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Summary

The Klein-Gordon equation is a relativistic wave equation describing the motion of
spinless particles like the pion. It plays a fundamental role in quantum electrodynamics,
particle and/or plasma physics within the framework of quantum mechanics and
Einstein’s special relativity. The nonlinear Klein-Gordon equation (NKGE) can be seen
as the relativistic and nonlinear version of the Schrödinger equation. The long-time
behavior of the NKGE is an interesting topic in both analytical and numerical aspects
and has gained a surge of attentions in recent years.

The aim of this thesis is to establish error estimates of different numerical methods
for the NKGE with weak nonlinearity, while the nonlinearity strength is charaterized
by ε2 with ε ∈ (0, 1] a dimensionless parameter, for the long-time dynamics up to the
time at O(ε−2). Rigorous proofs for different numerical methods are presented and
particular attentions are paid to study the error bounds of the numerical methods in
the long-time regime and how the error bounds depend explicitly on the mesh size, time
step as well as the small parameter ε, which indicates how to choose the mesh size and
time step in the long-time numerical simulations. Numerical results are reported to
verify the error estimates and compare the performance of these numerical methods.
This thesis is mainly composed of the following three parts.

In the first part, the NKGE with weak nonlinearity is discretized by the finite
difference method in time including the Crank-Nicolson, two semi-implicit and leap-frog
finite difference schemes. Combined with the central finite difference discretization in
space, four widely used finite difference time domain (FDTD) methods are applied to
numerically solve the NKGE in the long-time regime. The error bounds of the FDTD
methods up to the time at O(ε−β) with 0 ≤ β ≤ 2 are rigorously established, which
depend on the mesh size h, time step size τ as well as the small parameter ε. Based
on the error bounds, to obtain “correct” numerical solution of the NKGE with weak
nonlinearity in the long-time regime, the ε-scalability (or meshing strategy requirement)
of the FDTD methods should be taken as: h = O(εβ/2) and τ = O(εβ/2). In order to
improve the spatial resolution capacity of the FDTD methods, the fourth-order compact
finite difference (4cFD) method and finite difference Fourier pseudospectral (FDFP)

v



method are used to solve this problem. The error bounds indicate that the 4cFD
method offers advantages over those FDTD methods regarding the meshing strategy
requirement in space for resolving the NKGE in the long-time regime. The spatial error
bound of the FDFP method is uniform, which preforms much better than the FDTD
and 4cFD methods. The spatial/temporal resolution of these finite difference methods
are exhibited through various numerical examples.

The second part is devoted to studying the uniform error bounds of the numerical
schemes for the long-time dynamics of the NKGE with weak nonlinearity. The error
bound of the exponential wave integrator Fourier pseudospectral (EWI-FP) method is
carried out, which is uniform spectral accuracy in space and second order in time up to
the time at O(ε−2). Numerical results confirm the error estimates and show that they
are sharp. Then the NKGE is rewritten as a relativistic nonlinear Schrödinger equation
(NLSE). The time-splitting Fourier pseudospectral (TSFP) method is adapted to solve it
and uniform error bound of the TSFP method is rigorously established. For comparisons,
the exponential wave integrator and time-splitting method are also combined with
central finite difference and fourth-order compact finite difference discretizations in
space. Numerical studies and comparisons show that when 0 < ε � 1, the TSFP
method offers the best approximation among these numerical methods for solving the
NKGE in the long-time regime. With the TSFP method, the problem can be solved
effectively in 2D and 3D cases.

The last part is to rescale the NKGE with O(ε2) nonlinearity and O(1) initial data
(or O(1) nonlinearity and O(ε) initial data) to an oscillatory NKGE. The solution of the
oscillatory NKGE propagates waves with amplitude at O(1), wavelength O(1) and O(εβ)
in space and time, respectively, and wave velocity at O(ε−β), which is quite different
from the oscillatory nature of the NKGE in the nonrelativistic limit regime. The FDTD
methods, EWI-FP method and TSFP method are applied to solve the oscillatory NKGE
and corresponding error estimates are obtained straightforwardly. Extensive numerical
tests are reported to support our error estimates and to demonstrate that they are
sharp. Comparisons of different numerical methods are summarized for convenience.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
This chapter serves as an introduction of the thesis. A brief overview of the nonlinear

Klein-Gordon equation (NKGE) and comparisons of different scalings are presented,
and the existing results of the NKGE are reviewed, as well as the problems to study
and the scope of the thesis are shown.

1.1 The nonlinear Klein-Gordon equation
The Schrödinger equation is a linear partial differential equation describing the wave

function of a quantum system such as atomic, molecular and subatomic systems [24,
127, 142]. In quantum mechanics, the Schrödinger equation plays the important role as
the Newton’s second law in classical mechanics. However, it could not be used when
the particles travel at high velocity so that special relativity should be applied with
quantum mechanics together. In 1926, the Klein-Gordon equation was proposed by the
physicists Oskar Klein and Walter Gordon to describe the motion of spinless particles
like the pion [25, 39, 124, 128, 161]. Denoting by m > 0 the mass of particle, c the
speed of light and ~ the Planck constant, the Klein-Gordon equation is

~2

mc2∂ttu(x, t)− ~2

m
∆u(x, t) +mc2u(x, t) = 0, x ∈ Rd, t > 0, (1.1.1)

where t is time, x is the spatial coordinate, u = u(x, t) is a complex-valued scalar field.
The wave function needs to be a complex scalar when it describes charged particles,
while it is enough to be a real scalar for neutral particles [117]. The Klein-Gordon
equation can be expressed as the form of a Schrödinger equation which includes two
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coupled differential equations and each of them is first order in time. The Klein-Gordon
equation is Lorentz covariant while the Schrödinger equation is not [135].

In the relativistic regime, i.e. the speed of light c = 1, taking the units ~ = m = 1,
we have the following dimensionless Klein-Gordon equation

∂ttu(x, t)−∆u(x, t) + u(x, t) = 0, x ∈ Rd, t > 0. (1.1.2)

The Klein-Gordon equation (1.1.2) admits the plane wave solution u(x, t) = Aei(ξ·x−ωt)

with the amplitude A, spatial wave number ξ = (ξ1, · · · , ξd)T ∈ Rd and time frequency
ω = ω(ξ) satisfying the following dispersion relation [22, 90, 107, 157, 163]:

ω = ω(ξ) = ±
√

1 + |ξ|2, ξ ∈ Rd. (1.1.3)

The nonlinear Klein-Gordon equation (NKGE) is the relativistic and nonlinear
version of the Schrödinger equation and widely used to model many types of phenomena
including nonlinear optics, charge density waves, the behavior of elementary particles
and the propagation of dislocations in crystals [23, 68, 70, 126, 153, 158, 164]. The
NKGE in d dimensions (d = 1, 2, 3) reads [105, 106, 108, 148]

~2

mc2∂ttu(x, t)− ~2

m
∆u(x, t) +mc2u(x, t) + f(u(x, t)) = 0, x ∈ Rd, t > 0, (1.1.4)

where f(u) : C → C is a given gauge invariant function independent of c and m,
describing the nonlinear interaction and satisfies [8, 56, 124, 140]

f(eisu) = eisf(u), ∀s ∈ R. (1.1.5)

In most applications and theoretical studies in the literature [56, 62, 104, 114, 126, 129,
150], f(u) is taken as the pure power nonlinearity, i.e.

f(u) = g(|u|2)u, with g(ρ) = λρp for some λ ∈ R, p ∈ N0 := N ∪ {0}. (1.1.6)

In particular, when f(u) = λu3, the equation is called φ4-nonlinear Klein-Gordon
equation (φ4-model) arising in quantum field theory with the dimensionless coupling
constant λ and has various applications in condensed matter physics. In a quantum
field theory, if λ is much smaller than 1, the theory is said to be weakly coupled. The
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φ4-model can be used to describe the structural phase transitions in ferroelectric or
ferromagnetic materials and interpret the displacive and order-disorder systems [125].
The kink solutions are related to the motion of the topological excitations in linear
polymeric chains such as polyacetylene [29, 49].

In order to study the dynamics of the NKGE (1.1.4), the initial data is usually
taken as

u(x, 0) = φ(x), ∂tu(x, 0) = γ(x), x ∈ Rd. (1.1.7)

Similar to the linear case, in the relativistic regime, we have the following dimensionless
NKGE [85, 121, 138]:

∂ttu(x, t)−∆u(x, t) + u(x, t) + f(u(x, t)) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ(x), ∂tu(x, 0) = γ(x), x ∈ Rd.
(1.1.8)

We remark here that when the initial data φ(x), γ(x) : Rd → R and f(u) : R → R,
the solution u(x, t) is real-valued. In this case, the gauge invariant condition (1.1.5) is
not necessary [8, 56, 108]. Thus, the classical NKGE with the real-valued solution is a
special case of the NKGE (1.1.8) [8, 47, 52, 56, 113, 129, 134]. The NKGE (1.1.8) is time
symmetric or time reversible, i.e., with t→ −t, u(x,−t) is still the solution of the NKGE
(1.1.8). In addition, if u(·, t) ∈ H1(Rd) and ∂tu(·, t) ∈ L2(Rd), for f(u) = g(|u|2)u with
g(·) a real-valued function, it also conserves the energy [85, 151, 153]:

E(t) :=
∫
Rd

[
|∂tu(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + F (|u(x, t)|2)

]
dx

≡
∫
Rd

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + F (|φ(x)|2)

]
dx

= E(0), t ≥ 0,

(1.1.9)

with F (ρ) :=
∫ ρ

0 g(s)ds.

1.2 Comparisons of different scalings
In this section, we compare different scalings of the complex NKGE with the

nonlinearity f(u) = |u|2u.
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In the weakly nonlinear regime, we have the following dimensionless NKGE [37, 43,
44, 71]

∂ttu(x, t)−∆u(x, t) + u(x, t) + ε2|u(x, t)|2u(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ(x), ∂tu(x, 0) = γ(x), x ∈ Rd.
(1.2.1)

Here, the strength of the nonlinearity is characterized by ε2 with ε ∈ (0, 1] a dimension-
less parameter. Formally, the amplitude of the solution u(x, t) is at O(1). In addition,
under proper regularity of the solution, the complex NKGE (1.2.1) is time symmetric
or time reversible and conserves the energy [9, 13, 47] as

E1(t) := E1(u(·, t)) =
∫
Rd

[
|∂tu(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + ε2

2 |u(x, t)|4
]
dx

≡
∫
Rd

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4)
]
dx

= E1(0) = O(1), t ≥ 0.

Plugging the plane wave solution u(x, t) = Aei(ξ·x−ω1t) (with A the amplitude, ξ the
spatial wave number and ω1 := ω1(ξ) the time frequency) into the complex NKGE
(1.2.1), we get the dispersion relation:

ω1 = ω1(ξ) = ±
√

1 + |ξ|2 + ε2A2 = O(1), ξ ∈ Rd, (1.2.2)

which immediately implies the group velocity [74, 123, 151]

v1 := v1(ξ) = ∇ω1(ξ) = ± ξ√
1 + |ξ|2 + ε2A2

= O(1). (1.2.3)

Thus, the solution of the complex NKGE (1.2.1) propagates waves with amplitude at
O(1), wavelength in space and time at O(1) and wave velocity at O(1). To illustrate
this, Figure 1.1 depicts the solutions of the NKGE (1.2.1) with different ε in 1D.

In fact, by introducing w(x, t) = εu(x, t), we can reformulate the NKGE (1.2.1)
with weak nonlinearity (and initial data with amplitude at O(1)) into the following
complex NKGE with small initial data (and O(1) nonlinearity strength):

∂ttw(x, t)−∆w(x, t) + w(x, t) + |w(x, t)|2w(x, t) = 0, x ∈ Rd, t > 0,

w(x, 0) = εφ(x), ∂tw(x, 0) = εγ(x), x ∈ Rd.
(1.2.4)
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Figure 1.1: The solutions of the NKGE (1.2.1) with d = 1 and initial data φ(x) = e−x
2

and γ(x) = sech(x2) for different ε: (a) u(x, 5), (b) u(0, t).

Noticing that the amplitude of the initial data in (1.2.4) is at O(ε), formally we can get
the amplitude of the solution w(x, t) of NKGE (1.2.4) is at O(ε), too. Similarly, the
complex NKGE (1.2.4) is time symmetric or time reversible and conserves the energy as

E2(t) := E2(ω(·, t)) =
∫
Rd

[
|∂tw(x, t)|2 + |∇w(x, t)|2 + |w(x, t)|2 + 1

2 |w(x, t)|4
]
dx

≡
∫
Rd

[
|εγ(x)|2 + |ε∇φ(x)|2 + |εφ(x)|2 + 1

2 |εu0(x)|4
]
dx

= ε2
∫
Rd

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4
]
dx

= E2(0) = ε2E1(0) = O(ε2), t ≥ 0.

In addition, plugging the plane wave solution ω(x, t) = εAei(ξ·x−ω1t) into the complex
NKGE (1.2.4), we get the same dispersion relation (1.2.2) and the same group velocity
(1.2.3) of the complex NKGE (1.2.1), i.e., the complex NKGEs (1.2.4) and (1.2.1)
share the same dispersion relation (1.2.2) and the same group velocity (1.2.3). Again,
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the solution of the complex NKGE (1.2.4) propagates waves with amplitude at O(ε),
wavelength in space and time at O(1) and wave velocity at O(1). Figure 1.2 shows the
solutions of the NKGE (1.2.4) with different ε in 1D.
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Figure 1.2: The solutions of the NKGE (1.2.4) with d = 1 and initial data φ(x) = e−x
2

and γ(x) = sech(x2) for different ε: (a) w(x, 5), (b) w(0, t).

Introducing a re-scale in time

t = s

εβ
⇔ s = εβt, v(x, s) = u(x, t), (1.2.5)

with 0 < β ≤ 2 fixed, we can reformulate the NKGE (1.2.1) into the following oscillatory
complex NKGE [13, 22, 57, 58]:

∂ssv(x, s) + 1
ε2β (−∆ + 1) v(x, s) + |v(x, s)|2

ε2β−2 v(x, s) = 0, x ∈ Rd, s > 0,

v(x, 0) = φ(x), ∂sv(x, 0) = 1
εβ
γ(x), x ∈ Rd.

(1.2.6)

Formally, the amplitude of the solution v(x, t) of the oscillatory complex NKGE (1.2.6)
is at O(1). The oscillatory complex NKGE (1.2.6) is also time symmetric or time
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reversible and conserves the energy as

E3(s) := E3(v(·, s)) =
∫
Rd

[
|∂sv|2 + 1

ε2β (|∇v|2 + |v(x, t)|2) + 1
2ε2β−2 |v|

4
]
dx

≡ 1
ε2β

∫
Rd

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4)
]
dx

= E3(0) = 1
ε2βE1(0) = O(ε−2β), s ≥ 0.

Again, plugging the plane wave solution v(x, s) = Aei(ξ·x−ω2s) into the oscillatory
complex NKGE (1.2.6), we get the dispersion relation:

ω2 = ω2(ξ) = ± 1
εβ

√
1 + |ξ|2 + ε2A2 = O(ε−β), ξ ∈ Rd, (1.2.7)

which immediately implies the group velocity

v2 := v2(ξ) = ∇ω2(ξ) = ± ξ

εβ
√

1 + |ξ|2 + ε2A2
= O(ε−β). (1.2.8)

Thus, the solution of the complex NKGE (1.2.6) propagates waves with amplitude at
O(1), wavelength in space and time at O(1) and O(εβ), respectively, and wave velocity
at O(ε−β). Figure 1.3 depicts the solutions of the NKGE (1.2.6) with different ε in 1D
to give an intuitive understanding of the oscillatory nature and the outgoing waves.

Similarly, introducing another re-scale in time and space

t = s

εβ
⇔ s = εβt, x = y

εβ
⇔ y = εβx, w(y, s) = u(x, t), (1.2.9)

with 0 < β ≤ 2 fixed, we can reformulate the NKGE (1.2.1) into the following oscillatory
complex NKGE

∂ssw(y, s) +
(
−∆ + 1

ε2β

)
w(y, s) + |w(y, s)|2

ε2β−2 w(y, s) = 0, y ∈ Rd, s > 0,

w(y, 0) = φ( y
εβ

), ∂sw(y, 0) = 1
εβ
γ( y
εβ

), y ∈ Rd.

(1.2.10)

Formally, the amplitude of the solution w(y, s) of the oscillatory complex NKGE (1.2.10)
is at O(1). Also, the oscillatory complex NKGE (1.2.10) is time symmetric or time
reversible and conserves the energy as

E4(s) := E4(w(·, s)) =
∫
Rd

[
|∂sw|2 + |∇w|2 + 1

ε2β |w(x, t)|2 + 1
2ε2β−2 |w|

4
]
dx

≡ ε(d−2)β
∫
Rd

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4)
]
dx

= E4(0) = ε(d−2)βE1(0) = O(ε(d−2)β), s ≥ 0.
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Figure 1.3: The solutions of the NKGE (1.2.6) with d = 1 and initial data φ(x) = e−x
2

and γ(x) = sech(x2) for different ε: (a) v(x, 1), (b) v(0, s).

Again, plugging the plane wave solution w(y, s) = Aei(ξ·y/ε
β−ω3s) into the oscillatory

complex NKGE (1.2.10), we get the same dispersion relation:

ω3 = ω3(ξ) = ± 1
εβ

√
1 + |ξ|2 + ε2A2 = O(ε−β), ξ ∈ Rd, (1.2.11)

which immediately implies the group velocity

v3 := v3(ξ) = ∇ω3(ξ) = ± ξ

εβ
√

1 + |ξ|2 + ε2A2
= O(ε−β). (1.2.12)

Thus, the solution of the complex NKGE (1.2.10) propagates waves with amplitude at
O(1), wavelength in space and time at O(εβ) and wave velocity at O(ε−β). Of course,
in this scaling, one has to consider the initial data with spatial wavelength at O(εβ).
Figure 1.4 depicts the solutions of the NKGE (1.2.10) with different ε in 1D.

We also compare the above scalings of the NKGE with the complex NKGE in the
nonrelativistic limit regime, i.e. c� 1, which has been widely used and studied in the
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Figure 1.4: The solutions of the NKGE (1.2.10) with d = 1 and initial data φ(x) = e−x
2

and γ(x) = sech(x2) for different ε: (a) w(y, 0), (b) w(y, 1), (c) w(y, 2), (d) w(0, s).
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literature [22, 33, 56, 104, 105, 106]. Introducing the dimensionless variables in (1.1.4):
t→ ~

mε2c2 t and x→ ~
mεc

x, we can obtain the following dimensionless NKGE
∂ttu(x, t)− 1

ε2 ∆u(x, t) + 1
ε4u(x, t) + |u(x, t)|2

ε2 u(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ(x), ∂tu(x, 0) = 1
ε2γ(x), x ∈ Rd,

(1.2.13)

where the dimensionless parameter 0 < ε ≤ 1 is inversely proportional to the speed of
light c. The complex NKGE also conserves the energy as

E5(t) := E5(u(·, t)) =
∫
Rd

[
|∂tu(x, t)|2 + 1

ε2 |∇u(x, t)|2 + 1
ε4 |u(x, t)|2 + 1

2ε2 |u(x, t)|4
]
dx

≡ 1
ε4

∫
Rd

[
|γ(x)|2 + ε2|∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4)
]
dx

= E5(0) = O(ε−4), t ≥ 0.

Plugging the plane wave solution u(x, t) = Aei(ξ·x−ω4t) into the oscillatory complex
NKGE (1.2.13), we get the dispersion relation:

ω4 = ω4(ξ) = ± 1
ε2

√
1 + ε2|ξ|2 + ε2A2 = O(ε−2), ξ ∈ Rd, (1.2.14)

which immediately implies the group velocity

v4 := v4(ξ) = ∇ω4(ξ) = ± ξ√
1 + ε2|ξ|2 + ε2A2

= O(1). (1.2.15)

Thus, the solution of the complex NKGE (1.2.13) propagates waves with amplitude at
O(1), wavelength in space and time at O(1) and O(ε2), respectively, and wave velocity
at O(1). Figure 1.5 shows the solutions of the NKGE (1.2.13) with different ε in 1D.

For convenience, we show the properties of the solution of the complex NKGE under
different scalings in Table 1.1.

1.3 Review of existing results
The nonlinear Klein-Gordon equation (NKGE) in different scalings has gained a

surge of attentions in both analytical and numerical aspects. In this section, we are
going to review the existing results.
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Figure 1.5: The solutions u(x, 1) and u(0, t) of the NKGE (1.2.13) with d = 1 and
initial data φ(x) = e−x

2 and γ(x) = sech(x2) for different ε: (a) u(x, 1), (b) u(0, t).

(1.2.1) (1.2.4) (1.2.6)
with β = 2

(1.2.10)
with β = 2

(1.2.13)

amplitude O(1) O(ε) O(1) O(1) O(1)

spatial wavelength O(1) O(1) O(1) O(ε2) O(1)

temporal wavelength O(1) O(1) O(ε2) O(ε2) O(ε2)

wave velocity O(1) O(1) O(ε−2) O(ε−2) O(1)

energy O(1) O(ε2) O(ε−4) O(ε2d−4) O(ε−4)

life-span O(ε−2) O(ε−2) O(1) O(1) O(1)

Table 1.1: Comparisons of the complex NKGE under different scalings.

For the relativistic regime (O(1) - speed of light), the Cauchy problem was studied in
the literature [1, 27, 62, 63, 89, 120, 132, 134]. The global existence of the solution and
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asymptotic behavior of the NKGE with various kinds of nonlinearity were investigated
[82, 101, 114, 139]. The solution globally exists for the defocusing case (F (u) ≥ 0)
while it blows up in possible finite time for the focusing case (F (u) ≤ 0) [1, 27, 87,
116]. For more scattering results, one can refer to [28, 112, 113, 115, 122, 137] and
references therein. For the numerical aspect, different numerical schemes were proposed
and analyzed [85, 121], including the finite difference time domain (FDTD) methods [9,
48, 95, 138], finite element method [149], radial basis function methods [40, 41] and
spectral method [30, 69, 160].

In the nonrelativistic limit regime, i.e. 0 < ε� 1, the analysis of the NKGE (1.2.13)
is complicated due to the unbounded energy E5(t) when ε → 0. The nonrelativistic
limit of the Cauchy problem was studied in different spaces. The analytical results show
that the solution converges to the corresponding solution of the nonlinear Schrödinger
equation and propagates waves with wavelength O(1) and O(ε2) in space and time,
respectively [104, 106, 108, 150]. Along the numerical front, the highly oscillatory
nature in time makes the numerical approximations in the nonrelativistic regime
extremely challenging [9, 56]. The classical numerical schemes require severe time
step restrictions depending on the small parameter ε, including the FDTD methods,
exponential wave integrator Fourier pseudospectral (EWI-FP) method, time-splitting
Fourier pseudospectral (TSFP) method and asymptotic preserving (AP) method [9, 47,
56, 64, 156]. Based on the analysis of the above numerical methods, in order to obtain
the “correct” solution of the NKGE (1.2.13), there are some requirements on the mesh
size and time step. Recently, different uniformly accurate numerical methods have been
proposed and analyzed for the NKGE in the nonrelativistic limit regime, including the
multiscale time integrator (MTI) method [8, 19, 20], the two-scale formulation (TSF)
method [21, 32] and two uniformly and optimally accurate (UOA) methods [22, 119].

In the weakly nonlinear regime, there are extensive analytical results in the literature
for the NKGE (1.2.1) (or (1.2.4)). For the existence of global classical solutions and
almost periodic solutions as well as asymptotic behavior of solutions, we refer to [3,
26, 35, 50, 80, 100, 154, 152] and references therein. For the Cauchy problem with
small initial data (or weak nonlinearity), the global existence and asymptotic behavior
of solutions were studied in different space dimensions and with different nonlinear
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terms [76, 88, 89, 97, 118, 148, 168]. By the techniques of Birkhoff normal forms and
modulated Fourier expansions in time, the long-time behaviors have been investigated
including the conservation of energy, momentum and the harmonic actions [2, 37, 52,
53, 54, 60]. Recently, more attentions have been devoted to analyzing the life-span of
the solutions to the NKGE (1.2.4) [42, 88, 97, 99]. The analytical results indicate that
the life-span of a smooth solution to the NKGE (1.2.4) (or (1.2.1)) is at least up to
time at O(ε−2) [43, 44, 96, 167]. For more details related to this topic, we refer to [45,
51, 75, 83, 96, 164, 166] and references therein.

1.4 Problems to study
There are two different dynamical problems related to the time evolution of the

NKGE (1.2.1) (or (1.2.4)): (i) when ε = ε0 (e.g. ε = 1) fixed, i.e. in the standard
nonlinearity strength regime, to study the finite time dynamics of (1.2.1) (or (1.2.4))
for t ∈ [0, T ] with T = O(1); and (ii) when 0 < ε � 1, i.e. in the weak nonlinearity
strength regime, to study the long-time dynamics of (1.2.1) (or (1.2.4)) for t ∈ [0, Tε]
with Tε = O(ε−2). Extensive analytical and numerical studies have been done in the
literature for the finite time dynamics of (1.2.1) with ε = 1, i.e. in the standard
nonlinearity strength regime. As is pointed out in the previous section, in the weak
nonlinearity strength regime, the analytical results show that the life-span of a smooth
solution to the NKGE (1.2.1) is at least up to the time at O(ε−2). However, to the best
of our knowledge, there are very few numerical analysis results on the error bounds of
different numerical methods for the the long-time dynamics of the NKGE (1.2.1) in
the literature, especially the error bounds up to the time at Tε = O(ε−2) and how the
error bounds depend explicitly on the mesh size h and time step τ as well as the small
parameter ε ∈ (0, 1]. This motivates us to establish the long-time error estimates of
different numerical methods for solving the NKGE (1.2.1).

We consider the following NKGE with a cubic nonlinearity on the unit torus Td

(d = 1, 2, 3) as
∂ttu(x, t)−∆u(x, t) + u(x, t) + ε2u3(x, t) = 0, x ∈ Td, t > 0,

u(x, 0) = φ(x), ∂tu(x, 0) = γ(x), x ∈ Td,
(1.4.1)

13



CHAPTER 1. INTRODUCTION

where u := u(x, t) is a real-valued scalar field, ε ∈ (0, 1] is a dimensionless parameter
used to characterize the nonlinearity strength, and the initial data φ(x) and γ(x) are
two given real-valued functions which are independent of the parameter ε. In addition,
if u(·, t) ∈ H1(Td) and ∂tu(·, t) ∈ L2(Td), the NKGE (1.4.1) is time symmetric or time
reversible and conserves the energy [37, 72, 110] as

E(t) :=
∫
Td

[
|∂tu(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + ε2

2 |u(x, t)|4
]
dx

≡
∫
Td

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4
]
dx

= E(0) = O(1), t ≥ 0.

Specifically, the purpose of the study is to carry out the error bounds of different
numerical methods for the NKGE (1.4.1) up to the time at O(ε−2) and investigate how
the error bounds depend explicitly on the mesh size h and time step τ as well as the
small parameter ε ∈ (0, 1]. We aim to prove the error estimates rigorously and validate
them through numerical examples.

1.5 Scope of the thesis
The thesis is organized as follows.
Chapter 2 focuses on the finite difference temporal discretization to study the

long-time dynamics of the NKGE (1.4.1). The explicit/semi-implicit/implicit finite
difference discretizations in time combined with different spatial discretizations are
applied to solve the NKGE (1.4.1) in the long-time regime. For the finite difference time
domain (FDTD) methods, fourth-order compact finite difference (4cFD) method and
finite difference Fourier pseudospectral (FDFP) method, we analyze their properties
of the stability, energy conservation and solvability. The error bounds of these finite
difference methods are rigorously proved up to the time at O(ε−β) with 0 ≤ β ≤ 2 and
spatial/temporal resolutions for the NKGE (1.4.1) are inferred in the long-time regime.
Numerical results are carried out to support the error estimates and comparisons of
different spatial discretizations are presented.

14



CHAPTER 1. INTRODUCTION

In Chapter 3, the exponential wave integrator (EWI) with the Gautschi-type
quadrature is adapted to discretize the NKGE (1.4.1) in time. Rigorous error estimates
for the EWI method with Fourier pseudospectral (EWI-FP) spatial discretization are
carried out up to the time at O(ε−β) with 0 ≤ β ≤ 2. The error bounds indicate that
the EWI-FP method is uniformly spectral accurate in space and second-order accurate
in time for all ε ∈ (0, 1]. The EWI-FP method and the long-time error estimates are
extended to the EWI method combined with other spatial discretizations including the
exponential wave integrator finite difference (EWI-FD) method and the exponential
wave integrator fourth-order compact finite difference (EWI-4cFD) method. Numerical
tests are reported to confirm the error bounds of these EWI methods.

Chapter 4 deals with the uniform error bounds for the time-splitting Fourier pseu-
dospectral (TSFP) method to solve the NKGE (1.4.1). First, the NKGE is reformulated
into a relativistic nonlinear Schrödinger equation (NLSE). By the time-splitting tech-
nique, the NLSE is decomposed into the linear part which can be solved exactly in
phase space and the nonlinear part which can be integrated exactly in physical space.
Error estimates with detailed proof are carried out and numerical results show that the
TSFP method performs much better than other numerical methods, especially when
0 < ε� 1. Then, comparisons of above time integrators to solve the NKGE (1.4.1) in
the long-time regime are presented. Some applications for wave interactions in 2D and
3D are also studied.

Chapter 5 is devoted to extending the numerical methods and error estimates to an
oscillatory NKGE which propagates waves with wavelength in space and time at O(1)
and O(εβ), respectively, and wave velocity at O(ε−β). The highly oscillatory nature
in time of the solution makes the numerical simulations extremely challenging when
ε → 0+. The FDTD, EWI-FP and TSFP methods are used to solve the oscillatory
NKGE. Rigorous error estimates and spatial/temporal resolutions are established for
each numerical scheme. In addition, extensive numerical results and comparisons of
different numerical methods to solve the oscillatory NKGE are presented to give an
intuitive understanding.

Finally, conclusions are drawn in Chapter 6 and some possible future work is
discussed.
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Research in this thesis mainly focuses on the long-time error analysis of different
numerical methods for the nonlinear Klein-Gordon equation. It compares various
numerical schemes and extends the classical error estimates in the fixed time to the
long-time regime. These results are very useful for practical computations on how to
select mesh size and time step such that the numerical results are trustable.

This thesis mainly deals with the nonlinear Klein-Gordon equation in 1D. Extensions
to 2D and 3D are straightforward with minor modifications and we omit the details for
brevity. Furthermore, throughout this thesis, we adopt the notation A . B to represent
that there exists a generic constant C > 0, which is independent of the mesh size h and
time step τ as well as ε such that |A| ≤ CB.
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Chapter 2

Error Estimates of Finite Difference
Methods

In this chapter, we discretize the NKGE (1.4.1) by the finite difference method
in time combined with different spatial discretizations including the central finite
difference method, fourth-order compact finite difference method and spectral method.
For all methods considered here, rigorous error estimates are carried out with particular
attention on how the error bounds depend explicitly on the mesh size h and time step
τ as well as the small parameter ε ∈ (0, 1].

2.1 The NKGE in 1D
For simplicity of notations, we only show the numerical schemes in one dimension

(1D) and all the notations and results can be easily generalized to higher dimensions
with minor modifications. In 1D, the NKGE (1.4.1) collapses to

∂ttu(x, t)− ∂xxu(x, t) + u(x, t) + ε2u3(x, t) = 0, x ∈ Ω = (a, b), t > 0,

u(x, 0) = φ(x), ∂tu(x, 0) = γ(x), x ∈ Ω = [a, b],
(2.1.1)

with periodic boundary conditions. For the intuitive understanding of the solution
to the NKGE (2.1.1), Figure 2.1 shows the solutions u(x, 2) and u(π, t) of the NKGE
(2.1.1) for different ε.

17



CHAPTER 2. ERROR ESTIMATES OF FINITE DIFFERENCE METHODS

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

(a)

0 2 4 6 8 10

-2

-1

0

1

2

3

(b)

Figure 2.1: The solutions of the NKGE (2.1.1) with initial data φ(x) = cos(x) + cos(2x)
and γ(x) = sin(x) for different ε: (a) u(x, 2), (b) u(π, t).

2.2 Semi-discretizaiton in time by finite difference
methods

Let τ := ∆t > 0 be the time step size, and denote time steps by tn := nτ for
n = 0, 1, 2, · · · . For a sequence {un}, define the standard finite difference operators as

δ+
t u

n := un+1 − un

τ
, δ−t u

n := un − un−1

τ
, δ2

t u
n := un+1 − 2un + un−1

τ 2 .

Then the finite difference (FD) integrator for solving the NKGE (2.1.1) reads [9, 11, 48,
93]:

I. The Crank-Nicolson finite difference integrator

δ2
t u

n− 1
2
d

dx2

(
un+1 + un−1

)
+ 1

2
(
un+1 + un−1

)
+ ε2G

(
un+1, un−1

)
= 0, n ≥ 1; (2.2.1)
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II. A semi-implicit energy conservative finite difference integrator

δ2
t u

n − d

dx2u
n + 1

2
(
un+1 + un−1

)
+ ε2G

(
un+1, un−1

)
= 0, n ≥ 1; (2.2.2)

III. Another semi-implicit finite difference integrator

δ2
t u

n − 1
2
d

dx2

(
un+1 + un−1

)
+ 1

2
(
un+1 + un−1

)
+ ε2 (un)3 = 0, n ≥ 1; (2.2.3)

IV. The leap-frog finite difference integrator

δ2
t u

n − d

dx2u
n + un + ε2 (un)3 = 0, n ≥ 1. (2.2.4)

Here,

G(v, w) = F (v)− F (w)
v − w

, ∀ v, w ∈ R, F (v) =
∫ v

0
s3ds = v4

4 , v ∈ R. (2.2.5)

The initial and boundary conditions in (2.1.1) are discretized as

un+1(a) = un+1(b), d

dx
un+1(a) = d

dx
un+1(b), n ≥ 0; u0 = φ(x), (2.2.6)

where the initial velocity γ(x) is employed to update the first step u1 by the Taylor
expansion and the NKGE (2.1.1) as

u1 = φ(x) + τγ(x) + τ 2

2

[
d

dx2φ(x)− φ(x)− ε2φ3(x)
]
. (2.2.7)

2.3 FDTD methods
In this section, four different finite difference time domain (FDTD) methods are

adapted to discretize the NKGE (2.1.1) and rigorous error bounds are established in
the long-time regime.

