fig. 2.17(c)

(k = 3, β = 0.3) to Fig. 2.17(d) (k = 6, β = 0.1).

The numerical example for strongly anisotropic case is set up as follows. The

initial thin film is chosen as a rectangular island with width L = 5 and height
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Figure 2.17: Equilibrium island morphologies for a small, initially rectangular island

under several different crystalline fold of symmetry k and degree of anisotropy β

respectively. (a) k = 4, β = 0.1; (b) k = 4, β = 0.3; (c) k = 3, β = 0.3; (d)

k = 6, β = 0.1. The other computational parameters are chosen as, φ = 0, σ =

cos(3π/4), δ = 0.1.
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Figure 2.18: Several snapshots in the geometric evolution of a small initially rect-

angular island to the equilibrium shape (blue line). (a) t = 0, (b) t = 0.02, (c)

t = 0.04, (d) t = 10.32, where γ(θ) = 1 + 0.2 cos(4θ), σ = cos(2π/3), δ = 0.1.
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Figure 2.19: (a) The temporal evolution of the normalized free energy and normal-

ized area, (b) the temporal evolution of the mesh distribution function ψ(t), where

γ(θ) = 1 + 0.2 cos(4θ), σ = cos 2π
3
, δ = 0.1.

h = 1. The anisotropic surface energy is given by the 4-fold crystalline surface

energy defined in Eq. (2.5.1) with β = 0.2. The computational parameters are

chosen as σ = cos(2π/3), δ = 0.1. As depicted in Fig. 2.18, it shows the kinetic

evolution process of an initial rectangle island film towards its equilibrium shape.

We can observe that wavy structure first appears during the evolution (Fig. 2.18(b)),

and eventually the island film evolves into an almost “faceting” shape with three

regularized rounded corners (Fig. 2.18(d)).

The corresponding temporal evolution of the free energy and area are shown in

Fig. 2.19. From the figure, we can observe that the area conservation and energy dis-

sipation are well satisfied for the discrete numerical solutions. Moreover, Fig. 2.19(b)

shows the value of mesh distribution function during the evolution. The mesh dis-

tribution function is cut from the top at value 20 because of the artificial re-mesh

during the evolution when ψ is bigger than 20. We find that when the surface energy

is strongly anisotropic, the mesh could be deteriorated in a very short time from the

initial. Thus this re-mesh is essential and necessary to enable the stability of the

scheme. Luckily, it is only needed in the earlier stage of the evolution and the mesh

can be well preserved in the later time.



Chapter 3
A Sharp Interface Model in Three

Dimensions
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Figure 3.1: A schematic illustration of solid-state dewetting on a rigid flat substrate

in three dimensions.

As depicted in Figure. 3.1, a solid thin film (colored in blue) lies on a flat rigid

78
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substrate (colored in gray). The moving film/vapor interface is geometrically de-

scribed by a two-dimensional open manifold S with boundary Γ, where Γ is a closed

plane curve attached to the flat substrate Ssub. The unit vector n represents the

normal direction of S and points towards the vapour while n
Γ
, τ

Γ
and c

Γ
are three

unit vectors defined along the boundary Γ. Exactly, n
Γ

is the outer unit normal

vector of the plane curve Γ on the substrate Ssub. τ Γ
is the unit tangent vector of Γ

on the substrate Ssub and pointing in the counter-clockwise direction when viewed

from the +z axis. The unit vector c
Γ
, called the co-normal vector, is normal to Γ,

tangent to S and pointing outwards, see Fig. 3.1. In other words, for x ∈ S, if we

denote Tx S and Nx S as the tangent and normal space to S respectively, then the

following expressions hold,

n(x) ∈ Nx S, ∀x ∈ S,

c
Γ
(x) ∈ Tx S, c

Γ
(x) ⊥ τ

Γ
, ∀x ∈ Γ,

n
Γ
(x) ⊥ τ

Γ
, n

Γ
(x) � Ssub, ∀x ∈ Γ. (3.0.1)

Now from Eq. (1.2.3), the total surface energy of the system can be written as

W = Wint +Wsub =
∫∫

S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ). (3.0.2)

Here in these expressions, γ
FV
, γ

FS
and γ

V S
represent the energy densities of the

film/vapor, film/substrate and vapor/substrate respectively. A(Γ) denotes the area

enclosed by the the plane curve Γ on the substrate. We assume that γ
FS

and γ
V S

are constants, while γ
FV

= γ(n) is dependent on the orientation of the film/vapor

interface. The total surface energy is composed of two parts, the interfacial energy

of film/vapor interface denoted by Wint, and the substrate energy denoted by Wsub.

The derivation of the three-dimensional sharp interface model seems quite straight-

forward by simply repeating the procedure in chapter 2 as long as we are given the

energy equation. However, performing the thermodynamic variation of the surface

integral Wint is not as easy as we think. In short, there are two major difficulties

in calculating the first variation. Firstly, if S is a closed surface, then the perturba-

tion of the surface in the tangential direction would contribute nothing to the first
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variation. Thus only the perturbation in the normal direction will be considered

and the variation of some geometric objects such as the normal vector, the mean

curvature can be directly obtained [34]. However, when it comes to the solid-state

dewetting problem, the infinitesimal perturbation of the surface in the tangential di-

rection could be essential to the first variation of the surface energy. More precisely,

the interface S is open and the tangent deformation on the boundary of S plays an

important role in investigating the contact line migration along the substrate [9,67].

Secondly, unlike 2D, calculating the variation via the parameterization of the surface

could be too tedious to perform in three dimensions. Therefore in this chapter, we

are engaged in the derivation of the three-dimensional sharp interface model. We

will develop the sharp interface model rigorously with the help of speed method and

shape derivatives from shape sensitivity analysis [109]. This approach avoids the

parameterization of the surface on a fixed reference domain and is able to deal with

perturbation in arbitrary direction [39,64,109].

3.1 Shape differential calculus

We start by introducing some basic knowledge about surface calculus and differ-

ential geometry. For more related knowledge, please refer to the [45,109].

3.1.1 Hypersurface

Definition 3.1.1 (Ck-hypersurface). S ⊂ R3 is called a Ck−hypersurface, where

k ∈ N ∪ {∞}, if for each point x0 ∈ S, there exists an open set U ⊂ R3 containing

x0 and a function φ ∈ Ck(U), such that

U ∩ S = {x ∈ U | φ(x) = 0}, ∇φ(x) 6= 0, ∀x ∈ U ∩ S. (3.1.1)

In view of the definition of hypersurface, we know that the normal vector of S

at point x can be locally computed as ∇φ(x)
|∇φ(x)| or − ∇φ(x)

|∇φ(x)| .
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Definition 3.1.2. A function f ∈ C2(S) is defined on a C2-hypersurface S with

S ⊂ R3. If n is the unit normal vector of S, and f̄ is an arbitrary extension of f in

the neighbourhood of S in R3, the surface gradient of f on S is defined as

∇
S
f = ∇f̄ − (∇f̄ · n)n. (3.1.2)

It is easy to prove that ∇
S
f is independent of the extension of f and only reliable

on the value of f on S. We can write ∇
S

as a vector operator

∇
S

= (D1, D2, D3), (3.1.3)

then the surface divergence of function g = (g1, g2, g3) ∈ [C1(S)]3 is given by

∇
S
· g =

3∑
i=1

Digi. (3.1.4)

Moreover, the Laplace-Beltrami operator can be expressed as

∆
S
f = ∇

S
· ∇

S
f =

3∑
i=1

DiDif. (3.1.5)

Here ∇
S
f comes from the gradient of f̄ by subtracting the normal components.

Thus we know that ∇
S
f(x) ∈ Tx S, ∀x ∈ S. We can also define the following matrix

H such that the its element is taken as

Hij = Di nj. (3.1.6)

This matrix is called the extended Weingarten map with a zero eigenvalue in normal

direction and two other eigenvalues given by the two principle curvatures of S. The

mean curvature is the trace of the matrix

H =
3∑
i=1

Hii = ∇
S
· n. (3.1.7)

If we denote κ1 and κ2 as the two principle curvatures, by noting the eigenvalues of

H, we have that

trace(H2) = κ2
1 + κ2

2 = H2 − 2K, (3.1.8)

with K representing the Gaussian curvature.

The formula for integration by parts on surface S reads as
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Theorem 3.1.1 ( [45], p.297, Thm. 2.10). Assume S is a hypersurface in R3 with

smooth boundary Γ, f ∈ H1(S), then we have

∫∫
S
∇

S
f d S =

∫∫
S
fHn d S +

∫
Γ
fc

Γ
dΓ, (3.1.9)

where n and c
Γ

are the normal vector and co-normal vector respectively. H is the

mean curvature.

The following proposition can be directly obtained from above theorem.

Proposition 3.1.1. Let S be a hypersurface in R3 with smooth boundary Γ, and f

and g belong to H1(S), we have

∫∫
S
∇

S
fg dS = −

∫∫
S
f∇

S
g dS +

∫∫
S
fgHn dS +

∫
Γ
fgc

Γ
dΓ, (3.1.10)

by using the fact that ∇
S
(fg) = ∇

S
f g + f ∇

S
g.

3.1.2 Parameterized hypersurface

Definition 3.1.3 (Parametrized Ck-surface). We call S ∈ R3 is a parameterized

Ck-surface, where k ∈ N ∪∞, if for every x ∈ S, there exists an open set V ∈ R3

with x ∈ V , an open connected set U ∈ R2 and a map X : U → V ∩ S such that

X ∈ Ck(U,R3) and X is bijective with rank(∇X) = 2 on U . Then the map X is

called a local parameterization of S.

We have the following lemma for the relationship between the parameterized

surface and hypersurface.

Lemma 3.1.1 (Lemma 2.2 in [45]). Assume S is a Ck-hypersurface in R3. Then

for every x ∈ S, there exist an open set V ∈ R3 with x ∈ V and a parameterized

Ck-surface X : U → V ∩ S such that X is a bijective map from U to V ∩ S. On the

other hand, if X : U → V ∩ S is a parameterized Ck-surface, then there is an open

set Û ⊂ U such that X(Û) is a Ck-hypersurface.
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Let X ∈ C4(U,R3) be a local parametrization of S, and (u1, u2) ∈ U , the first

fundamental form can be given by

G(u, v) = (gij)i,j=1,2, with gij =
∂X

∂ui

· ∂X

∂uj

. (3.1.11)

Let g = det(G). Besides, the inversion of matrix G is denote by

G−1 = (gij)i,j=1,2. (3.1.12)

Now given a function f : S → R defined S, let F (u1, u2) = f(X(u1, u2)), the surface

gradient of f can be expressed in terms of the parameters as

∇
S
f =

2∑
i,j=1

gij
∂F

∂ui
· ∂X

∂uj
. (3.1.13)

Moreover, we have

∆
S
f =

1

g

2∑
i,j=1

∂

∂uj

Ä
gij
√
g
∂F

∂ui

ä
. (3.1.14)

3.1.3 Shape derivatives

To carry out the first variation of the integral on a manifold, we need to introduce

a family of perturbations. Consider a domain D ∈ R3 with the boundary ∂D which

is piecewise Ck for a given integer k ≥ 0, we can define the transformation as

Tε : D̄ → D̄, ε ∈ [0, ε0), (3.1.15)

where Tε is a one-to-one map. Here we assume that Tε and T−1
ε belong to Ck(D̄, D̄)

for all ε ∈ [0, ε0), also Tε belongs to Ck([0, ε0)) for all x ∈ D̄, where k ∈ N ∪ {∞}.

Now under this transformation, a bounded domain Ω or surface S in D̄ will be

changed to

Ωε = Tε(Ω), Sε = Tε(S), (3.1.16)

with S0 = S,Ω0 = Ω.

Let x(X, ε) = Tε(X), the speed vector field V(x, ε) at point x is defined as

V(x, ε) =
∂x

∂ε
(T−1

ε (x), ε). (3.1.17)
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Now we consider the following ODEs:

d

dε
x(X, ε) = V (x(X, ε), ε),

x(X, 0) = X, (3.1.18)

with X ∈ D. The existence of the one-to-one map has been shown by The-

orem 2.16 in [109]. In other words, as long as the vector field V satisfy V ∈

C(Ck(D̄, D̄); [0, ε0)), then it uniquely determines the transformations Tε. Thus the

transformation Tε and the V are uniquely determined by each other. In the follow-

ing, when the vector field V is introduced, we use Tε(V) to denote the corresponding

transformation. For simplicity, we also assume V0 = V(X, 0).

We have the following lemma for the transformation Tε(V).

Lemma 3.1.2 (Lemma. 2.44, Lemma 2.49 in [109]). Assume D ∈ R3 is a bounded

domain, and V ∈ C(Ck(D̄, D̄); [0, ε0)) is the given vector field with k ≥ 1, such that

V · n = 0 a.e on ∂D. Furthermore, it is assumed that V = 0 at any singular point

of ∂D. If DTε is the Jacobian matrix of the transformation Tε, that is

DTε =
Å∂Tε,i(V)

∂Xj

)(X)
ã
i,j=1,2,3

. (3.1.19)

Define ζ(x, ε) and ω(x, ε) as follows

ζ(X, ε) = det(DTε), (3.1.20a)

ω(X, ε) = ζ(X, ε)||DT−Tε n||, (3.1.20b)

then we have

∂ζ(X, ε)

∂ε

∣∣∣∣
ε=0

= ∇ ·V0, (3.1.21a)

∂ω(X, ε)

∂ε

∣∣∣∣
ε=0

= ∇
S
·V0. (3.1.21b)

Functions ζ(X, ε) and ω(X, ε) will be useful in performing the change of variables

of the domain and surface integrals.

We can define the first variation of the shape functionals as follows.
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Definition 3.1.4 (First variation). Let J(Ω) be a shape functional, and Ω is a

bounded domain in D̄, the first variation of the functional J(Ω) at Ω in the direction

of the vector field V ∈ C(Ck(D̄, D̄); [0, ε0)) is given as a limit:

dJ(Ω; V) = lim
ε→0

J(Ωε)− J(Ω)

ε
. (3.1.22)

Similarly, let J(S) be a shape functional, the first variation of the functional J(S)

at S in the direction of the vector field V is given as a limit:

dJ(S; V) = lim
ε→0

J(Sε)− J(S)

ε
. (3.1.23)

Definition 3.1.5 (Material derivative, [109], Def.2.71, Def.2.74). The material deriva-

tive ϕ̇(Ω; V) of ϕ on Ω in the direction V is given as

ϕ̇(Ω; V) = lim
ε→0

ϕ(Ωε) ◦ Tε(V )− ϕ
ε

. (3.1.24)

Similarly, the material derivative ϕ̇(S; V) of ϕ on S in the direction V is given as

ϕ̇(S; V) = lim
ε→0

ϕ(Sε) ◦ Tε(V )− ϕ
ε

. (3.1.25)

The above material derivative is the derivative with respect to the moving coor-

dinate systems. On the other hand, we can define the shape derivative of ϕ in the

following by subtracting the term (∇ϕ) · V0, which represents the derivative with

respect to the stationary coordinates.

Definition 3.1.6. [Shape derivative on domain, [109], Def.2.85] The shape deriva-

tive ϕ′(Ω; V) of ϕ on Ω in the direction V is given as

ϕ′(Ω; V) = ϕ̇(Ω; V)−∇ϕ(Ω) ·V0. (3.1.26)

As can been seen, if ϕ is independent of Ω, we can obtain ϕ′(Ω; V) = 0. We

have the following lemma for the first variation of the domain integrals.

Lemma 3.1.3. Let Ω be a domain in D̄ and its boundary ∂Ω is smooth enough,

y(Ω) ∈ L1(Ω) is a function such that the material derivative ẏ(Ω; V) exists or exists

in the weak sense and ẏ(Ω; V) ∈ L1(Ω), let J(Ω) =
∫∫∫

Ω y(Ω) dx, then we have

dJ(Ω; V) =
∫∫∫

Ω
ẏ(Ω; V) dX +

∫∫∫
Ω
y(Ω)∇ ·V0 dX. (3.1.27)
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Furthermore, if the shape derivative y′(Ω; V) exists and ∇y(Ω) · V0 ∈ L1(Ω), we

then have

dJ(Ω; V) =
∫∫∫

Ω
y′(Ω; V) dX +

∫∫
∂Ω
y(Ω)V0 · n dS, (3.1.28)

where we use dX, dx as integration on domain Ω,Ωε, respectively.

Proof. For the shape functional J(Ωε) =
∫∫∫

Ωε
y(Ωε) dx, using the change of variables

x = Tε(V)(X) for J(Ωε), we have

J(Ωε) =
∫∫∫

Ω
y(Ωε) ◦ Tε(V)ζ(X, ε) dX. (3.1.29)

By noting the fact that ζ(X, 0) = 1, we obtain the following equations,

dJ(Ω; V) = lim
ε→0

J(Ωε)− J(Ω)

ε

=
∫∫∫

Ω
lim
ε→0

[
y(Ωε) ◦ Tε(V)ζ(X, ε)− y(Ω) ◦ T0(V)ζ(X, 0)

ε
] dX

=
∫∫∫

Ω
[ẏ(Ω; V)ζ(X, 0) + y(Ω)

∂ζ(X, ε)

∂ε

∣∣∣∣
ε=0

] dX. (3.1.30)

In view of lemma. 3.1.2, the above equations can be changed to

dJ(Ω; V) =
∫∫∫

Ω
ẏ(Ω; V) dX +

∫∫∫
Ω
y(Ω)∇ ·V0 dX. (3.1.31)

Using the equation y(Ω)∇ ·V0 + (∇y(Ω)) ·V0 = ∇ · (y(Ω) V0), we obtain

dJ(Ω; V) =
∫∫∫

Ω
[ẏ(Ω; V)−∇y(Ω) ·V0] dX +

∫∫∫
Ω
∇ · (y(Ω) V0) dX. (3.1.32)

Now by the definition of shape derivative on the domain Ω (Definition. 3.1.6), and

also applying stokes formula for the second term, we finally get

dJ(Ω; V) =
∫∫∫

Ω
y′(Ω; V) dX +

∫∫
∂Ω
y(Ω)V0 · n dS (3.1.33)

Different to the shape derivative on the domain, the shape derivative on the

surface is defined in the following,
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Definition 3.1.7. [Shape derivative, [109], Def.2.88] The shape derivative ψ′(S; V)

of ψ on S in the direction V is given as

ψ′(S; V) = ψ̇(S; V)−∇
S
ψ(S) ·V0. (3.1.34)

Now let us consider the shape functional J(Sε) =
∫∫
Sε
ϕ(Sε) dSε, we have the

following lemma.