2.3.1 The methods

Choose the spatial mesh size h := ∆x > 0, and denote M = (b − a)/h being a
positive integer and the grid points as:

xj := a+ jh, j = 0, 1, . . . ,M. (2.3.1)
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Denote XM = {u = (u0, u1, . . . , uM)T |uj ∈ R, j = 0, 1, . . . ,M, u0 = uM} and we always
use u−1 = uM−1 and uM+1 = u1 if they are involved. The standard discrete l2, semi-H1

and l∞ norms and inner product in XM are defined as

‖u‖2
l2 = h

M−1∑
j=0
|uj|2, ‖δ+

x u‖2
l2 = h

M−1∑
j=0
|δ+
x uj|2,

‖u‖l∞ = max
0≤j≤M−1

|uj|, (u, v) = h
M−1∑
j=0

ujvj,

with δ+
x u ∈ XM defined as δ+

x uj = (uj+1 − uj)/h for j = 0, 1, . . . ,M − 1.
Let unj be the numerical approximation of u(xj, tn) for j = 0, 1, . . . ,M , n ≥ 0 and

denote the numerical solution at time t = tn as un = (un0 , un1 , . . . , unM)T ∈ XM . We
introduce the spatial finite difference operators as

δ+
x u

n
j =

unj+1 − unj
h

, δ−x u
n
j =

unj − unj−1

h
, δ2

xu
n
j =

unj+1 − 2unj + unj−1

h2 ,

then four frequently used FDTD methods to discretize the NKGE (2.1.1) reads:
I. The Crank-Nicolson finite difference (CNFD) method

δ2
t u

n
j −

1
2δ

2
x

(
un+1
j + un−1

j

)
+ 1

2
(
un+1
j + un−1

j

)
+ ε2G

(
un+1
j , un−1

j

)
= 0, n ≥ 1; (2.3.2)

II. A semi-implicit energy conservative finite difference (SIFD1) method

δ2
t u

n
j − δ2

xu
n
j + 1

2
(
un+1
j + un−1

j

)
+ ε2G

(
un+1
j , un−1

j

)
= 0, n ≥ 1; (2.3.3)

III. Another semi-implicit finite difference (SIFD2) method

δ2
t u

n
j −

1
2δ

2
x

(
un+1
j + un−1

j

)
+ 1

2
(
un+1
j + un−1

j

)
+ ε2

(
unj
)3

= 0, n ≥ 1; (2.3.4)

IV. The leap-frog finite difference (LFFD) method

δ2
t u

n
j − δ2

xu
n
j + unj + ε2

(
unj
)3

= 0, j = 0, 1, . . . ,M − 1, n ≥ 1. (2.3.5)

The initial and boundary conditions in (2.1.1) are discretized as

un+1
0 = un+1

M , un+1
−1 = un+1

M−1, n ≥ 0; u0
j = φ(xj), j = 0, 1, . . . ,M, (2.3.6)
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and the first step u1 is computed by

u1
j = φ(xj) + τγ(xj) + τ 2

2
[
δ2
xφ(xj)− φ(xj)− ε2 (φ(xj))3

]
, j = 0, 1, . . . ,M. (2.3.7)

It is easy to check that the above FDTD methods are all time symmetric or time
reversible, i.e., they are unchanged if interchanging n + 1 ↔ n − 1 and τ ↔ −τ . In
addition, the LFFD (2.3.5) is explicit and might be the simplest and most efficient
discretization for the NKGE (2.1.1) with the computational cost per time step at O(M).
The others are implicit schemes. Nevertheless, the CNFD (2.3.2) and SIFD1 (2.3.3) can
be solved via either a direct solver or an iterative solver with the computational cost
per time step depending on the solver, which is usually larger than O(M), especially in
two dimensions (2D) and three dimensions (3D). Meanwhile, the solution of the SIFD2
(2.3.4) can be explicitly updated in the Fourier space with O(M lnM) computational
cost per time step, and such approach is valid in higher dimensions.

2.3.2 Stability

The stability of numerical schemes is very important since it is impossible to avoid
errors in any numerical simulations. Simply, stability means that the numerical scheme
does not amplify errors, i.e., the small errors made in each time step do not grow too fast
in later time steps [94]. In numerical analysis, von Neumann stability analysis is widely
used to check the stability of numerical schemes applied to solve partial differential
equations.

Let T0 > 0 be a fixed constant and 0 ≤ β ≤ 2, and denote

σmax := max
0≤n≤T0ε−β/τ

‖un‖2
l∞ . (2.3.8)

Following the von Neumann stability analysis of the classical FDTD methods for the
NKGE in the nonrelativistic limit regime [9, 94], we can conclude the stability of the
above FDTD methods for the NKGE (2.1.1) up to the time t = T0/ε

β in the following
lemma.

Lemma 2.3.1. For the above FDTD methods applied to the NKGE (2.1.1) up to the
time t = T0/ε

β, we have:
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(i) The CNFD (2.3.2) is unconditionally stable for any h > 0, τ > 0 and 0 < ε ≤ 1.
(ii) When h ≥ 2, the SIFD1 (2.3.3) is unconditionally stable for any h > 0 and

τ > 0; and when 0 < h < 2, this scheme is conditionally stable under the stability
condition

0 < τ <
2h√

4− h2
, h > 0, 0 < ε ≤ 1. (2.3.9)

(iii) When σmax ≤ ε−2, the SIFD2 (2.3.4) is unconditionally stable for any h > 0
and τ > 0; and when σmax > ε−2, this scheme is conditionally stable under the stability
condition

0 < τ <
2√

σmax − 1 , h > 0, 0 < ε ≤ 1. (2.3.10)

(iv) The LFFD (2.3.5) is conditionally stable under the stability condition

0 < τ <
2h√

4 + h2(1 + σmax)
, h > 0, 0 < ε ≤ 1. (2.3.11)

Proof. Replacing the nonlinear term by f(u) = ε2σmaxu, plugging

un−1
j =

∑
l

Ûle
2ijlπ/M , unj =

∑
l

ξlÛle
2ijlπ/M , un+1

j =
∑
l

ξ2
l Ûle

2ijlπ/M ,

into (2.3.2) - (2.3.5), with ξl the amplification factor of the lth mode in phase space,
we have the characteristic equation with the following structure

ξ2
l − 2θlξl + 1 = 0, l = −M2 , · · · , M2 − 1, (2.3.12)

where θl ∈ R is determined by the corresponding numerical methods. S Solving the
characteristic equation (2.6.6), we have ξl = θl±

√
θ2
l − 1. The stability of the numerical

schemes amounts to

|ξl| ≤ 1 ⇐⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1. (2.3.13)

(i) For the CNFD (2.3.2), we have

0 ≤ θl = 2
2 + τ 2(1 + λ2

l + ε2σmax) ≤ 1, l = −M2 , · · · , M2 − 1, (2.3.14)
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with
λl = 2

h
sin

(
πl

M

)
, µl = 2πl

b− a
, l = −M2 , · · · , M2 − 1. (2.3.15)

This implies that the CNFD (2.3.2) is unconditionally stable for any h > 0, τ > 0 and
0 < ε ≤ 1.

(ii) For the SIFD1 (2.3.3), we have

θl = 2− τ 2λ2
l

2 + τ 2(1 + ε2σmax) , l = −M2 , · · · , M2 − 1. (2.3.16)

Noticing 0 ≤ λ2
l ≤ 4

h2 , when h ≥ 2, or 0 < h < 2 with the condition (2.3.9), we can get

τ 2(λ2
l − ε2σmax − 1) ≤ τ 2(λ2

l − 1) ≤ 4 =⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1.

(iii) For the SIFD2 (2.3.4), we have

θl = 2− τ 2ε2σmax

2 + τ 2(1 + λ2
l )
, l = −M2 , · · · , M2 − 1. (2.3.17)

When σmax ≤ ε−2, or σmax > ε−2 with the condition (2.3.10), we get

τ 2(ε2σmax − 1− λ2
l ) ≤ τ 2(ε2σmax − 1) ≤ 4 =⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1.

(iv) For the LFFD (2.3.5), we have

θl = 2− τ 2(λ2
l + 1 + ε2σmax)

2 , l = −M2 , · · · , M2 − 1. (2.3.18)

Combining the condition (2.3.11), we can get

τ 2(λ2
l + 1 + ε2σmax) ≤ τ 2( 4

h2 + 1 + ε2σmax) ≤ 4 =⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1.

The proof is completed. �

Remark 2.3.1. The stability of schemes (2.3.4)-(2.3.5) is related to σmax, dependent
on the boundedness of the l∞ norm of the numerical solution un at the previous time
step. The convergence estimates up to the previous time step could ensure such a bound
in the l∞ norm, by making use of the discrete Sobolev inequality, and such an error
estimate could be recovered at the next time step, as given by the theorems presented in
Section 2.4.
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2.3.3 Energy conservation and solvability for CNFD

For the CNFD (2.3.2), we can show that it conserves the energy in the discretized
level with the proof proceeding in the analogous lines as those in [9, 95, 138] and we
omit the details here for brevity.

Lemma 2.3.2. (energy conservation) For n ≥ 0, the CNFD (2.3.2) conserves the
discrete energy as

En := ‖δ+
t u

n‖2
l2 + 1

2

n+1∑
k=n
‖δ+

x u
k‖2

l2 + 1
2

n+1∑
k=n
‖uk‖2

l2 + ε2h

4

M−1∑
j=0

[
(unj )4 + (un+1

j )4
]

≡ E0. (2.3.19)

Based on Lemma 2.3.2, we can show the unique solvability of the CNFD (2.3.2) at
each time step as follows.

Lemma 2.3.3. (solvability) For any given un, un−1 (n ≥ 1), the solution un+1 of the
CNFD (2.3.2) is unique at each time step.

Proof. Firstly, we prove the existence of the solution for the CNFD (2.3.2). To simplify
the notations, we denote the grid function [[u]]n ∈ XM with

[[u]]nj =
un+1
j + un−1

j

2 , j = 0, 1, . . . ,M, n ≥ 1. (2.3.20)

For any un−1, un, un+1 ∈ XM , we rewrite the CNFD (2.3.2) as

[[u]]n = un + τ 2

2 F
n([[u]]n), n ≥ 1, (2.3.21)

where F n : XM → XM with

F n
j (v) = δ2

xvj −
[
1 + ε2

2 (|un−1
j |2 + |2vj − un−1

j |2)
]
vj, j = 0, 1, . . . ,M, n ≥ 1.

Define a map Kn : XM → XM as

Kn(v) = v − un − τ 2

2 F
n(v), v ∈ XM , n ≥ 1. (2.3.22)
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It is obvious that Kn (n ≥ 1) is continuous from XM to XM . Moreover, the fact

(Kn(v), v) = ‖v‖2
l2 − (un, v) + τ 2

2

[
‖δ+

x v‖2
l2 + ‖v‖2

l2 + ε2

2
(
|un−1|2 + |2v − un−1|2, v2

)]

≥ (‖v‖l2 − ‖un‖l2) ‖v‖l2 , n ≥ 1,

implies
lim

‖v‖l2→∞

(Kn(v), v)
‖v‖l2

=∞, n ≥ 1. (2.3.23)

Then, we can conclude that there exists a solution v∗ such that Kn(v∗) = 0 by applying
the Brouwer fixed point theorem [5, 16, 92]. In other words, the CNFD (2.3.2) is
solvable.

Now, we proceed to verify the uniqueness. From (2.3.19), we can get

‖un‖2
l2 + ‖δ+

x u
n‖2

l2 ≤ 2En = 2E0, n ≥ 0. (2.3.24)

Hence, by employing the discrete Sobolev inequality [5, 147], we can obtain

‖un‖l∞ . ‖un‖l2 + ‖δ+
x u

n‖l2 .
√
E0, n ≥ 0. (2.3.25)

For any v ∈ XM , we define a functional S(v) : XM → R as

S(v) :=
M−1∑
j=0

[
−2unj + un−1

j

τ 2 − 1
2δ

2
xu

n−1
j + 1

2u
n−1
j + ε2

4
(
un−1
j

)3
]
vj + 1

4

M−1∑
j=0

(
δ+
x vj

)2

+
M−1∑
j=0

{[
1

2τ 2 + 1
4 + ε2

8
(
un−1
j

)2
]
v2
j + ε2

12u
n−1
j v3

j + ε2

16v
4
j

}
.

It is easy to check that S(v) is strictly convex with the gradient of it denoted as
∇S(v) := [∂v0S(v), . . . , ∂vMSM(v)]T turning out to be

∂vjS(v) =
vj − 2unj + un−1

j

τ 2 − 1
2δ

2
x

(
vj + un−1

j

)
+ 1

2
(
vj + un−1

j

)
+ ε2G

(
vj, u

n−1
j

)
.

By the strict convexity of S(v), we can get the uniqueness of ∇S(v) = 0, which yields
the uniqueness of un+1 ∈ XM immediately. Thus, the proof is completed.

Remark 2.3.2. The energy conservation and solvability for the SIFD1 (2.3.3) can be
obtained similarly to the CNFD (2.3.2) in Lemma 2.3.2 and Lemma 2.3.3. There exists
a unique solution of the SIFD2 (2.3.4) due to the fact that it solves a linear system with
a strictly diagonally dominant matrix. The solvability and uniqueness for the LFFD
(2.3.5) are straightforward since it is explicit.
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2.4 Error estimates of FDTD methods
In this section, we will establish the error bounds of the FDTD methods [13].

2.4.1 Main results

Motivated by the analytical results in [43, 44, 88, 89, 97, 118, 148] and references
therein, we make the following assumptions on the exact solution u of the NKGE (2.1.1)
up to the time t = T0/ε

2:

(A)

u ∈ C([0, T0/ε
2];W 4,∞

p ) ∩ C2([0, T0/ε
2];W 2,∞)

∩ C3([0, T0/ε
2];W 1,∞) ∩ C4([0, T0/ε

2];L∞),∥∥∥∥∥ ∂r+q

∂tr∂xq
u(x, t)

∥∥∥∥∥
L∞
. 1, 0 ≤ r ≤ 4, 0 ≤ r + q ≤ 4,

where L∞ = L∞([0, T0/ε
2];L∞) and Wm,∞

p = {u ∈ Wm,∞| ∂l
∂xl
u(a) = ∂l

∂xl
u(b), 0 ≤ l <

m} for m ≥ 1.
Denote M0 = supε∈(0,1] ‖u(x, t)‖L∞ and the grid ‘error’ function en ∈ XM (n ≥ 0) as

enj = u(xj, tn)− unj , j = 0, 1, . . . ,M, n = 0, 1, 2, . . . , (2.4.1)

where un ∈ XM is the numerical approximation of the NKGE (2.1.1).
For the CNFD (2.3.2), we can establish the following error estimates up to the time

t = T0/ε
β with 0 ≤ β ≤ 2 (see its detailed proof in Section 2.4.2):

Theorem 2.4.1. Under the assumption (A), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that, for any 0 < ε ≤ 1, when 0 < h ≤
h0ε

β/2 and 0 < τ ≤ τ0ε
β/2, we have the following error estimates for the CNFD (2.3.2)

with (2.3.6) and (2.3.7)

‖en‖l2 + ‖δ+
x e

n‖l2 .
h2

εβ
+ τ 2

εβ
, ‖un‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0/ε

β

τ
. (2.4.2)

For the LFFD (2.3.5), the error estimates can be established as follows (see its
detailed proof in Section 2.4.3):
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Theorem 2.4.2. Assume τ ≤ 1
2 min{1, h} and under the assumption (A), there exist

constants h0 > 0 and τ0 > 0 sufficiently small and independent of ε, such that for any
0 < ε ≤ 1, when 0 < h ≤ h0ε

β/2 and 0 < τ ≤ τ0ε
β/2 and under the stability condition

(2.3.11), we have the error estimates for the LFFD (2.3.5) with (2.3.6) and (2.3.7) as

‖en‖l2 + ‖δ+
x e

n‖l2 .
h2

εβ
+ τ 2

εβ
, ‖un‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0/ε

β

τ
. (2.4.3)

Similarly, for the SIFD1 (2.3.3) and SIFD2 (2.3.4), we have the following error
estimates (their proofs are quite similar and thus they are omitted for brevity):

Theorem 2.4.3. Assume τ . h and under the assumption (A), there exist constants
h0 > 0 and τ0 > 0 sufficiently small and independent of ε, such that for any 0 < ε ≤ 1,
when 0 < h ≤ h0ε

β/2, 0 < τ ≤ τ0ε
β/2 and under the stability condition (2.3.9), we have

the following error estimates for the SIFD1 (2.3.3) with (2.3.6) and (2.3.7)

‖en‖l2 + ‖δ+
x e

n‖l2 .
h2

εβ
+ τ 2

εβ
, ‖un‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0/ε

β

τ
. (2.4.4)

Theorem 2.4.4. Under the assumption (A), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤
h0ε

β/2, 0 < τ ≤ τ0ε
β/2 and under the stability condition (2.3.10), we have the following

error estimates for the SIFD2 (2.3.4) with (2.3.6) and (2.3.7)

‖en‖l2 + ‖δ+
x e

n‖l2 .
h2

εβ
+ τ 2

εβ
, ‖un‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0/ε

β

τ
. (2.4.5)

Remark 2.4.1. In 2D with d = 2 and 3D with d = 3 cases, the above theorems are
still valid under the technical conditions 0 < h . εβ/2

√
Cd(h) and 0 < τ . εβ/2

√
Cd(h)

where Cd(h) = 1/| ln h| when d = 2, and Cd(h) = h1/2 when d = 3. The reason is due
to the discrete Sobolev inequality [5, 18, 147]:

‖un‖l∞ .
1

Cd(h)
(
‖δ+

x u
n‖l2 + ‖un‖l2

)
. (2.4.6)
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Hence, the four FDTD methods studied here share the same spatial/temporal
resolution capacity for the NKGE (2.1.1) up to the time at O(ε−β) with 0 ≤ β ≤ 2. In
fact, given an accuracy bound δ0 > 0, the ε-scalability (or meshing strategy requirement)
of the FDTD methods should be taken as

h = O(εβ/2
√
δ0) = O(εβ/2), τ = O(εβ/2

√
δ0) = O(εβ/2), 0 < ε ≤ 1. (2.4.7)

This implies that, in order to get “correct” numerical solution up to the time at O(ε−1),
one has to take the meshing strategy: h = O(ε1/2) and τ = O(ε1/2); and resp., in
order to get “correct” numerical solution up to the time at O(ε−2), one has to take the
meshing strategy: h = O(ε) and τ = O(ε). These results are very useful for practical
computations to how to select mesh size and time step such that the numerical results
are trustable.

2.4.2 Proof for CNFD

For the CNFD (2.3.2), we establish the error estimates in Theorem 2.4.1. The
key of the proof is to deal with the nonlinearity and overcome the main difficulty in
uniformly bounding the numerical solution un, i.e., ‖un‖l∞ . 1. Here, we adapt the
cut-off technique which has been widely used in the literature [4, 5, 147], i.e., the
nonlinearity is truncated to a global Lipschitz function with compact support.

Denote B = (1 +M0)2, choose a smooth function ρ(θ) ∈ C∞0 (R+) and define

FB(θ) = ρ (θ/B) θ, θ ∈ R+, ρ(θ) =


1, 0 ≤ θ ≤ 1,

∈ [0, 1], 1 ≤ θ ≤ 2,

0, θ ≥ 2,

(2.4.8)

then FB(θ) has compact support and is smooth and global Lipschitz, i.e., there exists
CB independent of h, τ and ε, such that

|FB(θ1)− FB(θ2)| ≤ CB|
√
θ1 −

√
θ2|, ∀θ1, θ2 ∈ R+. (2.4.9)

Set û0 = u0, û1 = u1 and determine ûn+1 ∈ XM for n ≥ 1 as follows

δ2
t û

n
j − δ2

x[[û]]nj + [[û]]nj + ε2

2
(
FB((ûn+1

j )2) + FB((ûn−1
j )2)

)
[[û]]nj = 0, j = 0, 1, . . . ,M − 1.

(2.4.10)
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In fact, ûnj can be viewed as another approximation of u(xj, tn) for j = 0, 1, . . . ,M
and n ≥ 0. It is easy to verify that the scheme (2.4.10) is uniquely solvable for sufficiently
small τ by using the properties of ρ and standard techniques in Section 2. Define the
corresponding ‘error’ function ên ∈ XM as

ênj = u(xj, tn)− ûnj , j = 0, 1, . . . ,M, n ≥ 0, (2.4.11)

and we can establish the following estimates:

Theorem 2.4.5. Under the assumption (A), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤ h0ε

β/2

and 0 < τ ≤ τ0ε
β/2, we have the following error estimates

‖ên‖l2 + ‖δ+
x ê

n‖l2 . h2ε−β + τ 2ε−β, ‖ûn‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0ε
−β/τ. (2.4.12)

We begin with the local truncation error ξ̂n ∈ XM of the scheme (2.4.10) given as

ξ̂0
j := δ+

t u(xj, 0)− γ(xj)−
τ

2
[
δ2
xφ(xj)− φ(xj)− ε2(φ(xj))3

]
, j = 0, 1, . . . ,M − 1,

ξ̂nj := δ2
t u(xj, tn)− 1

2
[
δ2
xu(xj, tn+1) + δ2

xu(xj, tn−1)
]

+ 1
2 [u(xj, tn+1) + u(xj, tn−1)]

+ ε2

4
(
FB(u(xj, tn+1)2) + FB(u(xj, tn−1)2)

)
(u(xj, tn+1) + u(xj, tn−1)) , n ≥ 1.

(2.4.13)

The following estimates hold for ξ̂n.

Lemma 2.4.1. Under the assumption (A), we have

‖ξ̂0‖l2 + ‖δ+
x ξ̂

0‖l2 . h2 + τ 2, ‖ξ̂n‖l2 . h2 + τ 2, 1 ≤ n ≤ T0ε
−β/τ − 1. (2.4.14)

Proof. Under the assumption (A), by applying the Taylor expansion to (2.4.13), it leads
to

|ξ̂0
j | . τ 2‖∂tttu‖L∞ + hτ‖φ′′′‖L∞ . h2 + τ 2, j = 0, 1, . . . ,M − 1,

|ξ̂nj | . τ 2
[
‖∂ttttu‖L∞ + ‖∂ttxxu‖L∞ + (1 + ε2‖u‖2

L∞)‖∂ttu‖L∞ + ε2‖u‖L∞‖∂tu‖2
L∞

]
+ h2‖∂xxxxu‖L∞ . h2 + τ 2, n ≥ 1.
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Similarly, we have |δ+
x ξ̂

0
j | . h2 + τ 2 for 0 ≤ j ≤ M − 1. These immediately imply

(2.4.14).

Next, we control the nonlinear term as follows.

Lemma 2.4.2. For j = 0, 1, . . . ,M and 1 ≤ n ≤ T0ε
−β/τ − 1, denote the error of the

nonlinear term

η̂nj =ε
2

4
(
FB(u(xj, tn+1)2) + FB(u(xj, tn−1)2)

)
(u(xj, tn+1) + u(xj, tn−1))

− ε2

4
(
FB((ûn+1

j )2) + FB((ûn−1
j )2)

) (
ûn+1
j + ûn−1

j

)
,

(2.4.15)

under the assumption (A), we have

‖η̂n‖l2 . ε2
(
‖ên−1‖l2 + ‖ên+1‖l2

)
. (2.4.16)

Proof. Noticing (2.4.9) and (2.4.15), direct calculation for j = 0, 1, . . . ,M and 1 ≤ n ≤
T0ε

−β/τ − 1 leads to

|η̂nj | ≤ Cε2
[
M0 + |FB((ûn+1

j )2)|+ |FB((ûn−1
j )2)|

] (
|ên+1
j |+ |ên−1

j |
)
, (2.4.17)

where the constant C is independent of h, τ and ε. Under the assumption (A) and the
properties of FB, we have

‖η̂n‖l2 . ε2
[
‖ên+1‖l2 + ‖ên−1‖l2

]
, 1 ≤ n ≤ T0ε

−β/τ − 1, (2.4.18)

which completes the proof.

Now, we proceed to study the growth of the errors and verify Theorem 2.4.5.
Subtracting (2.4.10) from (2.4.13), the error ên ∈ XM satisfies

δ2
t ê
n
j −

1
2
(
δ2
xê
n+1
j + δ2

xê
n−1
j

)
+ 1

2
(
ên+1
j + ên−1

j

)
= ξ̂nj − η̂nj , 1 ≤ n ≤ T0ε

−β/τ − 1,

ê0
j = 0, ê1

j = τ ξ̂0
j , j = 0, 1, . . . ,M − 1.

(2.4.19)

Define the “energy” for the error vector ên as

Ŝn = ‖δ+
t ê

n‖2
l2 + 1

2
(
‖δ+

x ê
n‖2

l2 + ‖δ+
x ê

n+1‖2
l2

)
+ 1

2
(
‖ên‖2

l2 + ‖ên+1‖2
l2

)
, n ≥ 0. (2.4.20)
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It is easy to see that

Ŝ0 = ‖ξ̂0‖2
l2 + τ 2

2 ‖δ
+
x ξ̂

0‖2
l2 + τ 2

2 ‖ξ̂
0‖2
l2 .

(
h2 + τ 2

)2
. (2.4.21)

Proof. (Proof of Theorem 2.4.5) When n = 0, the estimates in (2.4.12) are obvious
and the n = 1 case is already verified in Lemma 3.1 for sufficiently small 0 < τ < τ1

and 0 < h < h1. Thus, we only need to prove (2.4.12) for 2 ≤ n ≤ T0ε
−β/τ .

Multiplying both sides of (2.4.19) by h
(
ên+1
j − ên−1

j

)
, summing up for j, noticing

the fact 0 ≤ β ≤ 2 and making use of the Young’s inequality and Lemmas 2.4.1&2.4.2,
we derive

Ŝn − Ŝn−1 = h
M−1∑
j=0

(
ξ̂nj − η̂nj

) (
ên+1
j − ên−1

j

)
≤ τε−β

(
‖ξ̂n‖2

l2 + ‖η̂n‖2
l2

)
+ τεβ

(
‖δ+

t ê
n‖2

l2 + ‖δ+
t ê

n−1‖2
l2

)
. εβτ

(
Ŝn + Ŝn−1

)
+ τε−β

(
h2 + τ 2

)2
, 1 ≤ n ≤ T0ε

−β/τ − 1.

(2.4.22)

Summing the above inequalities for time steps from 1 to n, there exists a constant
C > 0 such that

Ŝn ≤ Ŝ0 + Cεβτ
n∑

m=0
Ŝm + CT0ε

−2β
(
h2 + τ 2

)2
, 1 ≤ n ≤ T0ε

−β/τ − 1. (2.4.23)

Hence, the discrete Gronwall’s inequality suggests that there exists a constant τ2 > 0
sufficiently small, such that when 0 < τ ≤ τ2, the following holds

Ŝn ≤ 1
(
Ŝ0 + CT0ε

−2β
(
h2 + τ 2

)2
)
e2C(n+1)εβτ

. ε−2β
(
h2 + τ 2

)2
, 1 ≤ n ≤ T0ε

−β/τ − 1.
(2.4.24)

Recalling ‖ên+1‖2
l2 + ‖δ+

x ê
n+1‖2

l2 ≤ 2Ŝn when 0 < ε ≤ 1, we can obtain the error
estimate

‖ên+1‖l2 + ‖δ+
x ê

n+1‖l2 . h2ε−β + τ 2ε−β, 1 ≤ n ≤ T0ε
−β/τ − 1. (2.4.25)

Finally, we estimate ‖ûn+1‖l∞ for 1 ≤ n ≤ T0ε
−β/τ − 1. The discrete Sobolev inequality

implies
‖ên‖l∞ . ‖ên‖l2 + ‖δ+

x ê
n‖l2 . h2ε−β + τ 2ε−β. (2.4.26)
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Thus, there exist h2 > 0 and τ3 > 0 sufficiently small, when 0 < h ≤ h2ε
β/2 and

0 < τ ≤ τ3ε
β/2, we obtain

‖ûn‖l∞ ≤ ‖u(x, tn)‖L∞ + ‖ên‖l∞ ≤M0 + 1. (2.4.27)

The proof is completed by choosing h0 = min{h1, h2} and τ0 = min{τ1, τ2, τ3}.

Proof. (Proof of Theorem 2.4.1) In view of the definition of ρ, Theorem 2.4.5 implies
that (2.4.10) collapses to (2.3.2). By the unique solvability of the CNFD, ûn is identical
to un. Thus, Theorem 2.4.1 is a direct consequence of Theorem 2.4.5.

2.4.3 Proof for LFFD

For the LFFD (2.3.5), we establish the error estimates in Theorem 2.4.2. Throughout
this section, the stability condition (2.3.11) is assumed. Here, we sketch the proof and
omit those parts similar to the proof of Theorem 2.4.1 in Section 2.4.2.

Proof. Denote the local truncation error as ξ̃n ∈ XM

ξ̃0
j := δ+

t u(xj, 0)− γ(xj)−
τ

2
[
δ2
xφ(xj)− φ(xj)− ε2φ3(xj)

]
, j = 0, 1, . . . ,M − 1,

ξ̃nj :=δ2
t u(xj, tn)− δ2

xu(xj, tn) + u(xj, tn) + ε2u3(xj, tn), 1 ≤ n ≤ T0ε
−β/τ − 1,

(2.4.28)

and the error of the nonlinear term as η̃n ∈ XM

η̃nj := ε2
(
u3(xj, tn)− (unj )3

)
, j = 0, 1, . . . ,M − 1, 1 ≤ n ≤ T0ε

−β/τ − 1. (2.4.29)

Similar to Lemma 2.4.1, under the assumption (A), we have

‖ξ̃0‖l2 + ‖δ+
x ξ̃

0‖l2 . h2 + τ 2, ‖ξ̃n‖l2 . h2 + τ 2, 1 ≤ n ≤ T0ε
−β/τ − 1. (2.4.30)

The error equation for the LFFD (2.3.5) can be derived as

δ2
t e
n
j − δ2

xe
n
j + enj = ξ̃nj − η̃nj , 1 ≤ n ≤ T0ε

−β/τ − 1,

e0
j = 0, e1

j = τ ξ̃0
j , j = 0, 1, . . . ,M − 1.

(2.4.31)
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We adapt the mathematical induction to prove Theorem 2.4.2, i.e., we want to
demonstrate that there exist h0 > 0 and τ0 > 0, such that, when 0 < h < h0 and
0 < τ < τ0, under the stability condition (2.3.11), the error bounds hold

‖en‖l2 + ‖δ+
x e

n‖l2 ≤ C1
(
h2ε−β + τ 2ε−β

)
, ‖un‖l∞ ≤ 1 +M0, (2.4.32)

for all 0 ≤ n ≤ T0ε
−β/τ and 0 ≤ β ≤ 2, where C1, τ0 and h0 will be classified later.

For n = 0, (2.4.32) is trivial. For n = 1, the error equation (2.4.31) and the estimate
(2.4.30) imply

‖e1‖l2 = τ‖ξ̃0‖l2 ≤ C2τ(h2 + τ 2), ‖δ+
x e

1‖l2 = τ‖δ+
x ξ̃

0‖l2 ≤ C2τ(h2 + τ 2). (2.4.33)

In view of the triangle inequality, discrete Sobolev inequality and the assumption (A),
there exist h1 > 0 and τ1 > 0 sufficiently small, when 0 < h ≤ h1 and 0 < τ ≤ τ1, we
have

‖u1‖l∞ ≤ ‖u(x, t1)‖L∞ + ‖e1‖l∞ ≤ ‖u(x, t1)‖L∞ + ‖e1‖l2 + ‖δ+
x e

1‖l2 ≤M0 + 1. (2.4.34)

In other words, the error bounds in (2.4.32) also hold for n = 1.
Now we assume that (2.4.32) is valid for all 0 ≤ n ≤ m− 1 ≤ T0ε

−β/τ − 1, then we
need to show that it is still valid when n = m. From (2.4.29), the error of the nonlinear
term can be controlled as

‖η̃n‖l2 ≤ C3ε
2‖en‖l2 , 1 ≤ n ≤ m− 1. (2.4.35)

Define the “energy” for the error vector en(n = 0, 1, . . .) as

Sn :=
(

1− τ 2

2 −
τ 2

h2

)
‖δ+

t e
n‖2

l2+1
2

n+1∑
k=n
‖ek‖2

l2+ 1
2h

M−1∑
j=0

[(
en+1
j+1 − enj

)2
+
(
enj+1 − en+1

j

)2
]
,

where

S0 =
(

1− τ 2

2 −
τ 2

h2

)
‖δ+

t e
0‖2
l2 +

(1
2 + 1

h2

)
‖e1‖2

l2 = ‖ξ̃0‖2
l2 ≤ C4(τ 2 + h2)2.

Under the assumption τ ≤ 1
2 min{1, h}, we have 1− τ 2/2− τ 2/h2 ≥ 1

4 > 0. Since

‖δ+
x e

n+1‖2
l2 = 1

h

M−1∑
j=0

(en+1
j+1 − enj − τδ+

t e
n
j )2 ≤ 2

h

M−1∑
j=0

(en+1
j+1 − enj )2 + 2τ 2

h2 ‖δ
+
t e

n‖2
l2 ,
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we can conclude that

Sn ≥ 1
4‖δ

+
x e

n+1‖2
l2 + 1

2
(
‖en‖2

l2 + ‖en+1‖2
l2

)
, 1 ≤ n ≤ m− 1. (2.4.36)

Similar to the proof in Section 2.4.2, there exists τ2 > 0 sufficiently small, when
0 < τ ≤ τ2,

Sn ≤ C5
(
h2ε−β + τ 2ε−β

)2
, 1 ≤ n ≤ m− 1, (2.4.37)

where C5 depends on T0 and the exact solution u(x, t). Letting n = m, we have

‖em‖l2 + ‖δ+
x e

m‖l2 ≤ C6(h2ε−β + τ 2ε−β), 1 ≤ m ≤ T0ε
−β/τ (2.4.38)

where C6 depends on T0 and the exact solution u(x, t).
It remains to estimate ‖un‖l∞ for n = m. In fact, the discrete Sobolev inequality

implies
‖em‖l∞ . ‖em‖l2 + ‖δ+

x e
m‖l2 . h2ε−β + τ 2ε−β. (2.4.39)

Thus, there exist h2 > 0 and τ3 > 0 sufficiently small, when 0 < h ≤ h2ε
β/2 and

0 < τ ≤ τ3ε
β/2, we obtain

‖um‖l∞ ≤ ‖u(x, tm)‖L∞ + ‖em‖l∞ ≤M0 + 1, 1 ≤ m ≤ T0ε
−β/τ. (2.4.40)

Under the stability condition (2.3.11) and the choices of h0 = min{h1, h2}, τ0 =
min{τ1, τ2, τ3} and C1 = max{C2, C6}, the error bounds in (2.4.32) are still valid when
n = m. Hence, the mathematical induction process is done and the proof of Theorem
2.4.2 is completed.