Lemma 3.1.4. Let S be a two-dimensional manifold in D̄ with smooth boundary Γ,

ϕ(S) ∈ L1(S) is a function such that the material derivative ϕ̇(S; V) exists or exists

in the weak sense and ϕ̇(S; V) ∈ L1(S), let J(S) =
∫∫
S ϕ(S) dS, we then have

dJ(S; V) =
∫∫

S
ϕ̇(S; V) dS +

∫∫
S
ϕ(S)∇

S
·V0 dS. (3.1.35)

Furthermore, if the shape derivative ϕ′(S; V) exists and ∇
S
ϕ ·V0 ∈ L1(S), we have

dJ(S; V) =
∫∫

S
ϕ′(S; V) dS+

∫∫
S
ϕ(S)HV0 ·n dS+

∫
Γ
ϕ(S)V0 · cΓ

dΓ. (3.1.36)

Proof. For the shape functional J(S) under the varition vector field V, we have

J(Sε) =
∫∫

S
(ϕ ◦ Tε(V ))ω(X, ε) dS, (3.1.37)

where ω(X, ε) is defined in Lemma. 3.1.2. By using the fact that ω(X, 0) = 1 and

Lemma. 3.1.2, we obtain the following equations

dJ(S; V) = lim
ε→0

J(Sε)− J(S)

ε

=
∫∫

S
lim
ε→0

ïϕ(Sε) ◦ Tε(V )ω(X, ε)− ϕ ◦ T0(V )ω(X, 0)

ε

ò
dS

=
∫∫

S
ϕ̇(S; V)ω(X, 0) dS +

∫∫
S
ϕ(S)

∂ω(X, ε)

∂ε

∣∣∣∣
ε=0

dS

=
∫∫

S
ϕ̇(S; V) dS +

∫∫
S
ϕ(S)∇

S
·V0 dS. (3.1.38)

For the second term, using Eq. (3.1.10) and integration by parts, also noting the
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definition of the shape derivative on S, we obtain directly

dJ(S; V) =
∫∫

S
ϕ̇(S; V0) dS −

∫∫
S
∇

S
ϕ(S) ·V0 dS +

∫∫
S
ϕ(S)V0 · nH dS

+
∫

Γ
ϕ(S)V0 · cΓ

dΓ

=
∫∫

S
ϕ′(S; V) dS +

∫∫
S
ϕ(S)HV0 · n dS

+
∫

Γ
ϕ(S)V0 · cΓ

dΓ. (3.1.39)

Moreover, we have the following theorem based on above lemma.

Theorem 3.1.2. Assume S ∈ D̄ is a two dimensional manifold with smooth bound-

ary Γ, let J(S) =
∫∫
S ϕ(S) dS with ϕ(S) ∈ H1(S), V is the variation vector

field such that V ∈ C(Ck(D̄, D̄); [0, ε0)), if the shape derivative ϕ′(S; V) exist and

ϕ′(S; V) ∈ L1(S), then we have

dJ(S; V) =
∫∫

S
ϕ′(S; V) dS+

∫∫
S
ϕ(S)HV0 ·n dS+

∫
Γ
ϕ(S)V0 · cΓ

dΓ. (3.1.40)

Furthermore, if y(Ω) is a function defined on Ω such that y(Ω)
∣∣∣∣
S

= ϕ(S), we have

dJ(S; V) =
∫∫

S
y′(Ω,V)

∣∣∣∣
S
dS+

∫∫
S

ï
∂ny+yH

ò
V0 ·n dS+

∫
Γ
yV0 ·cΓ

dΓ. (3.1.41)

Proof. The proof of this theorem is straightforward by noting the definition of shape

derivatives on Ω and S with above lemma.

Given a arbitrary function defined on S, the shape derivative is not easy to

calculate. Luckily, with the help of the signed distance function, the shape derivative

of the normal vector and the mean curvature can be obtained. Consider a closed

domain Ω ∈ R3 with its smooth boundary ∂Ω, the signed distance function is given

as

b(x) =



dist(x, ∂Ω), ∀x ∈ R3/Ω,

0, ∀x ∈ ∂Ω,

−dist(x, ∂Ω), ∀x ∈ Ω.

(3.1.42)
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Here dist(x, ∂Ω) = infy∈∂Ω ||x−y||. The signed distance function has significant re-

lationships with the normal vector and mean curvature of the surface ∂Ω. Precisely,

we can extend the normal vector n and mean curvature H in a tubular neighbour-

hood in the following

n(x) = ∇b(x)
∣∣∣∣
∂Ω
, H(x) = ∆b(x)

∣∣∣∣
∂Ω
. (3.1.43)

Lemma 3.1.5 ( [64]). Assume that Ω ∈ R3 is a closed domain with smooth boundary

∂Ω, S ⊂ ∂Ω is an open two-dimensional manifold, then the shape derivative of the

unit normal vector n and the mean curvature H of S in the direction of velocity V

are given as

n′ = n′(Ω; V)
∣∣∣∣
S

= −∇
S
(V0 ·n), H′ = H′(Ω; V)

∣∣∣∣
S

= −∆S(V0 ·n). (3.1.44)

3.2 Thermodynamic variation

In this section, we will calculate the thermodynamic variation of the surface

energy defined in Eq. (3.0.2) for solid-state dewetting. By applying Eq. (3.1.41) and

making use of the shape derivatives of the unit normal vector, we have the following

lemma.

Lemma 3.2.1. Assume S ∈ D̄ is a two dimensional manifold of class C2 with

smooth boundary Γ. Let n be the unit normal vector of S, and V be the variation

vector field such that V ∈ C(Ck(D̄, D̄); [0, ε0)). If J(S) =
∫
S γ(n) dS with γ ∈

C1(S2), then the first variation of J(S) is given by

δJ(S; V) =
∫
S

(∇
S
· ξ) (V0 · n) dS +

∫
Γ
(cγ

Γ
·V0) dΓ. (3.2.1)

Here ξ := ξ(n) is defined previously as the Cahn-Hoffman vector, and V0 · n repre-

sents the deformation velocity along the outer normal direction of the interface S.

We define a new vector cγ
Γ

:= (ξ · n) c
Γ
− (ξ · c

Γ
) n with c

Γ
representing the unit

co-normal vector defined.
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Proof. We firstly assume γ̂ is a homogeneous extension of γ,

γ̂(p) = |p|γ(
p

|p|
), ∀p ∈ R2\{0}, (3.2.2)

where the definition domain of the function γ(n) changes from unit vectors n to

arbitrary non-zero vectors p ∈ R3.

We next consider a domain Ω such that S ⊂ ∂Ω. Then based on the signed

distance function defined in (3.1.42), we can regard ∇b(x) as an extension of the

normal vector n in the neighbourhood of S. Thus we can rewrite

J(S) =
∫
S
γ̂
Å
∇b(x)

ã∣∣∣∣
S
dS =

∫
S
y(Ω)

∣∣∣∣
S
dS, (3.2.3)

with y(Ω) = γ̂
Å
∇b(x)

ã
. Using the chain rule for shape derivatives and definition of

ξ, we know the following expression holds,

y′(Ω; V)
∣∣∣∣
S

= ∇γ̂
Å
∇b(x)

ã
· n′(Ω; V)

∣∣∣∣
S

= −ξ · ∇
S
(V0 · n). (3.2.4)

Moreover, By noting the fact |∇b(x)| = 1, we obtain

∂ny
∣∣∣∣
S

= ξ ·
Åî
D(∇b(x))

ó
∇b(x)

ã∣∣∣∣
S

= 0. (3.2.5)

In view of Eq. (3.1.41) and combined Eq. (3.2.4), (3.2.5), we immediately have

δJ(S; V) = −
∫
S
ξ · ∇

S
(V0 · n) dS +

∫
S
γ(n)(V0 · n)H dS +

∫
Γ
γ(n)(V0 · cΓ

) dΓ

= I + II + III. (3.2.6)

For the first term, integration by parts gives us

I =
∫
S
(∇

S
·ξ) (V0 ·n) dS−

∫
S
(ξ ·n) (n ·V0)H dS−

∫
Γ
(ξ ·c

Γ
) (n ·V0) dΓ. (3.2.7)

Based on the definition of Cahn-Hoffman vector, we have γ(n) = ξ ·n. Thus we can

rewrite

II =
∫
S
(ξ · n) (V0 · n)H dS. (3.2.8)

III =
∫

Γ
(ξ · n) (V0 · cΓ

) dΓ. (3.2.9)
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Now combined the three terms together, we immediately have

δJ(S; V) =
∫
S
(∇

S
· ξ) (V0 · n) dS +

∫
Γ

ï
(ξ · n) c

Γ
− (ξ · c

Γ
) n
ò
·V0 dΓ

=
∫
S
(∇

S
· ξ) (V0 · n) dS +

∫
Γ

cγ
Γ
·V0 dΓ, (3.2.10)

with cγ
Γ

= (ξ · n) c
Γ
− (ξ · c

Γ
) n.

By using above lemma, we can easily obtain the first variation of the energy

functional for solid-state dewetting.

Theorem 3.2.1. The first variation of the energy functional (3.0.2) used in solid-

state dewetting problems with respect to the smooth vector field V can be written as:

δW (S; V) =
∫
S

(∇
S
·ξ) (V0 ·n) dS+

∫
Γ
(cγ

Γ
·n

Γ
+γ

FS
−γ

V S
)(n

Γ
·V0) dΓ. (3.2.11)

Proof. The total free energy consists of two parts. For the film/vapor interface

energy, by using lemma. 3.1.4, we have

δWint(S; V) =
∫
S
(∇

S
· ξ) V0 · n dS +

∫
Γ

cγ
Γ
·V0 dΓ. (3.2.12)

Here cγ
Γ

is a linear combination of c
Γ

and n, thus we have

c
Γ
⊥ τ

Γ
, n ⊥ τ

Γ
⇒ cγ

Γ
⊥ τ

Γ
. (3.2.13)

For solid-state dewetting, see in Fig. 3.1, we require the contact line to move along

the substrate, namely

TεΓ ⊂ Ssub, V(ε,x) � Ssub, ∀x ∈ Γ, ε ∈ [0, ε0). (3.2.14)

We denote Psub as the projection of vector onto the substrate. By noting Eq. (3.2.13),

we have Psubc
γ
Γ

= kn
Γ

with k representing the scalar projection. Then we can rewrite

cγ
Γ
·V0 = (Psubc

γ
Γ

+ (I − Psub)cγ
Γ
) ·V0

= Psubc
γ
Γ
·V0 = kn

Γ
·V0 = (cγ

Γ
· n

Γ
)(n

Γ
·V0).
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Thus we can simplify (3.2.10) as

δWint(S; V) =
∫
S
(∇

S
· ξ) (V0 · n) dS +

∫
Γ
(cγ

Γ
· n

Γ
)(n

Γ
·V0) dΓ. (3.2.15)

For the substrate energy Wsub, we can write it as

Wsub = (γ
FS
− γ

V S
)A(Γ) = (γ

FS
− γ

V S
)
∫
S
FS

dS
FS
. (3.2.16)

Applying Lemma. 3.1.4, and noting that ϕ is a constant and S
FS

is a flat surface

(H = 0, n
Γ

is the unit co-normal vector of surface S
FS

), therefore we have

δWsub(S; V) = (γ
FS
− γ

V S
)
∫

Γ
V0 · nΓ

dΓ. (3.2.17)

Now combine Eq. (3.2.15) and Eq. (3.2.17), we obtain the first variation of the total

surface energy of solid-state dewetting in the direction of the vector filed V

δW (S; V) =
∫
S

(∇
S
·ξ) (V0 ·n) dS+

∫
Γ
(cγ

Γ
·n

Γ
+γ

FS
−γ

V S
)(n

Γ
·V0) dΓ. (3.2.18)

3.3 Equilibrium

The equilibrium shape for solid-state dewetting problem is obtained by mini-

mizing the total free energy while fixing the total volume of the thin film. The

optimization problem can be stated as

min
Ω

Å
W :=

∫
S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ)

ã
s.t. |Ω| = C, (3.3.1)

where C > 0 is a constant denoting the total volume, and Ω represents the domain

enclosed by the interface S and substrate Ssub.

The Lagrangian for the minimization problem can then be expressed as

L(S, λ) =
∫
S
γ(n) dS + (γ

FS
− γ

V S
)A(Γ)− λ(|Ω| − C), (3.3.2)

with λ representing the Lagrange multiplier. By noting the lemma. 3.1.3, the first

variation of the total volume can be given by simply letting y = 1. Thus combined
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with Eq. (3.2.11), the first variation of the Lagrangian with resect to a smooth vector

field V can be given as

δL(S, λ; V) =
∫
S
(∇

S
·ξ−λ)(V0 ·n) dS+

∫
Γ
(cγ

Γ
·n

Γ
+γ

FS
−γ

V S
)(n

Γ
·V0) dΓ. (3.3.3)

Based on above variation, we have the following lemma which give the necessary

conditions for the equilibrium shape of solid-state dewetting.

Lemma 3.3.1. Assume there is a surface Se with smooth boundary Γe. If Se is the

equilibrium shape of the solid-state dewetting problem Eq. (3.3.1), then the following

conditions must be satisfied

∇
Se
· ξ = λ, on Se. (3.3.4a)

cγ
Γ
· n

Γ
+ γ

FS
− γ

V S
= 0, on Γe. (3.3.4b)

where the constant λ is determined by the total volume.

Proof. If Se is the equilibrium shape, then Eq. (3.3.3) must vanish at S = Se for

any smooth vector field V. Thus we immediately obtain the two conditions.

Film/Island

θ i(x)

Substrate

n
Γ
(x)

n(x)

c
Γ
(x)

Vapor

γ
V S

γ
F S

γ
F V

(a) ξ(n)

∂γ

∂θ
τ θ

1

sin θ

∂γ

∂φ
τ φ

γ n

(b)

Figure 3.2: (a) The cross-section profile in configuration of the vectors along the

contact line Γ. (b) The three components of the Cahn-Hoffman ξ-vector.

For isotropic surface energy, Eq. (3.3.4a) will collapse to the condition for con-

stant mean curvature surface. Eq. (3.3.4b) can be regarded as the Young equation
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for anisotropic surface energy γ(n) in three dimensions. Denote Γe as the boundary

of Se, for arbitrary x ∈ Γe, let θ(x) represent the corresponding contact angle at x.

For isotropic case, i.e.,γ(n) = γ0 with a constant γ0, we have ξ = γ0n and cγ
Γ

= c
Γ
.

Thus Eq. (3.3.4b) will collapse to

γ0 cos θ(x) + γ
FS
− γ

V S
= 0, ∀x ∈ Γe, (3.3.5)

which is directly the isotropic Young equation [131]. For the anisotropic case, we can

write the surface energy density in terms of the spherical coordinates, i.e., γ
FV

=

γ(θ, φ). Then the Cahn-Hoffman ξ-vector can be can be divided into the three

components, and written as follows

ξ(n) = ∇γ̂(n) = γ(θ, φ)n +
∂γ(θ, φ)

∂θ
τ
θ

+
1

sin θ

∂γ(θ, φ)

∂φ
τ
φ
, (3.3.6)

where in these expressions,

n = (sin θ cosφ, sin θ sinφ, cos θ)T , (3.3.7a)

τ
θ

= (cos θ cosφ, cos θ sinφ,− sin θ)T , (3.3.7b)

τ
φ

= (− sinφ, cosφ, 0)T . (3.3.7c)

Besides, we have the following expressions hold.

ξ · n = γ(θ, φ), c
Γ
· n

Γ
= cos θ(x). (3.3.8a)

ξ · c
Γ

=
∂γ(θ, φ)

∂θ
, n · n

Γ
= sin θ(x). (3.3.8b)

Thus we can rewrite Eq. 3.3.4b into

γ(θ, φ) cos(θ(x))− ∂γ(θ, φ)

∂θ
sin(θ(x)) + γ

FS
− γ

V S
= 0, (3.3.9)

which is consistent with the anisotropic Young equation in two-dimensional case

[9, 120].