2.5 Numerical results of FDTD methods and com-
parisons

In this section, we present the numerical results of FDTD methods for the NKGE
(2.1.1) up to the time at O(ε−β) with 0 ≤ β ≤ 2 to verify our error bounds.

Denote unh,τ as the numerical solution at time t = tn obtained by a numerical method
with mesh size h and time step τ . In order to quantify the numerical results, we define
the error function as follows:

eh,τ (tn) =
√
‖u(·, tn)− unh,τ‖2

l2 + ‖δ+
x (u(·, tn)− unh,τ )‖2

l2 .
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We show the numerical results for the CNFD (2.3.2) and SIFD2 (2.3.4) and results
for other FDTD methods are quite similar which are omitted for brevity. In the
numerical experiments, we take a = 0, b = 2π and choose the initial data as

φ(x) = cos(x) + cos(2x), γ(x) = sin(x), 0 ≤ x ≤ 2π. (2.5.1)

The ‘exact’ solution is obtained numerically by the exponential wave integrator Fourier
pseudospectral method [9, 47] with a very fine mesh size and a very small time step,
e.g. he = π/215 and τe = 10−5. Here we study the following three cases with respect to
different 0 ≤ β ≤ 2:

Case I. Fixed time dynamics up to the time at O(1), i.e., β = 0;
Case II. Intermediate long-time dynamics up to the time at O(ε−1), i.e., β = 1;
Case III. Long-time dynamics up to the time at O(ε−2), i.e., β = 2.

We first test the spatial discretization errors at tε = 1/εβ for different 0 < ε ≤ 1. In
order to do this, we fix the time step as τe = 10−5 such that the temporal error can
be ignored, and solve the NKGE (2.1.1) under different mesh size h. Tables 2.1, 2.3
and 2.5 depict the spatial errors for the CNFD method with β = 0, β = 1 and β = 2,
respectively. Then we check the temporal errors at tε = 1/εβ for different 0 < ε ≤ 1
with different time step τ and a fine mesh size he = π/215 such that the spatial errors
can be neglected. Tables 2.2, 2.4 and 2.6 show the temporal errors for the CNFD
method and Tables 2.7-2.9 list the temporal errors for the SIFD2 method with β = 0,
β = 1 and β = 2, respectively.

From Tables 2.1-2.6 for the CNFD method, Tables 2.7-2.9 for the SIFD2 method,
and additional similar numerical results for other FDTD methods not shown here for
brevity, we can draw the following observations:

(i) For any fixed ε = ε0 > 0 or β = 0, the FDTD methods are uniformly second-order
accurate in both spatial and temporal discretizations (cf. Tables 2.1, 2.2, 2.7 and the
first rows in Tables 2.3-2.6&2.8-2.9), which agree with those results in the literature.

(ii) In the intermediate long-time regime, i.e. β = 1, the second order convergence
in space and time of the FDTD methods can be observed only when 0 < h . ε1/2 and
0 < τ . ε1/2 (cf. upper triangles above the diagonals (corresponding to h ∼ ε1/2 and
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eh,τe(t = 1/εβ) h0 = π/16 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 3.77E-2 9.65E-3 2.43E-3 6.09E-4 1.52E-4 3.84E-5

order - 1.97 1.99 2.00 2.00 1.98

ε0/2 3.33E-2 8.35E-3 2.09E-3 5.22E-4 1.31E-4 3.34E-5

order - 2.00 2.00 2.00 1.99 1.97

ε0/22 3.48E-2 8.74E-3 2.19E-3 5.47E-4 1.37E-4 3.50E-5

order - 1.99 2.00 2.00 2.00 1.97

ε0/23 3.55E-2 8.92E-3 2.23E-3 5.58E-4 1.40E-4 3.57E-5

order - 1.99 2.00 2.00 1.99 1.97

ε0/24 3.57E-2 8.97E-3 2.24E-3 5.61E-4 1.40E-4 3.59E-5

order - 1.99 2.00 2.00 2.00 1.96

Table 2.1: Spatial errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 0 and
initial data (2.5.1).

ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 3.27E-2 8.57E-3 2.19E-3 5.53E-4 1.39E-4 3.48E-5

order - 1.93 1.97 1.99 1.99 2.00

ε0/2 2.10E-2 5.45E-3 1.39E-3 3.49E-4 8.76E-5 2.20E-5

order - 1.96 1.97 1.99 1.99 1.99

ε0/22 1.84E-2 4.75E-3 1.21E-3 3.04E-4 7.63E-5 1.91E-5

order - 1.95 1.97 1.99 1.99 2.00

ε0/23 1.78E-2 4.59E-3 1.17E-3 2.94E-4 7.37E-5 1.85E-5

order - 1.96 1.97 1.99 2.00 1.99

ε0/24 1.77E-2 4.56E-3 1.16E-3 2.91E-4 7.31E-5 1.83E-5

order - 1.96 1.97 2.00 1.99 2.00

Table 2.2: Temporal errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 0 and
initial data (2.5.1).
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eh,τe(t = 1/εβ) h0 = π/16 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 3.77E-2 9.65E-3 2.43E-3 6.09E-4 1.52E-4 3.84E-5

order - 1.97 1.99 2.00 2.00 1.98

ε0/4 7.31E-2 1.77E-2 4.38E-3 1.09E-3 2.74E-4 7.02E-5

order - 2.05 2.01 2.01 1.99 1.96

ε0/42 6.60E-1 1.71E-1 4.31E-2 1.08E-2 2.70E-3 6.91E-4

order - 1.95 1.99 2.00 2.00 1.97

ε0/43 2.78 7.25E-1 1.80E-1 4.50E-2 1.13E-2 2.88E-3

order - 1.94 2.01 2.00 1.99 1.97

ε0/44 5.67 8.48E-1 3.96E-1 1.10E-1 2.81E-2 7.22E-3

order - 2.74 1.10 1.85 1.97 1.96

Table 2.3: Spatial errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 1 and
initial data (2.5.1).

ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 3.27E-2 8.57E-3 2.19E-3 5.53E-4 1.39E-4 3.48E-5

order - 1.93 1.97 1.99 1.99 2.00

ε0/4 4.01E-2 9.95E-3 2.49E-3 6.22E-4 1.56E-4 3.89E-5

order - 2.01 2.00 2.00 2.00 2.00

ε0/42 3.45E-1 8.79E-2 2.21E-2 5.53E-3 1.38E-3 3.46E-4

order - 1.97 1.99 2.00 2.00 2.00

ε0/43 1.47 3.69E-1 9.19E-2 2.29E-2 5.74E-3 1.43E-3

order - 1.99 2.01 2.00 2.00 2.01

ε0/44 8.58E-1 7.05E-1 2.20E-1 5.75E-2 1.45E-2 3.64E-3

order - 0.28 1.68 1.94 1.99 1.99

Table 2.4: Temporal errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 1 and
initial data (2.5.1).
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eh,τe(t = 1/εβ) h0 = π/16 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 3.77E-2 9.65E-3 2.43E-3 6.09E-4 1.52E-4 3.84E-5

order - 1.97 1.99 2.00 2.00 1.98

ε0/2 3.98E-2 9.56E-3 2.39E-3 5.97E-4 1.49E-4 3.81E-5

order - 2.06 2.00 2.00 2.00 1.97

ε0/22 7.17E-1 1.82E-1 4.55E-2 1.14E-2 2.85E-3 7.27E-4

order - 1.98 2.00 2.00 2.00 1.97

ε0/23 2.78 6.54E-1 1.58E-1 3.92E-2 9.78E-3 2.50E-3

order - 2.09 2.05 2.01 2.00 1.97

ε0/24 3.31 1.78 5.92E-1 1.55E-1 3.93E-2 1.01E-2

order - 0.89 1.59 1.93 1.98 1.96

Table 2.5: Spatial errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 2 and
initial data (2.5.1).

ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 3.27E-2 8.57E-3 2.19E-3 5.53E-4 1.39E-4 3.48E-5

order - 1.93 1.97 1.99 1.99 2.00

ε0/2 2.56E-2 6.32E-3 1.58E-3 3.94E-4 9.86E-5 2.47E-5

order - 2.02 2.00 2.00 2.00 2.00

ε0/22 3.91E-1 9.83E-2 2.46E-2 6.16E-3 1.54E-3 3.85E-4

order - 1.99 2.00 2.00 2.00 2.00

ε0/23 1.40 3.32E-1 8.14E-2 2.03E-2 5.06E-3 1.26E-3

order - 2.08 2.03 2.00 2.00 2.01

ε0/24 1.81 1.13 3.16E-1 8.07E-2 2.03E-2 5.07E-3

order - 0.68 1.84 1.97 1.99 2.00

Table 2.6: Temporal errors of the CNFD (2.3.2) for the NKGE (2.1.1) with β = 2 and
initial data (2.5.1).
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ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.85E-2 4.80E-3 1.22E-3 3.07E-4 7.71E-5 1.93E-5

order - 1.95 1.98 1.99 1.99 2.00

ε0/2 1.73E-2 4.46E-3 1.13E-3 2.85E-4 7.16E-5 1.79E-5

order - 1.96 1.98 1.99 1.99 2.00

ε0/22 1.75E-2 4.51E-3 1.14E-3 2.88E-4 7.23E-5 1.81E-5

order - 1.96 1.98 1.98 1.99 2.00

ε0/23 1.76E-2 4.54E-3 1.15E-3 2.90E-4 7.28E-5 1.82E-5

order - 1.95 1.98 1.99 1.99 2.00

ε0/24 1.76E-2 4.54E-3 1.15E-3 2.91E-4 7.29E-5 1.83E-5

order - 1.95 1.98 1.98 2.00 1.99

Table 2.7: Temporal errors of the SIFD2 (2.3.4) for the NKGE (2.1.1) with β = 0 and
initial data (2.5.1).

ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.85E-2 4.80E-3 1.22E-3 3.07E-4 7.71E-5 1.93E-5

order - 1.95 1.98 1.99 1.99 2.00

ε0/4 3.79E-2 9.40E-3 2.35E-3 5.88E-4 1.47E-4 3.68E-5

order - 2.01 2.00 2.00 2.00 2.00

ε0/42 3.44E-1 8.76E-2 2.20E-2 5.51E-3 1.38E-3 3.45E-4

order - 1.97 1.99 2.00 2.00 2.00

ε0/43 1.47 3.69E-1 9.19E-2 2.29E-2 5.74E-3 1.43E-3

order - 1.99 2.01 2.00 2.00 2.01

ε0/44 8.59E-1 7.05E-1 2.20E-1 5.75E-2 1.45E-2 3.64E-3

order - 0.29 1.68 1.94 1.99 1.99

Table 2.8: Temporal errors of the SIFD2 (2.3.4) for the NKGE (2.1.1) with β = 1 and
initial data (2.5.1).
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ehe,τ (t = 1/εβ) τ0 = 0.05 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.85E-2 4.80E-3 1.22E-3 3.07E-4 7.71E-5 1.93E-5

order - 1.95 1.98 1.99 1.99 2.00

ε0/2 2.00E-2 4.94E-3 1.23E-3 3.09E-4 7.72E-5 1.93E-5

order - 2.02 2.01 1.99 2.00 2.00

ε0/22 3.73E-1 9.38E-2 2.35E-2 5.88E-3 1.47E-3 3.67E-4

order - 1.99 2.00 2.00 2.00 2.00

ε0/23 1.38 3.28E-1 8.05E-2 2.00E-2 5.00E-3 1.25E-3

order - 2.07 2.03 2.01 2.00 2.00

ε0/24 1.81 1.13 3.15E-1 8.04E-2 2.02E-2 5.06E-3

order - 0.68 1.84 1.97 1.99 2.00

Table 2.9: Temporal errors of the SIFD2 (2.3.4) for the NKGE (2.1.1) with β = 2 and
initial data (2.5.1).

τ ∼ ε1/2, and being labelled in bold letters) in Tables 2.3-2.4&2.8), which confirm our
error bounds.

(iii) In the long-time regime, i.e. β = 2, the second order convergence in space and
time of the FDTD methods can be observed only when 0 < h . ε and 0 < τ . ε (cf.
upper triangles above the diagonals (corresponding to h ∼ ε and τ ∼ ε, and being
labelled in bold letters) in Tables 2.5-2.6&2.9), which again confirm our error bounds.

In summary, our numerical results confirm our rigorous error bounds and show that
they are sharp.

For the above FDTD methods, all schemes are time symmetric. The CNFD method
is fully implicit and depends on a direct solver or an iterative solver which is quite time-
consuming. Thus, the CNFD method is usually not adopted in practical computation
especially in high dimensions. However, the other FDTD methods naturally suffer
from stability problems. The four FDTD methods share the same spatial/temporal
resolution capacity for the NKGE (2.1.1) up to the time at O(ε−β) with 0 ≤ β ≤ 2. It
is necessary to choose the time step satisfying the stability conditions for the numerical
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simulations of the SIFD1, SIFD2 and LFFD methods.

2.6 A semi-implicit fourth-order compact method
In order to improve the spatial resolution capacity of the FDTD methods, we

consider the full-discretization with the fourth-order compact finite difference (4cFD)
method [57].

2.6.1 The method and its stability

We introduce the following finite difference operator

Aunj =
(

1 + h2

12δ
2
x

)
unj = 1

12(unj−1 + 10unj + unj+1).

To simplify notations, for a function u(x, t) and a grid function un ∈ XM(n ≥ 0), we
denote for n ≥ 1,

u(x, t[n]) = u(x, tn+1) + u(x, tn−1)
2 , x ∈ Ω̄; u

[n]
j =

un+1
j + un−1

j

2 , j = 0, 1, · · · ,M.

A fourth-order approximation is implemented by replacing the central difference
operator δ2

x with (1 − h2

12δ
2
x)δ2

x, which requires a five-point stencil. In order to obtain
a compact three-point stencil, (1− h2

12δ
2
x)δ2

x is approximated by (1 + h2

12δ
2
x)−1δ2

x [92, 98,
103, 111, 155].

We consider the following semi-implicit fourth-order compact finite difference (4cFD)
method:

δ2
t u

n
j −A−1δ2

xu
[n]
j + u

[n]
j + ε2(unj )3 = 0, j = 0, 1, · · · ,M − 1, n ≥ 1. (2.6.1)

The initial and boundary conditions in (2.1.1) are discretized as

un+1
0 = un+1

M , un+1
−1 = un+1

M−1, n ≥ 0; u0
j = φ(xj), j = 0, 1, · · · ,M, (2.6.2)

where the first step u1 is updated by the initial data and Taylor expansion as

u1
j = φ(xj) + τγ(xj) + τ 2

2
[
φ′′(xj)− φ(xj)− εp (φ(xj))p+1

]
, j = 0, 1, · · · ,M. (2.6.3)
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Remark 2.6.1. For the first step u1, we can also replace φ′′(xj) by A−1δ2
xφ(xj) when

it is not easy to calculate φ′′(x).

Remark 2.6.2. The other three finite difference discretizations in time mentioned in
Section 2.2 combined with the fourth-order compact finite difference discretization in
space are similar with the semi-implicit 4cFD method and we omit the details here for
brevity.

Clearly, the semi-implicit 4cFD method is time symmetric or time reversible, i.e.,
it is unchanged if interchanging n+ 1↔ n− 1 and τ ↔ −τ . The semi-implicit 4cFD
(2.6.1) can be explicitly updated in the Fourier space with O(M lnM) computational
cost per time step [5, 13].

Let T0 > 0 be a fixed constant and 0 ≤ β ≤ 2, and denote

σmax := max
0≤n≤T0ε−β/τ

‖un‖2
l∞ . (2.6.4)

By using the standard von Neumann analysis [9, 13], we have the following lemma for
the stability of the semi-implicit 4cFD method for the NKGE (2.1.1).

Lemma 2.6.1. (stability) For the semi-implicit 4cFD method applied to the NKGE
(2.1.1) up to the time t = T0/ε

β, when σmax ≤ ε−2, the scheme is unconditionally stable
for any h > 0 and τ > 0; and when σmax > ε−2, it is conditionally stable under the
stability condition

0 < τ <
2√

σmax − 1 , h > 0, 0 < ε ≤ 1. (2.6.5)

Proof. Replacing the nonlinear term by f(u) = ε2σmaxu, plugging

un−1
j =

∑
l

Ûle
2ijlπ/M , unj =

∑
l

ξlÛle
2ijlπ/M , un+1

j =
∑
l

ξ2
l Ûle

2ijlπ/M ,

into (2.6.1), with ξl the amplification factor of the lth mode in phase space, we have
the following characteristic equation

ξ2
l − 2 2− τ 2ε2σmax

2 + τ 2(1 + cλ2
l )
ξl + 1 = 0, l = −M2 , · · · , M2 − 1, (2.6.6)
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with
c = 3

3− sin2
(
πl
M

) , λl = 2
h

sin
(
πl

M

)
, µl = 2πl

b− a
. (2.6.7)

Solving the characteristic equation (2.6.6), we have ξl = θl ±
√
θ2
l − 1. The stability of

the numerical scheme amounts to

|ξl| ≤ 1 ⇐⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1. (2.6.8)

Noticing c ≥ 1 and 0 ≤ λ2
l ≤ 4

h2 , when σmax ≤ ε−2, or σmax > ε−2 with the condition
(2.6.5), we can get

τ 2(ε2σmax − 1− cλ2
l ) ≤ τ 2(ε2σmax − 1) ≤ 4 =⇒ |θl| ≤ 1, l = −M2 , · · · , M2 − 1.

The proof is completed.

Remark 2.6.3. The stability of the semi-implicit 4cFD (2.6.1) is related to σmax,
dependent on the boundedness of the l∞ norm of the numerical solution un. The error
estimates up to the previous time step could ensure the boundedness, by the inverse
inequality, and such an error estimate could be recovered at the next time step, as given
by the Theorem presented in Section 2.6.2.

2.6.2 Error estimates

According to the known results in [43, 44, 89] and references therein, we can make
the assumptions on the exact solution u of the NKGE (2.1.1) up to the time t = T0/ε

2:

(B)
u ∈ C([0, T0/ε

p];W 6,∞
p ) ∩ C2([0, T0/ε

p];W 4,∞) ∩ C4([0, T0/ε
p];W 2,∞),∥∥∥∥∥ ∂r+q

∂tr∂xq
u(x, t)

∥∥∥∥∥
L∞
. 1, 0 ≤ r ≤ 4, 0 ≤ r + q ≤ 6,

here Wm,∞
p = {u ∈ Wm,∞| ∂l

∂xl
u(a) = ∂l

∂xl
u(b), 0 ≤ l < m} for m ≥ 1.

We have the following error estimates for the semi-implict 4cFD (2.6.1) with (2.6.2)
and (2.6.3) up to the time t = T0/ε

β with 0 ≤ β ≤ 2:

Theorem 2.6.1. Under the assumption (B), there exist constants h0 > 0 and τ0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤
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h0ε
β/4, 0 < τ ≤ τ0ε

β/2 and under the stability condition (2.6.5), the following two error
estimates of the scheme (2.6.1) with (2.6.2) and (2.6.3) hold

‖en‖l2 + ‖δ+
x e

n‖l2 .
h4

εβ
+ τ 2

εβ
, ‖un‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0/ε

β

τ
. (2.6.9)

Remark 2.6.4. The above error bounds in Theorem 2.6.1 are still valid in higher
dimensions, i.e., d = 2, 3, provided the technical conditions 0 < h . εβ/4

√
Cd(h) and

0 < τ . εβ/2
√
Cd(h).

Based on the above theorem, the 4cFD method has the following spatial/temporal
resolution capacity for the NKGE (2.1.1) in the long-time regime. In fact, given an
accuracy bound δ0 > 0, the ε-scalability of the 4cFD method is:

h = O(εβ/4
√
δ0) = O(εβ/4), τ = O(εβ/2

√
δ0) = O(εβ/2), 0 < ε ≤ 1. (2.6.10)

Compared with the FDTD methods, the results can attain higher order accuracy in
space for a given mesh size or improve the spatial resolution capacity, i.e., it needs less
grid points while maintaining the same accuracy.

In order to prove Theorem 2.6.1, we first present some useful lemmas. The operator
A can be written as a matrix

A = 1
12



10 1 1
1 10 1

. . . . . .
1 1 10

 . (2.6.11)

It is easy to check that A is an (M + 1)× (M + 1) positive definite matrix, then we
can introduce a new discrete norm ‖u‖∗ =

√
(A−1u, u) for u ∈ XM . The proofs of the

following lemmas proceed in the analogous lines as in [103, 155] and we just show the
proof of Lemma 2.6.4 in detail here for brevity.

Lemma 2.6.2. For any two grid functions u, v ∈ XM , it holds

(δ+
x δ
−
x u, v) = −(δ+

x u, δ
+
x v). (2.6.12)
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Lemma 2.6.3. The operators A and A−1 are commutative with δ+
x and δ−x , i.e., for

any grid function u ∈ XM ,

δ+
xAu = Aδ+

x u, δ−xAu = Aδ−x u,

δ+
xA−1u = A−1δ+

x u, δ−xA−1u = A−1δ−x u.
(2.6.13)

Lemma 2.6.4. The discrete norms ‖ · ‖∗ and ‖ · ‖l2 are equivalent. In fact, for any
grid function u ∈ XM , it holds

‖u‖l2 ≤ ‖u‖∗ ≤
√

6
2 ‖u‖l

2 . (2.6.14)

Proof. For ∀x ∈ RM+1, x = (x0, x2, · · · , xM)T , we have

12xTAx = 10
M∑
j=0

x2
j + 2

M∑
j=1

xj−1xj + 2x0xM

= 10
M∑
j=0

x2
j +

M∑
j=1

(xj−1 + xj)2 −
M∑
j=1

(x2
j−1 + x2

j) + (x0 + xM)2 − (x2
0 + x2

M)

= 8
M∑
j=0

x2
j +

M∑
j=1

(xj−1 + xj)2 + (x0 + xM)2

≥ 8xTx
(2.6.15)

and

12xTAx = 10
M∑
j=0

x2
j + 2

M∑
j=1

xj−1xj + 2x0xM

≤ 10
M∑
j=0

x2
j +

M∑
j=1

(x2
j−1 + x2

j) + (x2
0 + x2

M)

= 12
M∑
j=0

x2
j

= 12xTx.

(2.6.16)

As we know,
λminx

Tx ≤ xTAx ≤ λmaxx
Tx, (2.6.17)
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where λmin and λmax are the minimal and maximal eigenvalues of the matrix A, respec-
tively. We take the left (right) equal if and only if x is the eigenvector of λmin(λmax).
From (2.6.15) and (2.6.16), we could obtain

2
3 ≤ λmin ≤ λmax ≤ 1.

Applying (2.6.17) to the matrix A−1, we have

‖u‖2
l2 ≤ min

λj∈σ(A−1)
λj‖u‖2

l2 ≤ ‖u‖2
∗ ≤ max

λj∈σ(A−1)
λj‖u‖2

l2 ≤
3
2‖u‖

2
l2 ,

which implies

‖u‖l2 ≤ ‖u‖∗ ≤
√

6
2 ‖u‖l

2 .

Based on the above lemmas, we will establish the error bounds in Theorem 2.6.1
by the method of mathematical induction [5, 7]. Throughout the proof, the stability
condition (2.6.5) is assumed.

Denote the local truncation error as ξn ∈ XM for 0 ≤ n ≤ T0/εβ

τ
− 1

ξ0
j := δ+

t u(xj, 0)− γ(xj)−
τ

2
[
φ′′(xj)− φ(xj)− ε2(φ(xj))3

]
, j = 0, 1, · · · ,M − 1,

ξnj := δ2
t u(xj, tn)−A−1δ2

xu(xj, t[n]) + u(xj, t[n]) + ε2u3(xj, tn), n ≥ 1,
(2.6.18)

and the error of the nonlinear term as ηn ∈ XM

ηnj := ε2
(
u3(xj, tn)− (unj )3

)
, j = 0, 1, · · · ,M, 1 ≤ n ≤ T0/ε

β

τ
− 1. (2.6.19)

We begin with the error estimates of local truncation error ξn ∈ XM .

Lemma 2.6.5. Under the assumption (B), we have

‖ξ0‖l2 + ‖δ+
x ξ

0‖l2 . τ 2, ‖ξn‖l2 . h4 + τ 2, 1 ≤ n ≤ T0/ε
β

τ
− 1. (2.6.20)
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Proof. Under the assumption (B), by applying the Taylor expansion, Young’s inequality
and Lemma 2.6.3, we have

|ξ0
j | . τ 2‖∂tttu‖L∞ . τ 2, j = 0, 1, · · · ,M − 1,

|Aξnj | . τ 2 [‖∂ttu‖L∞ + ‖∂ttttu‖L∞ + ‖∂ttxxu‖L∞ + ‖∂ttttxxu‖L∞ ]

+ h4 [‖∂xxxxu‖L∞ + ‖∂ttxxxxu‖L∞ + ‖∂xxxxxxu‖L∞ ] . h4 + τ 2, n ≥ 1,

which leads to |ξnj | . h4 + τ 2 for j = 0, 1, · · · ,M − 1, n ≥ 1. Similarly, we have
|δ+
x ξ

0
j | . τ 2 for j = 0, 1, · · · ,M − 1. These immediately imply the estimates in

(2.6.20).

Next, the error equation for the semi-implicit 4cFD (2.6.1) is

δ2
t e
n
j −A−1δ2

xe
[n]
j + e

[n]
j = ξnj − ηnj , 1 ≤ n ≤ T0/ε

β

τ
,

e0
j = 0, e1

j = τξ0
j , j = 0, 1, · · · ,M − 1.

(2.6.21)

Then, we are going to prove Theorem 2.6.1 by the method of mathematical induction.
For n = 0, (2.6.9) is trivial. For n = 1, the error function (2.6.21) and the error estimates
of the local truncation error (2.6.20) imply

‖e1‖l2 = τ‖ξ0‖l2 ≤ C1τ
3, ‖δ+

x e
1‖l2 = τ‖δ+

x ξ
0‖l2 ≤ C1τ

3.

By the triangle inequality, discrete Sobolev inequality and the assumption (B), there
exists a constant τ1 > 0 sufficiently small, when 0 < τ < τ1, we have

‖u1‖l∞ ≤ ‖u (x, t1) ‖L∞ + ‖e1‖l∞ ≤ ‖u (x, t1) ‖L∞ + ‖e1‖l2 + ‖δ+
x e

1‖l2 ≤M0 + 1,

which immediately implies (2.6.9) for n = 1.
Now assuming that (2.6.9) is valid for all 0 ≤ n ≤ m − 1 ≤ T0/εβ

τ
− 1, it needs to

prove that it is still valid when n = m. Under the assumption (B), the error of the
nonlinear term ηn for 1 ≤ n ≤ m− 1 can be controlled as

‖ηn‖l2 ≤ C2ε
2‖en‖l2 , 1 ≤ n ≤ m− 1. (2.6.22)

Define the “energy” for the error vector en ∈ XM(n ≥ 0) as

Sn = ‖δ+
t e

n‖2
l2 + 1

2
(
‖δ+

x e
n‖2
∗ + ‖δ+

x e
n+1‖2

∗

)
+ 1

2
(
‖en‖2

l2 + ‖en+1‖2
l2

)
, n ≥ 0.
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By Lemma 2.6.4, it is easy to see that

S0 = ‖δ+
t e

0‖2
l2 + 1

2‖δ
+
x e

1‖2
∗ + 1

2‖e
1‖2
l2 . τ 4.

Multiplying both sides of (2.6.21) by h
(
en+1
j − en−1

j

)
, summing up for j and using the

Young’s inequality, the inequality (2.6.22), the Lemma 2.6.2, 2.6.3 and 2.6.5, we derive

Sn − Sn−1 = h
M−1∑
j=0

(
ξnj − ηnj

) (
en+1
j − en−1

j

)
≤ τε−β

(
‖ξn‖2

l2 + ‖ηn‖2
l2

)
+ τεβ

(
‖δ+

t e
n‖2

l2 + ‖δ+
t e

n−1‖2
l2

)
. τεβ

(
Sn + Sn−1

)
+ τε−β

(
h4 + τ 2

)2
, 1 ≤ n ≤ m− 1.

(2.6.23)

Summing the above inequalities from 1 to m− 1, there exists a constant C3 > 0 such
that

Sm−1 ≤ S0 + C3τε
β
m−1∑
n=0

Sn + C3T0ε
−2p

(
h4 + τ 2

)2
. (2.6.24)

Then the discrete Gronwall’s inequality suggests that there exists a constant τ2 > 0
sufficiently small such that when 0 < τ ≤ τ2, the following holds

Sm−1 ≤
(
S0 + C3T0ε

−2β
(
h4 + τ 2

)2
)
e2C3mεpτ . ε−2β

(
h4 + τ 2

)2
. (2.6.25)

From the definition of Sm−1 and Lemma 2.6.4, we can obtain that ‖em‖2
l2 + ‖δ+

x e
m‖2

l2 ≤
C4S

m−1 when 0 < ε ≤ 1, which immediately implies

‖em‖l2 + ‖δ+
x e

m‖l2 .
h4

εβ
+ τ 2

εβ
. (2.6.26)

The first inequality in (2.6.9) is valid for n = m and it remains to estimate ‖um‖l∞ . In
fact, the discrete Sobolev inequality implies

‖em‖l∞ . ‖em‖l2 + ‖δ+
x e

m‖l2 .
h4

εβ
+ τ 2

εβ
. (2.6.27)

Thus, there exist h0 > 0 and τ3 > 0 sufficiently small such that when 0 < h ≤ h0ε
β/4

and 0 < τ ≤ τ3ε
β/2, we can obtain

‖um‖l∞ ≤ ‖u(x, tm)‖L∞ + ‖em‖l∞ ≤M0 + 1, 1 ≤ m ≤ T0/ε
β

τ
. (2.6.28)

Under the stability condition (2.6.5) and the choice of τ0 = min{τ1, τ2, τ3}, the estimates
in (2.6.9) are valid when n = m. Hence, the proof of Theorem 2.6.1 is completed by
the method of mathematical induction.
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2.6.3 Numerical results

In this section, we present the numerical results of the semi-implicit 4cFD method
for the NKGE (2.1.1) up to the time at O(ε−β) with 0 ≤ β ≤ 2. In the numerical
experiments, we take a = 0, b = 2π and choose the initial data as

φ(x) = 3
2 + cos(x) , γ(x) = sin(x), 0 ≤ x ≤ 2π. (2.6.29)

Denote unh,τ as the numerical solution at time t = tn obtained by the semi-implicit 4cFD
method with mesh size h and time step τ . The ‘exact’ solution is obtained numerically
by the exponential wave integrator Fourier pseudospectral method with a very fine
mesh size and a very small time step, e.g. he = π/256 and τe = 2× 10−5. The errors are
displayed at t = 1/εβ with β = 0 (fixed time dynamics), β = 1 (intermediate long-time
dynamics) and β = 2 (long-time dynamics), respectively. For spatial error analysis, the
time step is set as τe = 2 × 10−5 such that the temporal error can be neglected; for
temporal error analysis, we set the mesh size as he = π/256 such that the spatial error
can be ignored.

Tables 2.10-2.15 present the spatial and temporal errors for different 0 < ε ≤ 1 and
β = 0, β = 1 and β = 2, respectively. From Tables 2.10-2.15 and additional similar
numerical results not shown here for brevity, we can draw the following observations:

(i) For any fixed ε = ε0 > 0 or β = 0, the 4cFD methods are fourth-order accurate
in space and second-order accurate in time (cf. Tables 2.10&2.11 and the first rows in
Tables 2.12-2.15).

(ii) In the intermediate long-time regime, i.e., β = 1, the fourth order convergence
in space and second order convergence in time can be observed only when 0 < h . ε1/4

and 0 < τ . ε1/2 (cf. upper triangles above the diagonals (corresponding to h ∼ ε1/4

and τ ∼ ε1/2, and being labelled in bold letters) in Tables 2.12&2.13), which confirm
our error bounds.

(iii) In the long-time regime, i.e., β = 2, the fourth order convergence in space
and second order convergence in time can be observed only when 0 < h . ε1/2 and
0 < τ . ε1/2 (cf. upper triangles above the diagonals (corresponding to h ∼ ε1/2 and
τ ∼ ε1/2, and being labelled in bold letters) in Tables 2.14&2.15), which again confirm
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our error estimates. In summary, our numerical results confirm our rigorous error
estimates and show that they are sharp.

eh,τe(t = 1/εβ) h0 = π/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.50E-2 9.58E-4 6.02E-5 3.75E-6 2.37E-7

order - 3.97 3.99 4.00 3.98

ε0/2 1.02E-2 6.61E-4 4.14E-5 2.61E-6 1.65E-7

order - 3.95 4.00 3.99 3.98

ε0/22 8.89E-3 5.83E-4 3.66E-5 2.32E-6 1.45E-7

order - 3.93 3.99 3.98 4.00

ε0/23 8.51E-3 5.60E-4 3.52E-5 2.24E-6 1.38E-7

order - 3.93 3.99 3.97 4.02

Table 2.10: Spatial errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1) with
β = 0 and initial data (2.6.29).

ehe,τ (t = 1/εβ) τ0 = 0.1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.66E-2 4.32E-3 1.10E-3 2.77E-4 6.96E-5 1.74E-5

order - 1.94 1.97 1.99 1.99 2.00

ε0/21 9.53E-3 2.48E-3 6.30E-4 1.59E-4 3.98E-5 9.98E-6

order - 1.94 1.98 1.99 2.00 2.00

ε0/22 8.22E-3 2.13E-3 5.40E-4 1.36E-4 3.41E-5 8.55E-6

order - 1.95 1.98 1.99 2.00 2.00

ε0/23 7.86E-3 2.03E-3 5.16E-4 1.30E-4 3.26E-5 8.16E-6

order - 1.95 1.98 1.99 2.00 2.00

ε0/24 7.76E-3 2.01E-3 5.09E-4 1.28E-4 3.22E-5 8.06E-6

order - 1.95 1.98 1.99 1.99 2.00

Table 2.11: Temporal errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1)
with β = 0 and initial data (2.6.29).
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eh,τe(t = 1/εβ) h0 = π/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.50E-2 9.58E-4 6.02E-5 3.75E-6 2.37E-7

order - 3.97 3.99 4.00 3.98

ε0/24 8.21E-2 3.09E-3 1.41E-4 9.29E-6 5.90E-7

order - 4.73 4.45 3.92 3.98

ε0/28 4.44E-1 8.01E-2 9.17E-3 5.77E-4 3.57E-5

order - 2.47 3.13 3.99 4.01

ε0/212 4.57E-1 7.96E-1 1.20E-1 7.76E-3 5.41E-4

order - -0.80 2.73 3.95 3.84

Table 2.12: Spatial errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1) with
β = 1 and initial data (2.6.29).

ehe,τ (t = 1/εβ) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 6.02E-2 1.66E-2 4.32E-3 1.10E-3 2.77E-4 6.96E-5

order - 1.86 1.94 1.97 1.99 1.99

ε0/22 9.52E-2 2.75E-2 7.10E-3 1.79E-3 4.49E-4 1.12E-4

order - 1.79 1.95 1.99 2.00 2.00

ε0/24 4.35E-1 1.09E-1 2.69E-2 6.76E-3 1.69E-3 4.24E-4

order - 2.00 2.02 1.99 2.00 1.99

ε0/26 1.54 5.55E-1 1.49E-1 3.64E-2 9.02E-3 2.26E-3

order - 1.47 1.90 2.03 2.01 2.00

ε0/28 3.28 9.71E-1 5.28E-1 1.30E-1 3.24E-2 8.04E-3

order - 1.76 0.88 2.02 2.00 2.01

Table 2.13: Temporal errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1)
with β = 1 and initial data (2.6.29).
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eh,τe(t = 1/εβ) h0 = π/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.50E-2 9.58E-4 6.02E-5 3.75E-6 2.37E-7

order - 3.97 3.99 4.00 3.98

ε0/22 1.02E-1 7.23E-3 5.00E-4 3.21E-5 1.99E-6

order - 3.82 3.85 3.96 4.01

ε0/24 7.80E-1 6.89E-2 8.26E-3 5.05E-4 3.17E-5

order - 3.50 3.06 4.03 3.99

ε0/26 5.13E-1 5.48E-1 8.43E-2 7.49E-3 4.83E-4

order - -0.10 2.70 3.49 3.95

Table 2.14: Spatial errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1) with
β = 2 and initial data (2.6.29).

ehe,τ (t = 1/εβ) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 6.02E-2 1.66E-2 4.32E-3 1.10E-3 2.77E-4 6.96E-5

order - 1.86 1.94 1.97 1.99 1.99

ε0/2 2.23E-1 5.92E-2 1.50E-2 3.78E-3 9.46E-4 2.37E-4

order - 1.91 1.98 1.99 2.00 2.00

ε0/22 5.25E-1 1.46E-1 3.86E-2 9.85E-3 2.48E-3 6.20E-4

order - 1.85 1.92 1.97 1.99 2.00

ε0/23 1.40 4.82E-1 1.14E-1 2.80E-2 7.03E-3 1.76E-3

order - 1.54 2.08 2.03 1.99 2.00

ε0/24 3.26 1.56 4.83E-1 1.17E-1 2.95E-2 7.36E-3

order - 1.06 1.69 2.05 1.99 2.00

Table 2.15: Temporal errors of the semi-implicit 4cFD (2.6.1) for the NKGE (2.1.1)
with β = 2 and initial data (2.6.29).

2.7 A semi-implicit Fourier spectral method
In this section, we carry out the full-discretization with Fourier spectral method in

spatial discretization and rigorously prove the error bounds. We just show the numerical
52



CHAPTER 2. ERROR ESTIMATES OF FINITE DIFFERENCE METHODS

scheme and error estimate of a semi-implicit scheme, which use the semi-implicit finite
difference (2.2.3) in time combined with the Fourier spectral method in space. Other
three methods are similar and we omit the details here for brevity.

For an integer m ≥ 0, Ω = (a, b), we denote by Hm(Ω) the standard Sobolev space
with norm

‖z‖2
m =

∑
l∈Z

(1 + |µl|2)m|ẑl|2, for z(x) =
∑
l∈Z

ẑle
iµl(x−a), µl = 2πl

b− a
, (2.7.1)

where ẑl(l ∈ Z) are the Fourier transform coefficients of the function z(x) [7, 8]. For
m = 0, the space is exactly L2(Ω) and the corresponding norm is denoted as ‖ · ‖.
Furthermore, we denote by Hm

p (Ω) the space of Hm(Ω) which consists of functions with
derivatives of order up to m− 1 being (b− a)-periodic. We see that the space Hm(Ω)
with fractional m is also well-defined which consists of functions such that ‖ · ‖m is
finite [133].

2.7.1 The method and its stability

Let M be an even positive integer and define the spatial mesh size h := ∆x =
(b− a)/M , then the grid points are chosen as

xj := a+ jh, j ∈ T 0
M = {j | j = 0, 1, . . . ,M}. (2.7.2)

Define Cp(Ω) = {u ∈ C(Ω) | u(a) = u(b)} and

YM := span
{
eiµl(x−a), x ∈ Ω, l ∈ TM

}
,

TM =
{
l | l = −M2 ,−M2 + 1, . . . , M2 − 1

}
.

For any u(x) ∈ Cp(Ω) and a vector u ∈ XM , let PM : L2(Ω)→ YM be the standard L2-
projection operator onto YM , IM : Cp(Ω)→ YM or IM : XM → YM be the trigonometric
interpolation operator [133], i.e.,

(PMu)(x) =
∑
l∈TM

ûle
iµl(x−a), (IMu)(x) =

∑
l∈TM

ũle
iµl(x−a), x ∈ Ω, (2.7.3)
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where

ûl = 1
b− a

∫ b

a
u(x)e−iµl(x−a)dx, ũl = 1

M

M−1∑
j=0

uje
−iµl(xj−a), l ∈ TM , (2.7.4)

with uj interpreted as u(xj) when involved.
We apply the Fourier spectral method [77, 133] for discretizing the NKGE (2.1.1) in

space, i.e., find

uM(x, t) =
∑
l∈TM

(̂uM)l(t)e
iµl(x−a) ∈ YM , x ∈ Ω, t ≥ 0, (2.7.5)

such that

∂ttuM(x, t)− ∂xxuM(x, t) + uM(x, t) + ε2PMf(uM(x, t)) = 0, x ∈ Ω, t ≥ 0, (2.7.6)

with f(u) = u3. Denote unM(x) and (̂unM)l be the approximations of uM(x, tn) and
(̂uM)l(tn). Plugging the (2.7.5) into (2.7.6), noticing the orthogonality of the Fourier
basis functions and combining the semi-implicit finite difference (2.2.3) in temporal
discretization, we have for l ∈ TM , n ≥ 1,

(̂un+1
M )l − 2(̂unM)l + (̂un−1

M )l
τ 2 + 1 + µ2

l

2

(
(̂un+1

M )l + (̂un−1
M )l

)
+ ε2 ̂(f(unM))l = 0. (2.7.7)

Choosing u0
M (x) = (PMφ)(x), the semi-implicit finite difference Fourier spectral (FDFS)

discretization for the NKGE (2.1.1) is to update un+1
M (x) ∈ YM as

un+1
M (x) =

∑
l∈TM

(̂un+1
M )le

iµl(x−a), x ∈ Ω, n ≥ 0, (2.7.8)

where

(̂u1
M)l =

[
1− τ 2

2 (1 + µ2
l )
]
φ̂l + τ γ̂l −

ε2τ 2

2 (̂f(φ))l, l ∈ TM ,

(̂un+1
M )l = −(̂un−1

M )l + 4
2 + τ 2(1 + µ2

l )
(̂unM)l −

2ε2τ 2 ̂(f(unM))l
2 + τ 2(1 + µ2

l )
, l ∈ TM , n ≥ 1.

(2.7.9)

However, the above procedure is not suitable in practice since it is difficult to
compute the Fourier coefficients in (2.7.9). An efficient implementation is achieved by
choosing u0

M(x) as the interpolation of φ(x), i.e., u0
M = (IMφ)(x), and approximating
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the integrals in (2.7.9) by a quadrature rule on the grids. Let unj be the numerical
approximation of u(xj, tn) for j ∈ T 0

M and n ≥ 0 and denote un = (un0 , un1 , · · · , unM) ∈
RM+1. Denote u0

j = φ(xj) for j ∈ T 0
M , then the semi-implicit finite difference Fourier

pseudospectral (FDFP) method for discretizing the NKGE (2.1.1) via (2.2.3) with a
Fourier pseudospectral discretization in space is to find un+1 (n ≥ 0) as

un+1
j =

∑
l∈TM

(̃un+1)le
iµl(xj−a), j ∈ T 0

M , (2.7.10)

where

(̃u1)l =
[
1− τ 2

2 (1 + µ2
l )
]
φ̃l + τ γ̃l −

ε2τ 2

2 (̃f(φ))l, l ∈ TM ,

(̃un+1)l = −(̃un−1)l + 4
2 + τ 2(1 + µ2

l )
(̃un)l −

2ε2τ 2 ˜(f(un))l
2 + τ 2(1 + µ2

l )
, l ∈ TM , n ≥ 1.

(2.7.11)

Similar to the von Neumann stability analysis of the FDTD methods for the NKGE
(2.1.1), let T0 > 0 be a fixed constant and 0 ≤ β ≤ 2, and denote

σmax := max
0≤n≤T0ε−β/τ

‖un‖2
l∞ , (2.7.12)

then we can conclude the stability of the semi-implicit FDFP method in the following
lemma.

Lemma 2.7.1. (stability) For the semi-implicit FDFP (2.7.10)-(2.7.11) applied to the
NKGE (2.1.1) up to the time t = T0/ε

β, when σmax ≤ ε−2, the semi-implicit FDFP
(2.7.10)-(2.7.11) is unconditionally stable for any h > 0 and τ > 0; and when σmax > ε−2,
this scheme is conditionally stable under the stability condition

0 < τ <
2√

σmax − 1 , h > 0, 0 < ε ≤ 1. (2.7.13)

Proof. We only need to replace λl in (2.3.17) by µl defined in (2.7.1) and the stability
of the semi-implicit FDFP (2.7.10)-(2.7.11) follows immediately.

2.7.2 Error estimates

In order to obtain an error estimate for the semi-implicit FDFS/FDFP method, we
assume that there exists an integer m0 ≥ 1 such that the exact solution of the NKGE
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(2.1.1) up to the time Tε = T0/ε
β with β ∈ [0, 2] and T0 > 0 fixed satisfies

(C)

u(x, t) ∈ C
(
[0, Tε];Hm0+1

p

)
∩ C2

(
[0, Tε];H2

)
∩ C3

(
[0, Tε];H1

)
∩ C4

(
[0, Tε];L2

)
,

‖u(x, t)‖
L∞([0,Tε];H

m0+1
p ) . 1, ‖∂ttu(x, t)‖L∞([0,Tε];H2) . 1,

‖∂tttu(x, t)‖L∞([0,Tε];H1) . 1, ‖∂ttttu(x, t)‖L∞([0,Tε];L2) . 1.

Under the above assumption (C), let

M1 := max
ε∈(0,1]

{‖u(x, t)‖L∞([0,Tε];L∞)} . 1,

then we can establish the following error bounds for the semi-implicit FDFS (2.7.8)-
(2.7.9).

Theorem 2.7.1. Let unM(x) be the approximation obtained from the FDFS (2.7.8)-
(2.7.9). Under the assumption (C), there exist constants h0 > 0 and τ0 > 0 sufficiently
small and independent of ε such that for any 0 < ε ≤ 1, when 0 < h ≤ h0 and
0 < τ ≤ εβ/2τ0 and under the stability condition (2.7.13), we have the following error
estimates

‖u(x, tn)− unM(x)‖s . h1+m0−s + τ 2

εβ
, s = 0, 1,

‖unM(x)‖L∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε
β

τ
.

(2.7.14)

Remark 2.7.1. The FDFS (2.7.8)-(2.7.9) is a semi-discretization to the NKGE (2.1.1),
while the (2.7.10)-(2.7.11) is a full-discretization. The same error estimate in Theorem
2.7.1 holds for the FDFP (2.7.10)-(2.7.11) and the proof is quite similar to that of
Theorem 2.7.1.

Proof. For the semi-implicit FDFS method, we will prove (2.7.14) by the method of
mathematical induction and the stability condition (2.7.13) is assumed in the proof.
From the discretization of the initial data, i.e., u0

M = PMφ, we have

‖u(x, t = 0)− u0
M‖s = ‖φ− PMφ‖s . h1+m0−s,

‖u0
M(x)‖L∞ ≤ ‖PMφ− φ‖L∞ + ‖φ‖L∞ ≤ Chm0 +M1.

(2.7.15)
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Thus, there exists a constant h1 > 0 sufficiently small and independent of ε such that,
when 0 < h ≤ h1, the error bounds in (2.7.14) are valid for n = 0.

For 0 ≤ n ≤ T0ε
−β/τ , denote the “error” function

en(x) := PMu(x, tn)− unM(x) =
∑
l∈TM

ênl e
iµl(x−a), x ∈ Ω, (2.7.16)

then we have
ênl = ûl(tn)− (̂unM)l, l ∈ TM , n ≥ 0, (2.7.17)

with ûl(tn)(l ∈ TM ) are the Fourier transform coefficients of u(x, tn). Using the triangle
inequality and Parseval’s equality, we get

‖u(x, tn)− unM(x)‖s ≤ ‖u(x, tn)− PMu(x, tn)‖s + ‖en(x)‖s

. h1+m0−s + ‖en(x)‖s, s = 0, 1, 0 ≤ n ≤ T0/ε
β

τ
.

Thus, we only need to estimate ‖en(x)‖s for 0 ≤ n ≤ T0ε
−β/τ .

We begin with the local truncation errors ξn(x) ∈ YM of the scheme (2.7.8)-(2.7.9)
given as

ξn(x) =
∑
l∈TM

ξ̂nl e
iµl(x−a), (2.7.18)

with

ξ̂0
l = δ+

t ûl(0)− γ̂l + τ

2

[
(1 + µ2

l )φ̂l + ε2(̂f(φ))l
]
, l ∈ TM ,

ξ̂nl = δ2
t ûl(tn) + 1 + µ2

l

2 [ûl(tn+1) + ûl(tn−1)] + ε2(̂f(u))l(tn), l ∈ TM , n ≥ 1.
(2.7.19)

Under the assumption (C), by applying the Taylor expansion to (2.7.19), it leads to

‖ξ0‖ .
√∑
l∈TM
|ξ̂0
l |2 . τ 2‖∂tttu‖L∞([0,Tε];L2) . τ 2,

‖ξn‖ .
√∑
l∈TM
|ξ̂nl |2 . τ 2

(
‖∂ttttu‖L∞([0,Tε];L2) + ‖∂ttu‖L∞([0,Tε];H2)

)
. τ 2.

(2.7.20)

Similarly, we can also obtain ‖ξ0‖1 . τ 2‖∂tttu‖L∞([0,Tε];H1).
Next, we denote the error of the nonlinear term

ηn(x) =
∑
l∈TM

η̂nl e
iµl(x−a), (2.7.21)
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with
η̂nl = ε2

(
(̂f(u))l(tn)− ̂(f(unM))l

)
, l ∈ TM , n ≥ 1. (2.7.22)

For each l ∈ TM , subtracting (2.7.7) from (2.7.19), we obtain the equation for the “error”
function ênl as

δ2
t ê
n
l + 1 + µ2

l

2
(
ên+1
l + ên−1

l

)
= ξ̂nl − η̂nl , 1 ≤ n ≤ T0/ε

β

τ
− 1,

ê0
l = 0, ê1

l = τ ξ̂0
l , l ∈ TM .

(2.7.23)

For n = 1, the error equation (2.7.23) and the estimate (2.7.20) imply

‖e1(x)‖s = τ‖ξ0‖s . τ 3. (2.7.24)

Thus, we immediately obtain

‖u(x, t1)− u1
M(x)‖s ≤ ‖u(x, t1)− PMu(x, t1)‖s + ‖e1(x)‖s . h1+m0−s + τ 2. (2.7.25)

In view of the triangle inequality, discrete Sobolev inequality and the assumption (C),
there exist constants h2 > 0 and τ1 > 0 sufficiently small and independent of ε such
that when 0 < h ≤ h2 and 0 < τ ≤ τ1, we have

‖u1
M(x)‖L∞ ≤ 1 +M1. (2.7.26)

Therefore, the estimates in (2.7.14) are valid when n = 1.
Now we assume that (2.7.14) is valid for all 1 ≤ n ≤ m− 1 ≤ T0ε

−β/τ − 1, then we
need to show that it is still valid when n = m. Under the assumption (C), we have

‖ηn‖ =
√∑
l∈TM
|η̂nl |2 ≤ ε2‖u3(x, tn)− (unM(x))3‖

≤ 3ε2(1 +M1)2‖u(x, tn)− unM(x)‖

. ε2
(
h1+m0 + ‖en(x)‖

)
, 1 ≤ n ≤ m− 1.

(2.7.27)

Define the “energy” for the error en(x) ∈ YM(n ≥ 0) as

Sn = ‖δ+
t e

n‖2 + 1
2
(
‖en‖2

1 + ‖en+1‖2
1

)
, n ≥ 0. (2.7.28)

It is easy to see that
S0 = ‖δ+

t e
0‖2 + 1

2‖e
1‖2

1 . τ 4.

58



CHAPTER 2. ERROR ESTIMATES OF FINITE DIFFERENCE METHODS

Noticing 0 ≤ β ≤ 2, multiplying both sides of (2.7.23) by
(
ên+1
l − ên−1

l

)
, summing

up for l ∈ TM , taking the real part and using the Young’s inequality, the inequality
(2.7.27), we have

Sn − Sn−1 = Re
∑
l∈TM

(
ξ̂nl − η̂nl

) (
ên+1
l − ên−1

l

)
≤ τε−β

(
‖ξn‖2 + ‖ηn‖2

)
+ τεβ

(
‖δ+

t e
n‖2 + ‖δ+

t e
n−1‖2

)
. τεβ

(
Sn + Sn−1

)
+ τε−β

(
ε2h1+m0 + τ 2

)2
, 1 ≤ n ≤ m− 1.

(2.7.29)

Summing the above inequalities from 1 to m− 1, there exists a constant C > 0 such
that

Sm−1 ≤ S0 + Cτεβ
m−1∑
n=0

Sn + CT0ε
−2β

(
ε2h1+m0 + τ 2

)2
. (2.7.30)

By the discrete Gronwall’s inequality, there exists a constant τ2 > 0 sufficiently small
such that when 0 < τ ≤ τ2, we have

Sm−1 ≤
(
S0 + CT0ε

−2β
(
ε2h1+m0 + τ 2

)2
)
e2Cmεβτ .

(
h1+m0 + τ 2

εβ

)2

. (2.7.31)

From the definition of Sm−1, we can obtain ‖em‖2
1 . Sm−1 .

(
h1+m0 + τ 2/εβ

)2
, which

implies

‖u(x, tm)−umM(x)‖s ≤ ‖u(x, tm)−PMu(x, tm)‖s + ‖em(x)‖s . h1+m0−s + τ 2

εβ
. (2.7.32)

The inverse inequality and triangle inequality will imply that there exist constants
h3 > 0 and τ3 > 0 sufficiently small such that when 0 < h ≤ h3 and 0 < τ ≤ εβ/2τ3, we
have

‖umM(x)‖L∞ ≤ ‖u(x, tm)− umM(x)‖L∞ + ‖u(x, tm)‖L∞ ≤ 1 +M1. (2.7.33)

Thus, choosing h0 = min{h1, h2, h3} and τ0 = min{τ1, τ2, τ3}, the error bounds in
(2.7.14) are still valid when n = m. Hence, the proof of Theorem 2.7.1 is completed by
the method of mathematical induction.

From this theorem, the spatial/temporal resolution capacity of the FDFP method
for the NKGE (2.1.1) up to the time t = T0/ε

β with 0 ≤ β ≤ 2 is: h = O(1) and
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τ = O(εβ/2). In fact, given an accuracy bound δ0 > 0, the ε-scalability of the FDFP
method is:

h = O(
√
δ0) = O(1), τ = O(εβ/2

√
δ0) = O(εβ/2), 0 < ε ≤ 1.

2.7.3 Numerical results

In this subsection, the numerical results are exhibited to validate the error bounds
of the FDFP (2.7.10)-(2.7.11) for the NKGE (2.1.1) up to the time t = T0/ε

β with
0 ≤ β ≤ 2. In our numerical experiments, we choose the initial data as

φ(x) = 1
2 + cos(x) , γ(x) = 1

2 cos(x), 0 ≤ x ≤ 2π. (2.7.34)

Denote unh,τ as the numerical solution at time t = tn obtained by the semi-implicit
FDFP (2.7.10)-(2.7.11) with mesh size h and time step τ . The ‘exact’ solution u(x, t) is
obtained numerically by the time-splitting Fourier pseudospectral method with a very
fine mesh size and a very small time step, e.g. he = π/64 and τe = 10−5. The errors are
denoted as e(x, tn) = u(x, tn)− IN(unh,τ )(x). In order to quantify the numerical errors,
we measure the H1 norm of e(x, tn).

The errors are displayed at t = 1/εβ with β = 0, β = 1 and β = 2, respectively. For
spatial error analysis, the time step is set as τ = 10−4 such that the temporal error can
be neglected; for temporal error analysis, we set the mesh size as h = π/64 such that
the spatial error can be ignored. Table 2.16 shows the spatial errors under different
mesh size and Tables 2.17 - 2.19 display the temporal errors for β = 0, β = 1 and β = 2,
respectively.

From Tables 2.16 - 2.19, we can draw the following observations of the FDFP method
for the long-time dynamics of the NKGE (2.1.1):

(i) In space, the FDFP (2.7.10)-(2.7.11) is uniformly and spectrally accurate for any
0 < ε ≤ 1 and 0 ≤ β ≤ 2 (cf. each row in Table 2.16) and the spatial errors are almost
independent of ε (cf. each column in Table 2.16).

(ii) In time, for any fixed ε = ε0 > 0 and β = 0, the FDFP (2.7.10)-(2.7.11) is
second-order accurate (cf. Table 2.17 and the first rows in Tables 2.18&2.19). For
β = 1, the second order convergence in time can be observed only when 0 < τ . ε1/2

60



CHAPTER 2. ERROR ESTIMATES OF FINITE DIFFERENCE METHODS

(cf. upper triangles above the diagonals (corresponding to τ ∼ ε1/2, and being labelled
in bold letters) in Table 2.18), which confirm our error bounds. For β = 2, the second
order convergence in time can be observed only when 0 < τ . ε (cf. upper triangles
above the diagonals (corresponding to τ ∼ ε, and being labelled in bold letters) in
Table 2.19), which again confirm our error estimates. In summary, our numerical results
confirm our rigorous error estimates and show that they are sharp.

‖e(·, 1/εβ)‖1 h0 = π/2 h0/2 h0/22 h0/23

β = 0

ε0 = 1 4.87E-2 1.58E-2 1.30E-4 6.17E-8

ε0/2 8.41E-2 1.34E-2 1.28E-4 6.13E-8

ε0/22 9.44E-2 1.27E-2 1.27E-4 6.19E-8

ε0/23 9.71E-2 1.25E-2 1.27E-4 6.10E-8

β = 1

ε0 = 1 4.87E-2 1.58E-2 1.30E-4 6.17E-8

ε0/2 1.94E-1 1.93E-2 8.38E-5 1.61E-7

ε0/22 1.36E-2 1.29E-2 1.22E-4 2.60E-7

ε0/23 4.78E-2 1.92E-2 1.76E-4 5.35E-7

β = 2

ε0 = 1 4.87E-2 1.58E-2 1.30E-4 6.17E-8

ε0/2 3.43E-2 1.31E-2 1.32E-4 3.03E-7

ε0/22 1.28E-1 3.85E-3 1.28E-5 7.19E-7

ε0/23 8.30E-2 9.65E-3 6.83E-5 5.26E-6

Table 2.16: Spatial errors of the semi-implicit FDFP (2.7.10)-(2.7.11) for the NKGE
(2.1.1) with (2.7.34) for different β and ε.

2.8 Comparisons of different spatial discretizations
We adapt the finite difference discretization in time and compare different spatial

discretizations for the NKGE (2.1.1) in the long-time regime with the same initial data

φ(x) = 2
2 + cos(x) , γ(x) = 1

1 + sin2(x) , 0 ≤ x ≤ 2π. (2.8.1)
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‖e(·, 1/εβ)‖1 τ0 = 0.1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.86E-1 4.73E-2 1.19E-2 2.98E-3 7.47E-4 1.87E-4

order - 1.98 1.99 2.00 2.00 2.00

ε0/21 1.83E-1 4.67E-2 1.18E-2 2.95E-3 7.39E-4 1.85E-4

order - 1.97 1.98 2.00 2.00 2.00

ε0/22 1.82E-1 4.64E-2 1.17E-2 2.93E-3 7.34E-4 1.84E-4

order - 1.97 1.99 2.00 2.00 2.00

ε0/23 1.82E-1 4.63E-2 1.17E-2 2.93E-3 7.33E-4 1.83E-4

order - 1.97 1.98 2.00 2.00 2.00

ε0/24 1.82E-1 4.63E-2 1.17E-2 2.92E-3 7.32E-4 1.83E-4

order - 1.97 1.98 2.00 2.00 2.00

Table 2.17: Temporal errors of the semi-implicit FDFP (2.7.10)-(2.7.11) for the NKGE
(2.1.1) with β = 0 and initial data (2.7.34).

‖e(·, 1/εβ)‖1 τ0 = 0.1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.86E-1 4.73E-2 1.19E-2 2.98E-3 7.47E-4 1.87E-4

order - 1.98 1.99 2.00 2.00 2.00

ε0/22 6.13E-1 1.62E-1 4.11E-2 1.03E-2 2.58E-3 6.46E-4

order - 1.92 1.98 2.00 2.00 2.00

ε0/24 2.12 5.45E-1 1.39E-1 3.52E-2 8.83E-3 2.21E-3

order - 1.96 1.97 1.98 2.00 2.00

ε0/26 7.88 3.33 8.65E-1 2.15E-1 5.38E-2 1.34E-2

order - 1.24 1.94 2.01 2.00 2.01

ε0/28 2.04E+1 7.71 3.50 9.49E-1 2.42E-1 6.02E-2

order - 1.40 1.14 1.88 1.97 1.99

Table 2.18: Temporal errors of the semi-implicit FDFP (2.7.10)-(2.7.11) for the NKGE
(2.1.1) with β = 1 and initial data (2.7.34).
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‖e(·, 1/εβ)‖1 τ0 = 0.1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.86E-1 4.73E-2 1.19E-2 2.98E-3 7.47E-4 1.87E-4

order - 1.98 1.99 2.00 2.00 2.00

ε0/2 7.36E-1 1.96E-1 4.97E-2 1.25E-2 3.12E-3 7.82E-4

order - 1.91 1.98 1.99 2.00 2.00

ε0/22 1.88 5.16E-1 1.35E-1 3.45E-2 8.67E-3 2.17E-3

order - 1.87 1.93 1.97 1.99 2.00

ε0/23 9.68 3.61 9.20E-1 2.29E-1 5.71E-2 1.43E-2

order - 1.42 1.97 2.01 2.00 2.00

ε0/24 2.40E+1 8.71 3.70 9.85E-1 2.50E-1 6.27E-2

order - 1.46 1.24 1.91 1.98 2.00

Table 2.19: Temporal errors of the semi-implicit FDFP (2.7.10)-(2.7.11) for the NKGE
(2.1.1) with β = 2 and initial data (2.7.34).

Figure 2.2 depicts the spatial errors of the finite difference methods with different
spatial discretizations when ε = 1 for different mesh size h. Figure 2.3 shows the spatial
errors of the finite difference methods with different ε at time t = 1/ε2. Based on the
above comparisons, in view of the spatial accuracy and ε-scalability, we conclude that
the FDFP method performs much better than the FDTD and 4cFD methods for the
discretization of the NKGE (2.1.1). In particular, in the long-time regime, the FDFP
method is uniformly spectral accuracy, while the spatial errors of the FDTD and 4cFD
methods depend explicitly on the small parameter ε.

The accuracy and ε-scalability in space could be improved by using higher order
finite difference discretizations, but the spatial errors still depend on the small parameter
ε in the long-time regime. Similarly, the spatial error bounds of the finite element and
finite volume discretizations in space also depend on the parameter ε in the long-time
regime. Uniform error bounds in space for the long-time dynamics can be achieved
by the spectral method. For the spectral method, the computation of the Laplacian
operator is carried out in the Fourier space. In contrast to the finite difference, finite
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Figure 2.2: Comparison of spatial errors of different methods for the NKGE (2.1.1)
with ε = 1.
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Figure 2.3: Spatial errors of different methods for the NKGE (2.1.1) at time t = 1/ε2

with different ε.
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element and finite volume methods, the spectral approximations of the differential
operator, i.e., the Laplacian operator, are exact for all the Fourier modes [143]. From
the proofs of the error bounds for the FDTD and 4cFD methods, we can observe that
the errors of the approximations for the Laplacian operator accumulate in the long-time
regime, which result in the spatial errors depending on the small parameter ε. By using
the spectral discretization in space, the spatial errors are just from the projection and
the nonlinear term. In the long-time regime, the accumulation of the spatial errors
from the nonlinearity is independent of the small parameter ε since the strength of the
nonlinearity is at O(ε2).

In summary, the spectral method performs much better than other spatial discretiza-
tions for the long-time dynamics of the NKGE with weak nonlinearity. In order to
get uniform spatial error bounds in the long-time numerical simulations, the spectral
discretization in space is a good choice.
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Chapter 3

Error Estimates of an Exponential
Wave Integrator

In this chapter, in order to improve the temporal resolution capacity of the finite
difference methods in the long-time regime, an exponential wave integrator (EWI) is
adapted to solve the NKGE (1.4.1) with rigorous stability and convergence analysis
established up to the time t = T0/ε

β with β ∈ [0, 2] [57]. Again, for simplicity of
notations, the numerical schemes and their analysis are only presented in 1D, i.e., the
NKGE (2.1.1). Generalizations to higher dimensions are straightforward and the error
estimates remain valid with minor modifications.

3.1 Semi-discretization in time by an exponential
wave integrator

In this section, we discretize the NKGE (2.1.1) in time by the exponential wave
integrator (EWI) [9, 36, 38, 59, 73, 78, 79]. Define the operator

〈∇〉 =
√

1−∆, (3.1.1)

through its action in the Fourier space by [56, 141]:

〈∇〉z(x) =
∑
l∈Z

√
1 + |µl|2ẑleiµl(x−a), for z(x) =

∑
l∈Z

ẑle
iµl(x−a), x ∈ [a, b].

In addition, we introduce the operator 〈∇〉−1 as

〈∇〉−1z(x) =
∑
l∈Z

ẑl√
1 + |µl|2

eiµl(x−a), x ∈ [a, b].
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It is obvious that
‖〈∇〉−1z‖s = ‖z‖s−1 ≤ ‖z‖s.

We can rewrite the NKGE (2.1.1) as

∂ttu(x, t) + 〈∇〉2u(x, t) + ε2u3(x, t) = 0, x ∈ Ω = (a, b), t > 0. (3.1.2)

By using the variation-of-constant formula and noting v = ∂tu, we get the solution of
NKGE (3.1.2) near t = tn:

u(tn + s) = cos(〈∇〉s)u(tn) + 〈∇〉−1 sin(〈∇〉s)v(tn)

− ε2
∫ s

0
〈∇〉−1 sin(〈∇〉(s− θ))fn(θ)dθ,

(3.1.3)

where fn(θ) := u3(tn + θ). Taking s = ±τ in (3.1.3) and then summing them up, we
have

u(tn+1) +u(tn−1) = 2 cos(〈∇〉τ)u(tn)− ε2
∫ τ

0
〈∇〉−1 sin(〈∇〉(τ − θ)) [fn(θ) + fn(−θ)] dθ.

(3.1.4)
Then, we need to use proper quadratures to approximate the integral in (3.1.4). If

the Gautschi-type quadrature [6, 9, 61, 64, 65, 67, 73] is applied, we have the following
Gautschi-type EWI method

un+1 =


cos(〈∇〉τ)φ+ 〈∇〉−1 sin(〈∇〉τ)γ −G0, n = 0,

− un−1 + 2 cos(〈∇〉τ)un − 2Gn, n ≥ 1,
(3.1.5)

where
Gn = ε2〈∇〉−2 [1− cos(〈∇〉τ)] (un)3, n ≥ 0. (3.1.6)

Another way to approximate the integral in (3.1.4) is using the standard trapezoidal
rule, i.e., the EWI with Deuflhard-type quadrature [46, 47, 71, 165]

un+1 =


cos(〈∇〉τ)φ+ 〈∇〉−1 sin(〈∇〉τ)γ −D0, n = 0,

− un−1 + 2 cos(〈∇〉τ)un − 2Dn, n ≥ 1,
(3.1.7)

where
Dn = ε2

2 τ〈∇〉
−1 sin(〈∇〉τ)(un)3, n ≥ 0.
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3.2 The EWI-FP method and its stability
In this section, we show the numerical scheme and its analysis of the EWI with

Gautschi-type quadrature Fourier pseudospectral (EWI-FP) method. For the EWI
with Deulfhard-type quadrature Fourier pseudospectral method, the full-discretization
is similar and we omit the details here for brevity. We use the same notations for the
semi-implicit FDFP method in Chapter 2.