Since we have ∇
S
·X = 2, if X is the position vector of S. Thus we know that the

equilibrium shape for solid-state dewetting must demonstrate similar geometry to

the ξ-plot, up to a scaling. Based on the Winterbottom construction [123] and recent



3.3 Equilibrium 95

work for solid-state dewetting [9], we can construct the equation for the equilibrium

shape. Now firstly we define the domain U
φ

as

U
φ

:= {θ
∣∣∣∣γ(θ, φ) cos(θ)− ∂γ(θ, φ)

∂θ
sin(θ)− σ ≥ 0, θ ∈ [0, π]}. (3.3.10)

Based on lemma. 3.3.1, we can construct the equilibrium shape in the parametric

form as Se(θ, φ) := X(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)),

x(θ, φ) = λ[γ(θ, φ) sin θ cosφ+ ∂γ(θ,φ)
∂θ

cos θ cosφ− 1
sin θ

∂γ(θ,φ)
∂φ

sinφ],

y(θ, φ) = λ[γ(θ, φ) sin θ sinφ+ ∂γ(θ,φ)
∂θ

cos θ sinφ+ 1
sin θ

∂γ(θ,φ)
∂φ

cosφ],

z(θ, φ) = λ[γ(θ, φ) cos θ − ∂γ(θ,φ)
∂θ

sin θ − σ],

(3.3.11)

where 0 < φ ≤ 2π, θ ∈ U
φ
, and λ is the scaling constant determined by the total

volume |Ω|.

Figure 3.3: The equilibrium shape defined by Eq. (3.3.11), where (a)-(c) is for

isotropic surface energy, i.e., γ = 1, but with σ = cos(π/3), σ = cos(π/2), σ =

cos(3π/4) respectively. (d) γ(n) = 1 + 0.2(n4
1 + n4

2 + n4
3), σ = cos(3π/4); (e) The

surface energy density is given directly by Eq. (1.1.9), σ = cos(3π/4), ε = 0.01 ;

(f) The surface energy density is given by γ(Mx(π/4)n) where γ(n) is defined by

Eq. (1.1.9) and Mx(π/4) represents the matrix for rotation by an angle π/4 about

the x-axis in three dimensions, using the right-hand rule, σ = cos(3π/4), ε = 0.01.
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Based on Eq. (3.3.11), the equilibrium shape under different anisotropies, e.g.,

the cubic anisotropy and regularized facet/cusps anisotropic defined in Eq. (1.1.9),

can be easily constructed. Fig. 3.3(a)-(c) shows the equilibrium shape for isotropic

surface energy with the material constant σ chosen as σ = cos(π/3), cos(π.2), cos(3π/4)

respectively. It clearly demonstrates the effects of the material constant σ on

the equilibrium shape by influencing the contact angle via (3.3.5). Moreover, we

also present the equilibrium shape for the cubic anisotropic surface energy i.e.,

γ(n) = 1+a(n4
1 +n4

2 +n4
3) and regularized cusps surface energy defined in Eq. (1.1.9)

with the same σ = cos(3π/4) in Fig. 3.3(d),(e). The anisotropy for Fig. 3.3(f) is

forced an anti-clockwise rotation along the x-axis by 45 degrees under the right

hand rule for the cusps surface energy. We can observe the this rotation results in

a corresponding rotation of the equilibrium shape.

3.4 The kinetic sharp-interface model and its prop-

erties

In this section, we will propose the kinetic sharp-interface model for solid-state

dewetting of thin films with anisotropic surface energies.

3.4.1 The model

Based on Eq. (3.2.1), we can obtain the variation of the total surface energy with

respect to the film/vapor interface S and the contact line Γ as

δW

δS
= ∇

S
· ξ, δW

δΓ
= cγ

Γ
· n

Γ
+ γ

FS
− γ

V S
. (3.4.1)

From the Gibbs-Thomson relation [86,113], the chemical potential can be defined

as

µ = Ω0
δW

δS
= Ω0∇S

· ξ, (3.4.2)
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with Ω0 representing the atomic volume. The normal velocity of the moving interface

is controlled by surface diffusion flow [27, 86], and it can be defined as follows by

Fick’s laws of diffusion [4]

J = − Dsν

kB Te
∇

S
µ, vn = −Ω0(∇

S
· J) =

DsνΩ0

kB Te
∇2

S
µ. (3.4.3)

In these expressions, J is the mass flux, Ds is the surface diffusivity, kB Te is the

thermal energy, ν is the number of diffusing atoms per unit area, ∇
S

is the surface

gradient. In addition to the surface diffusion which controlled the motion of the

moving interface, we still need the boundary condition for the moving contact line.

Following the idea in two dimensions [67, 120], we assume that the normal velocity

of the contact line Γ is given by the energy gradient flow, which is determined by

the time-dependent Ginzburg-Landau kinetic equations

vn
Γ

= −ηδW
δΓ

= −η[cγ
Γ
· n

Γ
+ γ

FS
− γ

V S
], (3.4.4)

with 0 < η < ∞ denoting the constant contact line mobility as a reciprocal of a

constant friction coefficient.

We choose the characteristic length scale and characteristic surface energy scale

as h0 and γ0 respectively, the time scale as
h4

0

Bγ0
with B =

DsνΩ2
0

kB Te
, and the contact line

mobility is scaled by B
h3

0
. Let X(·, t) = (x(·, t), y(·, t), z(·, t)) be a local parameter-

ization of the moving film/vapor interface S, then we can obtain the dimensionless

sharp interface model for solid-state dewetting of thin film via a ξ-vector formulation

as

∂tX = ∆
S
µ n, t > 0, (3.4.5)

µ = ∇
S
· ξ, ξ(n) = ∇γ̂(p)

∣∣∣∣
p=n

, (3.4.6)

where t is the time, n is the outer unit normal vector of S, and ξ(n) is the Cahn-

Hoffman vector (scaled by γ0). Here for simplicity, we still use the same notations for

all the dimensionless variables. Let X
Γ
(·, t) = (xΓ(·, t), yΓ(·, t), zΓ(·, t)) represents

a parameterization of the contact line Γ. The initial condition is given as S0 with
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boundary Γ0 such that

S0 := X(·, 0) = (x0, y0, z0), Γ0 := X(·, 0)
∣∣∣∣
Γ
. (3.4.7)

where z0

∣∣∣∣
Γ

= zΓ(·, 0) = 0. The above governing equations are coupled with the

following boundary conditions:

(1) contact line condition

zΓ(·, t) = 0, t ≥ 0; (3.4.8)

(2) relaxed contact angle condition

∂tXΓ
= −η

Å
cγ

Γ
· n

Γ
− σ
ã
n

Γ
, t ≥ 0; (3.4.9)

(3) zero-mass flux conditionÅ
c

Γ
· ∇

S
µ
ã∣∣∣∣

Γ
= 0, t ≥ 0; (3.4.10)

where η represents the dimensionless contact line mobility and cγ
Γ

is the anisotropic

co-normal vector defined as cγ
Γ

:= (ξ ·n) c
Γ
− (ξ · c

Γ
) n. c

Γ
= (c1

Γ
, c2

Γ
, c3

Γ
) represents

the co-normal vector, and n
Γ

= (n1
Γ
, n2

Γ
, 0) is the outer unit normal vector of Γ on

the substrate (cf. Fig. 3.1), and σ =
γ
V S
−γ

FS

γc
is a material constant. The contact

line condition defined in Eq. (3.4.8) ensures that the moving contact line is always

attached on the substrate, which is also implied by Eq. (3.4.9). By noting that Γ

is on the substrate (x-y plane), we know that the third component of n
Γ

is always

zero, i.e., n3
Γ = 0. Thus as long as the initial condition satisfies zΓ(·, 0) = 0, we can

obtain boundary conditin (i) zΓ(·, t) = 0,∀t > 0 from boundary condition (ii). The

last boundary condition (iii) is included such that there is no mass flux along the

triple contact line.

3.4.2 Mass conservation and energy dissipation

In the following, we will prove that the proposed sharp interface model for solid-

state dewetting satisfies the properties of mass conservation and energy dissipation

during time evolution.
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Proposition 3.4.1. Suppose
Ä
X(·, t), µ(·, t)

ä
is the exact solution of the sharp in-

terface model for solid-state dewetting: Eqs. (3.4.5), (3.4.6) with boundary conditions

Eqs. (3.4.8), (3.4.9) and (3.4.10). Denote S(t) := X(·, t) as the moving interface,

then the total volume of the domain Ω(t) enclosed by the interface S(t) and the

substrate Ssub is conserved, i.e.,

|Ω(t)| ≡ |Ω(0)|, t ≥ 0, (3.4.11)

and the total surface energy of the system is decreasing during the evolution, i.e.,

W (t) ≤ W (t1) ≤ W (0) =
∫
S(0)

γ(n) dS − σA(Γ(0)), t ≥ t1 ≥ 0. (3.4.12)

Proof. For simplicity, we use S to denote S(t) in the following. Taking time deriva-

tive of the volume or the energy is similar to finding the first variation of the func-

tional with respect to the smooth vector field. Now replacing ε by the time t, and

consequently V0 can be replaced by ∂tX. Therefore, by noting lemma. 3.1.3 (set

y = 1) and Eq. (3.4.5), the time derivative of the total volume is given as

d

dt
M(t) =

∫
S(t)

∂tX · n dS =
∫
S(t)

∆
S
µ dS = 0. (3.4.13)

The last equality comes from the integration by parts and the boundary condition

Eq. (3.4.10). Thus the total volume is conserved.

In order to prove the energy dissipation, we take derivative with respect to t for

the total energy. By Eq. (3.2.1), we obtain

d

dt
W (t) =

∫
S(t)

(∇
S
· ξ)(∂tX · n) dS +

∫
Γ(t)

(cγ
Γ
· n

Γ
− σ)(∂tXΓ · nΓ

) dΓ.

Substitute the following three equations

∆
S
µ = ∂tX · n, ∇

S
· ξ = µ, ∂tXΓ · nΓ

= −η(cγ
Γ
· n

Γ
− σ), (3.4.14)

and integration by parts, we obtain

d

dt
W (t) =

∫
S(t)

µ∆Sµ dS − η
∫

Γ(t)
(cγ

Γ
· n

Γ
− σ)2 dΓ

= −
∫
S(t)

(∇
S
µ)2 dS − η

∫
Γ(t)

(cγ
Γ
· n

Γ
− σ)2 dΓ ≤ 0, (3.4.15)

which immediately implies the energy dissipation.
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The proof of above proposition involves calculating the time derivative of the

mass functional or energy functional. It is equivalent to obtaining the first vari-

ation with respect to the smooth vector field V by considering the time t as the

perturbation parameter ε.



Chapter 4
A PFEM in Three Dimensions

The idea of the parametric finite element method is presented by Dziuk in [44] in

a seminar paper, where the author formulated the discrete numerical algorithm by

assuming that the new surface Sm+1 is parameterized over the last step surface Sm

instead of on a fixed reference domain. Thus the evolving surfaces can be generated

step by step without any parameterisation of the initial surface. In recent years, the

parametric finite element methods have been widely used for numerically solving

some geometric equations such as the mean curvature flow, surface diffusion flow,

Willmore flow and so on [6, 16, 17, 19, 20, 23, 24, 94]. Among these methods, the

most considerable works are the parametric finite element methods proposed by

J.W. Barrett et al. Their methods have a good preservation of the mesh quality

by automatically distributing the mesh points along the discrete polygonal surfaces.

These methods can be applied to the isotropic case and anisotropic case when the

surface energy is given in the form of Riemannian metric.

In this chapter, we will present the parametric finite element method for solving

the sharp interface model we derived in the last chapter (Eqs.(3.4.5), (3.4.6) with

boundary conditions Eq. (3.4.8)-(3.4.10)). We start with a isotropic case, and then

extend it to the anisotropic case when the surface energy density is not limited to

the form of Riemannian metric.

Let X = (X1, X2, X3) be the point vector of a surface, and n = (n1, n2, n3)

101
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be the unit normal vector. When the surface energy is isotropic, the Cahn-Hoffman

vector can be reduced to ξ(n) = n. It is obvious to obtain the following expression

based on the definition of surface gradient

DiXj = δij − ninj. (4.0.1)

By noting the definition of ∆
S
, we obtain directly

∆
S
Xj =

3∑
i=1

Di(−ninj) = −(∇
S
· n)nj −∇S

nj · n = −(∇
S
· n)nj. (4.0.2)

In view of the above equation, the dimensionless chemical potential µ can then be

presented in the following form

∆
S
X = −(∇

S
· n) n = −µn. (4.0.3)

Besides, the anisotropic co-normal vector will simultaneously reduce to the co-

normal vector c
Γ
.

Now let S(t) be the open surface representing the interface between the film and

vapor with boundary Γ(t). Assume X(·, t) is a local parameterization of S(t), thus

the sharp interface model for the solid-state dewetting with isotropic surface energy

in three dimensions can be stated as follows,

∂tX = ∆
S
µ n, t > 0, (4.0.4)

µ = H = −∆
S
X · n, (4.0.5)

with the following boundary conditions on Γ

(1) contact line condition

Γ ⊂ Ssub, t ≥ 0, (4.0.6)

(2) relaxed contact angle condition

∂tXΓ
= −η

ï
c

Γ
· n

Γ
− σ
ò
n

Γ
, t ≥ 0; (4.0.7)

where n
Γ

= Psubn
|Psubn|

= 1√
n2

1+n2
2

(n1, n2, 0), σ =
γ
V S
−γ

FS

γ0
, Psub is the projection

operator that maps a vector onto the tangent space of Ssub.
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(3) zero-mass flux condition

(c
Γ
· ∇

S
µ)
∣∣∣∣
Γ

= 0, t ≥ 0. (4.0.8)

4.1 Variational formulation

We firstly assume that the evolution interface S(t) can be parameterized over a

fixed reference domain U such that

S(t) = X(u, v, t) : U × [0, T ]→ R3. (4.1.1)

Therefore, the boundary Γ is a closed plane curve and can be simultaneously con-

sidered as a parameterisation on the boundary of U , i.e.,

Γ(t) = X
Γ
(u, v, t) : ∂U × [0, T ]→ R3. (4.1.2)

The reason we require that the surface S(t) should be parameterized on a reference

domain U is to propose the variational formulation. However, in the full-discrete

scheme, this assumption is not compulsory as the discrete solutions are not defined

on the reference domain.

4.1.1 For surface diffusion flow

Assume α represents a function defined over ∂U , we can define the following

functional space for the solution of solid-state dewetting problem as

H1
α(U) := {ϕ ∈ H1(U), ϕ

∣∣∣∣
∂U
≡ α}. (4.1.3)

Thus H1
0 (U) denotes the functions in H1(U) with trace being zero.

For any scalar or vector valued functions u, v, the inner product over surface S

can be given by¨
u, v

∂
S

=
∫∫

S
u · v dS. (4.1.4)
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Now rewrite Eqs. (4.0.4),(4.0.5),

∂tX · n = ∆
S
µ, (4.1.5a)

µ n = −∆
S
X. (4.1.5b)

By multiplying a test function φ ∈ H1(S) for Eq. (4.1.5a), and integrating by parts

from Eq. (3.1.10), we obtain

0 =
∫∫

S
∂tX · n φ dS −

∫∫
S

∆
S
µφ dS =

∫∫
S
∂tX · n φ dS

+
∫∫

S
∇

S
µ · ∇

S
φ dS −

∫∫
S
(∇

S
µ · n)φH dS −

∫
Γ
(∇

S
µ · c

Γ
)φ dΓ

=
∫∫

S
∇

S
µ · ∇

S
φ dS. (4.1.6)

The last equality holds on because of the zero-mass flux boundary condition (4.0.8)

and∇
S
µ·n = 0. Similarly, for Eq. (4.1.5b), we multiply a test function g ∈ (H1

0 (S))3

with zero values on the boundary, and integration by parts gives us

∫∫
S
µ n · g dS −

∫∫
S

∇
S
X · ∇

S
g dS = 0, (4.1.7)

where ∇
S
X · ∇

S
g =

∑3
j=1∇S

Xj · ∇S
gj.

Thus we can obtain the variational formulation for the surface diffusion flow:

given the initial surface S(0) = X(U, 0) with its boundary (contact line) Γ(0), we

want to find the evolutionary surface S(t) ∈ H1
α(U) ×H1

β(U) ×H1
0 (U), µ ∈ H1(S)

such that¨
∂tX · n, φ

∂
S

+
¨
∇

S
µ, ∇

S
φ
∂
S

= 0, ∀φ ∈ H1(S), (4.1.8)¨
µ, n · g

∂
S
−
¨
∇

S
X, ∇

S
g
∂
S

= 0, ∀g ∈ (H1
0 (S))3. (4.1.9)

where α, β represents the x, y-coordinates of the moving contact line Γ(t). Here

the variational formulation is not closed as we still need to determine Γ. In the

following we will present the variational formulation for the contact line migration,

from which we can obtain Γ(t).