We want to find

uM(x, t) =
∑
l∈TM

(̂uM)l(t)e
iµl(x−a) ∈ YM , x ∈ Ω, t ≥ 0, (3.2.1)

such that

∂ttuM(x, t)− ∂xxuM(x, t) + uM(x, t) + ε2PMf(uM(x, t)) = 0, x ∈ Ω, t ≥ 0, (3.2.2)

with f(v) = v3.
Denote (̂unM)l and unM(x) be the approximations of (̂uM)l(tn) and uM(x, tn), respec-

tively. Choosing u0
M(x) = (PMφ)(x), a Gautschi-type exponential integrator Fourier

spectral (EWI-FS) method for discretizing the NKGE (2.1.1) via (3.1.5) is to update
the numerical approximation un+1

M (x) ∈ YM(n ≥ 0) as

un+1
M (x) =

∑
l∈TM

(̂un+1
M )le

iµl(x−a), x ∈ Ω, n ≥ 0, (3.2.3)

where

(̂u1
M)l = plφ̂l + qlγ̂l + rl(̂f(φ))l, l ∈ TM ,

(̂un+1
M )l = −(̂un−1

M )l + 2pl(̂unM)l + 2rl ̂(f(unM))l, l ∈ TM , n ≥ 1,
(3.2.4)

with
ζl =

√
1 + µ2

l , (3.2.5)

and the coefficients defined as

pl = cos(τζl), ql = sin(τζl)
ζl

, rl = ε2(cos(τζl)− 1)
ζ2
l

. (3.2.6)

Similar to the FDFS method, due to the difficulty of computing the integrals in
(3.2.4), we need to choose u0

M(x) as the interpolation of φ(x), i.e., u0
M(x) = (IMφ)(x),
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and approximate the integrals in (3.2.4) by a quadrature rule on the grids. Let unj be the
approximation of u(xj, tn) and denote u0

j = φ(xj)(j = 0, 1, · · · ,M). For n = 0, 1, · · · , a
Gautschi-type exponential integrator Fourier pseudospectral (EWI-FP) discretization
for the NKGE (2.1.1) is

un+1
j =

∑
l∈TM

ũn+1
l eiµl(xj−a), j = 0, 1, · · · ,M, (3.2.7)

where

ũ1
l = plφ̃l + qlγ̃l + rl(̃f(φ))l, l ∈ TM ,

ũn+1
l = −ũn−1

l + 2plũnl + 2rl ˜(f(un))l, l ∈ TM , n ≥ 1,
(3.2.8)

with the coefficients pl, ql and rl are given in (3.2.6).
The EWI-FP (3.2.7)-(3.2.8) is explicit, time symmetric and easy to extend to 2D and

3D. The memory cost is O(M) and the computational cost per time step is O(M lnM).
Let T0 > 0 be a fixed constant and 0 ≤ β ≤ 2, and denote

σmax := max
0≤n≤T0ε−β/τ

‖un‖2
l∞ , (3.2.9)

where ‖u‖l∞ = max
0≤j≤M−1

|uj| for u ∈ XM . According to the standard von Neumann
stability analysis, we can conclude the stability results of the EWI-FP (3.2.7)-(3.2.8)
for the NKGE (2.1.1) in the following lemma.

Lemma 3.2.1. (stability) For any 0 < ε ≤ 1, the EWI-FP (3.2.7)-(3.2.8) is condition-
ally stable under the stability condition

0 < τ ≤ 2h√
π2 + h2(1 + σmax)

, h > 0. (3.2.10)

Proof. Replacing the nonlinear term by f(u) = ε2σmaxu and plugging

un−1
j =

∑
l∈TM

Ûle
2ijlπ/M , unj =

∑
l∈TM

ξlÛle
2ijlπ/M , un+1

j =
∑
l∈TM

ξ2
l Ûle

2ijlπ/M ,

into (3.2.8) with ξl the amplification factor of the lth mode in phase space, we obtain
the following characteristic equation

ξ2
l − 2θlξl + 1 = 0, l ∈ TM , (3.2.11)
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with

θl = cos(τζl) + ε2σmax(cos(τζl)− 1)
ζ2
l

= 1−
(

2ε2σmax

ζ2
l

+ 2
)

sin2
(
τζl
2

)
, l ∈ TM .

Since the characteristic equation (3.2.11) implies ξl = θl ±
√
θ2
l − 1, it indicates that

the stability of the EWI-FP (3.2.7)-(3.2.8) amounts to

|ξl| ≤ 1 ⇐⇒ |θl| ≤ 1, l ∈ TM . (3.2.12)

Noticing sin(x) ≤ x for x ≥ 0, under the condition (3.2.10), we have

0 <
(

2ε2σmax

ζ2
l

+ 2
)

sin2
(
τζl
2

)
≤
(

2ε2σmax

ζ2
l

+ 2
)
·
(
τζl
2

)2

≤ 2, (3.2.13)

which immediately leads to the conclusion.

Remark 3.2.1. The stability of the EWI-FP (3.2.7)-(3.2.8) is related to σmax, dependent
on the boundedness of the l∞ norm of the numerical solution un at the previous time
step. The error estimates up to the previous time step could ensure such a bound in the
l∞ norm, by making use of the discrete Sobolev inequality, and such an error estimate
could be recovered at the next time step, as given by the Theorem 3.3.1 presented in
Section 3.3.

3.3 Error estimates for EWI-FP
In this section, we will rigorously establish the uniform error bounds of the EWI-FS

(3.2.3)-(3.2.4)/EWI-FP (3.2.7)-(3.2.8) for the NKGE (2.1.1) up to the time t = T0/ε
β

with 0 ≤ β ≤ 2. Motivated by the results in [43, 88, 89, 118] and references therein, we
assume that there exists an integer m0 ≥ 1 such that the exact solution u(x, t) of the
NKGE (2.1.1) up to the time Tε = T0/ε

β with β ∈ [0, 2] and T0 > 0 fixed satisfies

(D)

u(x, t) ∈ L∞
(
[0, Tε];L∞ ∩Hm0+1

p

)
, ∂tu(x, t) ∈ L∞

(
[0, Tε];W 1,4

)
,

∂ttu(x, t) ∈ L∞
(
[0, Tε];H1

)
,

‖u(x, t)‖
L∞([0,Tε];L∞∩H

m0+1
p ) . 1, ‖∂tu(x, t)‖L∞([0,Tε];W 1,4) . 1,

‖∂ttu(x, t)‖L∞([0,Tε];H1) . 1.
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Under the assumption (D), we let

M1 := max
ε∈(0,1]

{‖u(x, t)‖L∞([0,Tε];L∞) + ‖∂tu(x, t)‖L∞([0,Tε];L∞)} . 1,

M2 := sup
v 6=0,|v|≤1+M1

|v|2 . 1.

Assuming

τ ≤ min

1
8 ,

πh

3
√
π2 + h2(1 +M2)

 , (3.3.1)

we can establish the following error bounds of the EWI-FS (3.2.3)-(3.2.4).

Theorem 3.3.1. Let unM(x) be the approximation obtained from the EWI-FS (3.2.3)
-(3.2.4), under the stability condition (3.2.10), the assumptions (D) and (3.3.1), there
exist constants h0 > 0 and τ0 > 0 sufficiently small and independent of ε, such that for
any 0 < ε ≤ 1 and 0 ≤ β ≤ 2, when 0 < h ≤ h0, 0 < τ ≤ τ0, we have

‖u(x, tn)− unM(x)‖s . h1+m0−s + ε2−βτ 2, s = 0, 1,

‖unM(x)‖L∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε
β

τ
.

(3.3.2)

Remark 3.3.1. (1). The EWI-FS (3.2.3)-(3.2.4) is a semi-discretization to the NKGE
(2.1.1), while the EWI-FP (3.2.7)-(3.2.8) is a full-discretization. The error estimates
for the EWI-FP (3.2.7)-(3.2.8) are quite similar as those in Theorem 3.3.1 and we omit
the details here for brevity.

(2). In 2D/3D case, Theorem 3.3.1 is still valid under the technical condition
τ .

√
Cd(h), where Cd(h) = 1/| ln h| for d = 2; and resp., Cd(h) = h1/2 for d = 3.

These results are very useful in practical computations on how to select mesh size
and time step such that the numerical results are trustable. The error bounds indicate
that the ε-scalability of the EWI-FS(3.2.3)-(3.2.4)/EWI-FP (3.2.7)-(3.2.8) up to the
time at O(ε−β) is uniform in terms of ε and should be taken as:

h = O(1), τ = O(1), for any 0 < ε ≤ 1 and 0 ≤ β ≤ 2.

Proof of Theorem 3.3.1. The key points of the proof are to deal with the nonlinearity
and overcome the main difficulty for obtaining the uniform bound of the solution unM (x),
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i.e., ‖unM(x)‖L∞ . 1. Since the EWI-FS (3.2.3)-(3.2.4) is explicit and the nonlinear
term only depends on the previous steps, we adapt the energy method with suitable
“energy” combined with the method of mathematical induction, which is widely used in
the literature [4, 9, 10, 11]. The nonlinear part is controlled by the L∞ norm of the
error functions from previous steps by means of the discrete Sobolev inequality and
inverse inequality.

The exact solution of the NKGE (2.1.1) can be written as

u(x, t) =
∑
l∈Z

ûl(t)eiµl(x−a), x ∈ Ω, t ≥ 0, (3.3.3)

where ûl(t)(l ∈ Z) are the Fourier transform coefficients of u(x, t). Similar to the
derivation of (3.1.3)-(3.1.4), for l ∈ Z, we have

ûl(τ) = φ̂l cos(τζl) + γ̂l
sin(τζl)
ζl

− ε2

ζl

∫ τ

0
F̂ 0
l (ω) sin(ζl(τ − ω))dω, (3.3.4)

and for n ≥ 1,

ûl(tn+1) = −ûl(tn−1) + 2 cos(τζl)ûl(tn)− ε2

ζl

∫ τ

0
(̂F n

+)l(ω) sin(ζl(τ − ω))dω, (3.3.5)

where
(̂F n

+)l(ω) = F̂ n
l (−ω) + F̂ n

l (ω), F̂ n
l (ω) = (̂f(u))l(tn + ω). (3.3.6)

For 0 ≤ n ≤ T0ε
−β/τ , denote the “error” function

ηn(x) := PMu(x, tn)− unM(x) =
∑
l∈TM

η̂nl e
iµl(x−a), x ∈ Ω, (3.3.7)

with η̂nl = ûl(tn)− (̂unM)l, l ∈ TM . By the assumption (D) and triangle inequality, we
have

‖u(x, tn)− unM(x)‖s ≤ ‖u(x, tn)− PMu(x, tn)‖s + ‖ηn(x)‖s . h1+m0−s + ‖ηn(x)‖s.

Thus, we only need to estimate ‖ηn(x)‖s for 0 ≤ n ≤ T0ε
−β/τ .

Now, we proceed to prove the error bounds in (3.3.2) by employing the energy
method combined with the method of mathematical induction in the following three
main steps.
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Step 1. The growth of the “error” function. Define the local truncation errors
ξn+1(x) for 0 ≤ n ≤ T0ε

−β/τ − 1 as

ξn+1(x) =
∑
l∈TM

ξ̂n+1
l eiµl(x−a), (3.3.8)

with

ξ̂1
l := ûl(τ)− plφ̂l − qlγ̂l − rl(̂f(φ))l = −ε

2

ζl

∫ τ

0
Ŵ 1
l (ω) sin(ζl(τ − ω))dω,

ξ̂n+1
l := ûl(tn+1) + ûl(tn−1)− 2plûl(tn)− 2rl(̂f(u))l(tn),

= −ε
2

ζl

∫ τ

0
Ŵ n+1
l (ω) sin(ζl(τ − ω))dω, 1 ≤ n ≤ T0ε

−β/τ − 1,

where

Ŵ n+1
l (ω) =


F̂ 0
l (ω)− (̂f(φ))l, l ∈ TM , n = 0,

(̂F n
+)l(ω)− 2F̂ n

l (0), l ∈ TM , 1 ≤ n ≤ T0ε
−β/τ − 1,

(3.3.9)

and the coefficients pl, ql and rl are given in (3.2.6).
For each l ∈ TM , subtracting (3.2.4) from (3.3.4)-(3.3.5), we obtain the equation for

the “error” function η̂n+1
l as

η̂n+1
l = −η̂n−1

l + 2 cos(τζl)η̂nl + ξ̂n+1
l + χ̂n+1

l , 1 ≤ n ≤ T0ε
−β/τ − 1,

η̂0
l = 0, η̂1

l = ξ̂1
l ,

(3.3.10)

and the nonlinear term errors χn+1(x) ∈ YM with

χ̂n+1
l := 2ε2(1− cos(τζl))

ζ2
l

V̂ n+1
l , V̂ n+1

l = ̂(f(unM))l − F̂
n
l (0). (3.3.11)

Step 2. Estimates for the cases n = 0 and n = 1. From the discretization of the
initial data, i.e., u0

M(x) = PMφ(x), we have

‖u(x, t = 0)− u0
M(x)‖s = ‖φ− PMφ‖s . h1+m0−s, ‖u0

M(x)‖L∞ ≤ Chm0 +M1.

Therefore, there exists a constant h1 > 0 sufficiently small and independent of ε such
that, when 0 < h ≤ h1, the error estimates in (3.3.2) are valid for n = 0.
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Since the calculation for the first step (n = 1) is different from others, we investigate
the first step separately. Under the assumption (D), we get

‖φ3 − u3(·, ω)‖2 =
∫ b

a
|u3(x, 0)− u3(x, ω)|2dx

≤ 9M2
2

∫ b

a
|u(x, 0)− u(x, ω)|2dx

= 9M2
2

∫ b

a

∣∣∣∣∫ ω

0
∂su(x, s)ds

∣∣∣∣2 dx
≤ 9M2

2

∫ b

a
ω
∫ ω

0
|∂su(x, s)|2dsdx

≤ 9M2
2ω

2‖∂tu(·, t)‖2
L∞([0,Tε];L2)

. ω2, 0 ≤ ω ≤ τ.

(3.3.12)

Similarly, we have ‖φ3 − u3(·, ω)‖2
1 . ω2, 0 ≤ ω ≤ τ.

Under the condition (3.3.1), we get

0 < τζl ≤
π

3 ,
1
2 ≤ cos(ζlτ) < 1, 0 ≤ sin(ζl(τ − ω)) ≤ sin(ζlτ) < 1, 0 ≤ ω ≤ τ.

Noticing η̂1
l = ξ̂1

l and the definition of ξ̂1
l , by the Hölder inequality, we obtain

∣∣∣η̂1
l

∣∣∣2 =
∣∣∣∣∣ε2

ζl

∫ τ

0
Ŵ 1
l (ω) sin(ζl(τ − ω))dω

∣∣∣∣∣
2

≤ ε4
∫ τ

0
sin(ζl(τ − ω))dω ·

∫ τ

0

∣∣∣Ŵ 1
l (ω)

∣∣∣2 sin(ζl(τ − ω))dω

≤ τε4
[
1− cos(ζlτ)

]sin(ζlτ)
ζlτ

∫ τ

0

∣∣∣Ŵ 1
l (ω)

∣∣∣2 dω.
≤ 1

2τε
4
∫ τ

0

∣∣∣Ŵ 1
l (ω)

∣∣∣2 dω.

(3.3.13)

Multiplying both sides of the above equalities by (1 + µ2
l )s and then summing up for

l ∈ TM , the Parseval’s identity equality, triangle inequality, (3.3.9) and (3.3.12) lead to

‖η1(x)‖2
s ≤

1
2τε

4 ∑
l∈TM

(
1 + µ2

l

)s ∫ τ

0

∣∣∣Ŵ 1
l (ω)

∣∣∣2 dω
= 1

2τε
4 ∑
l∈TM

(
1 + µ2

l

)s ∫ τ

0

∣∣∣∣(̂f(u))l(ω)− (̂f(φ))l
∣∣∣∣2 dω

. τε4
∫ τ

0
‖u3(·, ω)− φ3‖2

sdω

. τ 4ε4, s = 0, 1.
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Thus, we immediately can obtain

‖u(x, t1)− u1
M(x)‖s ≤ ‖u(x, t1)− PMu(x, t1)‖s + ‖η1(x)‖s . h1+m0−s + ε2τ 2.

By the triangle inequality and inverse inequality, there exist h2 > 0 and τ1 > 0
sufficiently small such that when 0 < h ≤ h2 and 0 < τ ≤ τ1, we have

‖u1
M(x)‖L∞ ≤ 1 +M1. (3.3.14)

Therefore, the estimates in (3.3.2) are valid when n = 1.
Step 3. Estimates for the cases 2 ≤ n ≤ T0ε

−β/τ . Assume that the estimates in
(3.3.2) are valid for all 1 ≤ n ≤ m ≤ T0ε

−β/τ − 1, then we need to prove that they are
still valid when n = m+ 1.

On the one hand, under the assumption (D), by the Hölder inequality, we have

‖2u3(·, tn)− u3(·, tn − ω)− u3(·, tn + ω)‖2

≤
∫ b

a

∣∣∣∣∫ ω

0

∫ s

−s
∂θθu

3(x, tn + θ)dθds
∣∣∣∣2 dx

≤
∫ b

a
ω
∫ ω

0
2s
∫ s

−s

∣∣∣∂θθu3(x, tn + θ)
∣∣∣2 dθdsdx

≤
∫ ω

0
2ωs

∫ s

−s

(
9M2

2‖∂θθu(·, tn + θ)‖2 + 36M2‖∂θu(·, tn + θ)‖4
L4

)
dθds

. ω4
[
‖∂tu(·, t)‖4

L∞([0,Tε];L4) + ‖∂ttu(·, t)‖2
L∞([0,Tε];L2)

]
. τ 4, 0 ≤ ω ≤ τ.

(3.3.15)

Similarly, we have ‖u3(·, tn − ω) + u3(·, tn + ω)− 2u3(·, tn)‖2
1 . τ 4, 0 ≤ ω ≤ τ .

On the other hand, noticing the definitions of ξ̂n+1
l and χ̂n+1

l , similar to (3.3.13), we
have∣∣∣ξ̂n+1

l

∣∣∣2 =
∣∣∣∣∣ε2

ζl

∫ τ

0
Ŵ n+1
l (ω) sin(ζl(τ − ω))dω

∣∣∣∣∣
2

. τε4
[
1− cos(τζl)

] ∫ τ

0

∣∣∣Ŵ n+1
l (ω)

∣∣∣2 dω, l ∈ TM , 1 ≤ n ≤ m,

(3.3.16)

|χ̂n+1
l |2 =

∣∣∣∣∣2ε2(1− cos(τζl))
ζ2
l

V̂ n+1
l

∣∣∣∣∣
2

=
∣∣∣∣∣2ε2

ζl
V̂ n+1
l

∫ τ

0
sin(ζl(τ − ω))dω

∣∣∣∣∣
2

. τ 2ε4
[
1− cos(τζl)

] ∣∣∣V̂ n+1
l

∣∣∣2 , l ∈ TM , 1 ≤ n ≤ m.

(3.3.17)
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Multiplying the above inequalities with (1 + µ2
l )s(s = 0, 1) , dividing them by

1 − cos(τζl) and then summing up l ∈ TM , for 1 ≤ n ≤ m, the Parseval’s identity
equality, triangle inequality,(3.3.9), (3.3.11) and (3.3.15) lead to

∑
l∈TM

(1 + µ2
l )s

1− cos(τζl)
∣∣∣ξ̂n+1
l

∣∣∣2
. τε4 ∑

l∈TM

(
1 + µ2

l

)s ∫ τ

0

∣∣∣Ŵ n+1
l (ω)

∣∣∣2 dω
. τε4

∫ τ

0
‖u3(·, tn − ω) + u3(·, tn + ω)− 2u3(·, tn)‖2

sdω

. τ 6ε4,

(3.3.18)

∑
l∈TM

(1 + µ2
l )s

1− cos(τζl)
∣∣∣χ̂n+1
l

∣∣∣2 . τ 2ε4 ∑
l∈TM

(1 + µ2
l )s
∣∣∣V̂ n+1
l

∣∣∣2
. τ 2ε4‖u3(·, tn)− (unM)3‖2

s

. τ 2ε4M2
2‖u(·, tn)− unM‖2

s

. τ 2ε4
(
h1+m0−s + ε2−βτ 2

)2
.

(3.3.19)

Define the “energy” function as

En =
∑
l∈TM
Ênl , Ênl = (1 + µ2

l )s
[
|η̂nl |

2 +
∣∣∣η̂n+1
l

∣∣∣2 + cos(τζl)
1− cos(τζl)

∣∣∣η̂n+1
l − η̂nl

∣∣∣2] . (3.3.20)

For n = 0, we have

E0 =
∑
l∈TM

(1 + µ2
l )s

1− cos(τζl)
∣∣∣η̂1
l

∣∣∣2 ≤ τε4 ∑
l∈TM

(
1 + µ2

l

)s ∫ τ

0

∣∣∣Ŵ 1
l (ω)

∣∣∣2 dω . τ 4ε4.

Noticing 0 ≤ β ≤ 2, multiplying both sides of (3.3.10) by (1 + µ2
l )
s
(
η̂n+1
l − η̂n−1

l

)
,

dividing it by 1 − cos(τζl) and summing up for l ∈ TM , the Young’s inequality and
(3.3.16)-(3.3.19) result in

En − En−1 ≤
∑
l∈TM

(1 + µ2
l )s

1− cos(τζl)
∣∣∣ξ̂n+1
l + χ̂n+1

l

∣∣∣ · ∣∣∣η̂n+1
l − η̂n−1

l

∣∣∣
≤
∑
l∈TM

(1 + µ2
l )s

1− cos(τζl)

(
2εβτ

∣∣∣η̂n+1
l − η̂nl

∣∣∣2 + 2εβτ
∣∣∣η̂nl − η̂n−1

l

∣∣∣2
+ 1
εβτ

∣∣∣ξ̂n+1
l + χ̂n+1

l

∣∣∣2)
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≤
∑
l∈TM

4εβτ cos(τζl)
1− cos(τζl)

(1 + µ2
l )s
(∣∣∣η̂n+1

l − η̂nl
∣∣∣2 +

∣∣∣η̂nl − η̂n−1
l

∣∣∣2)

+
∑
l∈TM

2(1 + µ2
l )s

εβτ(1− cos(τζl))

(∣∣∣ξ̂n+1
l

∣∣∣2 +
∣∣∣χ̂n+1
l

∣∣∣2)

≤ 4εβτ
(
En + En−1

)
+ Cε4−βτ

(
h1+m0−s + τ 2

)2
, 1 ≤ n ≤ m,

where the constant C is independent of h, τ and ε. Summing the above inequality for
n = 1, 2, · · · ,m, and noticing the condition τ ≤ 1/8, we get

Em . E0 + εβτ
m−1∑
n=0
En + T0ε

4−2β
(
h1+m0−s + τ 2

)2
, 1 ≤ m ≤ T0ε

−β/τ − 1. (3.3.21)

Hence, the Gronwall’s inequality suggests that there exists a constant τ2 > 0 sufficiently
small, such that when 0 ≤ τ ≤ τ2, the following holds for 1 ≤ m ≤ T0ε

−β/τ − 1,

Em . E0 + ε4−2β
(
h1+m0−s + τ 2

)2
. ε4−2β

(
h1+m0−s + τ 2

)2
. (3.3.22)

Recalling the definition of Em in (3.3.20), for 1 ≤ m ≤ T0ε
−β/τ − 1, we can obtain the

error estimate

‖ηm+1‖2
s =

∑
l∈TM

(1 + µ2
l )s
∣∣∣η̂m+1
l

∣∣∣2 ≤ Em . ε4−2β
(
h1+m0−s + τ 2

)2
,

by combining (3.3.20) with the Parseval’s identity equality and (3.3.22), which immedi-
ately concludes that the first inequality in (3.3.2) is valid for n = m+ 1.

Lastly, we have to prove the error estimate of ‖um+1
M (x)‖L∞ for 1 ≤ m ≤ T0ε

−β/τ−1.
In fact, the inverse inequality and triangle inequality will imply that there exist h3 > 0
and τ3 > 0 sufficiently small such that when 0 < h ≤ h3 and 0 < τ ≤ τ3, we have

‖um+1
M (x)‖L∞ ≤ ‖u(x, tm+1)− um+1

M (x)‖L∞ + ‖u(x, tm+1)‖L∞ ≤ 1 +M1.

Overall, under the choice of h0 = min{h1, h2, h3} and τ0 = min{τ1, τ2, τ3}, the proof of
Theorem 3.3.1 is completed by the method of mathematical induction. �

3.4 Extensions to other spatial discretizations
For comparisons, we also introduce the exponential wave integrator finite difference

(EWI-FD)/exponential wave integrator fourth-order compact finite difference (EWI-
4cFD) method which is based on applying finite difference/fourth-order compact finite
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difference to spatial discretization followed by the Gautschi-type exponential wave
integrator in temporal discretization [9, 57].

Let uj(t) be the approximation of u(xj, t) for j = 0, 1, · · · ,M . Applying the finite
difference to discretize the NKGE (2.1.1) in space, we get

d2

dt2uj(t)− δ
2
xuj(t) + uj(t) + ε2f(uj(t)) = 0, j = 0, 1, · · · ,M − 1, (3.4.1)

with u0(t) = uM(t) and u−1(t) = uM−1(t). Let U(t) = (u0(t), u1(t), · · · , uM−1(t))T and
F (U(t)) = (f(u0(t)), f(u1(t)), · · · , f(uM−1(t)))T , then the above ODEs (3.4.1) can be
rewritten as

U ′′(t) +BU(t) + ε2F (U(t)) = 0, t ≥ 0, (3.4.2)

where B is an M ×M matrix independent of t. Since the matrix B is normal, there
exists an orthogonal matrix P and a diagonal matrix Λ such that

B = P−1ΛP.

Let V (t) = PU(t) and multiply P to both sides of (3.4.2), we obtain

V ′′(t) + ΛV (t) + ε2PF (U(t)) = 0, t ≥ 0. (3.4.3)

We can also use the Gautschi-type exponential wave integrator to discretize the above
second-order ODEs. We omit the details here for brevity and the scheme of the EWI-FD
is the same as just replacing µl in (3.2.5) by λl defined in (2.3.15).

For the EWI-4cFD method, the idea is the same as that of the EWI-FD method
and replace the matrix B in (3.4.2) by the normal matrix A−1 defined in (2.6.11). By
the definition of the fourth-order compact operator, the scheme of the EWI-4cFD can
be obtained straightforwardly by replacing µl in (3.2.5) by

νl = λl√
1− h2λ2

l /12
. (3.4.4)

Similar to the stability analysis of the EWI-FP method, we have the following
stability results for the EWI-FD and EWI-4cFD methods.
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Lemma 3.4.1. (stability) For any 0 < ε ≤ 1, the EWI-FD is conditionally stable under
the stability condition

0 < τ ≤ 2h√
4 + h2(1 + σmax)

, h > 0, (3.4.5)

and the EWI-4cFD method is conditionally stable under the stability condition

0 < τ ≤ 2h√
6 + h2(1 + σmax)

, h > 0. (3.4.6)

Proof. We only need to replace µl in (3.2.5) by λl defined in (2.3.15) for the EWI-FD
method and νl defined in (3.4.4) for the EWI-4cFD and the stability claim follows
immediately.

Assume that the exact solution of the NKGE (2.1.1) up to the time Tε = T0/ε
2

satisfies

(E)

u(x, t) ∈ C2 ([0, Tε];L∞) ∩ C1 ([0, Tε];L∞) ∩ C
(
[0, Tε];W 6,∞

p

)
,

‖u(x, t)‖L∞([0,Tε];L∞) + ‖∂xxxxxxu(x, t)‖L∞([0,Tε];L∞) . 1,

‖∂tu(x, t)‖L∞([0,Tε];L∞) . 1, ‖∂ttu(x, t)‖L∞([0,Tε];L∞) . 1,

then we have the following error estimates for the EWI-FD and EWI-4cFD methods:

Theorem 3.4.1. Let unj be the approximation obtained from the EWI-FD, under the
stability condition (3.4.5), the assumptions (E) and (3.3.1), there exist constants h0 > 0
and τ0 > 0 sufficiently small and independent of ε, such that for any 0 < ε ≤ 1 and
0 ≤ β ≤ 2, when 0 < h ≤ h0, 0 < τ ≤ τ0, we have

‖en‖l2 .
h2

εβ
+ ε2−βτ 2, ‖un‖l∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε

β

τ
, (3.4.7)

where

en = (en0 , en1 , · · · , enM)T , with enj = u(xj, tn)− unj , 0 ≤ j ≤M, n ≥ 0.
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Theorem 3.4.2. Let unj be the approximation obtained from the EWI-4cFD, under the
stability condition (3.4.6), the assumptions (E) and (3.3.1), there exist constants h0 > 0
and τ0 > 0 sufficiently small and independent of ε, such that for any 0 < ε ≤ 1 and
0 ≤ β ≤ 2, when 0 < h ≤ h0, 0 < τ ≤ τ0, we have

‖en‖l2 .
h4

εβ
+ ε2−βτ 2, ‖un‖l∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε

β

τ
. (3.4.8)

Proof. Follow the analogous proof to Theorem 3.3.1 and we omit the details here for
brevity.

3.5 Numerical results and comparisons
In this section, we present the numerical results of the above EWI methods for

the NKGE (2.1.1) to support our error estimates and compare the results of different
spatial discretizaitons. We begin with the numerical test for the EWI-FP (3.2.7)-(3.2.8).
In our numerical experiments for the EWI-FP method, we choose the initial data as

φ(x) = 1
2 + cos2(x) and γ(x) = sin(x), x ∈ (0, 2π). (3.5.1)

The ‘exact’ solution u(x, t) is computed by the time-splitting Fourier pseudospectral
method with a very fine mesh size he = π/32 and a very small time step τe = 5× 10−4.
Denote unh,τ as the numerical solution at t = tn by the EWI-FP (3.2.7)-(3.2.8) with
mesh size h and time step τ . The errors are denoted as e(x, tn) ∈ YM with e(x, tn) =
u(x, tn)− IM(unh,τ )(x). In order to quantify the numerical results, we measure the H1

norm of e(·, tn).
The numerical computation is carried out on a time interval [0, T0/ε

β] with 0 ≤ β ≤ 2
and T0 > 0 fixed. Here, we also study the following three cases with respect to different
β:

Case I. Fixed time dynamics up to the time at O(1), i.e., β = 0;
Case II. Intermediate long-time dynamics up to the time at O(ε−1), i.e., β = 1;
Case III. Long-time dynamics up to the time at O(ε−2), i.e., β = 2.
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‖e(·, 1/εβ)‖1 h0 = π/2 h0/2 h0/22 h0/23

β = 0

ε0 = 1 4.05E-2 8.80E-3 1.53E-4 7.19E-8

ε0/2 4.78E-2 8.48E-3 1.58E-4 2.37E-8

ε0/22 5.17E-2 8.36E-3 1.59E-4 1.15E-8

ε0/23 5.28E-2 8.33E-3 1.59E-4 1.00E-8

ε0/24 5.31E-2 8.32E-3 1.59E-4 9.89E-9

β = 1

ε0 = 1 4.05E-2 8.80E-3 1.53E-4 7.19E-8

ε0/2 3.98E-2 6.27E-3 5.61E-5 4.19E-8

ε0/22 1.57E-2 8.14E-3 1.33E-4 4.03E-8

ε0/23 1.02E-2 3.17E-3 2.82E-5 1.08E-8

ε0/24 6.08E-3 3.44E-3 1.41E-5 1.98E-8

β = 2

ε0 = 1 4.05E-2 8.80E-3 1.53E-4 7.19E-8

ε0/2 4.04E-2 8.46E-3 1.40E-4 9.30E-8

ε0/22 6.12E-2 4.18E-3 1.57E-5 6.90E-8

ε0/23 1.01E-1 3.25E-3 1.45E-4 1.35E-7

ε0/24 6.05E-2 1.31E-3 1.34E-4 4.16E-7

Table 3.1: Spatial errors of the EWI-FP (3.2.7)-(3.2.8) for the NKGE (2.1.1) with initial
data (3.5.1) and different β or ε.

The errors are displayed at t = 1/εβ with different ε and β. In order to test the
spatial errors, we fix the time step as τ = 5× 10−4 such that the temporal error can
be ignored and solve the NKGE (2.1.1) under different mesh size h. Table 3.1 depicts
the spatial errors for β = 0, β = 1 and β = 2. Then, we check the temporal errors
for different 0 ≤ ε ≤ 1 and 0 ≤ β ≤ 2 with different time step τ and a very fine mesh
size h = π/32 such that the spatial errors can be neglected. Tables 3.2-3.4 show the
temporal errors for β = 0, β = 1 and β = 2, respectively.

From Tables 3.1-3.4 and additional similar numerical results not shown here for
brevity, we can draw the following observations on the EWI-FP (3.2.7)-(3.2.8) for the
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‖e(·, 1/εβ)‖1 τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 4.59E-2 1.13E-2 2.82E-3 7.04E-4 1.76E-4 4.37E-5

order - 2.02 2.00 2.00 2.00 2.01

ε0/2 1.48E-2 3.66E-3 9.11E-4 2.27E-4 5.68E-5 1.41E-5

order - 2.02 2.01 2.00 2.00 2.01

ε0/22 4.05E-3 1.00E-3 2.49E-4 6.23E-5 1.55E-5 3.86E-6

order - 2.02 2.01 2.00 2.01 2.01

ε0/23 1.04E-3 2.56E-4 6.39E-5 1.59E-5 3.98E-6 9.89E-7

order - 2.02 2.00 2.01 2.00 2.01

ε0/24 2.61E-4 6.44E-5 1.61E-5 4.01E-6 1.00E-6 2.49E-7

order - 2.02 2.00 2.01 2.00 2.01

ε0/25 6.53E-5 1.61E-5 4.02E-6 1.00E-6 2.51E-7 6.23E-8

order - 2.02 2.00 2.01 1.99 2.01

Table 3.2: Temporal errors of the EWI-FP (3.2.7)-(3.2.8) for the NKGE (2.1.1) with
β = 0 and initial data (3.5.1).

NKGE (2.1.1) up to the time of the order of O(ε−β) with 0 ≤ β ≤ 2:
(i) In space, the EWI-FP (3.2.7)-(3.2.8) is uniformly and spectrally accurate for any

0 < ε ≤ 1 and 0 ≤ β ≤ 2 (cf. each row in Table 3.1) and the spatial errors are almost
independent of ε (cf. each column in Table 3.1).

(ii) In time, for any fixed ε = ε0 > 0, the EWI-FP (3.2.7)-(3.2.8) is uniformly
second-order accurate (cf. the first rows in Tables 3.2-3.4), which agree with those
results in the literature. In addition, Tables 3.2-3.4 illustrate that the error bounds of
temporal discretization for the EWI-FP (3.2.7)-(3.2.8) uniformly behave like O(ε2τ 2)
for the fixed time dynamics up to the time at O(1), i.e., β = 0 (cf. each row and column
in Table 3.2), and O(ετ 2) for the intermediate long-time dynamics up to the time of
the order of O(ε−1), i.e., β = 1 (cf. each row and column in Table 3.3), and resp. O(τ 2)
for the long-time dynamics up to the time of the order of O(ε−2), i.e., β = 2 (cf. each
row and column in Table 3.4). In summary, our numerical results confirm the error
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‖e(·, 1/εβ)‖1 τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 4.59E-2 1.13E-2 2.82E-3 7.04E-4 1.76E-4 4.37E-5

order - 2.02 2.00 2.00 2.00 2.01

ε0/2 1.30E-2 3.22E-3 8.04E-4 2.01E-4 5.02E-5 1.25E-5

order - 2.01 2.00 2.00 2.00 2.01

ε0/22 5.76E-3 1.43E-3 3.56E-4 8.90E-5 2.23E-5 5.57E-6

order - 2.01 2.01 2.00 2.00 2.00

ε0/23 2.30E-3 5.72E-4 1.43E-4 3.57E-5 8.92E-6 2.23E-6

order - 2.01 2.00 2.00 2.00 2.00

ε0/24 1.66E-3 4.11E-4 1.03E-4 2.56E-5 6.41E-6 1.60E-6

order - 2.01 2.00 2.01 2.00 2.00

ε0/25 4.18E-4 1.04E-4 2.59E-5 6.48E-6 1.62E-6 4.05E-7

order - 2.01 2.01 2.00 2.00 2.00

Table 3.3: Temporal errors of the EWI-FP (3.2.7)-(3.2.8) for the NKGE (2.1.1) with
β = 1 and initial data (3.5.1).

bounds in Theorem 3.3.1 and demonstrate that they are sharp.
For the EWI-FD and EWI-4cFD methods, we show the numerical results at t = 1/ε2

with the initial data

φ(x) = 3
2 + sin2(x) , γ(x) = 3

1 + cos2(x) , x ∈ (0, 2π). (3.5.2)

The ‘exact’ solution is computed by the time-splitting Fourier pseudospectral method
with a very fine mesh size he = π/213 and a very small time step τe = 10−4. Denote
unh,τ as the numerical solution at tn obtained by the EWI-FD/EWI-4cFD method with
mesh size h and time step τ . In order to test the numerical results, we define the error
function as follows:

eh,τ (tn) = ‖u(·, tn)− unh,τ‖l2 .

From Tables 3.5-3.8 for the EWI-FD and EWI-4cFD methods and additional similar
numerical results not shown here for brevity, we can draw the following observations:
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‖e(·, 1/εβ)‖1 τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 4.59E-2 1.13E-2 2.82E-3 7.04E-4 1.76E-4 4.37E-5

order - 2.02 2.00 2.00 2.00 2.01

ε0/2 3.17E-2 7.83E-3 1.95E-3 4.88E-4 1.22E-4 3.04E-5

order - 2.02 2.01 2.00 2.00 2.00

ε0/22 2.51E-2 6.23E-3 1.55E-3 3.88E-4 9.70E-5 2.42E-5

order - 2.01 2.01 2.00 2.00 2.00

ε0/23 3.28E-2 8.14E-3 2.03E-3 5.08E-4 1.27E-4 3.17E-5

order - 2.01 2.00 2.00 2.00 2.00

ε0/24 2.50E-2 6.23E-3 1.56E-3 3.89E-4 9.72E-5 2.43E-5

order - 2.00 2.00 2.00 2.00 2.00

ε0/25 2.88E-2 7.17E-3 1.79E-3 4.47E-4 1.12E-4 2.79E-5

order - 2.01 2.00 2.00 2.00 2.01

Table 3.4: Temporal errors of the EWI-FP (3.2.7)-(3.2.8) for the NKGE (2.1.1) with
β = 2 and initial data (3.5.1).

(i) In time, for any fixed ε = ε0 > 0 or in the long-time regime (β = 2), the EWI-FD
and EWI-4cFD methods are both uniformly second-order accurate (cf. each row in
Tables 3.6&3.8) and the temporal errors are almost independent of ε (cf. each column
in Tables 3.6&3.8).

(ii) In space, for the long-time regime, i.e. β = 2, the second order convergence of
the EWI-FD method can be observed only when 0 < h . ε (cf. upper triangles above
the diagonals (corresponding to h ∼ ε, and being labelled in bold letters) in Table 3.5).
For the EWI-4cFD method, the second order convergence can be observed only when
0 < h . ε1/2 (cf. upper triangles above the diagonals (corresponding to h ∼ ε1/2, and
being labelled in bold letters) in Table 3.7)

The above numerical results confirm our error estimates for the EWI-FD and
EWI-4cFD methods.

Comparing the EWI-FP, EWI-FD and EWI-4cFD methods, the temporal errors are
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eh,τe(t = 1/ε2) h0 = π/32 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 1.84E-3 4.63E-4 1.16E-4 2.90E-5 7.24E-6 1.81E-6

order - 1.99 2.00 2.00 2.00 2.00

ε0/2 7.86E-3 2.01E-3 5.04E-4 1.26E-4 3.16E-5 7.89E-6

order - 1.97 2.00 2.00 2.00 2.00

ε0/22 2.28E-2 6.01E-3 1.51E-3 3.79E-4 9.47E-5 2.37E-5

order - 1.92 1.99 1.99 2.00 2.00

ε0/23 1.40E-1 3.28E-2 8.44E-3 2.12E-3 5.32E-4 1.33E-4

order - 2.09 1.96 1.99 1.99 2.00

ε0/24 4.31E-2 7.57E-2 1.37E-2 3.84E-3 1.00E-3 2.53E-4

order - -0.81 2.47 1.83 1.94 1.98

Table 3.5: Spatial errors of the EWI-FD for the NKGE (2.1.1) with β = 2 and initial
data (3.5.2).

uniformly second-order accurate in the long-time regime, which agree with the claim
that the temporal resolution capacity of the Gautschi-type exponential wave integrator
for wave-type equation is independent of the spatial discretization in the literature [9,
66]. For the spatial discretization, the errors of the finite difference methods depend
on the small parameter ε ∈ (0, 1]. The spatial resolution capacity of the EWI-4cFD
method is better than that of the EWI-FD method, which means that the EWI-4cFD
method needs less mesh grids in space than that of the EWI-FD to get the same errors.
While the error of the spectral method is uniform which performs best among these
three methods, especially when 0 < ε� 1.
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eh,τe(t = 1/ε2) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 2.13E-2 4.84E-3 1.19E-3 2.95E-4 7.35E-5 1.84E-5

order - 2.14 2.02 2.01 2.00 2.00

ε0/2 9.05E-3 2.03E-3 5.04E-4 1.26E-4 3.13E-5 7.75E-6

order - 2.16 2.01 2.00 2.01 2.01

ε0/22 1.46E-2 3.74E-3 9.35E-4 2.34E-4 5.84E-5 1.46E-5

order - 1.96 2.00 2.00 2.00 2.00

ε0/23 2.24E-2 5.59E-3 1.40E-3 3.49E-4 8.70E-5 2.17E-5

order - 2.00 2.00 2.00 2.00 2.00

ε0/24 1.27E-2 3.16E-3 7.91E-4 1.98E-4 4.94E-5 1.27E-5

order - 2.01 2.00 2.00 2.00 1.96

Table 3.6: Temporal errors of the EWI-FD for the NKGE (2.1.1) with β = 2 and initial
data (3.5.2).

eh,τe(t = 1/ε2) h0 = π/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 4.44E-3 2.82E-4 1.71E-5 1.06E-6 6.65E-8

order - 3.98 4.04 4.01 3.99

ε0/22 2.34E-2 3.46E-3 2.03E-4 1.25E-5 7.97E-7

order - 2.76 4.09 4.02 3.97

ε0/24 7.51E-2 1.54E-2 1.97E-3 1.35E-4 8.40E-6

order - 2.29 2.97 3.87 4.01

ε0/26 2.25E-1 1.93E-1 5.06E-2 2.97E-3 2.17E-4

order - 0.22 1.93 4.09 3.77

Table 3.7: Spatial errors of the EWI-4cFD for the NKGE (2.1.1) with β = 2 and initial
data (3.5.2).
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eh,τe(t = 1/ε2) τ0 = 0.2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 2.13E-2 4.84E-3 1.19E-3 2.95E-4 7.35E-5 1.84E-5

order - 2.14 2.02 2.01 2.00 2.00

ε0/2 9.05E-3 2.03E-3 5.04E-4 1.26E-4 3.14E-5 7.85E-6

order - 2.16 2.01 2.00 2.00 2.00

ε0/22 1.46E-2 3.74E-3 9.35E-4 2.34E-4 5.85E-5 1.46E-5

order - 1.96 2.00 2.00 2.00 2.00

ε0/23 2.24E-2 5.59E-3 1.40E-3 3.49E-4 8.72E-5 2.18E-5

order - 2.00 2.00 2.00 2.00 2.00

ε0/24 1.27E-2 3.16E-3 7.91E-4 1.98E-4 4.95E-5 1.24E-5

order - 2.01 2.00 2.00 2.00 2.00

Table 3.8: Temporal errors of the EWI-4cFD for the NKGE (2.1.1) with β = 2 and
initial data (3.5.2).
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Chapter 4

Error Estimates of Time-Splitting Meth-
ods

In this chapter, we are going to study another popular numerical integrator: the time-
splitting method for temporal discretization [17, 47, 81, 102, 159]. We first reformulate
the NKGE (2.1.1) into a relativistic nonlinear Schrödinger equation (NLSE) and then
adapt the time-splitting methods to discretize it [12]. The key idea of the method is
splitting the relativistic NLSE in a proper way such that the linear part can be solved
exactly in phase space and the nonlinear part can be integrated exactly in physical
space [14, 15].

We begin with recalling the construction of a time-splitting integrator for a general
equation in the form [47, 109, 136]:

∂ty = Φ(y) = Ay + By, (4.0.1)

where Φ is usually a nonlinear operator and the operator-splitting Φ(y) = Ay + By
can be quite arbitrary; in particular, A and B can be two non-commutative operators.
We aim to get the approximations yn of the solution at tn = nτ(n = 0, 1, 2, · · · ), where
τ > 0 is the time step. By the Strang-splitting formula [55, 136], the second-order
time-splitting integrator for (4.0.1), yn+1 = [Φ2(τ)](yn), can be constructed as

y(1) = exp(1
2τA)yn, y(2) = exp(τB)y(1), yn+1 = exp(1

2τA)y(2), (4.0.2)

which is explicit and symmetric, i.e., Φ2(τ)Φ2(−τ) = 1. It is easy to check that the
approximation error of Strang-splitting is of second order O(τ 2) by the Taylor expansion
and it is possible to construct the time-splitting method with higher order [16, 162].
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In general, the operators A and B can be interchanged without affecting the accuracy
order of the splitting method.

4.1 A relativistic NLSE
Denote u̇(x, t) = ∂tu(x, t) and set

ψ(x, t) = u(x, t)− i〈∇〉−1u̇(x, t), x ∈= [a, b], t ≥ 0. (4.1.1)

By a short calculation, we can reformulate the NKGE (2.1.1) into a relativistic NLSE
in ψ := ψ(x, t) as

i∂tψ(x, t) + 〈∇〉ψ(x, t) + ε2〈∇〉−1f
(1

2
(
ψ + ψ

) )
(x, t) = 0, x ∈ Ω, t > 0,

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0,

ψ(x, 0) = ψ0(x) := φ(x)− i〈∇〉−1γ(x), x ∈ [a, b],

(4.1.2)

where f(v) = v3 and ψ denotes the complex conjugate of ψ. After solving the relativistic
NLSE (4.1.2) and noticing (4.1.1), we can recover the solution of the NKGE (2.1.1) by

u(x, t) = 1
2
(
ψ(x, t) + ψ(x, t)

)
, ∂tu(x, t) = i

2
(
〈∇〉ψ(x, t)− 〈∇〉ψ(x, t)

)
. (4.1.3)

We remark here that the NKGE (2.1.1) can also be reformulated as the following
first-order (in time) PDEs:

∂tu(x, t)− u̇(x, t) = 0, x ∈ (a, b), t > 0,

∂tu̇(x, t)− ∂xxu(x, t) + u(x, t) + ε2u3(x, t) = 0, x ∈ (a, b), t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,

u(x, 0) = φ(x), u̇(x, 0) = γ(x), x ∈ [a, b].

(4.1.4)

4.2 Semi-discretization in time by time-splitting method
In order to discretize the NKGE (2.1.1) in time by a time-splitting method, we can

first discretize the relativistic NLSE (4.1.2) by a time-splitting method and then recover
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the solution of the NKGE (2.1.1) via (4.1.3). In fact, the relativistic NLSE (4.1.2) can
be decomposed into the following two subproblems via the time-splitting technique [31,
84, 86, 102, 141, 145]

i∂tψ(x, t) + 〈∇〉ψ(x, t) = 0, x ∈ (a, b), t > 0,

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b],

(4.2.1)

and 
i∂tψ(x, t) + ε2〈∇〉−1f

(1
2(ψ + ψ)

)
(x, t) = 0, x ∈ [a, b], t > 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b].
(4.2.2)

The linear equation (4.2.1) can be solved exactly in phase space and the associated
evolution operator is given by

ψ(·, t) = ϕtT (ψ0) := eit〈∇〉ψ0, t ≥ 0, (4.2.3)

which satisfies the isometry relation

‖ϕtT (v0)‖s = ‖v0‖s, s ≥ 0, t ∈ R.

Recalling that the nonlinear part of (4.2.2) is real, this implies that ∂t
(
ψ + ψ

)
(x, t) = 0

for any fixed x ∈ [a, b]. Thus ψ + ψ is invariant in time, i.e.,(
ψ + ψ

)
(x, t) ≡

(
ψ + ψ

)
(x, 0) = ψ0(x) + ψ0(x), x ∈ [a, b], t ≥ 0. (4.2.4)

Plugging (4.2.4) into (4.2.2), we get
i∂tψ(x, t) + ε2〈∇〉−1f

(1
2(ψ0 + ψ0)

)
(x) = 0, x ∈ [a, b], t > 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b].
(4.2.5)

Thus (4.2.5) (and (4.2.2)) can be integrated exactly in time as:

ψ(x, t) = ϕtV (ψ0) := ψ0(x) + ε2t F (ψ0(x)), t ≥ 0, (4.2.6)

where the operator F is defined by

F (φ) = i〈∇〉−1G(φ), G(φ) = f
(1

2(φ+ φ)
)
. (4.2.7)
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Let τ > 0 be the time step and define tn = nτ for n = 0, 1, . . .. Denote ψ[n] := ψ[n](x)
be the approximation of ψ(x, tn) for n ≥ 0, then a second-order semi-discretization of
the relativistic NLSE (4.1.2) via the Strang-splitting can be given as:

ψ[n+1] = Sτ (ψ[n]) = ϕ
τ/2
T ◦ ϕτV ◦ ϕ

τ/2
T (ψ[n]), n = 0, 1, 2, . . . , (4.2.8)

with ψ[0] = ψ0 = u0− i〈∇〉−1u1. Noticing (4.1.3) and (4.2.8), we can get a second-order
semi-discretization of the NKGE (2.1.1):

u[n] = 1
2
(
ψ[n] + ψ[n]

)
, u̇[n] = i

2
(
〈∇〉ψ[n] − 〈∇〉ψ[n]

)
, n = 0, 1, . . . , (4.2.9)

where u[n] := u[n](x) and u̇[n] := u̇[n](x) are the approximations of u(x, tn) and ∂tu(x, tn)
(n = 0, 1, 2, . . .), respectively.

We remark here that another way to discretize the NKGE (2.1.1) in time by a
time-splitting method, which is exactly the same discretization as the one presented
above, is to discretize the NKGE (4.1.4) by a time-splitting method. In fact, the NKGE
(4.1.4) can be decomposed into the following two subproblems via the time-splitting
technique [47]

∂tu(x, t)− u̇(x, t) = 0,

∂tu̇(x, t)− ∂xxu(x, t) + u(x, t) = 0, x ∈ (a, b), t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,

u(x, 0) = φ(x), u̇(x, 0) = γ(x), x ∈ [a, b],

(4.2.10)

and 
∂tu(x, t) = 0,

∂tu̇(x, t) + ε2u3(x, t) = 0, x ∈ [a, b], t > 0,

u(x, 0) = φ(x), u̇(x, 0) = γ(x), x ∈ [a, b].

(4.2.11)

Similarly, the linear problem (4.2.10) can be solved exactly in phase space and the
associated evolution operator is given byu(·, t)

u̇(·, t)

 = χtT

φ
γ

 :=

 cos(t〈∇〉)φ+ 〈∇〉−1 sin(t〈∇〉)γ

− 〈∇〉 sin(t〈∇〉)φ+ cos(t〈∇〉)γ

 , t ≥ 0. (4.2.12)
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From (4.2.11), we obtain immediately that u(x, t) is invariant in time for any fixed
x ∈ [a, b], i.e.,

u(x, t) ≡ u(x, 0) = φ(x), x ∈ [a, b]. (4.2.13)

Plugging (4.2.13) into (4.2.11), we get
∂tu(x, t) = 0,

∂tu̇(x, t) + ε2u3(x, 0) = 0, x ∈ [a, b], t > 0,

u(x, 0) = φ(x), u̇(x, 0) = γ(x), x ∈ [a, b], t ≥ 0.

(4.2.14)

Thus (4.2.14) (and (4.2.11)) can be integrated exactly in time as:u(·, t)

u̇(·, t)

 = χtV

φ
γ

 :=

φ
γ − ε2tφ3

 , t ≥ 0. (4.2.15)

Let u[n] := u[n](x) and u̇[n] := u̇[n](x) be the approximations of u(x, tn) and u̇(x, t) =
∂tu(x, tn) (n = 0, 1, 2, . . .), respectively, which are the solutions of the NKGE (4.1.4)
(and (2.1.1)). Then a second-order semi-discretization of the NKGE (4.1.4) (and (2.1.1))
via the second-order Strang-splitting [47] can be given as:u[n+1]

u̇[n+1]

 = Sτ

u[n]

u̇[n]

 = χ
τ/2
T ◦ χτV ◦ χ

τ/2
T

u[n]

u̇[n]

 , n = 0, 1, . . . , (4.2.16)

with u[0] = u0 and u̇[0] = u1. In fact, it is easy to verify that (4.2.1), (4.2.2), (4.2.3) and
(4.2.6) are equivalent to (4.2.10), (4.2.11), (4.2.12) and (4.2.15), respectively. Thus it
is straightforward to get that (4.2.8) is equivalent to (4.2.16), and (4.2.9) is the same
as (4.2.16).

Remark 4.2.1. Another second-order semi-discretization of the relativistic NLSE
(4.1.2) can be given as

ψ[n+1] = ϕ
τ/2
V ◦ ϕτT ◦ ϕ

τ/2
V (ψ[n]), n = 0, 1, 2, . . . , (4.2.17)

which can immediately generate a semi-discretization of the NKGE (2.1.1) via (4.2.9).
Again, it is easy to check that this discretization is the same as the discretization of the
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NKGE (4.1.4) (and (2.1.1)) by a similar second-order Strang-splitting asu[n+1]

u̇[n+1]

 = χ
τ/2
V ◦ χτT ◦ χ

τ/2
V

u[n]

u̇[n]

 , n = 0, 1, 2, . . . . (4.2.18)

Furthermore, the above second-order time-splitting discretization of the NKGE (2.1.1)
is equivalent to an exponential wave integrator (EWI) via the trapezoidal quadrature (or
Deuflhard-type exponential integrator) for discretizing the NKGE (2.1.1) directly (cf.
[47, 165]).

Remark 4.2.2. It is straightforward to design higher order semi-discretization of the
NKGE (2.1.1) via the relativistic NLSE (4.1.2) by adopting a higher order time-spitting
method, e.g., the fourth-order partition Runge-Kutta time-splitting method [16, 144, 145,
146].

4.3 The TSFP method
Let M be an even positive integer and define the spatial mesh size h = (b− a)/M ,

then the grid points are chosen as

xj := a+ jh, j ∈ T 0
M = {j | j = 0, 1, . . . ,M}. (4.3.1)

Let ψnj be the numerical approximation of ψ(xj, tn) for j ∈ T 0
M and n ≥ 0 and

denote ψn = (ψn0 , ψn1 , . . ., ψnM)T ∈ CM+1 for n = 0, 1, . . .. Then a time-splitting Fourier
pseudospectral (TSFP) method for discretizing the relativistic NLSE (4.1.2) via (4.2.8)
with a Fourier pseudospectral discretization in space can be given as

ψ
(n,1)
j =

∑
l∈TM

ei
τζl

2 ˜(ψn)l e
iµl(xj−a),

ψ
(n,2)
j = ψ

(n,1)
j + ε2τ F n

j , F n
j = i

∑
l∈TM

1
ζl

˜(G(ψ(n,1)))l e
iµl(xj−a),

ψn+1
j =

∑
l∈TM

ei
τζl

2 ˜(ψ(n,2))l e
iµl(xj−a), j ∈ T 0

M , n = 0, 1, . . . ,

(4.3.2)
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where ζl =
√

1 + µ2
l for l ∈ TM , ψ(n,k) = (ψ(n,k)

0 , ψ
(n,k)
1 , . . ., ψ(n,k)

M )T ∈ CM+1 for k = 1, 2,
G(ψ(n,1)) := (G(ψ(n,1)

0 ), G(ψ(n,1)
2 ), . . . , G(ψ(n,1)

M ))T ∈ RM+1 and

ψ0
j = φ(xj)− i

∑
l∈TM

γ̃l√
1 + |µl|2

eiµl(xj−a), j ∈ T 0
M .

Let unj and u̇nj be the approximations of u(xj, tn) and u̇(xj, tn), respectively, for j ∈
T 0
M and n ≥ 0, and denote un = (un0 , un1 , . . . , unM )T ∈ RM+1 and u̇n = (u̇n0 , u̇n1 , . . . , u̇nM )T ∈

RM+1 for n = 0, 1, . . .. Combining (4.3.2) and (4.2.9), we can obtain a full-discretization
of the NKGE (2.1.1) by the TSFP method as

un+1
j = 1

2
(
ψn+1
j + ψn+1

j

)
,

u̇n+1
j = i

2
∑
l∈TM

ζl
[
(̃ψn+1)l − (̃ψn+1)l

]
eiµl(xj−a),

j ∈ T 0
M , n ≥ 0, (4.3.3)

with
u0
j = φ(xj), u̇0

j = γ(xj), j ∈ T 0
M .

Specifically, plugging (4.3.2) into (4.3.3) or discretizing (4.2.16) directly in space by
the Fourier pseudospectral method, we get a full-discretization of the NKGE (2.1.1) by
the TSFP method (in explicit formulation in the original variable u) as

u
(n,1)
j = Lu

(
τ

2 , u
n, u̇n

)
j
, u̇

(n,1)
j = Lu̇

(
τ

2 , u
n, u̇n

)
j
,

u
(n,2)
j = u

(n,1)
j , u̇

(n,2)
j = u̇

(n,1)
j − τε2

(
u

(n,1)
j

)3
,

un+1
j = Lu

(
τ

2 , u
(n,2), u̇(n,2)

)
j
, u̇n+1

j = Lu̇
(
τ

2 , u
(n,2), u̇(n,2)

)
j
,

(4.3.4)

where

Lu (τ, u, u̇)j =
∑
l∈TM

[
cos(τζl)ũl + ζ−1

l sin(τζl)˜̇ul] eiµl(xj−a),

Lu̇ (τ, u, u̇)j =
∑
l∈TM

[
−ζl sin(τζl)ũl + cos(τζl)˜̇ul] eiµl(xj−a),

j ∈ T 0
M . (4.3.5)

The TSFP method (4.3.4) (or (4.3.3) with (4.3.2)) for the NKGE (2.1.1) is explicit,
time symmetric and easy to be extended to higher dimensions. The memory cost of the
TSFP is O(M) and the computational cost per time step is O(M lnM). In addition,
the total cost for the long-time dynamics up to the time Tε = T0/ε

β (0 ≤ β ≤ 2) with
T0 > 0 fixed is O

(
M Tε lnM

τ

)
= O

(
MT0 lnM

τεβ

)
.
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4.4 Error estimates for TSFP
In this section, we establish error bounds of the TSFP method (4.3.3) via (4.3.2)

(or equivalently (4.3.4)) for the NKGE (2.1.1) up to the time at O(ε−2), which are
uniformly valid for 0 < ε ≤ 1.

4.4.1 Main results

Motivated by the discussions in [43, 51, 118] and references therein, we make the
following assumptions on the exact solution u := u(x, t) of the NKGE (2.1.1) up to the
time at Tε = T0/ε

β with β ∈ [0, 2] and T0 > 0 fixed:

(F )
u ∈ L∞

(
[0, Tε];Hm+1

p

)
, ∂tu ∈ L∞

(
[0, Tε];Hm

p

)
,

‖u‖L∞([0,Tε];Hm+1
p ) . 1, ‖∂tu‖L∞([0,Tε];Hm

p ) . 1,

with m ≥ 1. Then we can establish the following error bounds of the TSFP method.

Theorem 4.4.1. Let un be the numerical approximation obtained from the TSFP
(4.3.2)-(4.3.3) (or equivalently (4.3.4)). Under the assumption (F), there exist h0 > 0
and τ0 > 0 sufficiently small and independent of ε such that, for any 0 < ε ≤ 1, when
0 < h ≤ h0 and 0 < τ ≤ τ0, we have the error estimates for s ∈ (1/2,m]

‖u(·, tn)− IM(un)‖s + ‖∂tu(·, tn)− IM(u̇n)‖s−1 . h1+m−s + ε2−βτ 2, 0 ≤ n ≤ T0/ε
β

τ
.

(4.4.1)
Furthermore, there exists a constant M > 0 which depends on T0, ‖ψ0‖m+1 and
‖ψ‖L∞([0,Tε];Hm

p ) such that when 0 < h ≤ h0 and 0 < τ ≤ τ0, the numerical solu-
tion satisfies

‖IM(un)‖m+1 + ‖IM(u̇n)‖m ≤M, 0 ≤ n ≤ T0/ε
β

τ
. (4.4.2)

4.4.2 Preliminary estimates

In this subsection, we prepare some results for proving the main theorem. Denote

Ft : φ 7→ e−it〈∇〉F
(
eit〈∇〉φ

)
, t ∈ R,
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where F is defined by (4.2.7), then we have the following proposition on the properties
of Ft.

Proposition 4.4.1. (i) Let s > 1/2, then for any t ∈ R, the function Ft : Hs(Ω) →
Hs+1(Ω) is C∞ and satisfies

‖Ft(φ)‖s+1 ≤ C‖φ‖3
s, ‖F ′t(φ)(η)‖s+1 ≤ C‖φ‖2

s ‖η‖s,

‖F ′′t (φ)(η, ζ)‖s+1 ≤ C‖φ‖s ‖η‖s ‖ζ‖s.
(4.4.3)

(ii) If s ≥ 1, then the derivatives with respect to t satisfy

‖∂tFt(φ)‖s ≤ C‖φ‖3
s,

∥∥∥∂2
t Ft(φ)

∥∥∥
s
≤ C‖φ‖3

s+1, ‖∂tF ′t(φ)(η)‖s ≤ C‖φ‖2
s‖η‖s. (4.4.4)

(iii) Assume s > 1/2, φ, η ∈ Bs
R := {v ∈ Hs(Ω), ‖v‖s ≤ R}, then there exists a constant

L > 0 depending on R such that for all t ∈ R and σ ∈ [0, s], the Lipschitz estimate is
valid:

‖G(φ)−G(η)‖σ ≤ L‖φ− η‖σ, ‖Ft(φ)− Ft(η)‖σ+1 ≤ L‖φ− η‖σ. (4.4.5)

Proof. Firstly, we recall the inequality which was established in [34]:

‖vw‖σ ≤ C‖v‖σ ‖w‖s, v ∈ Hσ(Ω), w ∈ Hs(Ω), (4.4.6)

for s > 1/2 and σ ∈ [0, s]. Hence for φ ∈ Hs(Ω), one has

‖Ft(φ)‖s+1 =
∥∥∥F (eit〈∇〉φ)∥∥∥

s+1
=
∥∥∥∥f (1

2
(
eit〈∇〉φ+ e−it〈∇〉φ

))∥∥∥∥
s

≤ C
∥∥∥eit〈∇〉φ+ e−it〈∇〉φ

∥∥∥3

s
≤ C‖φ‖3

s.

Noticing that f(v) = v3, a direct calculation gives

F ′(φ)(η) = 3i
8 〈∇〉

−1(φ+ φ)2(η + η), (4.4.7)

which implies that

‖F ′(φ)(η)‖s+1 = 3
8
∥∥∥(φ+ φ)2(η + η)

∥∥∥
s
≤ C‖φ‖2

s‖η‖s. (4.4.8)

Note that
F ′t(φ)(η) = e−it〈∇〉F ′

(
eit〈∇〉φ

) (
eit〈∇〉η

)
,
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which immediately yields the second inequality in (4.4.3). The second derivative of F
takes the form

F ′′(φ)(η, ζ) = 3i
4 〈∇〉

−1(φ+ φ)(η + η)(ζ + ζ),

which leads to that

‖F ′′(φ)(η, ζ)‖s+1 = 3
4
∥∥∥(φ+ φ)(η + η)(ζ + ζ)

∥∥∥
s
≤ C‖φ‖s‖η‖s‖ζ‖s.

Thus the last inequality in (4.4.3) can be obtained by recalling

F ′′t (φ)(η, ζ) = e−it〈∇〉F ′′
(
eit〈∇〉φ

) (
eit〈∇〉η, eit〈∇〉ζ

)
.

The first derivative of Ft with respect to t reads as

∂tFt(φ) = −i〈∇〉Ft(φ) + e−it〈∇〉F ′(µ)(i〈∇〉µ), µ = eit〈∇〉φ.

Applying (4.4.3), (4.4.6) and (4.4.7), we obtain

‖∂tFt(φ)‖s ≤ ‖Ft(φ)‖s+1 + ‖F ′(µ)(i〈∇〉µ)‖s

≤ C‖φ‖3
s + C‖(µ+ µ)2(〈∇〉µ− 〈∇〉µ)‖s−1

≤ C‖φ‖3
s + C‖(µ+ µ)2‖s‖〈∇〉(µ− µ)‖s−1

≤ C‖φ‖3
s + C‖µ+ µ‖2

s‖µ− µ‖s

≤ C‖φ‖3
s.

Further computations give that

∂2
t Ft(φ) = −〈∇〉2Ft(φ)− 2i〈∇〉e−it〈∇〉F ′(µ)(i〈∇〉µ) + e−it〈∇〉F ′(µ)(−〈∇〉2µ)

+ e−it〈∇〉F ′′(µ)(i〈∇〉µ, i〈∇〉µ),

which leads to that

‖∂2
t Ft(φ)‖s ≤ ‖Ft(φ)‖s+2 + 2‖F ′(µ)(i〈∇〉µ)‖s+1 + ‖F ′(µ)(−〈∇〉2µ)‖s

+ ‖F ′′(µ)(i〈∇〉µ, i〈∇〉µ)‖s

≤ C‖φ‖3
s+1 + C‖(µ+ µ)2〈∇〉2(µ+ µ)‖s−1 + C‖(µ+ µ)(〈∇〉(µ− µ))2‖s−1

≤ C‖φ‖3
s+1 + C‖µ+ µ‖2

s‖µ+ µ‖s+1 + C‖µ+ µ‖s‖µ− µ‖2
s+1
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≤ C‖φ‖3
s+1.

For the last inequality of (4.4.4), note that

∂tF
′
t(φ)(η) = −i〈∇〉F ′t(φ)(η) + e−it〈∇〉F ′′(µ)(ν, i〈∇〉µ) + e−it〈∇〉F ′(µ)(i〈∇〉ν),

where ν = eit〈∇〉η. Thus

‖∂tF ′t(φ)(η)‖s ≤ ‖F ′t(φ)(η)‖s+1 + ‖F ′′(µ)(ν, i〈∇〉µ)‖s + ‖F ′(µ)(i〈∇〉ν)‖s

≤ C‖φ‖2
s‖η‖s + C‖(µ+ µ)(ν + ν)〈∇〉(µ− µ)‖s−1 + C‖µ+ µ‖2

s‖ν − ν‖s

≤ C‖φ‖2
s‖η‖s + C‖µ+ µ‖s‖ν + ν‖s‖〈∇〉µ− 〈∇〉µ‖s−1

≤ C‖φ‖2
s‖η‖s,

which completes the proof for (4.4.4).
For the Lipschitz estimate (4.4.5), a straightforward calculation shows that

‖G(φ)−G(η)‖σ =
∥∥∥∥f(1

2(φ+ φ)
)
− f

(1
2(η + η)

)∥∥∥∥
σ

= 1
8
∥∥∥[(φ+ φ)2 + (φ+ φ)(η + η) + (η + η)2

]
(φ− η + φ− η)

∥∥∥
σ

≤ C
∥∥∥(φ+ φ)2 + (φ+ φ)(η + η) + (η + η)2

∥∥∥
s

∥∥∥φ− η + φ− η
∥∥∥
σ

≤ C
(∥∥∥φ+ φ

∥∥∥2

s
+ ‖η + η‖2

s

)
‖φ− η‖σ

≤ CR2 ‖φ− η‖σ .