4.1 Variational formulation 105

4.1.2 For contact line migration

The contact line migration is given by Eq. (4.0.7), which describes the motion of

a plane curve on the substrate. To obtain a variational formulation for the contact

line migration, we begin by adding a small regularization term

∂tXΓ
= ε2∂ssκn

Γ
− η
ï
c

Γ
· n

Γ
− σ
ò
nΓ, t ≥ 0. (4.1.10)

Here s is the arc length of the plane curve Γ, ε is a small regularization parameter,

and κ is the curvature. In addition, for scalar or vector valued functions u, v, we

define the L2 inner product over Γ¨
u, v

∂
Γ

=
∫

Γ
u · v ds. (4.1.11)

Then a variational formulation for Eq. (4.1.10) can be stated as following: given

the initial plane curve Γ(0) = X
Γ
(∂U, 0), for any time t ∈ (0, T ], find the evolution

curves Γ(t) = X
Γ
(∂U, t) ∈ (H1(∂U))3, κ ∈ H1(Γ) such that¨

∂tXΓ · nΓ , ϕ
∂

Γ
+ ε2

¨
∂sκ, ∂sϕ

∂
Γ

= −η
¨
cΓ · nΓ − σ, ϕ

∂
Γ
, ∀ϕ ∈ H1(Γ), (4.1.12a)¨

κ, nΓ · ω
∂

Γ
−
¨
∂sXΓ , ∂sω

∂
Γ

= 0, ∀ω ∈ (H1(Γ))3, (4.1.12b)

with Γ = Γ(t). Eq. (4.1.12a) is obtain by writing the Eq. (4.1.10) in the form

∂tXΓ
n

Γ
= ε2∂ssκ−η

ï
c

Γ
· n

Γ
− σ
ò
, (4.1.13)

then multiplying the test functions ϕ and integrating by parts with periodic bound-

ary conditions. Similarly, Eq. (4.1.12b) is obtained by presenting the curvature in the

form κ n = −∂ssXΓ
. The advantage of adding this small surface diffusion flow reg-

ularization for the contact line migration is that we can propose a nice variational

formulation for the motion of the contact line based on the work by J. W. Bar-

rett [16]. Besides, the fully discrete scheme based on this variational formulation

tends to distribute the mesh points uniformly according to the arc length, which is

helpful to increase the total mesh quality [8, 16]. In most cases, the initial contact

line is given as a closed curve which is only piecewise smooth with some sharp cor-

ners. This small surface diffusion regularization can help to round the corner after
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several steps evolution, thus avoiding ear formulation. Note here c
Γ

in Eq. (4.1.12a)

is dependent on the surface S(t).

4.1.3 Mass conservation and energy dissipation

Proposition 4.1.1 (Mass conservation for weak solution). Let (X(u, v, t), µ(S, t))

be a weak solution for the above variational problem Eq. (4.1.8),(4.1.9),(4.1.12a)

and (4.1.12b), then the total volume enclosed by the surfaece and the substrate is

conserved,i.e.,

M(t) ≡M(0) =
∫∫∫

Ω(0)
dX, t ≥ 0. (4.1.14)

Proof. It is easy to obtain that

d

dt
M(t) = −

∫∫
S
∂tX · n dS. (4.1.15)

Let φ = 1 in Eq. (4.1.8), we have d
dt
M(t) = 0. This immediately indicates that the

total volume is conserved.

Proposition 4.1.2. Let (X(u, v, t), µ(S, t)) be a weak solution for the above vari-

ational problem Eq. (4.1.8),(4.1.9), (4.1.12a) and (4.1.12b). If we assume that the

surface has high regulariaty, that is X(u, v, t) ∈ C1(C2(U), [0, T ]) and the contact

line X
Γ
(∂U, t) ∈ C1(C2(∂U), [0, T ]), then the total energy of the system is decreasing,

i.e.,

W (t) ≤ W (t1) ≤ W (0) ≡
∫∫

S(0)
dS − σA(Γ(0)), t ≥ t1 ≥ 0. (4.1.16)

Proof. Taking derivative of the total energy with respect to the time t, based on

Eq. (3.1.38), Eq. (3.2.17), and noting that V0 = ∂tX, we have the following

d

dt
W (t) =

∫∫
S
∇

S
· ∂tX dS − σ

∫
Γ
∂tXΓ

· n
Γ
dΓ. (4.1.17)
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Besides, for arbitrary vector V, we have

∇
S
X · ∇

S
V =

3∑
i=1

3∑
j=1

DjXiDjVi =
3∑
i=1

3∑
j=1

(δij − ninj)DjVi

=
3∑
i=1

3∑
j=1

δijDjVi −
3∑
i=1

3∑
j=1

ninjDjVi

=
3∑
i=1

DiVi −
3∑
i=1

nin · ∇S
Vj = ∇S ·V. (4.1.18)

Thus we can rewrite Eq. (4.1.17) as

d

dt
W (t) =

∫∫
S
∇

S
X · ∇

S
(∂tX) dS − σ

∫
Γ
∂tXΓ

· n
Γ
dΓ. (4.1.19)

As the surface S and the cotact line Γ are parametrized on the reference domain U

and ∂U respectively, if the test function is defined on S or Γ, we can also regard it

as a parametrization on U or ∂U . Now for fixed δ, there exist a closed domain V

belongs to the reference domain U such that the measure m(U/V ) < δ, and choose

the test function g in Eq. (4.1.9) such that g
∣∣∣∣
V

= ∂tX
∣∣∣∣
V

, and g
∣∣∣∣
∂U

= 0, also let

ϕ = µ in Eq. (4.1.8), we obtain¨
∇

S
X, ∇

S
(∂tX)

∂
S

=
¨
∇

S
X, ∇

S
(∂tX− g)

∂
S

+
¨
∇

S
X, ∇

S
g
∂
S

=
¨
∇

S
X, ∇

S
(∂tX− g)

∂
S

+
¨
µ,n · g

∂
S

=
¨
∇

S
X, ∇

S
(∂tX− g)

∂
S

+
¨
µ,n · ∂tX

∂
S

+
¨
µ,n · (g − ∂tX)

∂
S

=
¨
∇

S
X, ∇

S
(∂tX− g)

∂
S
−
¨
∇

S
µ, ∇

S
µ
∂
S

+
¨
µ,n · (g − ∂tX)

∂
S
. (4.1.20)

The regularity of the surface ensures that we can perform integration by parts for

the first term of above equation,¨
∇

S
X, ∇

S
(∂tX−g)

∂
S

=
¨
(∂tX−g), n (∇

S
·n)
∂
S

+
¨
(∂tX−g)

∣∣∣∣
Γ
, c

Γ

∂
Γ
. (4.1.21)

Thus we obtain that

d

dt
W (t) =

¨
(µ+∇

S
· n), n · (g − ∂tX)

∂
S

−
¨
∇

S
µ, ∇

S
µ
∂
S

+
¨
∂tXΓ

· n
Γ
, c

Γ
· n

Γ
− σ
∂

Γ
. (4.1.22)
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Now let ϕ = c
Γ
· n

Γ
− σ in Eq. (4.1.12a), we obtain that

d

dt
W (t) =

¨
(µ−∇

S
· n), n · (g − ∂tX)

∂
S
− ε2

¨
∂sκ, ∂s(cΓ

· n
Γ
)
∂

Γ

−
¨
∇

S
µ, ∇

S
µ
∂
S
− η
¨
c

Γ
· n

Γ
− σ, c

Γ
· n

Γ
− σ
∂

Γ
. (4.1.23)

By the definition of g, the first term can be as small as possible and bounded by

Cδ. The second term can be bounded by the last term for smaller enough ε. So this

indicates that d
dt
W (t) ≤ 0.

4.2 Spatial/temporal discretization

Based on the variational formulation Eq. (4.1.8), (4.1.9), (4.1.12a) and (4.1.12b),

in this section, we introduce the fully discrete scheme. We first divide the time as

0 = t1 < t2 < ..... < tM = T, (4.2.1)

with time step τm = tm+1 − tm. In the spatial level, let

Sm =
N⋃
j=1

D̄m
j , where {Dm

j }Nj=1 are mutually disjoint triangle surfaces, (4.2.2)

be a polygonal surface approximating the evolution surface S(tm) for 1 ≤ m ≤ M .

Assume the polygonal surface has K vertices given as {qk}Kk=1. The boundary of

the polygonal surface Sm is a polygonal curve Γm, which can be expressed as

Γm =
Nc⋃
j=1

h̄mj , {hmj }Ncj=1 are line segments of the curve Γm, (4.2.3)

where these line segments are ordered in anti-clockwise direction when viewing from

the top. We use the P 1 finite elements, that means the function is linear on every

element. Therefore we can define the following finite element spaces on Sm and Γm

Vh(Γm) := {φ ∈ C(Γm,R) : φ
∣∣∣∣
hmj

is linear ∀1 ≤ i ≤ Nc} ⊂ H1(Γm). (4.2.4a)

Vh(Sm) := {φ ∈ C(Sm,R) : φ
∣∣∣∣
Dmj

is linear ∀1 ≤ i ≤ N} ⊂ H1(Sm). (4.2.4b)
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Besides, we can define the finite element space on Sm with zero values on Γm

Vh0 (Sm) := {φ ∈ Vh(Sm), φ
∣∣∣∣
hm
k

= 0, ∀1 ≤ k ≤ Nc} ⊂ H1
0 (Sm). (4.2.5)

Assume α ∈ H1(Γm), we can defined the finite element space on Sm with boundary

given by α

Vhα(Sm) := {ϕ ∈ V h(Sm) : ϕ
∣∣∣∣
Γm

= α} (4.2.6)

hm
j

Dm
j

(b)(a)
q
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j
1
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2

= p
m
j
1

Dm
kj

Figure 4.1: Typical triangles in the mesh. (a) A triangle with no edges on the

boundary. (b) Two connected triangles with edges on the boundary.

The polygonal surface Sm consists of N triangle surfaces {Dm
j }Nj=1 in three di-

mensions, see Fig. 4.1(a). If we assume that {qmj1 ,q
m
j2
,qmj3} are the vertices of the

triangles Dm
j and ordered in the anti-clockwise direction viewing from the outside,

then we know the normal function nm of the surface Sm is a step function with

discontinuities on the edges of each triangle. Denote nmj as the normal function on

Dm
j , then we have

nmj = nm
∣∣∣∣
Dmj

=
(qmj2 − qmj1)× (qmj3 − qmj1)

|(qmj2 − qmj1)× (qmj3 − qmj1)|
, ∀1 ≤ j ≤ N. (4.2.7)

In addition, as the boundary of the surface Sm, Γh is a plane curve on the substrate

(xOy plane), which consists of connected line segments, see Fig. 4.1(b) (colored in

blue). Here we assume that {pmj1 ,p
m
j2
} are the two vertices of hmj and ordered in the
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anti-clockwise direction viewing from the positive z axis direction. Let n
Γm

denote

the unit normal vector of Γm on the substrate, then it is also a step function with

discontinuities on the endpoints of each line segment hmj . If n
Γm,j

is the normal

function of Γm on line segment hmj , then

n
Γm,j

= n
Γm

∣∣∣∣
hmj

=
(pmj2 − pmj1)× z

|(pmj2 − pmj1)× z|
, ∀1 ≤ j ≤ Nc, (4.2.8)

where z is the unit vector along the positive direction of z axis. Now we can

define the following mass-lumped norms to approximate the integration on Sm or

Γm respectively,¨
u, v

∂
Sm

=
1

3

N∑
j=1

|Dm
j |

3∑
k=1

u((qmj
k
)−) · v((qmj

k
)−).¨

f, g
∂

Γm
=

1

2

Nc∑
j=1

|hmj |
2∑

k=1

f((pmj
k
)−) · g((pmj

k
)−).

Here in this expressions, |Dm
j |, |hmj | are the area of the triangle of Dm

j and length of

hmj respectively. u, v are two scalar or vector functions defined on Sm. f, g are two

scalar or vector functions defined on Γm. Since the integrand could be discontinuous

functions, thus we define u((qmj
k
)−) as the limit of u(x) when x approaches towards

qmj
k

from triangles Dm
j , and f((pmj

k
)−) as the limit of f(x) when x approaches towards

pmj
k

from the line segment hmj .

Finally we propose the following approximation of the variational formulation

Eqs. (4.1.12a),(4.1.12b),(4.1.8) and (4.1.9): assume S0 =
⋃N
j=1 D̄

0
j is a discretization

of the initial surface S(0) with good mesh quality, and Γ0 =
⋃Nc
j=1 h̄

0
j , for 1 ≤ m ≤

M−1, we want to find Sm+1 := Xm+1 ∈ Vhα(Sm)×Vhβ (Sm)×Vh0 (Sm), µm+1 ∈ Vh(Sm),

such that

〈Xm+1 −Xm

τm
· nm, φh

〉
Sm

+
¨
∇Sµ

m+1, ∇Sφh
∂
Sm

= 0, ∀φh ∈ Vh(Sm), (4.2.9a)¨
µm+1, nm · gh

∂
Sm
−
¨
∇SX

m+1, ∇Sgh
∂
Sm

= 0, ∀gh ∈ (Vh0 (Sm))3, (4.2.9b)

where α, β are the x, y-coodrintes of the contact line Γm+1, and Γm+1 can be found

by the following approximation: find Γm+1 := XΓm+1 ∈ (Vh(Γm))3, κm+1 ∈ Vh(Γm),
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such that〈X
Γm+1 −X

Γm

τm
· n

Γm
, ϕh

〉
Γm

+ ε2
¨
∂sκ

m+1, ∂sϕh
∂

Γm
+ η
¨
c

Γm
· n

Γm
− σ, ϕh

∂
Γm

= 0,

∀ϕh ∈ Vh(Γm), (4.2.10a)¨
κm+1, n

Γm
· ωh
∂

Γm
−
¨
∂sXΓm+1 , ∂sωh

∂
Γm

= 0, ∀ωh ∈ (Vh(Γm))3. (4.2.10b)

We note that in the above discrete scheme, we use the semi-implicit parametric finite

element method instead of the fully implicit parametric finite element method. The

integrations are calculated on Sm and Γm. Besides, all the nonlinear terms such

as nm and n
Γ

are also valued explicitly. For each time step, we first update the

boundary Γm+1 by solving Eqs. (4.2.10a),(4.2.10b). In this scheme, c
Γm

is the unit

co-normal vector of the polygonal surface on the boundary, which is a step function

on Γm. We can numerically value it as

c
Γm,j

= c
Γm

∣∣∣∣
hmj

=
(pmj2 − pmj1)× nmkj
|(pmj2 − pmj1)|

, (4.2.11)

where pmj1 ,p
m
j2

are the vertices of the line segment hmj and ordered in the anti-

clock wise direction. nmkj is the unit outer normal vector of the triangle surface

Dm
kj

which contains the line segment hmj . After this, we can obtain Sm+1 from

Eqs. (4.2.16a),(4.2.10b). By considering that Sm+1 is parametrized on Sm and Γm+1

is parametrized on Γm, the term ∇
S

and ∂s operators can be easily calculated,

which demonstrates the essential convenience of parametric finite element method.

Precisely, consider triangle surface Dm
j with vertices {qmj1 ,q

m
j2
,qmj3} ordered in the

anti-clockwise direction from the outside of the surface, then we have

∇
S
Bi(S

m)
∣∣∣∣
Dmj

=
(qmj3 − qmj2)× nmj

2|Dm
j |

, (4.2.12)

where Bi is the nodial basis function at point qmji . Thus for any arbitrary function

φ ∈ Vh(Sm), we can derive

∇
S
φ
∣∣∣∣
Dmj

=
3∑
i=1

φ(qmji )∇S
Bi. (4.2.13)

Similarly, for any arbitrary function ϕ ∈ Vh(Γm), we also have

∂sϕ
∣∣∣∣
hmj

=
ϕ(pmj2)− ϕ(pmj1)

|hmj |
. (4.2.14)
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The numerical approximation of the geometric operator ∇
S
, ∂s becomes easier, and

the discrete numerical approximations turn out to be two linear systems. We have

the following theorem for the well-posedness of the scheme.

Theorem 4.2.1. [Well-posedness of the PFEM scheme] The discrete variational

problems, Eqs. (4.2.16a), (4.2.16b), (4.2.10a) and (4.2.10b) is well-posed.

Proof. To prove the well-posedness of the PFEM scheme, we need prove the linear

system obtained from Eqs. (4.2.16a), (4.2.16b) and the linear system obtained from

Eqs. (4.2.10a), (4.2.10b) both has unique solution. It is equivalent to prove the two

corresponding homogenous linear systems only have zero solutions. To solve Γm+1,

we prove the following system has zero solution.¨
XΓm+1 · n

Γm
, ϕh

∂
Γm

+ τmε
2
¨
∂sκ

m+1, ∂sϕh
∂

Γm
= 0, ∀ϕh ∈ Vh(Γm), (4.2.15a)¨

κm+1, n
Γm
· ωh

∂
Γm
−
¨
∂sXΓm+1 , ∂sωh

∂
Γm

= 0, ∀ωh ∈ (Vh(Γm))3. (4.2.15b)

By choosing ωh = XΓm+1 , ϕ = κm+1, it is easy to prove that XΓm+1 = 0, κm+1 = 0

is the solution, see [16].

For the linear system of Eqs. (4.2.16a), (4.2.16b), the correpsonding homogenous

linear system is to find Xm+1 ∈ (Vh0 (Sm))3, µ ∈ Vh(Sm)¨
Xm+1 · nm, φh

∂
Sm

+ τm
¨
∇

S
µm+1, ∇

S
φh
∂
Sm

= 0, ∀φh ∈ Vh(Sm), (4.2.16a)¨
µm+1, nm · gh

∂
Sm
−
¨
∇

S
Xm+1,∇

S
gh
∂
Sm

= 0, ∀gh ∈ (Vh0 (Sm))3. (4.2.16b)

By choosing φ = µm+1,gh = Xm+1, we can obtain

τm
¨
∇

S
µm+1,∇

S
µm+1

∂
Sm

+
¨
∇

S
Xm+1,∇

S
Xm+1

∂
Sm

= 0. (4.2.17)

Thus we obtain Xm+1 = 0 by the zero boundary, and then µm+1 = 0. So we have

prove the uniqueness and existence of the two linear systems obtained from the

scheme, thus the semi-implicit PFEM scheme is well-posed.

To summarise, our parametric finite element method is a combination of the

parametric finite element method for closed curve evolution [16] (the contact line
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migration by a small surface diffusion regularization) and the parametric finite ele-

ment method for open surface [20] (interface evolution under surface diffusion flow).

The mesh quality can be preserved such that there is no need to do any mesh regu-

larizations during the evolution as long as the initial mesh quality is good enough.

The two linear systems obtained from the PFEM scheme can be solved via Spare LU

decomposition. The mass matrix under the the mass-lumped norm can be reduced

to the simple diagonal matrix, thus the linear systems are easy to be solved even

though the mass matrix and stiffness matrix are dependent on the time step.

4.3 Numerical results

In this section, based on the PFEM scheme, we will show some numerical results

for the scheme.

4.3.1 Contact line mobility and smooth regularization effect

From the relaxation boundary condition in Eq. (4.0.7), which controls the migra-

tion of the contact line, we know that the mobility precisely represents the relaxation

rate of the contact angle towards the equilibrium contact angle. The large η will

accelerate the relaxation process [120]. Thus the choice of η will have significant

influence on the dynamic evolution of the surface, especially the contact angles of

the surface. On the other hand, η is a material parameter and could be variant for

different materials. Therefore, we will numerically investigate the effect of η on the

evolution of the dynamic contact angles firstly. For the polygonal surface, we define

the following indicator,

θ̄m =
1

Nc

Nc∑
j=1

arccos(c
Γm,j
· n

Γm,j
), (4.3.1)

which is the mean value of all the contact angles on each line segment of Γm. Fig. 4.2

shows the temporal evolution of θ̄m and the normalized energy W (t)/W (0) under

different choices of the mobility. The initial thin film is chosen as a unit cube
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Figure 4.2: (a) The temporal evolution of contact angle θ̄m defined in Eq. (4.3.1);

(b) the temporal evolution of the normalized energy W (t)/W (0) for different choices

of mobility.

on the substrate with material constant σ = cos(3π/4). From the figure, we can

observe that the larger mobility will accelerate the process of relaxation such that

the contact angles evolve faster towards the same equilibrium angle 3π
4

. Similarly, as

shown in Fig. 4.2(b), the energy decays faster for larger mobility, but finally reaches

the same value. This indicates that the equilibrium contact angles as well as the

equilibrium shape are independent on the choice of η. So in the following, without

special mention, we always assume the mobility is chosen as η = 100.

As discussed previously, the introduction of the smooth regularization for the

contact line migration enables us to apply PFEM to approximate the contact line

migration. It is obvious that the smaller regularization parameter ε is desired.

However, numerical mesh size, as well as the time step, prevents us from choosing too

small ε. Fig. 4.3 shows the geometric comparison of the contact lines for different ε at

time t = 0.02, 0.12, 0.52. The initial thin film is given by a (3.2, 3.2, 0.1) cuboid with

computational parameter chosen as η = 100, σ = cos(5π/6). From the figure, we can

observe that when ε ≤ 0.01, the influence of the regularization on the contact line

migrations could be almost ignored. Thus, it is always assumed the regularization
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Figure 4.3: Comparison of the dynamic contact lines under different regularization

parameter ε. The initial thin film is a cuboid with dimension (3.2, 3.2, 0.1). The

computational parameter is chosen as η = 100, σ = cos(5π/6).

parameter is chosen as ε = 0.01 if there is no special mention. On the other hand,

our numerical simulations demonstrate that when ε is too big, this regularization

could be regarded as a drag effect and will cause the mesh deterioration.

4.3.2 Convergence test

Refinement

Figure 4.4: A illustration of mesh refinement procedure by dividing each triangle

into four small triangles.

For an initial cuboid, we assume each face of the cuboid except the face on the
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substrate consists of squares and each square is divided into 4 triangles. Based on

this mesh, we can refine it by dividing each right triangle into four small ones, see

Fig. 4.4. This mesh refinement procedure can be then repeated to produce the mesh

with desirable mesh size. For the initial polygonal mesh, we can define mesh size

h as the length of the hypotenuse of the small right triangles. Thus for a mesh

obtained via n refinements, one can immediately get h = 1
2n

.

We firstly want to investigate the convergence of our PFEM for the equilibrium

shape. Fig. 4.5 and Fig. 4.6 show the convergence of the cross-section profiles and

contact lines respectively. For mesh1, the initial polygonal mesh is obtained after

3 refinements with h = 0.125, and the time step is chosen as τ1 = 1.25 × 10−3.

As mesh2 is a refinement of mesh1 and mesh3 is a refinement of mesh2, thus the

time step for them is chosen as τ1
4

and τ1
44 . The two figures clearly demonstrate that

the numerical equilibrium shape is convergence towards the theoretical equilibrium

shape as the mesh size decreases.
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Figure 4.5: Comparison of the cross-section profiles in x-direction of the numeri-

cal equilibrium shapes for different meshes with that of the theoretical equilibrium

shape. The initial surface is a unit cube on the substrate, σ = cos(15π/36).

To our knowledge there is no theory for the convergence order of the PFEM

scheme so far, but it is still interesting to investigate the convergence of the scheme.

Given the numerical polygonal surface Xm at discrete time tm with 0 ≤ m ≤ M ,
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Figure 4.6: Comparison of the numerical contact lines of the equilibrium shapes

for different meshes with the contact line of the theoretical equilibrium shape. The

initial surface is a unit cube on the substrate, σ = cos(15π/36)).

we can define the numerical solution at arbitrary time tm ≤ t < tm+1 as a linear

interpolation

Xh,τ (t) =
tm+1 − t
τm

Xm +
t− tm
τm

Xm+1. (4.3.2)

Here h is the mesh size of the X0, τ is the uniform time step. Since there is no

analytical solution for us to compare with our numerical solution, we define the

numerical error as following

eh,τ (t) = ||Xh,τ (t)−Xh
2
, τ
4
(t)||

L∞ = max
1≤k≤K

min
1≤j≤N

dist(qk,Dj), (4.3.3)

where qj is the vertices of Xh,τ , and Dj is the triangle of Xh
2
, τ
4
(t). dist is the

distance function for a vertices to a triangle in three dimensions. In order to test

the convergence order, the computation set-up is prepared as following: the initial

thin film is chosen as a cuboid with dimension (1, 2, 1). The material constant is

fixed with σ = cos(3π/4), and h0 = 0.5, τ0 = 0.005. We compute the convergence

order at three different time t = 0.02, 0.05, 0.1.

From Table. 4.1, we can observe the convergence order is around 1. The con-

vergence test for the PFEM applied to mean curvature flow with closed surface has
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Table 4.1: Convergence rates in the L∞ norm for an open surface evolution under the

isotropic surface diffusion flow (solid-state dewetting with isotropic surface energy),

where the computational parameters are chosen as: σ = cos(3π/4). The initial thin

film is given as a (1, 2, 1) cuboid.

eh,τ (t)
h = h0 h0/2 h0/2

2 h0/2
3

τ = τ0 τ0/2
2 τ0/2

4 τ0/2
6

eh,τ (t = 0.02) 1.13E-1 3.63E-2 1.34E-2 5.90E-2

order – 1.63 1.43 1.18

eh,τ (t = 0.05) 1.14E-1 4.16E-2 1.72E-2 8.40E-2

order – 1.45 1.27 1.03

eh,τ (t = 0.10) 1.00E-1 4.23E-2 2.00E-2 1.01E-2

order – 1.24 1.08 0.99

been reported in [20] and the convergence order is 2. Here the convergence order

for our PFEM reduces to 1. The reason may be due to our explicit scheme for the

contact line migration.

4.3.3 Small islands

Fig. 4.7 shows several stages of the evolution of a unit cube towards its equi-

librium shape. The initial mesh consists of 1280 same right triangles with two legs

sharing the same length of
√

2
24 . The mesh contains 657 vertices with 32 vertices on

the boundary. We can observe that the unit cube finally evolves into a spherical

geometry with contact angle approximating 3π
4

.

Fig. 4.8(a) shows the temporal evolution of the normalized mass and energy,

where the computational parameter is chosen the same as Fig. 4.7. As is shown

in the figure, the mass conservation and energy dissipation is clearly demonstrated,

which indicates the discrete PFEM scheme can grasp these fundamental properties
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Figure 4.7: Several snapshots in the evolution of a small initially unit cube towards

its equilibrium shape with parameter chosen as σ = cos(3π/4), (a) t = 0; (b)

t = 2e− 4; (c) t = 0.02; (d) t = 0.2.
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Figure 4.8: (a) The temporal evolution of the normalized total free energy and

the normalized volume (mass); (b) the temporal evolution of the logarithm of the

mesh distribution function ψ(t). The computational parameter is chosen as same as

Fig. 4.2.



4.3 Numerical results 120

of solid-state dewetting. Fig. 4.8(b) depicts the logarithm of the mesh distribution

function ψ(t) during the time evolution, where ψ(t) is the indicator of the mesh

quality defined as

ψ(tm) =
maxNj=1 |Dm

j |
minNj=1 |Dm

j |
. (4.3.4)

From the figure, it can be seen that ln(ψ(t)) is bounded and tends to be horizontal

as time evolves, which indicates that our PFEM scheme has a good mesh quality

preservation. Thus mesh regularization is not needed during the computation.

The influence of the material constant σ on the equilibrium shape has been

investigated and the result is shown in Fig. 4.9. It clearly demonstrates that the σ

determines the contact angle of the equilibrium shape.

Figure 4.9: The equilibrium shape of an initial unit cube with different material

constants σ.

4.3.4 Large islands

If the initial thin film is given by long thin islands, it possibly breaks up into small

islands due to the Rayleigh instability [84, 99]. Therefore, we want to investigate

the evolution of long islands with dimensions (1,m, 1). We test three examples with

m = 4, 12, 16, and the material constant is fixed with σ = cos(3π/4). As depicted

in Fig. 4.10, the thin film with dimension (1, 4, 1) evolves and forms a single island

with spherical geometry. When we choose larger m, the thin films break up into 2

small islands or 3 smalls islands, see Fig. 4.11 and Fig. 4.12 respectively.
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Figure 4.10: Several snapshots in the evolution of an initial cuboid with dimension

(1, 4, 1) towards its equilibrium. (a) t = 0; (b) t = 0.01; (c) t = 0.10; (d) t = 2.35.

The computational parameter is chosen as σ = cos(3π/4).

Figure 4.11: Several snapshots in the evolution of an initial cuboid with dimension

(1, 12, 1) until its pinch off. (a) t = 0; (b) t = 0.01; (c) t = 0.50; (d) t = 1.07. The

computational parameter is chosen as σ = cos(3π/4).
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Figure 4.12: Several snapshots in the evolution of an initial cuboid with dimension

(1, 16, 1) until its pinch off. (a) t = 0; (b) t = 0.20; (c) t = 0.75; (d) t = 1.14. The

computational parameter is chosen as σ = cos(3π/4).

In order to fully understand the geometry evolution for the thin film, we have

depicted several snapshots for the contact lines and cross-section profiles for the thin

film, see Fig. 4.13. From the figure, we can observe that the thin films pinch off at

a point, where both the contact line and cross-section profiles break up.

Then there must exist critical lengths L1, L2, such that when L1 ≤ m ≤ L2, the

long thin film breaks up into 2 small isolated islands, and when L ≥ L2, the long

thin film breaks up into 3 or more than 3 small isolated islands. Besides, these two

critical lengths should be dependent on the the material constant σ. We give the

phase diagrams for the numbers of islands formed from the initially (1, L, 1) cuboid

islands with material constant σ in Fig. 4.14(a). From the figure, we can observe

that for the long islands, the critical length L1 and L2 are linear to 1
sin(arccosσ/2)

.

This relation has been observed and reported in two dimensions both for isotropic

and weakly anisotropic surface energy [40,120]. Moreover, we also plot the pinch-off

time tp for (1, L, 1) cuboid island for σ = cos π
3
, cos π

2
, cos 2π

3
. From the figure, we

can observe, at the beginning, as L increases, the time the thin film pinches off
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Figure 4.13: Several snapshots in the evolution of the contact lines (shown in col-

umn (a)) and the cross-section profile (shown in column (b)) until pinch off. The

computational parameter is chosen as σ = cos(3π/4).
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Figure 4.14: (a) Phase diagram for the number of islands formed from the initial

(1, L, 1) cuboid with material constant σ. The boundaries are given by our fitting

linear curve L = 3.98 + 4.64x and L = 6.84 + 6.725x, where x = 1
sin( arccosσ

2
)
. (b) The

pinch off time tp for the initial (1, L, 1) cuboid island with three different σ.

increasing quickly as a consequence. However, as L reaches the critical length L2,

the line for pinch-off time drops and then almost stays horizontal.

We consider the morphology evolutions of large thin films with dimensions (m,m, 1).

We start by simulating the evolution of an initial square with dimensions (3.2, 3.2, 0.1),

and the parameter is chosen as σ = cos(5π/6). As shown in Fig. 4.15, the thin film

evolves into a single spherical geometry. During the evolution, the corners retract

much more slowly than the edges at the beginning, see Fig. 4.16. This phenomenon

of corner accumulation has also been observed in experiment [117]. These corners

at last catch up with the edges and the contact line moves towards a circular shape.

If we enlarge the size of the thin film, as is depicted in Fig. 4.17, the thin film

demonstrates the similar corner accumulation at the beginning but finally pinches

off and forms hole in the centre, see Fig. 4.18. These two examples have also been

numerically simulated in [66] via the phase field approach. Our numerical results

are consistent with theirs.



4.3 Numerical results 125

Figure 4.15: Several snapshots in the evolution of an initial cuboid with dimension

(3.2, 3.2, 0.1) towards its equilibrium. (a) t = 0; (b) t = 0.0050; (c) t = 0.01; (d)

t = 0.08. The computational parameter is chosen as σ = cos(5π/6).
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Figure 4.16: Several snapshots in the evolution of the interface between the thin

film and substrate towards the thin film’s equilibrium., and the initial cuboid is

chosen with dimension (3.2, 3.2, 0.1). The computational parameter is chosen as

σ = cos(5π/6).
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Figure 4.17: Several snapshots in the evolution of an initial cuboid with dimension

(6.4, 6.4, 0.1) until its pinch off. (a) t = 0; (b) t = 0.005; (c) t = 0.010; (d) t = 0.031.

The computational parameter is chosen as σ = cos(5π/6).
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Figure 4.18: Several snapshots in the evolution of the cross section profile of the

thin film along y-direction or diagonal direction until its pinch off, where the initial

cuboid is chosen with dimension (6.4, 6.4, 0.1). (a) t = 0; (b) t = 0.005; (c) t = 0.010;

(d) t = 0.031. The computational parameter is chosen as σ = cos(5π/6).
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4.3.5 Some special geometries

We investigate the morphology evolutions for islands initially given with some

special geometries, such as the cross shape and square ring. Without special men-

tion, the height of the initial thin film is always chosen to be 1, and the computational

material constant is chosen as σ = cos 3π
4

.

As illustrated in Fig. 4.19, it demonstrates several stages of the geometry evolu-

tion of an initial cross-shaped island. The island is chosen with a cube attached with

four equal limbs, and the four limbs are given by cuboids with dimension (1, 4, 1).

From the figure, we can observe that thin film eventually evolves into a single island

with spherical geometry. However, if the four limbs are replaced with longer cuboids,

the evolution could be quite different, see Fig. 4.20. As depicted in the figure, the

four limbs are chosen with (1, 6, 1) cuboid. Instead of forming a single island, the

cross-shaped film undergoes pinch off at the joint and breaks up into five small is-

lands. Fig. 4.21 and Fig. 4.22 are illustrations of the dynamic interface between the

film and the substrate for the case of Fig. 4.19 and Fig. 4.20 respectively. It clearly

demonstrates the migrations of the contact line during the evolution. When the

thin film forms a single island, the contact line evolves into a circular shape. On the

contrary, when pinch-off event happens, the contact line, which is a closed curve,

breaks up into five closed curves simultaneously.

We next consider the case when the initial thin film is given as a square ring

with wall thickness equaling 1 but different dimensions for the outer edges. We start

by considering the evolution of a small square ring with the length of outer edges

chosen as 2.5, see Fig. 4.23. As depicted in the figure, it clearly demonstrates the

geometry evolution of the island as well as the cross-section profiles. The square

ring firstly evolves into a ringlike shape but with different heights in different cross-

section directions. However, as time evolves, the ring becomes a toroidal shape with

same height in all cross-section orientations, see Fig. 4.23(c). At the same time, the

toroidal film is also migrating towards its centre. If we enlarge the length of the

outer edges for the initial thin film, the thin film will undergo pinch-off, see Fig. 4.24
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Figure 4.19: Several snapshots in the evolution of an initially cross-shaped island

towards its equilibrium shape. Here the island consists of four (1,4,1) cuboids form-

ing the limbs and one (1,1,1) cube in the centre, (a) t = 0; (b) t = 0.15; (c) t = 0.5;

(d) t = 0.9; σ = cos(3π/4).

Figure 4.20: Several snapshots in the evolution of an initially cross-shaped island

before its pinch-off. Here the island consist of four (1,6,1) cuboids forming the limbs

and one (1,1,1) cube in the centre, (a) t = 0; (b) t = 0.05; (c) t = 0.15; (d) t = 0.386,

σ = cos(3π/4).
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Figure 4.21: Several illustrations of the dynamic interface between the substrate

and the island film (shaded in blue) for an initially cross-shaped island. The com-

putational set up is as same as Fig. 4.19.
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Figure 4.22: Several illustrations of the dynamic interface between the substrate

and the island film (shaded in blue) for an initially cross-shaped island. The com-

putational set up is as same as Fig. 4.20.