Noticing that

‖Ft(φ)− Ft(η)‖σ+1 =
∥∥∥F (eit〈∇〉φ)− F (eit〈∇〉η)

∥∥∥
σ+1

=
∥∥∥G(eit〈∇〉φ)−G(eit〈∇〉η)

∥∥∥
σ

≤ CR2 ‖φ− η‖σ ,

the proof is completed.

Concerning on the flow Sτ in (4.2.8), we have the stability estimate as follows.

Lemma 4.4.1. Assume φ0, η0 ∈ Bs
R with s > 1/2, then for any τ > 0, we have

‖Sτ (φ0)− Sτ (η0)‖s ≤ (1 + Lε2τ)‖φ0 − η0‖s,

where L depends on R.
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Proof. Since the operator eiτ〈∇〉 is an isometry, we only need to consider the operator
associated with the nonlinear subproblem. By the definition and the Lipschitz estimate
(4.4.5), we have

‖ϕτV (φ0)− ϕτV (η0)‖s ≤ ‖φ0 − η0‖s + ε2τ‖F (φ0)− F (η0)‖s

≤ ‖φ0 − η0‖s + Lε2τ‖φ0 − η0‖s

≤ (1 + Lε2τ)‖φ0 − η0‖s,

which completes the proof.

Lemma 4.4.2. Denote the exact solution of (4.1.2) with initial data ψ0 as ψ(t) =
Se,t(ψ0). Assume ψ(t) ∈ Hs+1(s ≥ 1), then for 0 < ε ≤ 1 and 0 < τ ≤ 1, the local error
of the Strang splitting (4.2.8) is bounded by

‖Sτ (ψ(tn))− Se,τ (ψ(tn))‖s ≤M0ε
2τ 3,

where M0 depends on ‖ψ‖L∞([0,Tε];Hs+1).

Proof. For simplicity of notation, we denote ψn = ψ(tn). An application of the
Duhamel’s principle leads to the following representation of the exact solution

ψ(tn + t) = eit〈∇〉ψn + ε2eit〈∇〉
∫ t

0
e−iθ〈∇〉F (ψ(tn + θ)) dθ. (4.4.9)

Introducing ηn(t) := e−i(tn+t)〈∇〉ψ(tn + t), we have

ηn(t) = ηn(0) + ε2
∫ t

0
Ftn+θ(ηn(θ))dθ. (4.4.10)

Applying the Taylor expansion

Ft(v1 + v2) = Ft(v1) + F ′t(v1)(v2) +
∫ 1

0
(1− θ)F ′′t (v1 + θv2)(v2

2)dθ,

we yield

ηn(τ) = ηn(0) + ε2
∫ τ

0
Ftn+θ

(
ηn(0) + ε2

∫ θ

0
Ftn+θ1 (ηn(θ1)) dθ1

)
dθ

= ηn(0) + ε2
∫ τ

0
Ftn+θ(ηn(0))dθ + ε4

∫ τ

0

∫ θ

0
F ′tn+θ(ηn(0))Ftn+θ1(ηn(θ1))dθ1dθ
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+ ε6
∫ τ

0

∫ 1

0
(1− ζ)F ′′tn+θ ((1− ζ)ηn(0) + ζηn(θ))

( ∫ θ

0
Ftn+θ1(ηn(θ1))dθ1

)2
dζdθ

= ηn(0) + ε2
∫ τ

0
Ftn+θ(ηn(0))dθ + ε4

∫ τ

0

∫ θ

0
F ′tn+θ(ηn(0))Ftn+θ1(ηn(0))dθ1dθ

+ ε6
∫ τ

0

∫ 1

0
(1− ζ)F ′′tn+θ ((1− ζ)ηn(0) + ζηn(θ))

( ∫ θ

0
Ftn+θ1 (ηn(θ1)) dθ1

)2
dζdθ

+ ε6
∫ τ

0

∫ θ

0

∫ 1

0
F ′tn+θ(ηn(0))F ′tn+θ1 ((1− ζ)ηn(0) + ζηn(θ1))( ∫ θ1

0
Ftn+θ2 (ηn(θ2)) dθ2

)
dζdθ1dθ.

Twisting the variable back, we obtain

Se,τ (ψn) = ei(tn+τ)〈∇〉ηn(τ)

= eiτ〈∇〉ψn + ε2eiτ〈∇〉
∫ τ

0
Fθ (ψn) dθ + ε6eiτ〈∇〉E3

+ ε4eiτ〈∇〉
∫ τ

0

∫ θ

0
F ′θ (ψn)Fθ1 (ψn) dθ1dθ, (4.4.11)

where E3 = E3,1 + E3,2 with

E3,1 =
∫ τ

0

∫ 1

0
(1− ζ)F ′′θ

(
(1− ζ)ψn + ζe−iθ〈∇〉ψ(tn + θ)

)
( ∫ θ

0
Fθ1

(
e−iθ1〈∇〉ψ(tn + θ1)

)
dθ1

)2
dζdθ,

E3,2 =
∫ τ

0

∫ θ

0

∫ 1

0
F ′θ(ψn)F ′θ1

(
(1− ζ)ψn + ζe−iθ1〈∇〉ψ(tn + θ1)

)
( ∫ θ1

0
Fθ2

(
e−iθ2〈∇〉ψ(tn + θ2)

)
dθ2

)
dζdθ1dθ.

On the other hand, noticing (4.2.6), for the Strang splitting we get

Sτ (ψn) = eiτ〈∇〉/2
[
eiτ〈∇〉/2ψn + ε2τF

(
eiτ〈∇〉/2ψn

)]
= eiτ〈∇〉

(
ψn + ε2τFτ/2(ψn)

)
.

Then the local truncation error can be written as

Sτ (ψn)− Se,τ (ψn) = ε2eiτ〈∇〉r1 − ε4eiτ〈∇〉r2 − ε6eiτ〈∇〉E3. (4.4.12)

where

r1 = τFτ/2(ψn)−
∫ τ

0
Fθ(ψn)dθ, r2 =

∫ τ

0

∫ θ

0
F ′θ (ψn)Fθ1 (ψn) dθ1dθ.
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Next we estimate each term individually. Express the quadrature error in the second-
order Peano form,

r1 = −τ 3
∫ 1

0
κ2(θ)∂2

ωFω(ψn)|ω=θτdθ, κ2(θ) = 1
2 min{θ2, (1− θ)2}.

Applying (4.4.4), we obtain

‖r1‖s ≤ Cτ 3 ‖ψn‖3
s+1

∫ 1

0
κ2(θ)dθ . τ 3. (4.4.13)

Inserting the identities

Fθ1(ψn) = Fτ/2(ψn) +
∫ θ1

τ/2
∂ωFω(ψn)dω, F ′θ(ψn) = F ′τ/2(ψn) +

∫ θ

τ/2
∂ωF

′
ω(ψn)dω

into the double integral term, we get

r2 = 1
2τ

2F ′τ/2(ψn)Fτ/2(ψn) +
∫ τ

0

∫ θ

0
F ′τ/2(ψn)

∫ θ1

τ/2
∂ωFω(ψn)dωdθ1dθ

+
∫ τ

0
θ
∫ θ

τ/2
∂ωF

′
ω(ψn)Fτ/2(ψn)dωdθ

+
∫ τ

0

∫ θ

0

∫ θ

τ/2

∫ θ1

τ/2
∂ωF

′
ω(ψn)∂ω1Fω1(ψn)dω1dωdθ1dθ.

By definition, we have

F ′τ/2(ψn)Fτ/2(ψn) = e−i
τ
2 〈∇〉F ′(ei τ2 〈∇〉ψn)

(
F (ei τ2 〈∇〉ψn)

)
= 0,

by recalling (4.4.7) and the fact that F (·) is purely imaginary. Applying (4.4.3) and
(4.4.4), we obtain

‖r2‖s ≤ Cτ 3‖ψn‖2
s sup

0≤ω≤τ
‖∂ωFω(ψn)‖s + Cτ 3‖ψn‖2

s

∥∥∥Fτ/2(ψn)
∥∥∥
s

+ Cτ 4‖ψn‖2
s sup

0≤ω≤τ
‖∂ωFω(ψn)‖s

≤ Cτ 3‖ψn‖5
s . τ 3.

(4.4.14)

Using (4.4.3), we derive

‖E3‖s ≤ ‖E3,1‖s + ‖E3,2‖s

≤ Cτ 3 sup
0≤θ≤τ

‖ψ(tn + θ)‖s sup
0≤θ≤τ

∥∥∥Fθ(e−iθ〈∇〉ψ(tn + θ)
)∥∥∥2

s

+ Cτ 3‖ψn‖2
s sup

0≤θ≤τ
‖ψ(tn + θ)‖2

s sup
0≤θ≤τ

∥∥∥Fθ(e−iθ〈∇〉ψ(tn + θ)
)∥∥∥

s

≤ Cτ 3 sup
0≤θ≤τ

‖ψ(tn + θ)‖7
s . τ 3. (4.4.15)

Combining (4.4.12)-(4.4.15), we arrive at the conclusion and the proof is complete.

101



CHAPTER 4. ERROR ESTIMATES OF TIME-SPLITTING METHODS

4.4.3 Proof for TSFP

Proof. Similar to the proof of the TSFP method for the Dirac equation [7], the proof
will be divided into two parts: (I) to prove the convergence of the semi-discretization,
and (II) to complete the error analysis by comparing the semi-discretization (4.2.8) and
the full discretization (4.3.2).

Part I (Convergence of the semi-discretization) Firstly, we observe that the assumption
(F) is equivalent to the regularity of ψ(x, t) as

ψ ∈ L∞
(
[0, Tε];Hm+1

p

)
, ‖ψ‖L∞([0,Tε];Hm+1

p ) . 1.

Now, we give a global error on the Strang splitting (4.2.8): there exists τ0 > 0
independent of ε such that when τ ≤ τ0, the error of the Strang splitting satisfies

‖ψ[n] − ψ(·, tn)‖m ≤M1τ
2ε2−β, ‖ψ[n]‖m ≤ R + 1, 0 ≤ n ≤ T0/ε

β

τ
, (4.4.16)

where R := ‖ψ‖L∞([0,Tε];Hm
p ) and M1 depends on T0, R and ‖ψ‖L∞([0,Tε];Hm+1

p ). Further-
more, for the regularity of ψ[n], we have ψ[n] ∈ Hm+1

p when τ ≤ τ0 with

‖ψ[n]‖m+1 ≤M2, 0 ≤ n ≤ T0/ε
β

τ
, (4.4.17)

where M2 depends on T0, R and ‖ψ0‖m+1.
We apply a standard induction argument for proving (4.4.16). Firstly, it is obvious

for n = 0 since ψ[0] = ψ0 ∈ Bm
R . Assume ψ[k] ∈ Bm

R+1 for 0 ≤ k ≤ n < T0/εβ

τ
. Denote

e[k] = ψ[k] − ψ(·, tk). By definition,

e[k+1] = Sτ (ψ[k])− Sτ (ψ(tk)) + Sτ (ψ(tk))− Se,τ (ψ(tk)).

Using Lemmas 4.4.1 and 4.4.2, we get when τ ≤ 1,∥∥∥e[k+1]
∥∥∥
m
− ‖e[k]‖m ≤ Lε2τ

∥∥∥e[k]
∥∥∥
m

+M0ε
2τ 3,

where L andM0 depend on R and
∥∥∥ψ∥∥∥

L∞([0,Tε];Hm+1
p )

, respectively, as claimed in Lemmas
4.4.1 and 4.4.2. Summing the above inequality for k = 0, . . . , n, one gets∥∥∥e[n+1]

∥∥∥
m
≤
∥∥∥e[0]

∥∥∥
m

+ Lε2τ
n∑
k=0

∥∥∥e[k]
∥∥∥
m

+M0ε
2τ 3(n+ 1)
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≤M0T0ε
2−βτ 2 + Lε2τ

n∑
k=0

∥∥∥e[k]
∥∥∥
m
.

Applying the Gronwall’s inequality, we derive
∥∥∥e[n+1]

∥∥∥
m
≤M0T0e

LT0ε2−βτ 2, 0 ≤ n <
T0/ε

β

τ
.

Then the triangle inequality yields that
∥∥∥ψ[n+1]

∥∥∥
m
≤
∥∥∥ψ(·, tn+1)

∥∥∥
m

+ 1, 0 ≤ n <
T0/ε

β

τ
,

when 0 < τ ≤ τ0 with τ0 := min{1, (M0T0)−1/2e−LT0/2εβ/2−1} and the induction for
(4.4.16) is completed. For the last inequality (4.4.17), recalling (4.2.6) and (4.4.3), we
have

∥∥∥ψ[n+1]
∥∥∥
m+1

=
∥∥∥ϕτV (eiτ/2〈∇〉ψ[n])

∥∥∥
m+1

≤
∥∥∥eiτ/2〈∇〉ψ[n]

∥∥∥
m+1

+ ε2τ
∥∥∥F(eiτ/2〈∇〉ψ[n]

)∥∥∥
m+1

≤
∥∥∥ψ[n]

∥∥∥
m+1

+ Cε2τ
∥∥∥ψ[n]

∥∥∥3

m

≤
∥∥∥ψ[n]

∥∥∥
m+1

+ Cε2τ(R + 1)3

≤
∥∥∥ψ[0]

∥∥∥
m+1

+ C(n+ 1)ε2τ(R + 1)3

≤
∥∥∥ψ0

∥∥∥
m+1

+ CT0(R + 1)3,

and (4.4.17) is established.

Part II (Convergence of the full discretization) For 0 ≤ n ≤ T0/εβ

τ
, we rewrite the error

as

ψ(·, tn)− IM(ψn) = ψ(·, tn)− ψ[n] + ψ[n] − PM(ψ[n]) + PM(ψ[n])− IM(ψn). (4.4.18)

For 0 ≤ s ≤ m, the regularity result (4.4.17) implies that

‖ψ[n] − PM(ψ[n])‖s ≤ CM2h
1+m−s, (4.4.19)

and by (4.4.16),

‖ψ(·, tn)− ψ[n]‖s ≤ ‖ψ(·, tn)− ψ[n]‖m ≤M1τ
2ε2−β. (4.4.20)

103



CHAPTER 4. ERROR ESTIMATES OF TIME-SPLITTING METHODS

Thus, it remains to establish the error bound for the error

en := PM(ψ[n])− IM(ψn), 0 ≤ n ≤ T0/ε
β

τ
.

Now, we’ll use an induction to show that when h is sufficiently small, we have

‖en‖l ≤M3h
1+m−l, l ∈ (1/2,m+ 1]; ‖IM(ψn)‖m ≤ C(1 +R) + 1, (4.4.21)

where M3 depends on T0, R and ‖ψ0‖m+1.
For n = 0, (4.4.21) is obvious by using the projection and interpolation errors [133]:

‖e0‖l = ‖PM(ψ0)− IM(ψ0)‖l ≤ Ch1+m−l‖ψ0‖m+1,

‖IM(ψ0)‖m ≤ ‖ψ0‖m + ‖IM(ψ0)− ψ0‖m ≤ R + Ch‖ψ0‖m+1 ≤ 1 +R,

when h is small enough. For n ≥ 1, assume (4.4.21) holds for 0 ≤ k ≤ n < T0/εβ

τ
. We

rewrite (4.3.2) as

ψ(n,1) = eiτ〈∇〉/2IM(ψn), ψ(n,2) = ψ(n,1) + iε2τ〈∇〉−1IM(G(ψ(n,1))),

IM(ψn+1) = eiτ〈∇〉/2IM(ψ(n,2)).

Hence we get ψ(n,1), ψ(n,2) ∈ YM . Similarly, (4.2.8) can be expressed as

ψ〈n,1〉 = eiτ〈∇〉/2ψ[n], ψ〈n,2〉 = ψ〈n,1〉 + iε2τ〈∇〉−1G(ψ〈n,1〉), ψ[n+1] = eiτ〈∇〉/2ψ〈n,2〉,

which implies that

PM(ψ〈n,1〉) = eiτ〈∇〉/2PM(ψ[n]),

PM(ψ〈n,2〉) = PM(ψ〈n,1〉) + iε2τ〈∇〉−1PM(G(ψ〈n,1〉)),

PM(ψ[n+1]) = eiτ〈∇〉/2PM(ψ〈n,2〉).

Thus by definition, we get

‖en+1‖l =
∥∥∥PM(ψ[n+1])− IM(ψn+1)

∥∥∥
l
=
∥∥∥PM(ψ〈n,2〉)− IM(ψ(n,2))

∥∥∥
l

≤
∥∥∥PM(ψ〈n,1〉)− IM(ψ(n,1))

∥∥∥
l
+ ε2τ

∥∥∥PM(G(ψ〈n,1〉))− IM(G(ψ(n,1)))
∥∥∥
l−1

≤ ‖en‖l + ε2τ
∥∥∥PM(G(ψ〈n,1〉))− IM(G(ψ〈n,1〉))

∥∥∥
l
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+ ε2τ
∥∥∥IM(G(ψ〈n,1〉))− IM(G(ψ(n,1)))

∥∥∥
min{l,m}

≤ ‖en‖l + Cε2τh1+m−l
∥∥∥G(ψ〈n,1〉)

∥∥∥
m+1

+ Cε2τ
∥∥∥G(ψ〈n,1〉)−G(ψ(n,1))

∥∥∥
min{l,m}

≤ ‖en‖l + Cε2τh1+m−l‖ψ〈n,1〉‖3
m+1 + CLε2τ‖ψ〈n,1〉 − ψ(n,1)‖l

≤ (1 + CLε2τ)‖en‖l + CM3
2 ε

2τh1+m−l + CLε2τ
∥∥∥PM(ψ[n])− ψ[n]

∥∥∥
l

≤ (1 + CLε2τ)‖en‖l + CM2(L+M2
2 )ε2τh1+m−l,

where we have used the fact that ψ[n], ψ〈n,1〉, G(ψ〈n,1〉) ∈ Hm+1, (4.4.5) and L depends
on ‖ψ〈n,1〉‖m and ‖ψ(n,1)‖m, or equivalently depends on R due to (4.4.16) and (4.4.21)
by induction. Hence

‖en+1‖l ≤ eCLε
2τ‖en‖l + CM2(L+M2

2 )ε2τh1+m−l

≤ eCLε
2(n+1)τ‖e0‖l + CM2(L+M2

2 )ε2τh1+m−l
n∑
k=0

ekCLε
2τ

≤ CeCLT0h1+m−l‖ψ0‖m+1 + LM2 +M3
2

L
eCLT0h1+m−l

≤M3h
1+m−l,

where M3 depends on T0, R and ‖ψ0‖m+1. The second inequality in (4.4.21) can be
derived by using the triangle inequality and (4.4.16):

‖IM(ψn)‖m ≤ ‖PM(ψ[n])‖m + ‖en‖m ≤ C‖ψ[n]‖m +M3h ≤ C(1 +R) + 1,

when h ≤ h0 := 1/M3. Furthermore, it follows from (4.4.21) that for any 0 ≤ n ≤ T0/εβ

τ
,

‖IM(ψn)‖m+1 ≤ ‖PM(ψ[n])‖m+1 + ‖en‖m+1 ≤ C‖ψ[n]‖m+1 +M3 ≤ CM2 +M3,

which immediately gives (4.4.2) by recalling (4.3.3).
Combining (4.4.18)-(4.4.21), we derive for s ∈ (1/2,m],

‖ψ(·, tn)− IM(ψn)‖s ≤M1τ
2ε2−β +M4h

1+m−s,

where M1 depends on T0, R and ‖ψ‖L∞([0,Tε];Hm+1
p ), and M4 depends on T0, R and

‖ψ0‖m+1. Recalling (4.3.3), we obtain error bounds for un and u̇n as

‖u(·, tn)− IM(un)‖s = 1
2
∥∥∥ψ(·, tn) + ψ(·, tn)− IM(ψn)− IM(ψn)

∥∥∥
s

105



CHAPTER 4. ERROR ESTIMATES OF TIME-SPLITTING METHODS

≤ ‖ψ(·, tn)− IM(ψn)‖s ≤M1τ
2ε2−β +M4h

1+m−s,

‖u̇(·, tn)− IM(u̇n)‖s−1 = 1
2‖〈∇〉(ψ(·, tn)− ψ(·, tn))− 〈∇〉(IM(ψn)− IM(ψn))‖s−1

≤ ‖ψ(·, tn)− IM(ψn)‖s ≤M1τ
2ε2−β +M4h

1+m−s,

which shows (4.4.1) and the proof for Theorem 4.4.1 is completed.

Remark 4.4.1. We remark here that the same error bounds can be established under
the same assumption for the other Strang splitting

ψ[n+1] = Sτ (ψ[n]) = ϕ
τ/2
V ◦ ϕτT ◦ ϕ

τ/2
V (ψ[n]),

and the corresponding full discretization. Note that

Sτ (ψn) = ϕ
τ/2
V

[
eiτ〈∇〉ψn + 1

2ε
2τeiτ〈∇〉F (ψn)

]
= eiτ〈∇〉ψn + 1

2ε
2τeiτ〈∇〉F (ψn) + 1

2ε
2τF

(
eiτ〈∇〉ψn + 1

2ε
2τeiτ〈∇〉F (ψn)

)
= eiτ〈∇〉ψn + 1

2ε
2τeiτ〈∇〉F (ψn) + 1

2ε
2τF

(
eiτ〈∇〉ψn

)
+ E2,

where
E2 = 1

4ε
4τ 2

∫ 1

0
F ′
(
eiτ〈∇〉ψn + θ

2ε
2τeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)
dθ.

Thus by (4.4.11), we get

Sτ (ψn)− Se,τ (ψn) = ε2eiτ〈∇〉r3 + E2 − ε4eiτ〈∇〉r2 − ε6eiτ〈∇〉E3, (4.4.22)

where

r3 = τ

2 (F0(ψn) + Fτ (ψn))−
∫ τ

0
Fθ(ψn)dθ = τ 3

2

∫ 1

0
θ(1− θ)∂2

ωFω(ψn)|ω=θτdθ . τ 3.

It remains to estimate E2. By (4.4.7), we have

F ′
(
eiτ〈∇〉ψn + θ

2ε
2τeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)
= 3i

8 〈∇〉
−1
[
eiτ〈∇〉

(
ψn + θ

2ε
2τF (ψn)

)
+ e−iτ〈∇〉

(
ψn −

θ

2ε
2τF (ψn)

)]2

(
eiτ〈∇〉F (ψn)− e−iτ〈∇〉F (ψn)

)
= −3〈∇〉−1

[
Re
(
eiτ〈∇〉

(
ψn + θ

2ε
2τF (ψn)

))]2
sin(τ〈∇〉)F (ψn),
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which implies that∥∥∥∥F ′(eiτ〈∇〉ψn + θ

2ε
2τeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)∥∥∥∥
s

≤ C

∥∥∥∥∥ψn + θ

2ε
2τF (ψn)

∥∥∥∥∥
2

s

∥∥∥ sin(τ〈∇〉)F (ψn)
∥∥∥
s

≤ Cτ
(
‖ψn‖s + ε2τ‖F (ψn)‖s

)2
‖F (ψn)‖s+1

≤ Cτ
(
‖ψn‖s + Cε2τ‖ψn‖3

s

)2
‖ψn‖3

s . τ.

This suggests that E2 . ε4τ 3, which directly yields that

Sτ (ψn)− Se,τ (ψn) . ε2τ 3.

Then the error estimates can be derived by similar and standard arguments.

4.5 Extensions to other spatial discretizaitons
In this section, we introduce the time-splitting finite difference (TS-FD)/time-

splitting fourth-order compact finite difference (TS-4cFD) method which applies the
finite difference/fourth-order compact finite difference discretization in space combined
with the time-splitting integrator.

Similar to the exponential wave integrator, we just need to replace ζl in (4.3.2) by
λl defined in (2.7.1) for the TS-FD method and νl defined in (3.4.4) for the TS-4cFD
method.

Assume that the exact solution of the NKGE (2.1.1) up to the time Tε = T0/ε
β

satisfies

(G)
u(x, t) ∈ L∞

(
[0, Tε];W 6,∞

p

)
, ∂tu(x, t) ∈ L∞ ([0, Tε];L∞)

‖u(x, t)‖L∞([0,Tε];W 6,∞) . 1, ‖∂tu(x, t)‖L∞([0,Tε];L∞) . 1,

then we have the following error estimates for the TS-FD and TS-4cFD methods:

Theorem 4.5.1. Let unj be the approximation obtained from the TS-FD, under the
assumption (G), there exist constants h0 > 0 and τ0 > 0 sufficiently small and indepen-
dent of ε, such that for any 0 < ε ≤ 1 and 0 ≤ β ≤ 2, when 0 < h ≤ h0, 0 < τ ≤ τ0,
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we have

‖en‖l2 .
h2

εβ
+ ε2−βτ 2, ‖un‖l∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε

−β

τ
, (4.5.1)

where

en = (en0 , en1 , · · · , enM)T , with enj = u(xj, tn)− unj , 0 ≤ j ≤M, n ≥ 0.

Theorem 4.5.2. Let unj be the approximation obtained from the TS-4cFD, under
the assumption (G), there exist constants h0 > 0 and τ0 > 0 sufficiently small and
independent of ε, such that for any 0 < ε ≤ 1 and 0 ≤ β ≤ 2, when 0 < h ≤ h0,
0 < τ ≤ τ0, we have

‖en‖l2 .
h4

εβ
+ ε2−βτ 2, ‖un‖l∞ ≤ 1 +M1, 0 ≤ n ≤ T0/ε

β

τ
. (4.5.2)

Proof. Follow the analogous proof to Theorem 4.4.1 and we omit the details here for
brevity.

4.6 Comparisons of different spatial discretizations
In this section, we present the numerical results concerning spatial and temporal

accuracy of the TSFP, TS-FD and TS-4cFD methods for the NKGE (2.1.1). In our
numerical experiments, we choose the initial data

φ(x) = 3
2 sin(2x) and γ(x) = 5

1 + cos2(x) , x ∈ (0, 2π). (4.6.1)

The computation is carried out on an interval [0, T0/ε
β] with 0 ≤ β ≤ 2. Here, we study

the following three cases with respect to different β:
(i). Fixed time dynamics up to the time at O(1), i.e., β = 0;
(ii). Intermediate long-time dynamics up to the time at O(ε−1), i.e., β = 1;
(ii). Long-time dynamics up to the time at O(ε−2), i.e., β = 2.
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The ‘exact’ solution u(x, t) is obtained numerically by using the TSFP (4.3.2)-(4.3.3)
with a fine mesh size he = π/64 and a very small time step τe = 10−5. Denote unh,τ as
the numerical solution obtained by the TSFP (4.3.2)-(4.3.3) with mesh size h and time
step τ at the time t = tn. The errors are denoted as e(x, tn) = u(x, tn)− IM(unh,τ )(x).
In order to quantify the numerical errors, we measure the H1 norm of e(·, tn).

The errors are displayed at T0 = 1 with different ε and β. For spatial error analysis,
we fix the time step as τ = 10−5 such that the temporal errors can be neglected; for
temporal error analysis, a very fine mesh size h = π/64 is chosen such that the spatial
error can be ignored. Table 4.1 shows the spatial errors under different mesh size and
Figures 4.1−4.3 depict the temporal errors for β = 0, β = 1 and β = 2, respectively.
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Figure 4.1: Temporal errors of the TSFP (4.3.2)-(4.3.3) for the NKGE (2.1.1) with
β = 0.

From Table 4.1 and Figures 4.1-4.3, we can draw the following observations:
(i) The TSFP scheme converges uniformly for 0 < ε ≤ 1 in space with exponential

convergence rate.
(ii) For any fixed ε = ε0 > 0, the TSFP method (4.3.2)-(4.3.3) is second-order

accurate in time (cf. each line in Figures 4.1(a)−4.3(a)). When β = 0, the temporal
error behaves like O(ε2τ 2) (cf. Figure 4.1(b)), which agrees with the theoretical result
in Theorem 4.4.1. Figure 4.2(b) and Figure 4.3(b) show that the temporal error is at
O(ετ 2) and O(τ 2) for β = 1 and β = 2, respectively, which is uniformly for 0 < ε ≤ 1.
Furthermore, Figures 4.2(b) − 4.3(b) also display a temporal error bound like O(ε2τ 2)
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‖e(·, Tε)‖1 h0 = π/4 h0/2 h0/22 h0/23

β = 0

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12

ε0/2 8.99E-2 6.32E-4 2.05E-6 1.25E-12

ε0/22 9.04E-2 4.67E-4 1.95E-6 1.19E-12

ε0/23 8.85E-2 4.47E-4 1.93E-6 1.18E-12

ε0/24 8.82E-2 4.47E-4 1.93E-6 1.19E-12

ε0/25 8.81E-2 4.48E-4 1.93E-6 1.18E-12

β = 1

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12

ε0/2 2.14E-1 2.10E-3 1.58E-6 5.72E-13

ε0/22 1.08E-1 2.36E-3 7.09E-7 1.24E-12

ε0/23 4.47E-2 9.27E-4 7.72E-7 1.52E-13

ε0/24 1.14E-1 8.11E-4 7.13E-7 7.97E-13

ε0/25 7.29E-2 1.24E-3 9.83E-7 1.26E-12

β = 2

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12

ε0/2 5.22E-1 6.58E-3 5.81E-7 1.16E-12

ε0/22 5.79E-1 1.52E-3 1.82E-6 1.20E-12

ε0/23 5.82E-1 1.03E-3 6.05E-7 9.90E-13

ε0/24 9.17E-1 1.68E-3 6.69E-7 4.78E-12

ε0/25 7.67E-1 1.79E-3 3.52E-7 1.22E-11

Table 4.1: Spatial errors of the TSFP (4.3.2)-(4.3.3) for the NKGE (2.1.1) with initial
data (4.6.1) for different β and ε.

when ε is small enough, which suggests that there may be a possibility for an improved
error estimate for β ∈ (0, 2].

Tables 4.2-4.3 and Figures 4.4-4.5 show the numerical results for the TS-FD and
TS-4cFD methods and we can draw the following observations:

(i) In time, for any fixed ε = ε0 > 0 or in the long-time regime (β = 2), the TS-FD
and TS-4cFD methods are both uniformly second-order accurate (cf. Figures 4.4&4.5).
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Figure 4.2: Temporal errors of the TSFP (4.3.2)-(4.3.3) for the NKGE (2.1.1) with
β = 1.
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Figure 4.3: Temporal errors of the TSFP (4.3.2)-(4.3.3) for the NKGE (2.1.1) with
β = 2.

In addition, Figures 4.4(b)&4.5(b) show the temporal error bound like O(ε2τ 2) when ε
is small enough, which means that the error estimates for the TS-FD and TS-4cFD
methods may also be improved.

(ii) In space, for the long-time regime, i.e. β = 2, the second order convergence of
the TS-FD method can be observed only when 0 < h . ε (cf. upper triangles above
the diagonals (corresponding to h ∼ ε, and being labelled in bold letters) in Table 4.2).
For the TS-4cFD method, the second order convergence can be observed only when
0 < h . ε1/2 (cf. upper triangles above the diagonals (corresponding to h ∼ ε1/2, and
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eh,τe(t = 1/ε2) h0 = π/8 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 4.73E-2 1.21E-2 3.01E-3 7.50E-4 1.87E-4 4.68E-5

order - 1.97 2.01 2.00 2.00 2.00

ε0/2 3.81E-1 1.05E-1 2.73E-2 6.89E-3 1.73E-3 4.32E-4

order - 1.86 1.94 1.99 1.99 2.00

ε0/22 1.16E+0 3.81E-1 9.65E-2 2.43E-2 6.07E-3 1.52E-3

order - 1.61 1.98 1.99 2.00 2.00

ε0/23 4.83E+0 1.55E+0 3.21E-1 7.92E-2 1.98E-2 4.95E-3

order - 1.64 2.27 2.02 2.00 2.00

ε0/24 1.91E+0 2.72E+0 1.89E+0 4.75E-1 1.20E-1 3.00E-2

order - -0.51 0.53 1.99 1.98 2.00

Table 4.2: Spatial errors of the TS-FD for the NKGE (2.1.1) with β = 2 and initial
data (4.6.1).

eh,τe(t = 1/ε2) h0 = π/8 h0/2 h0/22 h0/23 h0/24 h0/25

ε0 = 1 1.61E-2 9.12E-4 5.44E-5 3.36E-6 2.10E-7 1.13E-8

order - 4.14 4.07 4.02 4.00 4.00

ε0/22 6.63E-2 5.57E-3 2.98E-4 1.83E-5 1.14E-6 7.14E-8

order - 3.57 4.22 4.03 4.00 4.00

ε0/24 9.67E-1 6.47E-2 6.43E-3 3.80E-4 2.36E-5 1.47E-6

order - 3.90 3.33 4.08 4.01 4.00

ε0/26 4.77E-1 7.18E-1 4.81E-2 4.32E-3 2.78E-4 1.73E-5

order - -0.59 3.90 3.48 3.96 4.01

Table 4.3: Spatial errors of the TS-4cFD for the NKGE (2.1.1) with β = 2 and initial
data (4.6.1).

being labelled in bold letters) in Table 4.3).
Comparing the TSFP, TS-FD and TS-4cFD methods, the temporal errors are

uniformly second-order accurate in the long-time regime, and the error bounds may
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Figure 4.4: Temporal errors of the TSFD method for the NKGE (2.1.1) with β = 2.
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Figure 4.5: Temporal errors of the TS-4cFD method for the NKGE (2.1.1) with β = 2.

be improved to O(ε2τ 2) when ε is small enough. For the spatial discretization, the
errors of the finite difference methods depend on the small parameter ε ∈ (0, 1]. Tables
4.2-4.3 display that the spatial error of the fourth-order compact discretization is much
smaller than that of the second order discretization in space under the same mesh size.
The error of the spectral method is uniform which performs best among these three
methods, especially when 0 < ε� 1.
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4.7 Comparisons with other time integrators
In this section, we use the spectral discretization in space and compare the temporal

error bounds of different time integrators for solving the NKGE (2.1.1). In the numerical
simulations, we choose the same initial data

φ(x) = 3
2 sin(x) and γ(x) = 3

1 + sin2(x) , x ∈ (0, 2π). (4.7.1)

Methods τ0 = 0.04 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε = 1
4

FDFP 1.61E-1 4.04E-2 1.01E-2 2.54E-3 6.36E-4 1.59E-4

order - 1.99 2.00 1.99 2.00 2.00

EWI-FP 7.34E-3 1.84E-3 4.59E-4 1.15E-4 2.87E-5 7.19E-6

order - 2.00 2.00 2.00 2.00 2.00

TSFP 4.48E-3 1.12E-3 2.80E-4 7.00E-5 1.75E-5 4.35E-6

order - 2.00 2.00 2.00 2.00 2.01

Methods ε0 = 1 ε0/2 ε0/22 ε0/23 ε0/24 ε0/25

τ = 0.01
FDFP 7.93E-3 1.01E-2 1.01E-2 1.01E-2 1.00E-2 1.00E-2

EWI-FP 4.12E-3 1.46E-3 4.59E-4 1.24E-4 3.17E-5 7.97E-6

TSFP 4.25E-3 1.14E-3 2.80E-4 6.93E-5 1.73E-5 4.31E-6

Table 4.4: Temporal errors of the numerical methods for the NKGE (2.1.1) with β = 0
and initial data (4.7.1).