4.3 Numerical results 130

Figure 4.23: Several snapshots in the evolution of an initial island of square ring

obtained from (2.5, 2.5, 1) cuboid by cutting out a (1.5, 1.5, 1) cuboid. (a) t = 0; (b)

t = 0.15; (c) t = 1.0; (d) t = 1.5. The material constant is chosen as σ = cos(3π/4).
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Figure 4.24: Several snapshots in the evolution of an initial island of square ring

obtained from a (3.5, 3.5, 1) cube by cutting out a (2.5, 2.5, 1) cube. (a) t = 0;

(b) t = 0.15; (c) t = 0.4; (d) t = 0.614. The material constant is chosen as

σ = cos(3π/4).

Figure 4.25: Several snapshots in the evolution an initial island of square ring ob-

tained from a (5, 5, 1) cube by cutting out a (6, 6, 1) cube. (a) t = 0; (b) t = 0.15;

(c) t = 0.7; (d) t = 1.004. The material constant is chosen as σ = cos(3π/4).
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and Fig. 4.25. The length of the outer edges could control the number of the islands

the thin film breaks up into. As depicted in Fig. 4.24, it reveals the geometry

evolution and the migrations of the two contact lines of the thin film for a square

ring with the length of outer edges chosen as 3. As times evolves, the thickness of

the film becomes various in different cross-section directions. The thick becomes

even thicker and the thin becomes even thiner, thus making the thin film breaking

up into 4 pieces finally. If the length of the outer edges for the initial square ring is

further increased, then thin film is possible to break up into more small islands, see

Fig. 4.25. This could be explained by Rayleigh instability [99]. For the cylinder, a

small volume-preserving perturbation with wavelength exceeding the circumference

of the cylinder could grow exponentially in order to reduce the surface area of the

cylinder, thus the cylinder will break up into a series of small spherical islands.

This breakup has been verified by our previous numerical examples, see Fig. 4.11

and Fig. 4.12. In addition to geometry of cylinder, the Rayleigh instability for

more complex geometries such as torus has received great attention and has been

studied theoretically and experimentally recently [85,88]. Analogous to the cylinder,

a wavelength perturbation of torus in the azimuthal direction could also force the

torus to break up into small particles. However, the existence of the radial curvature

plus the periodicity in the azimuthal direction make the study much complicated. In

the axial direction, the torus is unstable and will always migrate towards the centre

to form spherical shape by decreasing the major radius and increasing minor radius.

Experiments by E. Pairam [88] show that toroidal droplets can break up into a

precise number of droplets or only shrink towards its centre to from a single spherical

droplet, depending on the initial aspect ratio of the torus. This demonstrates that

the Rayleigh instability in the azimuthal direction and shrinking instability in the

axial direction are competing with each other to determine the dynamics geometries

of the torus. Here for solid-thin film on a substrate, our numerical examples for

square ring has clearly verified this theory.
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4.4 Extension to weakly anisotropic case

In the previous section, we have proposed a variational formulation for the sharp

interface model of solid-state dewetting with isotropic surface energy. Here we want

to extend this variational form to the case when the surface energy is anisotropic.

In isotropic case, the variation formulation for the chemical potential is given as∫∫
S
µn · g dS −

∫∫
S
∇

S
X · ∇

S
g dS = 0, ∀g ∈ (H1

0 (S))3. (4.4.1)

Given the chemical potential µ = ∇
S
· ξ, for g ∈ (H1

0 (S))3, a similar equation has

been derived for anisotropic case [34, 94,115], which reads as

∫∫
S
µn ·g dS−

∫∫
S
γ(n)∇

S
X · ∇

S
g dS = −

3∑
k,l=1

∫∫
S
ξknl∇S

xk · ∇S
gl dS. (4.4.2)

4.4.1 Variational formulation

Based on Eq. (4.4.2), the variational formulation for the sharp interface model

Eqs. (3.4.5),(3.4.6) with boundary conditions (3.4.8)-(3.4.10) can be stated as fol-

lows: given the initial surface S(0) = X(U, 0) with its boundary Γ(0) = X
Γ
(∂U, 0),

we want to find X ∈ H1
α(U)×H1

β(U)×H1
0 (U), µ ∈ H1(S(t)) such that¨

∂tX · n, φ
∂
S

+
¨
∇Sµ, ∇Sφ

∂
S

= 0, ∀φ ∈ H1(S), (4.4.3a)¨
µ, n · g

∂
S
−
¨
γ(n)∇SX, ∇Sg

∂
S

= −
3∑

l,k=1

¨
ξk∇SXk, nl∇Sgl

∂
S
, ∀g ∈ (H1

0 (S))3,

(4.4.3b)

with S = S(t), and α, β represents the x, y-coordinates of the moving contact

line Γ = Γ(t), which is determined via the following variational formulation: find

Γ = X
Γ
(∂U, t), κ ∈ H1(Γ) such that¨
∂tXΓ · nΓ , ϕ

∂
Γ

+ ε2
¨
MΓ∂sκ, ∂sϕ

∂
Γ

= −η
¨
cγ

Γ
· nΓ − σ, ϕ

∂
Γ
, ∀ϕ ∈ H1(Γ), (4.4.4a)¨

κ, nΓ · ω
∂

Γ
−
¨
∂sXΓ , ∂sω

∂
Γ

= 0, ∀ω ∈ (H1(Γ))3. (4.4.4b)

Here the smooth regularization for the contact line migration is given as

∂tXΓ
= ε2∂s(MΓ∂sκ)n

Γ
− η[cγ

Γ
· n

Γ
− σ]n

Γ
, (4.4.5)
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where MΓ = (cγ
Γ
· n

Γ
− σ)2. As the contact line for the equilibrium shape is no

longer a circle, we add this mobility MΓ to ensure that when the numerical solution

approaches the steady state, the contact line satisfies anisotropic Young equation

cγ
Γ
· n

Γ
− σ = 0. (4.4.6)

4.4.2 Full-discretization scheme

Given the spatial discretization and temporal discretization, the fully discrete

parametric finite element method for solid-state dewetting with weakly anisotropic

surfac energy can be stated as follows: assume S0 =
⋃N
j=1 D̄

0
j is a discretization of the

initial surface S(0) with good mesh quality, and Γ0 =
⋃Nc
j=1 h̄

0
j , for 1 ≤ m ≤ M − 1,

we want to find Sm+1 := Xm+1 ∈ Wh
Γm+1(Sm), µm+1 ∈ Vh, such that

〈Xm+1 −Xm

τm
· nm, φh

〉
Sm

+
¨
∇Sµ

m+1, ∇Sφh
∂
Sm

= 0, ∀φh ∈ Vh(Sm), (4.4.7a)¨
µm+1, nm · gh

∂
Sm
−
¨
γ(nm)∇SX

m+1, ∇Sgh
∂
Sm

= −
3∑

l,k=1

¨
ξmk ∇Sx

m
k , n

m
l ∇Sgh,l

∂
Sm
,

∀gh ∈ (Vh0 (Sm))3, (4.4.7b)

where Γm+1 is determined as follows: find Γm+1 := XΓm+1 ∈ (Vh(Γm))3, κm+1 ∈
Vh(Γm), such that

〈X
Γm+1 −X

Γm

τm
· n

Γm
, ϕh

〉
Γm

+ ε2
¨
M

Γm
∂sκ

m+1, ∂sϕh
∂

Γm

+ η
¨
cγ

Γm
· n

Γm
− σ, ϕh

∂
Γm

= 0, ∀ϕh ∈ Vh(Γm), (4.4.8a)¨
κm+1, n

Γm
· ωh
∂

Γm
−
¨
∂sXΓm+1 , ∂sωh

∂
Γm

= 0, ∀ωh ∈ (Vh(Γm))3. (4.4.8b)

Here M
Γm

= (cγ
Γm
· n

Γm
− σ)2, ξm = (ξm1 , ξ

m
2 , ξ

m
3 )), gh = (gh,1, gh,2, gh,3), Xm =

(xm1 , x
m
2 , x

m
3 ). For the scheme, we have the following theorem,

Theorem 4.4.1 (Well-posedness of the PFEM scheme). The discrete variational

problem, Eqs. (4.4.7a), (4.4.7b), (4.4.8a) and (4.4.8b) is well-posed.

Proof. The proof of this theorem is the same as proof of Theorem. 4.2.1 by noting

that γ(nm) is always positive.
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In view of the definition of ξ vector, one can defined: ξm as

ξmj = ξm
∣∣∣∣
Dmj

= ∇γ̂(nmj ). (4.4.9)

In addition, cγ
Γm

is defined as

cγ
Γm,j

= cγ
Γm

∣∣∣∣
hmj

= (ξmj
k
· nmj

k
)c

Γm,j
− ((ξmj

k
· c

Γm,j
)nmj

k
), (4.4.10)

with Dm
j
k

contains the line segment hmj .

For the weakly anisotropic surface energy, if γ(n) is chosen as the cubic surface

energy defined in Eq. (1.1.6) with a smaller enough, the mesh equality can be well

preserved like the isotropic case. However, when the surface energy is chosen as the

cusps or facet surface energies defined in Eq. (2.5.2), the mesh quality will deteriorate

along the time evolution, thus mesh regularization is necessary in order to make the

scheme stable. We refer to [6] for the volume-preserving mesh regularization method.

4.4.3 Numerical results

In this section, we report some numerical simulation results under the anisotropic

surface energies. We will mainly consider the following cubic anisotropy

γc(n) = 1 + a[n4
1 + n4

2 + n4
3], 0 ≤ a <

1

3
. (4.4.11)

Fig. 4.26 shows the convergence results of the equilibrium shapes with σ =

cos(15π
36

), a = 0.25. We compute the equilibrium shapes for an initial (1, 2, 1) cuboid

with different meshes, which are given with a set of small isosceles right triangles.

If we define the mesh size indicator h as the length of the hypotenuse of the right

triangle, then Mesh1 represents the initial mesh with h = h0 = 0.125, and the

time step is chosen as τ = τ0 = 0.00125 for computation. Meanwhile, the time

step for Mesh2 and Mesh3 are chosen as τ = τ0
4

and τ = τ0
16

respectively. For

easy comparison, we have depicted the x-directional cross-section profiles both for

the numerical equilibrium shapes and the theoretical equilibrium shape. We can

clearly observe that as the mesh size decrease, the numerical cross-section profiles
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are convergent to the cross-section profiles of the theoretical equilibrium shapes.

This prove that our PFEM scheme for the weakly anisotropic surface energy is

convergent.
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Figure 4.26: Comparison of the cross section profiles of the numerical equilibrium

with the theoretical equilibrium shape obtained from Winterbottom construction.

The material constant is given as σ = cos 15π
36

.

Figure 4.27: Several snapshots in the evolution of an initial (1, 2, 1) cuboid towards

its equilibrium under the cubic anisotropy with a = 0.25. The material constant is

chosen as σ = cos 5π
6

.
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Fig. 4.27 shows the geometry evolution of an island film under the cubic anisotropy

with a = 0.25. The initial island is a cuboid with dimension (1, 2, 1), and the ma-

terial constant is chosen as σ = cos(5π
6

). The island film evolves towards a shape

with corners. In order to investigate the effect of the degree of anisotropy on the

equilibrium shape, we have shown the equilibrium shapes under different a with

same σ = cos 5π
6

. As clearly observed from Fig. 4.28(a)-(c), the corners of the equi-

librium shapes become sharper as a becomes bigger, which is consistent with the

theoretical predications. On the other hand, we compute the equilibrium shape by

fixing the degree of the anisotropy a = 0.25, and changing the material constant

σ. The equilibrium shapes for σ = 0.5, 0,−0.5 are given in Fig. 4.29(a),(b) and (c)

respectively. In addition, the corresponding cross-section profiles and contact lines

of the equilibrium shapes are also shown in Fig. 4.30. From these figures, we can

clearly see that σ determines the contact angles of the equilibrium shape.

Figure 4.28: The equilibrium shapes of an initial (1, 2, 1) cuboid under the cubic

anisotropy with different degrees of anisotropy. (a) a = 0.1; (b) a = 0.2; (c) a = 0.3.

The material constant is chosen as σ = cos 5π
6

.

Unlike the isotropic case, a rotation of the surface energy density is equivalent to

a rotation of the corresponding equilibrium shape. Assume Mx(θ) is a rotation ma-

trix, which represents an anti-clockwise rotation about the x-axis in three dimensions

under the right-hand rule. To observe the rotation effects, we compute the equi-

librium shapes under the anisotropies γ = γc(Mx(
π
6
n)) and γ = γc(Mx(−π

6
n)). As

shown in Fig. 4.31, the equilibrium shapes exhibit the corresponding rotation effects



4.4 Extension to weakly anisotropic case 138

Figure 4.29: The equilibrium shapes of an initial (1, 2, 1) cuboid under cubic

anisotropy with a = 0.25. (a) σ = 0.5; (b) σ = 0; (c) σ = −0.5.
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Figure 4.30: (a) The cross-section profiles of the equilibrium shapes. (b) The contact

lines of the equilibrium shapes.
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along x-axis. In addition to the cubic anisotropy, we have also performed numeri-

Figure 4.31: The equilibrium shapes of an initial (1, 2, 1) cuboid, and the material

constant is chosen as σ = cos 3π
4

. (a) γ = γc(Mx(
π
6
)n); (b) γ = γc(Mx(−π

6
)n).

.

Figure 4.32: Several snapshots in the evolution of an initial (1, 2, 1) cuboid towards

its equilibrium under the ellipsoidal anisotropy with a1 = 2, a2 = 1, a3 = 1. The

material constant is chosen as σ = cos 3π
4

. (a) t = 0; (b) t = 0.02; (c) t = 0.04; (d)

t = 1.0.

cal simulations for the ellipsoidal anisotropy defined in Eq. (1.1.7). Fig. 4.32 shows
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the geometry evolution of an initially cuboid island towards its equilibrium shape

with σ = cos 3π
4

. The surface energy density is chosen as γ(n) =
»

2n2
1 + n2

2 + n2
3.

From the figure, we can see that thin film eventually obtains the equilibrium with

ellipsoidal geometry. This is consistent with our predictions since the corresponding

Wulff shape for the anisotropy γ(n) =
»

2n2
1 + n2

2 + n2
3 is given by an ellipsoid with

implicit equation x2

2
+ y2 + z2 = 1.



Chapter 5
Extensions

In this chapter, we mainly focus on some extensions of the sharp interface model.

We will extend the model to the strongly anisotropic case and curved substrate.

Moreover, the migration of the toroidal thin film on the flat substrate will be inves-

tigated under the assumption of axis-symmetry.

5.1 For strongly anisotropic surface energy

In 2D, some orientations are missing in the equilibrium shape (see Fig. 5.1(a))

when the surface stiffness γ(θ) + γ′′(θ) is negative for some orientations [67,105]. In

this strongly anisotropic case, the anisotropic surface diffusion flow becomes back-

ward and ill-posed. In order to avoid this ill-posedness, the Willmore energy regu-

larization is generally utilized [30, 58]. In 3D, a similar regularization is necessary

when missing orientations appear in the equilibrium shape (see Fig. 5.1(b)). There-

fore in this section, we perform the extension in 3D and derive the model for strongly

anisotropic case.

141
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Figure 5.1: Ears appear in ξ-plot for strongly anisotropic surface energy. (a) γ(θ) =

1 + 0.2 cos(4θ) in 2D; (b) γ(n) = 1 + (n4
1 + n4

2 + n4
3) in 3D.

5.1.1 The regularized energy and first variation

The Willmore energy can be written as

Wr =
∫∫

S
H2 dS. (5.1.1)

We have the following lemmas which is helpful for calculating the first variation of

the Willmore energy functional.

Lemma 5.1.1. Asuume S ∈ R3 is a Ck-hypersurface, with k ≥ 3. H is the mean

curvature of S, then the normal derivative of H is given by

∂nH = −(κ2
1 + κ2

2) = −(H2 − 2K), (5.1.2)

where κ1, κ2 are the two principle curvatures of the surface, K is the Gauss curvature.

Proof. We omit the proof as this is a simple application of the signed distance

function defined in Eq. (3.1.42) and the proof can be found in [58,64]
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Lemma 5.1.2. Let S ∈ R3 be Ck-hypersurface with smooth boundary, and k ≥ 4.

If Wr(S) =
∫∫
SH2 dS, then we have the first variation of J(S) in the direction of

V is given by

dWr(S; V) = 2
∫

Γ
[(∇

S
H · c

Γ
)(n ·V0)−Hc

Γ
· ∇

S
(n ·V0) +H2 V0 · cΓ

] dΓ

−2
∫∫

S
[∆SH +

H3

2
− 2HK] n ·V0 dS. (5.1.3)

Here K is the Gaussian curvature.

Proof. To calculate the variation, using Eqs. (3.1.41) and (3.1.44), we have

dWr(S; V) =
∫∫

S
2H(−∆

S
(n ·V0)) dS +

∫∫
S
[∂nH2 +H3] n ·V0 dS

+
∫

Γ
H2V0 · c

Γ
dΓ. (5.1.4)

Not that ∂nH = −(H2 − 2K) by lemma. 5.1.1, integration by parts based on

Eq. (3.1.10), we get

dWr(S; V)

= 2
∫∫

S
∇

S
H · ∇

S
(n ·V0) dS − 2

∫
Γ
Hc

Γ
· ∇

S
(n ·V0) dS

−
∫∫

S
[H(H2 − 4K)] n ·V0 dS +

∫
Γ
H2 c

Γ
·V0 dS

= −2
∫∫

S
∆
S
Hn ·V0 dS + 2

∫
Γ
(∇

S
H · c

Γ
)(n ·V0) dΓ

−2
∫

Γ
H c

Γ
· ∇

S
(n ·V0) dS −

∫∫
S
[H(H2 − 4K)] n ·V0 dS +

∫
Γ
H2 c

Γ
·V0 dΓ

= 2
∫

Γ
[(∇

S
H · c

Γ
)(n ·V0)−Hc

Γ
· ∇

S
(n ·V0) +H2 V0 · cΓ

] dΓ

−2
∫∫

S
[∆SH +

H3

2
− 2HK] n ·V0 dS. (5.1.5)

The total dimensionless surface energy after regularization becomes

W δ
reg = W +

δ2

2
Wr =

∫∫
S
γ(n) dS − σA(Γ) +

δ2

2

∫∫
S
H2 dS, (5.1.6)

From the lemma. 5.1.2 and the variation of W , also noting that on the boundary,

n ·V0 = (Psubn) ·V0 = (n · n
Γ
)(n

Γ
·V0), (5.1.7)
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we can easily obtain that

dW δ
reg(S; V) =

∫∫
S
[∇

S
· ξ − δ2(∆

S
H +

H3

2
− 2HK)]V0 · n dS

+
∫

Γ
[cγ

Γ
· n

Γ
− σ + δ2(∇

S
H · c

Γ
)(n · n

Γ
)]V0 · nΓ

dΓ

+δ2
∫

Γ
[H2c

Γ
·V0 −Hc

Γ
· ∇

S
(n ·V0)] dS. (5.1.8)

The variation of the total energy with respect to the surface S is immediately given

by

δW δ
reg

δS
= ∇

S
· ξ − δ2(∆

S
H +

H3

2
− 2HK). (5.1.9)

Since a higher order energy is added to the surface energy for regularization, the

governing equations will result in a sixth order geometric PDE, thus an additional

boundary condition should be included for them. In consideration of the undesirable

term in the variation H c
Γ
· ∇

S
(n ·V0), if we want to obtain the variation of W δ

reg

with respect to the boundary Γ, we need to impose the following zero curvature

boundary condition

H
∣∣∣
Γ

= 0. (5.1.10)

Such boundary condition is also imposed in two dimensions, which serves as the

condition to make sure the system is dissipative. Therefore the variation of W δ
reg

with respect to the Γ is

δW δ
reg

δΓ
= cγ

Γ
· n

Γ
− σ + δ2(∇

S
H · c

Γ
)(n · n

Γ
). (5.1.11)

5.1.2 The regularized model

Similar to the weakly anisotropic case, the variation of the total energy with

respect to the surface S and Γ give the chemical potential and contact line migration

velocity, respectively. Now we assume S is a Ck-hypersurface with smooth boundary,

where k ≥ 6. Let X and X
Γ

denote a local parametrization of S and Γ respectively.
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The sharp interface model for solid-state dewetting with strongly anisotropic surface

energy is given by

∂tX = ∆
S
µ n, t > 0, (5.1.12)

µ = ∇
S
· ξ − δ2(∆

S
H +

H3

2
− 2HK), (5.1.13)

H = −∆
S
X · n, K =

H2 + ∆
S
n · n

2
, (5.1.14)

together with the following boundary conditions

(1) contact line condition

Γ ⊂ Ssub, t ≥ 0, (5.1.15)

(2) relaxed contact angle condition

∂tXΓ = −η
ï
cγ

Γ
· n

Γ
− σ + δ2(∇

S
H · c

Γ
)(n · n

Γ
)
ò
nΓ, t ≥ 0; (5.1.16)

where cγ
Γ

= (ξ · n)c
Γ
− (ξ · c

Γ
)n, n

Γ
= 1√

n2
1+n2

2

(n1, n2, 0), σ = γV S−γFS
γ0

.

(3) zero-mass flux condition

c
Γ
· ∇

S
µ
∣∣∣∣
Γ

= 0, t ≥ 0; (5.1.17)

(4) zero-curvature condition

H
∣∣∣
Γ

= 0, t ≥ 0. (5.1.18)

The mass conservation and energy dissipation can also be proved easily. Here we

omit the proof as it is similar to that for weakly anisotropic case.

5.2 For curved substrate

Previously we always assume that the rigid substrate is flat and represented by

the xOy plane, however, experiments have shown that the topologies of the substrate
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could have great influence on dewetting of the thin films. For example, templated

dewetting shows that substrate in order pattern could produce thin films of ordered

structure. Thus it is necessary to extend our sharp interface model to the curved

substrate case. See Fig. 5.2, S is the open surface representing the interface between

Substrate

Film

Vapor

x

yz

γ
FS

γ
V S

γ
FV

= γ(n)

S

c
Γ

n
Γ

τ
Γ

n

Γ Ssub

nsub

Figure 5.2: A schematic illustration of solid-state dewetting on a curved substrate.

the vapor and film while Ssub is the surface representing the substrate. Γ ⊂ Su is a

space curve in three dimensions, which represents on the contact line of the substrate

and the film. n is the outer unit normal vector of S and nsub is the outer unit normal

vector of the substrate Ssub. n
Γ

is the outer unit normal vector of the contact line Γ

in Ssub. From the above defintion, we can clearly see the following equations hold

n
Γ
(x) ⊥ τ

Γ
(x), n

Γ
(x) ⊥ nsub(x), ∀x ∈ Γ, (5.2.1a)

c
Γ
(x) ⊥ τ

Γ
(x), c

Γ
⊥ n(x), ∀x ∈ Γ. (5.2.1b)

If we assume that the γFS, γV S are constants and γFV = γ(n), then we the total

dimensionless surface energy can be written as

W = Wint +Wsub =
∫∫

S
γ(n) dS − σA(Γ, Ssub), (5.2.2)
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where σ =
γ
V S
−γ

FS

γ0
, A(Γ;Ssub) is the area enclosed by the space curve Γ on the

surface Ssub.

Here we assume the substrate is not deformable, thus surface Ssub is a fixed

surface. Give the surface S as the initial surface with boundary Γ ⊂ Ssub, consider

a transformation Tε of S. Under this transformation, we always assume that the

boundary of S is attached on the surface Ssub, that is

TεΓ ⊂ Ssub. (5.2.3)

The first variation of Wint in the direction of V is given by Eq. (3.2.10),

dWint(S; V) =
∫∫

S
∇

S
· ξ dS +

∫
Γ

cγ
Γ
·V0 dΓ. (5.2.4)

For the second part, if we assume that the surface of Ssub enclosed by Γ is given by

SΓ. Consider the transformation on SΓ, such that

TεSΓ = SεΓ, TεΓ = Γε ⊂ Ssub. (5.2.5)

This indicates that the transformation Tε satisfies the following on the boundary of

SεΓ

V � TxSsub, V ⊥ nsub. (5.2.6)

For Wsub(Γ) =
∫∫
SΓ

dSΓ, by using Eq. (3.2.1) again, we obtain

dWsub(Γ; V) = −σ
∫

Γ
n

Γ
·V0 dS. (5.2.7)

Similarly, we know that V0

∣∣∣
Γ
⊥ n

sub
, thus we can project cγ

Γ
on the tangential space

of Ssub, we obtain

dWint(S; V) =
∫∫

S
∇

S
· ξ dS +

∫
Γ
(cγ

Γ
· n

Γ
)(n

Γ
·V0) dΓ. (5.2.8)

Thus combine the variation of Wint and Wsub, we can get the variation is exactly

the same as Eq. (3.2.1). This indicates that the the sharp interface model for solid-

stat dewettting on a curved substrate is consistent to the the models for solid-state
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dewetting on a flat substrate. For curved substrate, the contact line migrates along

the substrate in the directions n
Γ
. Thus if we denote the X and X

Γ
as the local

parameterization of S and Γ respectively. Then the dimensionless sharp interface

model for solid-state dewetting on a curved substrate is given by

∂tX = ∆
S
µ n, t > 0, (5.2.9)

µ = ∇
S
· ξ, ξ = ∇γ̂(n), (5.2.10)

together with the following boundary conditions

(1) contact line condition

Γ ⊂ Ssub, t ≥ 0, (5.2.11)

(2) relaxed contact angle condition

∂tXΓ
= −η

ï
cγ

Γ
· n

Γ
− σ
ò
n

Γ
, t ≥ 0, (5.2.12)

where cγ
Γ

= (ξ · n)c
Γ
− (ξ · c

Γ
)n, n

Γ
=

τ
Γ
×nsub

|τ
Γ
×nsub|

, σ =
γ
V S
−γ

FS

γ0
,

(3) zero-mass flux condition

(c
Γ
· ∇

S
µ)
∣∣∣∣
Γ

= 0, t ≥ 0. (5.2.13)

5.3 For axis-symmetric case

Capillary instabilities (e.g., occur in solid-state dewetting) are especially well-

known in liquid systems. They have shown that a small volume-preserving sinu-

soidal perturbation with wavelength exceeding the circumference of the cylinder

can grow exponentially in order to reduce the surface energy, and consequently, the

cylinder will break up into a series of small spherical islands. Recently, the Rayleigh

instability for more complex geometries (such as liquid toroids on a substrate) have

attracted considerable interest in the physics and materials science community. In



5.3 For axis-symmetric case 149

analogy to the cylinder, a toroid can also exhibit a Rayleigh instability in the az-

imuthal direction. On the other hand, its radial curvature also produces a variation

of the mean curvature, forcing the toroid to shrink towards its own center, leading

to its collapse into a compact object and eventually to a section of a sphere. This

demonstrates that the Rayleigh instability in the azimuthal direction and the shrink-

ing instability in the radial direction are competing with each other to determine

the dynamics of the toroid. This is a competition between the two time scales: one

for toroid shrinkage towards its center and the other for neck pinch-off along the

azimuthal direction. A toroid behaves like a cylinder when the aspect ratio (i.e.,

the ratio between the overall radius R and the tube radius a) is large; this Rayleigh

instability has been widely investigated. The shrinking instability, induced by the

radial curvature, is a signature of the non-compact topology of the toroid and has

not been well studied in literature, especially for solid-state dewetting.

In this section, we apply the Onsager’s variational principle to derive a reduced-

order model for analyzing the shrinking of a solid toroidal island on a solid substrate

via surface diffusion. This application provides a concrete demonstration of the effi-

cacy and simplicity of the Onsager’s variational principle for describing the surface

diffusion-controlled morphology evolution problems, and applicability for analyzing

even complex solid-state dewetting phenomena (e.g., a simultaneous consideration

of the shrinking instability and Rayleigh instability).

5.3.1 The full sharp-interface model

In this section, we consider the shrinking dynamics of a solid toroidal island (in

blue region) bonded to a flat rigid substrate towards its center via a surface diffusion-

controlled solid-state dewetting process, as illustrated in Fig. 5.3(a). We assume that

the island maintains its axisymmetric shape during the evolution (i.e., we do not

consider a Rayleigh instability along the azimuthal direction), and therefore, the

film/vapor interface surface S can be parameterized in cylindrical coordinate as (see
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Figure 5.3: (a) A schematic illustration of the solid-state dewetting of an initially,

toroidal island on a flat, rigid substrate; (b) the cross-section profile (i.e., denoted

as Γ) of the island is represented in a cylindrical coordinate system (r, z), where

ri, ro representing the inner and outer contact points, respectively. Note that Γ is

not necessarily a circular arc during the evolution.

Fig. 5.3(b))

S = (r(s, t) cosϕ, r(s, t) sinϕ, z(s, t)), (5.3.1)

where r(s, t) is the radial distance, z(s, t) is the local height with s representing

the arc length of the cross-section profile Γ = (r(s, t), z(s, t)) of the surface S, and

ϕ ∈ [0, 2π] is the azimuthal angle.

The total interfacial free energy of the system can be described as (up to a

constant) [?, 136]

W =
∫∫
S

γ
FV
dS + (γ

FS
− γ

V S
)π(r2

o − r2
i )︸ ︷︷ ︸

Substrate Energy

, (5.3.2)

where the constants γ
FV

(i.e., γ0), γ
FS

and γ
V S

represent the film/vapor, film/substrate

and vapor/substrate surface energy densities, respectively, and ro and ri are the radii

of the outer and inner contact lines, respectively (shown in Fig. 5.3(b)).

Because we assume that the surface is axisymmetric, the island morphology

evolution can be described in terms of the evolution of the cross-section curve Γ. For

brevity, we denote Γ(t) = X(s, t) = (r(s, t), z(s, t)) as the cross-section profile of the
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surface S with 0 ≤ s ≤ L(t) and r(0, t) = ri, r(L, t) = ro. Based on a thermodynamic

variational analysis, we previously proposed a sharp-interface model for simulating

solid-state dewetting in three dimensions for axisymmetric geometries [136]. By

choosing a length scale and surface energy density scale for normalization as L0 and

γ0 respectively, the time normalized by L4
0/Bγ0 , and the contact line mobility by

B/L3
0, this leads to the following dimensionless sharp-interface evolution model (for

isotropic surface energy) [136]:

∂tX =
1

r
∂s(r∂sµ) n, 0 < s < L(t), t > 0, (5.3.3)

µ = H = κ− ∂sz

r
, κ = −(∂ssX) · n; (5.3.4)

where µ is the dimensionless chemical potential, H is the mean curvature of the

surface S, and κ is the curvature of the curve Γ, n = (−∂sz, ∂sr) is the outer unit

normal vector of the curve Γ.

The above equations are subject to the following dimensionless boundary condi-

tions:

(i) Contact line condition

z(0, t) = 0, z(L, t) = 0; (5.3.5)

(ii) Relaxed contact angle condition

dri
dt

= η(cos θid − cos θi), fracdrodt = −η(cos θod − cos θi); (5.3.6)

(iii) Zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0. (5.3.7)

Here θid , θ
o
d are the (dynamic) contact angles for the inner and outer contact lines,

respectively, 0 < η < +∞ denotes the dimensionless contact line mobility, and θi

is the isotropic equilibrium (Young) contact angle, i.e., cos θi = (γ
V S
− γ

FS
)/γ0.

Boundary condition (i) ensures that contact lines always move along the substrate,
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(ii) describes the dynamic relaxation of the contact angle, and (iii) ensures that the

total volume/mass of the island is conserved (i.e., no mass flux into/from the island

at the contact lines).

Note that when the contact line mobility η goes to infinity, θid = θod = θi (since

the velocity of moving contact lines is finite). In this limit, boundary condition (ii)

reduces to a fixed contact angle condition and contact line motion will not dissipate

any free energy. We use the relaxed contact angle boundary condition (ii) in our

numerical computations because it can improve numerical stability and, in the fast

contact line motion limit, it is also physically important. The accurate, efficient

parametric finite element method for numerically solving the above sharp-interface

model is described in [8, 136].

In general, it would be impossible to directly obtain analytical solutions for the

above full sharp-interface model. In the following sections, we develop an Onsager’s

variational principle approach to derive a reduced-order model for describing the

dynamics of a toroidal island shrinking via surface diffusion. We validate the resul-

tant analytical approach by comparison with the numerical results from solving the

above full sharp-interface model.

5.3.2 A reduced model via Onsager’s principle

In the reduced-order variational model, we assume that (i) during the island

evolution (see Fig. 5.4), the cross-section profile of the island is a circular arc which

meets the substrate at the isotropic Young contact angle θi ∈ [0, π] and (ii) the

contact line does not dissipate any free energy when it moves along the substrate.

As noted above, we do not consider the instability along the azimuthal direction

(i.e., Rayleigh instability) here.
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rR(t)

Figure 5.4: A cross-section profile of solid-state dewetting of an initially, toroidal

island on a flat, rigid substrate in cylindrical coordinates, where a := a(t) is the

radius of the circle (or toroid), R := R(t) is the overall radius (i.e., the distance

between the origin of the circle and the z-axis). We assume that the ratio a(t)/R(t)

is not large.

We express the cross-section profile of the island Γ(t) := (r(θ, t), z(θ, t)) in cylin-

drical coordinates (r, z) as
r(θ, t) = R(t) + a(t) sin θ,

z(θ, t) = a(t)(cos θ − cos θi),

θ ∈ [−θi, θi], (5.3.8)

where θ is a parametrization of the cross-section curve Γ. The three-dimensional

surface profile of the island is obtained by rotating Γ around the z-axis, i.e., S(t) =

(r(θ, t) cosϕ, r(θ, t) sinϕ, z(θ, t)), where ϕ ∈ [0, 2π] is the azimuthal angle. Since

the total volume of the solid island is conserved during the evolution, the initial

volume of the island V0, i.e.,

V0 = πRa2(2θi − sin 2θi), (5.3.9)

constrains the state variables a := a(t) and R := R(t). Use of this constraint implies

that there is only one independent parameter, i.e., R or a. Without loss of generality,

we consider the evolution of the island in terms of the parameter R and define the

Rayleighian of the system R as

R = Ẇ (R, Ṙ) + Φ(Ṙ, Ṙ). (5.3.10)
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Minimizing the Rayleighian with respect to the rate Ṙ yields the time evolution

equation of R. We now determine the total free energy function W and the dissipa-

tion function Φ of the system, respectively.

We write the total interfacial free energy of the system in terms of the state

variable R, using Eq. (5.3.2), as

W = γ0

ï
2πR a

Ä
2θi − sin 2θi

äò
. (5.3.11)

By using Eq. (5.3.9), we obtain a =
»
V0/πR(2θi − sin 2θi). Substituting this rela-

tion into Eq. (5.3.11), and taking the time derivative, we obtain

Ẇ = γ0

»
πV0(2θi − sin 2θi)R

− 1
2 Ṙ. (5.3.12)

The island morphology evolution is driven by the interfacial free energy min-

imization and its mass transport occurs through surface-diffusion. The resulting

dissipation function can be written as

Φ =
1

2

∫∫
S

kBT

Ds

|V|2ν dS =
1

2

kBT

Dsν

∫∫
S
|J|2 dS, (5.3.13)

where J is the surface current (or mass flux) of atoms along the interface [?],

J = νV = −Dsν

kBT
∇sµ, (5.3.14)

and ∇s is the surface gradient operator. By multiplying by the atomic volume Ω0,

the mass flux can be converted to the normal velocity vn of the surface element,

vn = −Ω0 (∇s · J). (5.3.15)

Because the island shape is assumed to be axisymmetric, the normal velocity vn

of the island can be calculated by restricting the problem to the cross-section profile

Γ (shown in Fig. 5.4). By taking the time derivative of the surface profile Γ, i.e.,

Eq. (5.3.8) and multiplying by the surface unit normal vector n = (sin θ, cos θ), we

obtain the normal velocity vn of the surface element along the cross-section curve

Γ:

vn(θ) = Ṙ sin θ + ȧ(1− cos θi cos θ), θ ∈ [−θi, θi]. (5.3.16)
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The mass flux vector J is only parallel to the tangential to Γ; hence, J = Jτ where

τ representing the unit tangential vector, where J is the magnitude of the mass flux

vector. The surface divergence of the flux is related to the surface velocity by

−Ω0

î
∇s · (Jτ )

ó
= −Ω0

∂s(rJ)

r
= vn(θ), (5.3.17)

where ∂s represents the first-order derivative with respect to the arc length of Γ. By

integrating both sides and applying the zero-mass flux boundary condition J(−θi) =

0, the magnitude of the mass-flux is

J(θ) = − 1

rΩ0

∫ θ

−θi
r vn(θ) a dθ. (5.3.18)

Inserting the expression vn from Eq. (5.3.16) and the expression r = R + a sin θ

into the above Eq.(5.3.18), the mass flux magnitude can be reformulated as:

J(θ) = − a

Ω0(R + a sin θ)

ï
RṘ

∫ θ

−θi
sin θdθ

+ aṘ
∫ θ

−θi
sin2 θ dθ +Rȧ

∫ θ

−θi
(1− cos θi cos θ)dθ

+ aȧ
∫ θ

−θi
sin θ(1− cos θi cos θ) dθ

ò
. (5.3.19)

Taking the time derivative of Eq. (5.3.9) yields

aṘ = −2Rȧ. (5.3.20)

Since δ = a
R
� 1, and making use of Eq. (5.3.20), we can reformulate the mass flux

magnitude J(θ) in terms of δ as the following form,

J(θ) =
cos θ − cos θi

Ω0

ï
1− 1

2
δ sin θ +O(δ2)

ò
aṘ. (5.3.21)

Substituting this expression for J(θ) into Eq. (5.3.13), we obtain the dissipation

function to leading-order as

Φ =
1

2

kBT

Dsν

∫∫
S
|J|2 dS =

1

2

kBT

Dsν

∫ 2π

0
r dϕ

∫ θi

−θi
J2(θ) a dθ

=
kBT

Dsν
πa
∫ θi

−θi
(R + a sin θ)J2(θ) dθ =

kBT

Dsν
πRa

∫ θi

−θi
(1 + δ sin θ)J2(θ) dθ,

=
kBT

DsνΩ2
0

πRa3Ṙ2
ï
g(θi) +O(δ2)

ò
, (5.3.22)
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where

g(θi) = θi(2 + cos 2θi)−
3

2
sin 2θi. (5.3.23)

With the time derivative of the total free energy function Ẇ (Eq. (5.3.12)) and

the dissipation function Φ (Eq. (5.3.22)) in terms of R and Ṙ, we apply the Onsager’s

variational principle by minimizing the Rayleighian function R (Eq. (5.3.10)) with

respect to Ṙ. The resultant kinetic equation for the shrinking rate v is found, to

leading order, to be

v = −Ṙ(t) ≈ C(θi)
Bγ0

V0

, (5.3.24)

where

C(θi) =
π(2θi − sin 2θi)

2

2 g(θi)
. (5.3.25)

The torus shrinking rate is (to leading order) proportional to the material constants

B and γ0, and inversely proportional to the volume of the toroid V0, and the coeffi-

cient C(θi) only depends on the isotropic Young angle θi. Given the initial toroidal

island location R0, we find that the toroidal island evolves as

R(t) = R0 − C(θi)
Bγ0

V0

t, 0 ≤ t < tδ(θi), (5.3.26)

where tδ(θi) represents a time where the leading-order approximation breaks down

(i.e., where the assumption that δ = a/R� 1 is no longer valid); this time depends

on θi.

In order to validate the variational model, we compare our predictions with

the results of numerical simulations based on the full sharp-interface model. In

the following numerical simulations, we choose a large contact line mobility (e.g.,

η = 100) to ensure that the contact angle is always near its equilibrium value and

the dissipation associated with contact line motion is negligible small as possible,

and the initial shape of the toroidal island is chosen as half of a torus (i.e., the initial

contact angle is π/2).
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Our numerical simulations under the conditions represented in Fig. 5.5 demon-

strate that assumption (i), that the cross-section profile Γ(t) is always a circular arc,

is valid. Taking θi = π/2 as an example, we find that this assumption is valid for

about δ ≤ 1/3. We also found that this assumption is valid up to the time when

R(t) begins to deviate from the predicted trajectory by the analytical formula in

Eq. (5.3.26) (see Fig. 5.5).
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Figure 5.5: Comparisons between the numerical results of R(t) by solving the

full sharp-interface model as described in Section 2 and the variational prediction

(Eq. (5.3.26)). The “circles”, “rhombi” and “triangles” are numerical results ob-

tained from solving the full model and the solid lines are the predicted formula for

different isotropic Young angles. The initial parameters are chosen as R0 = 4.0,

a0 = 0.5, and L0 is the length scale.

Figure 5.5 shows a comparison of R(t) from the numerical simulation results

based upon the full sharp-interface model as well as the analytical results from the

variational model Eq. (5.3.26) for three different isotropic Young angles θi. As shown

in the figure, the numerical results (symbols) for R(t) are in very good agreement

with the analytical predictions (solid lines) for all contact angles from the beginning

to the late time tδ(θi). Our numerical simulation also indicate that when δ =
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a(t)/R(t) is small (not shown), the toroid shrinks towards its center in a quasi-

static manner, i.e., its cross-section profile remains nearly a circular arc, consistent

with our assumption in the analysis. However, as time evolves, δ increases to a value

at which the cross-section profile begins to show non-negligible deviations from the

circular arc assumption and the simple analytical result Eq. (5.3.26) breaks down.
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Figure 5.6: Comparisons between the rate at which the toroidal island shrinks v

obtained from solving the full sharp-interface model (symbols) and the theoretical

shrinking speed, by Eq. (5.3.24) (solid lines) as a function of the island volume V0

for different isotropic Young angles θi.

We performed a least-square linear fitting to numerical data of R(t) obtained

from solving the full sharp-interface model for 0 ≤ t ≤ tδ(θi) in order to determine

the variation of toroidal island shrinking speeds for several isotropic Young angles

θi and initial volumes V0. Figure 5.6 shows the comparisons between the rate of

island shrinking from the numerical simulations and analytical predictions, where

the values of C(θi) were estimated from the numerical results. This figure shows

that the numerical results suggest that v is inversely proportional to the toroidal

island volume V0 as predicted analytically by Eq. (5.3.24).

Figure 5.7 shows some comparisons between C(θi) obtained from numerical re-

sults (shown in “circles”) and the analytical expression in Eq. (5.3.25). Again, we
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see that the numerical results based upon the full model are accurately predicted by

the analytical results based upon the variational model. These results show that the

function C(θi) reaches the maximum value when θi = π/2; i.e., the toroidal island

shrinks fastest when θi = π/2.

θi/π
0 0.2 0.4 0.6 0.8 1

C
(θ

i)

0
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10

Formula: Eq. (4.18)
Numerical results

Figure 5.7: Comparisons between the fitting values of C(θi) (shown in “circles”)

obtained by numerically solving the full sharp-interface model and the analytical

values given by Eq. (5.3.25) (shown in red solid line).

We considered the evolution of a solid toroidal island on a flat substrate, evolving

by capillarity-driven surface diffusion. This problem is an example of the evolution

of the complex local geometric features often observed in dewetting of a solid film on

a substrate. Our general approach to such problems as that described here, is based

upon Onsager’s variational principle. Using this approach, we derived a reduced-

order variational model for describing and analyzing the shrinking of a toroidal

island. We obtained an analytical formula for the rate at which the island shrinks;

the shrinking rate is proportional to the material constants B =
Dsν Ω2

0

kBT
and γ0,

and inversely proportional to the island volume V0. The analytical predictions are

validated by detailed comparisons with accurate numerical simulations based upon

a full sharp-interface model; and the agreement is excellent.



Chapter 6
Conclusion and Future Works

This thesis focuses on the derivation of sharp interface models for solid-state

dewetting problem and development of efficient numerical approximations for solving

the governing geometric partial differential equations. The problem has been studied

both in two dimensions and three dimensions in the form of Cahn-Hoffman ξ-vector.

In chapter 2, the two-dimensional problem was studied via the energy variational

approach. The equations for the equilibrium shape and its stability conditions were

derived by calculating the first and second variation of the energy functional. We

have presented the sharp interface model for solid-state dewetting in the form of

Cahn-Hoffman ξ-vector. Moreover, a semi-implicit parametric finite element method

was proposed for solving the sharp interface models. The mass conservation and

energy dissipation were proved to be satisfied for the variational formulation and

semi-discrete scheme. The strongly anisotropic case was also included via Willmore

energy regularzation. A similar parametric finite element method was presented.

Numerical simulations for the evolution of small islands, large islands have demon-

strates the accuracy of the model, efficiency of the numerical schemes and anisotropic

effect on the island evolution. The power law for the edge retraction of semi-infinite

thin film was investigated under the cusp surface energy.

In chapter 3, based on thermodynamic variation, we derived a sharp interface

model for solid-state dewetting with anisotropic surface energy in three dimensions.

160
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Unlike two dimensions, we calculate the energy variation by using the shape deriva-

tives and speed method. The mass conservation and energy dissipation for the model

were presented afterwards. In chapter 4, based on the model we presented a para-

metric finite element method for solving the sharp interface model with isotropic

surface energy. The surface diffusion flow for the open surface can be approximated

by a simple extension of variational formulation in two dimensions. The contact line

migration for the plane curve was formulated with a small surface diffusion regular-

ization. The parametric finite element scheme has also been extended to the weakly

anisotropic case. Moreover, extensive numerical simulation results have validated

the convergence of the discrete schemes, shown consistent morphological evolutions

observed in physical experiments, and proven the accuracy of the models.

In Chapter 5, based on thermodynamic variation, the sharp interface model has

been generalized to the case when the surface energy is strongly anisotropic and

when the substrate is curved. Moreover, we studied the migration of toroidal thin

film for solid-state dewetting under the cylindrical symmetry. We obtained a reduced

model via Onsager’s Principle for describing the migration rate. This reduced model

was then validated by numerical results.

Some future works can be summarised as follows.

• The parametric finite element method will be extended to the cases when the

surface energy is strongly anisotropic and when the substrate is curved. How-

ever, this extension is not straight forward for the two cases. The introduction

of the Gauss curvature in the governing equations for the strongly anisotropic

case may require some techniques for a good variational formulation. In addi-

tion, when the substrate is curved, the contact line where the thin film, vapor

and substrate meet becomes a space curve in three dimensions. The varia-

tional formulation as well as the smooth regularization for the plane curve will

be extended for space curve.

• Although our parametric finite element scheme has some good properties with

respect to the mesh distribution. However, this is only true for isotropic case.
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For strongly anisotropic case, the polygonal mesh has high possibility to de-

teriorate. Therefore, a good mesh regularization is required to ensure the

stability of the discrete scheme. Moreover, our mesh generation procedure

is only applicable to an initially cuboid island, and efficient mesh generation

algorithms for complex geometries need to be developed.

• Although there are some numerical convergence tests for parametric finite ele-

ment method in solving surface diffusion flow [20], however, to our knowledge,

the rigorous mathematical analysis for the convergence rate of PFEM scheme

is still unclear. For solid-state dewetting problem. the complicated boundary

conditions could further make the mathematical analysis more difficult.

• Our simulation examples will be set up more realistically in the further. This

includes the simulations of hole growth, the power law for edge retraction. As

a consequence, the computational cost as well as the storage could be very

large. If possible, the parallel computation will be considered.

• The phase field approach to solid-state dewetting will be considered in the

future as a comparison with the sharp interface approach. The sharp interface

limit will be analysed. The numerical simulation results for the phase field

approach and sharp interface approach could provide a benchmark for solid-

state dewetting.

• The solid-state dewetting problem will be studied by including the elasticity

of the materials, considering a demforable substrate and so on.



Appendix A
Taylor expansions for linear perturbation

Under the perturbation

X(ρ, ε) = X(ρ, 0) + εX1(ρ), (A.1)

we have

V0 = ∂εX(ρ, ε) = ∂εX(ρ, ε)
∣∣∣∣
ε=0

= X1(ρ), ∂2
εX(ρ, ε) = 0. (A.2)

We show the expansions of |∂ρX(ρ, ε)| and nε at ε = 0.

For |∂ρX(ρ, ε)|, we have

∂ε|∂ρX(ρ, ε)| =
∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)

|∂ρX(ρ, ε)|
. (A.3)

∂2
ε |∂ρX(ρ, ε)| = ∂ε

ï∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)

|∂ρX(ρ, ε)|

ò
=

∂ε∂ρX(ρ, ε) · ∂ε∂ρX(ρ, ε)

|∂ρX(ρ, ε)|
− ∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)∂ε|∂ρX(ρ, ε)|

|∂ρX(ρ, ε)|2

=
|∂ρV0|2

|∂ρX(ρ, ε)|
− (∂ρV0 · ∂ρX(ρ, ε))2

|∂ρX(ρ, ε)|3
. (A.4)

Denote X = X(ρ, 0), take the value at ε = 0, and also note that ∂ρs(ρ, ε) =

|∂ρX(ρ, ε)|, we obtain

∂ε|∂ρX(ρ, ε)|
∣∣∣∣
ε=0

= |∂ρX|∂sV0 · τ . (A.5)

∂2
ε |∂ρX(ρ, ε)|

∣∣∣∣
ε=0

= |∂ρX|(|∂sV0|2 − (τ · ∂sV0)2). (A.6)
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Thus we obtain the expansion of |∂ρX(ρ, ε)| at ε = 0

|∂ρX(ρ, ε)| = |∂ρX|
ï
1+(τ ·∂sV0)ε+

1

2

Ä
∂sV0 ·∂sV0−(τ ·∂sV0)2

ä
ε2
ò
+ O(ε3). (A.7)

For nε = n(ρ, ε), note that we can express

nε = − [∂ρX(ρ, ε)]⊥

|∂ρX(ρ, ε|
. (A.8)

So we have

∂εn
ε = − [∂ε∂ρX(ρ, ε)]⊥

|∂ρX(ρ, ε)|
+

[∂ρX(ρ, ε)]⊥∂ε|∂ρX(ρ, ε)|
|∂ρX(ρ, ε)|2

= − [∂ε∂ρX(ρ, ε)]⊥

|∂ρX(ρ, ε)|
+

[∂ρX(ρ, ε)]⊥[∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)]

|∂ρX(ρ, ε)|3
. (A.9)

∂2
εn

ε =
[∂ε∂ρX(ρ, ε)]⊥∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)

|∂ρX(ρ, ε)|3
+

[∂ε∂ρX(ρ, ε)]⊥[∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)]

|∂ρX(ρ, ε)|3

+
[∂ρX(ρ, ε)]⊥[∂ε∂ρX(ρ, ε) · ∂ε∂ρX(ρ, ε)]

|∂ρX(ρ, ε)|3

− 3[∂ρX(ρ, ε)]⊥|∂ε∂ρX(ρ, ε) · ∂ρX(ρ, ε)|2

|∂ρX(ρ, ε)|5
. (A.10)

Taking value at ε = 0, we obtain

∂εn
ε
∣∣∣∣
ε=0

= −[∂sV0]⊥ − n (∂sV0 · τ ). (A.11)

∂2
εn

ε
∣∣∣∣
ε=0

= [∂sV0]⊥(∂sV0 · τ ) + (∂sV0)⊥(∂sV0 · τ )− n (∂sV0)2 + 3n (∂sV0 · τ ).

(A.12)

Note that the expansion of γ(nε) at ε = 0 is given as

γ(nε) = γ(n) +∇γ̂(n)∂εn
ε
∣∣∣∣
ε=0

ε

+
1

2

Å
∇γ̂(n)∂2

εn
ε
∣∣∣∣
ε=0

+ Hγ(n)∂sn
ε · ∂εnε

∣∣∣∣
ε=0

ã
ε2 + O(ε3). (A.13)

Thus we immediately obtain the expansion of γ(nε) at ε = 0

γ(nε) = γ(n) +
ï
−γ(n)(τ · ∂sV0)−∇γ̂(n) · (∂sV0)⊥

ò
ε

+
1

2

ï
2∇γ̂(n) · (∂sV0 · τ )(∂sV0)⊥ − γ(n)(∂sV0 · ∂sV0)

+3γ(n)(τ · ∂sV0)2 + Hγ(n)(∂sV0)⊥ · (∂sV0)⊥
ò
ε2 + O(ε3). (A.14)
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