Based on the above comparisons (cf. Tables 4.4-4.6), we conclude that the time-
splitting (TS) method performs much better than the finite difference (FD) method
and exponential wave integrator (EWI), especially in the long-time regime. For the
fixed ε, the three time integrators are all second order in time, while the errors of the
time-splitting method are much smaller than the other two methods. For β = 0, the
finite difference method is uniform in terms of the small parameter ε and the EWI and
TS methods behaves like O(ε2τ 2). For β > 0, the FD method behaves like O(τ 2/εβ),
which indicates that the errors become much larger when ε→ 0. The temporal error
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Methods τ0 = 0.04 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε = 1
4

FDFP 3.68E-1 9.16E-2 2.29E-2 5.72E-3 1.43E-3 3.58E-4

order - 2.01 2.00 2.00 2.00 2.00

EWI-FP 2.01E-2 5.03E-2 1.26E-3 3.14E-4 7.86E-5 1.97E-5

order - 2.00 2.00 2.00 2.00 2.00

TSFP 7.94E-3 1.98E-3 4.96E-4 1.24E-4 3.09E-5 7.70E-6

order - 2.00 2.00 2.00 2.00 2.00

Methods ε0 = 1 ε0/2 ε0/22 ε0/23 ε0/24 ε0/25

τ = 0.01
FDFP 7.93E-3 1.01E-2 2.29E-2 4.88E-2 1.06E-1 2.46E-1

EWI-FP 4.12E-3 2.41E-3 1.26E-3 5.37E-4 3.28E-4 1.72E-4

TSFP 4.25E-3 2.21E-3 4.96E-4 1.46E-4 1.45E-5 1.83E-6

Table 4.5: Temporal errors of the numerical methods for the NKGE (2.1.1) with β = 1
and initial data (4.7.1).

bounds of the EWI and TS methods are uniform in terms of ε in the long-time regime.
In addition, the numerical results indicate that the TS method is very stable and allows
large steps in practical computations, while the EWI method suffer from a stability
constraint [165]. Comparisons between these two methods show that the temporal
error of the TS method is smaller than that of the EWI method under the same time
step, which suggests that it is better than the EWI method. Overall, the time-splitting
method is the best choice among these time integrators to solve the NGKE (2.1.1) in
the long-time regime. For the convenience, we summarize the error bounds of different
numerical methods for solving the NKGE (2.1.1) in Table 4.7.

4.8 Applications
By the comparisons of various spatial discretizaions and time integrators, the TSFP

method is the most accurate and effective among these methods to solve the NKGE
in the long-time regime. In this section, we solve the NKGE (1.4.1) with the TSFP
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Methods τ0 = 0.04 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε = 1
4

FDFP 1.63E+0 4.06E-1 1.01E-1 2.53E-2 6.31E-3 1.58E-3

order - 2.01 2.01 2.00 2.00 2.00

EWI-FP 6.31E-2 1.58E-2 3.94E-3 9.85E-4 2.46E-4 6.15E-5

order - 2.00 2.00 2.00 2.00 2.00

TSFP 3.13E-2 7.83E-3 1.96E-3 4.89E-4 1.22E-4 3.04E-5

order - 2.00 2.00 2.00 2.00 2.00

Methods ε0 = 1 ε0/2 ε0/22 ε0/23 ε0/24 ε0/25

τ = 0.01
FDFP 7.93E-3 1.64E-2 1.01E-2 4.96E-1 1.33E+0 5.03E+0

EWI-FP 4.12E-3 5.71E-3 3.94E-3 5.98E-3 3.38E-3 3.73E-3

TSFP 4.25E-3 4.43E-3 1.96E-3 1.10E-3 1.94E-4 6.86E-5

Table 4.6: Temporal errors of the numerical methods for the NKGE (2.1.1) with β = 2
and initial data (4.7.1).

Temporal

Spatial
FD 4cFD spectral

FD O(h2

εβ + τ2

εβ ) O(h4

εβ + τ2

εβ ) O(hm0 + τ2

εβ )

EWI O(h2

εβ + ε2−βτ 2) O(h4

εβ + ε2−βτ 2) O(hm0 + ε2−βτ 2)

TS O(h2

εβ + ε2−βτ 2) O(h4

εβ + ε2−βτ 2) O(hm0 + ε2−βτ 2)

Table 4.7: Error bounds of different numerical methods for solving the NKGE (2.1.1)
with the mesh size h and time step τ up to the time at O(ε−β).

method effectively in 2D and 3D cases. In 2D case, we choose the computational domain
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Ω = (−π, π)× (−π, π) and the initial data

φ(x, y) = 3e−x2−y2 sin(x+ y),

γ(x, y) = e−x
2−y2 sin(x+ y).

(4.8.1)

Figures 4.6 and 4.7 show the contour plots of the solutions of the NKGE (1.4.1) in 2D
under different ε.

In 3D case, we choose the computational domain Ω = (−π, π)× (−π, π)× (−π, π)
and the initial data

φ(x, y, z) = 3e−x2−y2−z2 sin(x+ y + z),

γ(x, y) = e−x
2−y2−z2 sin(x+ y + z).

(4.8.2)

Figures 4.8 and 4.9 depict the isosurface plots of the solutions of the NKGE (1.4.1) in
3D under different ε.
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Figure 4.6: Contour plots of the solutions of 2D NKGE with (4.8.1) at different time t
under ε = 0.5.
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Figure 4.7: Contour plots of the solutions of 2D NKGE with (4.8.1) at different time t
under ε = 0.1.
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Figure 4.8: Isosurface plots of the solutions of 2D NKGE with (4.8.2) at different time
t under ε = 0.1.
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Figure 4.9: Isosurface plots of the solutions of 2D NKGE with (4.8.2) at different time
t under ε = 0.1.
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Chapter 5

Extension to an Oscillatory NKGE
In this chapter, we extend the NKGE (1.4.1) on the time interval [0, T0/ε

β] with
0 ≤ β ≤ 2 to an oscillatory NKGE on a fixed time interval [0, T0]. We use different
numerical methods to solve the oscillatory NKGE and rigorously carry out the error
bounds.

Introducing a rescaling in time by s = εβt with 0 ≤ β ≤ 2 and denoting v(x, s) :=
u(x, s/εβ) = u(x, t), we can reformulate the NKGE (1.4.1) into the following oscillatory
NKGE

∂ssv(x,s) + 1
ε2β (−∆ + 1) v(x, s) + v3(x, s)

ε2β−2 = 0, x ∈ Td, s > 0,

v(x, 0) = φ(x), ∂sv(x, 0) = ε−βγ(x), x ∈ Td.
(5.0.1)

Formally, the amplitude of the solution v(x, s) of the oscillatory NKGE (5.0.1) is at
O(1). Again, the oscillatory NKGE (5.0.1) is time symmetric or time reversible and
conserves the energy, i.e.,

E3(s) := E3(v(·, s)) =
∫
Td

[
|∂sv|2 + 1

ε2β (|∇v|2 + |v(x, t)|2) + 1
2ε2β−2 |v|

4
]
dx

≡ 1
ε2β

∫
Td

[
|γ(x)|2 + |∇φ(x)|2 + |φ(x)|2 + ε2

2 |φ(x)|4)
]
dx

= E3(0) = 1
ε2βE1(0) = O(ε−2β), s ≥ 0.

In fact, the long-time dynamics of the NKGE (1.4.1) up to the time at t = O(ε−β)
is equivalent to the dynamics of the oscillatory NKGE (5.0.1) up to the fixed time
at s = O(1). Of course, the solution of the NKGE (1.4.1) propagates waves with
wavelength at O(1) in both space and time, and wave speed in space at O(1) too.
On the contrary, the solution of the oscillatory NKGE (5.0.1) propagates waves with
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Figure 5.1: The solution v(π, s) of the oscillatory NKGE (5.0.1) with d = 1 and initial
data (2.5.1) for different ε and β: (a) β = 1, (b) β = 2.

wavelength at O(1) in space and O(εβ) in time, and wave speed in space at O(ε−β). To
illustrate this, Figures 5.1&5.2 show the solutions v(π, s) and v(x, 1), respectively, of the
oscillatory NKGE (5.0.1) with d = 1, T = (0, 2π) and initial data φ(x) = cos(x)+cos(2x)
and γ(x) = sin(x) for different 0 < ε ≤ 1 and β. We remark here that the oscillatory
nature of the oscillatory NKGE (5.0.1) is quite different from that of the NKGE in the
nonrelativistic limit regime. In fact, in the nonrelativistic limit regime of the NKGE [7,
8, 9, 11], the solution propagates waves with wavelength at O(1) in space and O(ε2) in
time, and wave speed in space at O(1).

123



CHAPTER 5. EXTENSION TO AN OSCILLATORY NKGE

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

0 1 2 3 4 5 6

-2

-1

0

1

2

(b)

Figure 5.2: The solution v(x, 1) of the oscillatory NKGE (5.0.1) with d = 1 and initial
data φ(x) = cos(x) + cos(2x) and γ(x) = sin(x) for different ε and β: (a) β = 1, (b)
β = 2.

5.1 An oscillatory NKGE in 1D
Again, for simplicity of notations, the numerical methods and their error bounds

are only presented in 1D, and the results can be easily generalized to higher dimensions
with minor modifications. In addition, the proofs for the error bounds are quite similar
to those in the previous chapters, and thus they are omitted for brevity. We adopt
similar notations as those used in Chapters 2-4 except stated otherwise. In 1D, consider
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the following oscillatory NKGE
∂ssv(x, s)− 1

ε2β ∂xxv(x, s) + 1
ε2β v(x, s) + v3(x, s)

ε2β−2 = 0, x ∈ Ω, s > 0,

v(x, 0) = φ(x), ∂sv(x, 0) = ε−βγ(x), x ∈ Ω = [a, b],
(5.1.1)

with periodic boundary conditions.

5.2 FDTD methods and their error estimates
Choose the temporal step size k := ∆s > 0 and denote time steps as sn := nk for

n ≥ 0. Let vnj be the numerical approximation of v(xj, sn) for j = 0, 1, . . . ,M and
n ≥ 0, and denote the numerical solution at time s = sn as vn. Introduce the temporal
finite difference operators as

δ+
s v

n
j =

vn+1
j − vnj

k
, δ−s v

n
j =

vnj − vn−1
j

k
, δ2

sv
n
j =

vn+1
j − 2vnj + vn−1

j

k2 .

We consider the following four FDTD methods:
I. The Crank-Nicolson finite difference (CNFD) method

δ2
sv

n
j −

1
2ε2β δ

2
x

(
vn+1
j + vn−1

j

)
+ 1

2ε2β

(
vn+1
j + vn−1

j

)
+
G
(
vn+1
j , vn−1

j

)
ε2β−2 = 0, n ≥ 1; (5.2.1)

II. A semi-implicit energy conservative finite difference (SIFD1) method

δ2
sv

n
j −

1
ε2β δ

2
xv

n
j + 1

2ε2β

(
vn+1
j + vn−1

j

)
+
G
(
vn+1
j , vn−1

j

)
ε2β−2 = 0, n ≥ 1; (5.2.2)

III. Another semi-implicit finite difference (SIFD2) method

δ2
sv

n
j −

1
2ε2β δ

2
x

(
vn+1
j + vn−1

j

)
+ 1

2ε2β

(
vn+1
j + vn−1

j

)
+

(vnj )3

ε2β−2 = 0, n ≥ 1; (5.2.3)

IV. The Leap-frog finite difference (LFFD) method

δ2
sv

n
j −

1
ε2β δ

2
xv

n
j + 1

ε2β v
n
j +

(vnj )3

ε2β−2 = 0, n ≥ 1. (5.2.4)

The initial and boundary conditions are discretized as

vn+1
0 = vn+1

M , vn+1
−1 = vn+1

M−1, n ≥ 0; v0
j = φ(xj), j = 0, 1, . . . ,M. (5.2.5)
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Using the Taylor expansion and noticing (5.1.1), the first step v1 ∈ XM can be computed
as

v1
j = φ(xj) + k

εβ
γ(xj) + k2

2ε2β

[
δ2
xφ(xj)− φ(xj)− ε2φ3(xj)

]
, 0 ≤ j ≤M − 1. (5.2.6)

In fact, if we take k = τεβ in the FDTD methods in this section, then they are
consistent with those FDTD methods presented in Section 2.3.1. Thus, they have the
same solutions.

We remark here that, in practical computations, in order to uniformly bound the
first step value v1 ∈ XM for ε ∈ (0, 1], in the above approximation (5.2.6), kε−β and
k2ε−2β are replaced by sin(kε−β) and k sin(kε−2β), respectively [9, 17].

5.2.1 Stability and energy conservation

Denote
σ̃max := max

0≤n≤T0/k
‖vn‖2

l∞ . (5.2.7)

Similar to Section 2.3.2, following the von Neumann stability analysis, we can conclude
the stability of the above FDTD methods for the oscillatory NKGE (5.1.1) up to the
fixed time s = T0 in the following lemma.

Lemma 5.2.1. For the above FDTD methods applied to the oscillatory NKGE (5.1.1)
up to the fixed time s = T0, we have:

(i) The CNFD (5.2.1) is unconditionally stable for any h > 0, k > 0 and 0 < ε ≤ 1.
(ii) When h ≥ 2, the SIFD1 (5.2.2) is unconditionally stable for any h > 0 and

k > 0; and when 0 < h < 2, this scheme is conditionally stable under the stability
condition

0 < k <
2εβh√
4− h2

, h > 0, 0 < ε ≤ 1. (5.2.8)

(iii) When σ̃max ≤ ε−2, the SIFD2 (5.2.3) is unconditionally stable for any h > 0
and k > 0; and when σ̃max > ε−2, this scheme is conditionally stable under the stability
condition

0 < k <
2εβ√

ε2σ̃max − 1
, h > 0, 0 < ε ≤ 1. (5.2.9)
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(iv) The LFFD (5.2.4) is conditionally stable under the stability condition

0 < k <
2εβh√

4 + h2(1 + ε2σ̃max)
, h > 0, 0 < ε ≤ 1. (5.2.10)

For the CNFD (5.2.1) and SIFD1 (5.2.2), we have the following energy conservation
properties:

Lemma 5.2.2. The CNFD (5.2.1) conserves the discrete energy as

En =ε2β‖δ+
s v

n‖2
l2 + 1

2
(
‖δ+

x v
n‖2

l2 + ‖δ+
x v

n+1‖2
l2

)
+ 1

2
(
‖vn‖2

l2 + ‖vn+1‖2
l2

)
+ h

4ε
2
M−1∑
j=0

[
|vnj |4 + |vn+1

j |4
]
≡ E0, n = 0, 1, 2, . . . .

Similarly, the SIFD1 (5.2.2) conserves the discrete energy as

Ẽn =ε2β‖δ+
s v

n‖2
l2 + h

M−1∑
j=0

(
δ+
x v

n
j

) (
δ+
x v

n+1
j

)
+ 1

2
(
‖vn‖2

l2 + ‖vn+1‖2
l2

)

+ h

4ε
2
M−1∑
j=0

[
|vnj |4 + |vn+1

j |4
]
≡ Ẽ0, n = 0, 1, 2, . . . .

5.2.2 Main results

Again, motivated by the analytical results and the assumptions on the NKGE
(2.1.1), we assume that the exact solution v of the oscillatory NKGE (5.1.1) satisfies

(Ã)
v ∈C([0, T0];W 4,∞

p ) ∩ C2([0, T0];W 2,∞) ∩ C3([0, T0];W 1,∞) ∩ C4([0, T0];L∞),∥∥∥∥∥ ∂r+q

∂sr∂xq
v(x, s)

∥∥∥∥∥
L∞([0,T0];L∞)

.
1
εβr

, 0 ≤ r ≤ 4, 0 ≤ r + q ≤ 4.

Define the grid ‘error’ function ẽn ∈ XM(n ≥ 0) as

ẽnj = v(xj, sn)− vnj , j = 0, 1, . . . ,M, n = 0, 1, 2, . . . , (5.2.11)

where vn ∈ XM is the numerical approximation of the oscillatory NKGE (5.1.1) obtained
by one of the FDTD methods.

By taking k = τεβ in the above FDTD methods and noting the error bounds in
Section 2.4, we can immediately obtain error bounds of the above FDTD methods for
the oscillatory NKGE (5.1.1).
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Theorem 5.2.1. Under the assumption (Ã), there exist constants h0 > 0 and k0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤ h0ε

β/2

and 0 < k ≤ k0ε
3β/2, we have the following error estimates for the CNFD (5.2.1) with

(5.2.5) and (5.2.6)

‖ẽn‖l2 + ‖δ+
x ẽ

n‖l2 .
h2

εβ
+ k2

ε3β , ‖vn‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0

k
. (5.2.12)

Theorem 5.2.2. Assume k . hεβ and under the assumption (Ã), there exist constants
h0 > 0 and k0 > 0 sufficiently small and independent of ε, such that for any 0 < ε ≤ 1,
when 0 < h ≤ h0ε

β/2, 0 < k ≤ k0ε
3β/2 and under the stability condition (5.2.8), we have

the following error estimates for the SIFD1 (5.2.2) with (5.2.5) and (5.2.6)

‖ẽn‖l2 + ‖δ+
x ẽ

n‖l2 .
h2

εβ
+ k2

ε3β , ‖vn‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0

k
. (5.2.13)

Theorem 5.2.3. Under the assumption (Ã), there exist constants h0 > 0 and k0 > 0
sufficiently small and independent of ε, such that for any 0 < ε ≤ 1, when 0 < h ≤
h0ε

β/2, 0 < k ≤ k0ε
3β/2 and under the stability condition (5.2.9), we have the following

error estimates for the SIFD2 (5.2.3) with (5.2.5) and (5.2.6)

‖ẽn‖l2 + ‖δ+
x ẽ

n‖l2 .
h2

εβ
+ k2

ε3β , ‖vn‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0

k
. (5.2.14)

Theorem 5.2.4. Assume k . hεβ and under the assumption (Ã), there exist constants
h0 > 0 and k0 > 0 sufficiently small and independent of ε, such that for any 0 < ε ≤ 1,
when 0 < h ≤ h0ε

β/2, 0 < k ≤ k0ε
3β/2 and under the stability condition (5.2.10), we

have the following error estimates for the LFFD (5.2.4) with (5.2.5) and (5.2.6)

‖ẽn‖l2 + ‖δ+
x ẽ

n‖l2 .
h2

εβ
+ k2

ε3β , ‖vn‖l∞ ≤ 1 +M0, 0 ≤ n ≤ T0

k
. (5.2.15)
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The above four FDTD methods share the same spatial/temporal resolution capacity
for the oscillatory NKGE (5.1.1) up to the fixed time at O(1). In fact, given an accuracy
bound δ0 > 0, the ε-scalability of the FDTD methods for the oscillatory NKGE (5.1.1)
should be taken as

h = O(εβ/2
√
δ0) = O(εβ/2), k = O(ε3β/2

√
δ0) = O(ε3β/2), 0 < ε ≤ 1.

Again, these results are very useful for practical computations on how to select mesh
size and time step such that the numerical results are trustable.

5.3 EWI-FP method and its error estimate
Let k = ∆s > 0 be the temporal step size and denote time steps as sn := nk

for n ≥ 0. The Fourier spectral method for the oscillatory NKGE (5.1.1) is to find
vM(x, s) ∈ XM , i.e.,

vM(x, s) =
∑
l∈TM

(̂vM)l(s)e
iµl(x−a), x ∈ Ω, s ≥ 0, (5.3.1)

such that

ε2β∂ssvM(x, s)−∂xxvM(x, s) + vM(x, s) + ε2PMf(vM(x, s)) = 0, x ∈ Ω, s ≥ 0, (5.3.2)

with f(v) = v3. The derivations of the EWI-FS/EWI-FP discretization for the oscillatory
NKGE (5.1.1) proceed in the analogous lines as those in Section 3.2 and we omit the
details here for brevity. Denote (̂vnM)l and vnM (x) be the approximations of (̂vM)l(sn) and
vM(x, sn), respectively. Choosing v0

M(x) = (PMφ)(x), the Gautschi-type exponential
wave integrator Fourier spectral (EWI-FS) discretization for the oscillatory NKGE
(5.1.1) is

vn+1
M (x) =

∑
l∈TM

(̂vn+1
M )le

iµl(x−a), x ∈ Ω, n ≥ 0, (5.3.3)

where

(̂v1
M)l = p̄lφ̂l + q̄lγ̂l + r̄l(̂f(φ))l, l ∈ TM ,

(̂vn+1
M )l = −(̂vn−1

M )l + 2p̄l(̂vnM)l + 2r̄l ̂(f(vnM))l, l ∈ TM , n ≥ 1,
(5.3.4)
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with ζ̄l = ε−β
√

1 + µ2
l = O(ε−β) and the coefficients given as

p̄l = cos(kζ̄l), q̄l = sin(kζ̄l)
εβ ζ̄l

, r̄l = ε2(cos(kζ̄l)− 1)
(εβ ζ̄l)2

. (5.3.5)

Similarly, let vnj be the approximation of v(xj, sn) and denote v0
j = φ(xj) (j =

0, 1, · · · ,M), then we can obtain the following Gautschi-type exponential wave integrator
Fourier pseudospectral (EWI-FP) discretization for the oscillatory NKGE (5.1.1) as

vn+1
j =

∑
l∈TM

ṽn+1
l eiµl(xj−a), j = 0, 1, · · · ,M, n ≥ 0, (5.3.6)

where

ṽ1
l = p̄lφ̃l + q̄lγ̃l + r̄l(̃f(φ))l, l ∈ TM ,

ṽn+1
l = −ṽn−1

l + 2p̄lṽnl + 2r̄l ˜(f(vn))l, l ∈ TM , n ≥ 1,
(5.3.7)

with the coefficients p̄l, q̄l and r̄l are given in (5.3.5).
The EWI-FP (5.3.6)-(5.3.7) is also explicit, time symmetric and easy to extend

to 2D and 3D. The memory cost is O(M) and the computational cost per time step
is O(M lnM). Similar to Lemma 3.2.1, we have the following stability result for the
EWI-FP (5.3.6)-(5.3.7) with the proof omitted here for brevity.

Lemma 5.3.1. (stability) Let T0 > 0 be a fixed constant and denote

σ̄max := max
0≤n≤T0/k

‖vn‖2
l∞ . (5.3.8)

The EWI-FP (5.3.6)-(5.3.7) is conditionally stable under the stability condition

0 < k ≤ 2εβh√
π2 + h2(1 + ε2σ̄max)

, h > 0, 0 < ε ≤ 1. (5.3.9)

We are going to establish the error bounds of the EWI-FS/EWI-FP method for the
oscillatory NKGE (5.1.1). Let 0 < T0 < T ∗ with T ∗ the maximum existence time of
the solution. Again, motivated by the analytical results of the oscillatory NKGE (5.1.1)
and the assumption (D), we make some assumptions on the exact solution v(x, s) of
the oscillatory NKGE (5.1.1):
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(B̃)

v(x, s) ∈ L∞
(
[0, T0];L∞ ∩Hm0+1

p

)
, ∂sv(x, s) ∈ L∞

(
[0, T0];W 1,4

)
,

∂ssv(x, s) ∈ L∞
(
[0, T0];H1

)
,

‖v(x, s)‖
L∞([0,T0];L∞∩Hm0+1

p ) . 1, ‖∂sv(x, s)‖L∞([0,T0];W 1,4) .
1
εβ
,

‖∂ssv(x, s)‖L∞([0,T0];H1) .
1
ε2β , m0 ≥ 1.

Under the assumption (B̃), let

M1 := max
ε∈(0,1]

{
‖v(x, s)‖L∞([0,T0];L∞) + εβ‖∂sv(x, s)‖L∞([0,T0];L∞)

}
. 1,

M2 := sup
v 6=0,|v|≤1+M1

|v|2 . 1.

Assuming

k ≤ min

1
8ε

β,
εβπh

3
√
π2 + h2(1 + ε2M2)

 , 0 < ε ≤ 1, 0 ≤ β ≤ 2, (5.3.10)

taking τ = kε−β and noticing the error bounds in Theorem 3.3.1, we can immediately
obtain the error bounds of the EWI-FS (5.3.3)-(5.3.4) (The results for the EWI-FP
(5.3.6)-(5.3.7) are quite similar and the details are skipped here for brevity):

Theorem 5.3.1. Let vnM(x) be the approximation obtained from the EWI-FS (5.3.3)-
(5.3.4), under the stability condition (5.3.9) and the assumptions (B̃) and (5.3.10), there
exist constants h0 > 0 and k0 > 0 sufficiently small and independent of ε, such that for
any 0 < ε ≤ 1 and 0 ≤ β ≤ 2, when 0 < h ≤ h0, 0 < k ≤ εβk0, we have

‖v(x, sn)− vnM(x)‖λ . h1+m0−λ + ε2−3βk2, λ = 0, 1,

‖vnM(x)‖L∞ ≤ 1 +M1, 0 ≤ n ≤ T0

k
.

(5.3.11)

Based on Theorem 5.3.1, for a given accuracy bound δ0 > 0, the ε-scalability of the
EWI-FS/EWI-FP method for the oscillatory NKGE (5.1.1) is:

h = O(1), k = O(εβ
√
δ0) = O(εβ), 0 ≤ β ≤ 2.
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This indicates that, in order to obtain “correct” numerical solution in the fixed time
interval, one has to take the meshing strategy: h = O(1) and k = O(εβ). These results
are useful for choosing mesh size and time step in practical computations such that the
numerical results are trustable.

5.4 TSFP method and its error estimate
In this section, we extend the TSFP method to solve the following oscillatory

complex NKGE in the whole space Rd(d = 1, 2, 3)
∂ssv(x, s) + 1

ε2β (−∆ + 1)v(x, s) + |v(x, s)|2
ε2β−2 v(x, s) = 0, x ∈ Rd, s > 0,

v(x, 0) = φ(x), ∂sv(x, 0) = ε−βγ(x), x ∈ Rd.

(5.4.1)

For simplicity of notations, we only present the method and results in 1D. Similar to
those in the literature, we truncate the oscillatory complex NKGE (5.4.1) in 1D onto a
bounded interval Ω = (a, b) with periodic boundary conditions as

∂ssv(x, s) + 1
ε2β (−∂xx + 1)v(x, s) + ε2−2β|v(x, s)|2v(x, s) = 0, s > 0,

v(a, t) = v(b, t), ∂xv(a, t) = ∂xv(b, t), t ≥ 0,

v(x, 0) = φ(x), ∂sv(x, 0) = ε−βγ(x), x ∈ Ω = [a, b].

(5.4.2)

Choose the spatial mesh size h = (b− a)/M with M being an even positive integer and
a temporal step size k, the grid points and time steps are denoted as

xj := a+ jh, j ∈ T 0
M , sn := nk, n = 0, 1, 2, . . . . (5.4.3)

Similarly, introducing v̇(x, s) = ∂sv(x, s) and

η+(x, s) = v(x, s)− iεβ〈∇〉−1v̇(x, s),

η−(x, s) = v(x, s)− iεβ〈∇〉−1v̇(x, s),
a ≤ x ≤ b, s ≥ 0, (5.4.4)

and denoting

Φ(x, s) =
 η+(x, s)
η−(x, s)

 , G(Φ) =
 f

(
1
2(η+ + η−)

)
f
(

1
2(η+ + η−)

)
 ,

Φ0(x) =
 φ(x)− iε−β〈∇〉−1γ(x)
φ(x)− iε−β〈∇〉−1γ(x)

 ,
(5.4.5)
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with f(ϕ) = |ϕ|2ϕ, then the oscillatory complex NKGE (5.4.2) can be reformulated
into the following oscillatory relativistic NLSE:

i∂sΦ + ε−β〈∇〉Φ + ε2−β〈∇〉−1G(Φ) = 0,

Φ(x, 0) = Φ0(x).
(5.4.6)

The above problem can be decoupled into the following two subproblems via a time-
splitting technique [136]: 

i∂sΦ(x, s) + ε−β〈∇〉Φ(x, s) = 0,

Φ(x, 0) = Φ0(x),
(5.4.7)

and 
i∂sΦ(x, s) + ε2−β〈∇〉−1G(Φ) = 0,

Φ(x, 0) = Φ0(x),
(5.4.8)

which can be solved exactly as

Φ(·, s) = eisε
−β〈∇〉Φ0, Φ(x, s) = Φ0(x) + is ε2−β〈∇〉−1G(Φ0(x)), s ≥ 0,

respectively.
Let Φn

j be the approximation of Φ(xj, sn) for j ∈ T 0
M and n ≥ 0, and denote

Φn = (Φn
0 ,Φn

1 , . . . ,Φn
M )T be the solution at sn = nk. Then a second-order time-splitting

Fourier pseudospectral (TSFP) discretization for the oscillatory relativistic NLSE (5.4.6)
is given by

Φ(n,1)
j =

∑
l∈TM

e
ikζl
2εβ ˜(Φn)l e

iµl(xj−a),

Φ(n,2)
j = Φ(n,1)

j + kε2−βF n
j ,

Φn+1
j =

∑
l∈TM

e
ikζl
2εβ ˜(Φ(n,2))l e

iµl(xj−a),

j ∈ T 0
M , n ≥ 0, (5.4.9)

with

Φ0
j = Φ0(xj), F n

j = i
∑
l∈TM

1
ζl

˜(G(Φ(n,1)))l e
iµl(xj−a), j ∈ T 0

M , n ≥ 0.
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Then vnj and v̇nj which are approximations of v(xj, sn) and v̇(xj, sn), respectively, can
be recovered by

vn+1
j = 1

2
(
(η+)n+1

j + (η−)n+1
j

)
,

v̇n+1
j = i

2εβ
∑
l∈TM

ζl

(
˜((η+)n+1)l −

˜((η−)n+1)l
)
eiµl(xj−a),

j ∈ T 0
M , n ≥ 0, (5.4.10)

with v0
j = φ(xj) and v̇0

j = ε−βγ(xj) for j ∈ T 0
M .

We remark here that, by taking k = εβτ and assuming φ and γ to be real-valued in
(5.4.2), the TSFP discretization (5.4.10) via (5.4.9) is the same as the TSFP discretiza-
tion (4.3.3) via (4.3.2). Thus similar to the proof in Section 4.4, under the following
reasonable assumptions on the exact solution v of (5.4.2)

(C̃)
v ∈ L∞

(
[0, T0];Hm+1

p

)
, ∂tv ∈ L∞

(
[0, T0];Hm

p

)
,

‖v‖L∞([0,T0];Hm+1
p ) . 1, ‖∂tv‖L∞([0,T0];Hm

p ) .
1
εβ
,

with m ≥ 1, we can establish the following error bounds of the TSFP method (5.4.10)
via (5.4.9) for the oscillatory complex NKGE (5.4.2) (the proof is omitted here for
brevity).

Theorem 5.4.1. Let vn be the numerical approximation obtained from the TSFP
(5.4.9)-(5.4.10). Under the assumption (C̃), there exist h0 > 0 and k0 > 0 sufficiently
small and independent of ε such that, for any 0 < ε ≤ 1, when 0 < h ≤ h0 and
0 < k ≤ k0ε

β, we have the error estimates for λ ∈ (1/2,m]

‖v(·, sn)− IM(vn)‖λ + ‖∂sv(·, sn)− IM(v̇n)‖λ−1 . h1+m−λ + ε2−3βk2, 0 ≤ n ≤ T0

k
.

5.5 Numerical results
In this section, we show the numerical results of the following NKGE in the one

dimension (1D)
∂ssv(x, s) + 1

ε2β (−∆ + 1)v(x, s) + |v(x, s)|2
ε2β−2 v(x, s) = 0, x ∈ R, s > 0,

v(x, 0) = φ(x), ∂sv(x, 0) = ε−βγ(x), x ∈ R.
(5.5.1)
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Similar to the oscillatory NKGE (5.0.1), the solution of the oscillatory NKGE (5.5.1)
propagates waves with wavelength at O(1) in space and O(εβ) in time, and wave speed
in space at O(ε−β). To illustrate the rapid wave propagation in space at O(ε−β), Figure
5.3 shows the solution v(x, 1) of the oscillatory NKGE (5.5.1) with d = 1 and initial
data

φ(x) = sech(x2) and γ(x) = 0, x ∈ R. (5.5.2)

Similar to those in the literature, due to the fast decay of the solution of the
oscillatory NKGE (5.5.1) at the far field (see [9, 48, 138] and references therein), in
practical computations, we usually truncate the original whole space problem onto a
bounded domain with periodic boundary conditions, which is large enough such that
the truncation error is negligible. Due to the rapid outgoing waves with wave speed
O(ε−β), the computational domain Ωε has to be chosen as ε-dependent.

For the oscillatory NKGE (5.5.1), we study the following three cases :
Case I. Classical case, i.e., β = 0;
Case II. Intermediately oscillatory case, i.e., β = 1;
Case III. Highly oscillatory case, i.e., β = 2.

5.5.1 For FDTD methods

The initial data is chosen as (5.5.2) and the bounded computational domain is taken
as Ωε = [−4−ε−β, 4+ε−β]. The ‘exact’ solution is obtained numerically by the EWI-FP
method with a very fine mesh size and a very small time step, e.g. he = 1/213 and
ke = 2× 10−6. Denote vnh,k as the numerical solution at s = sn obtained by a numerical
method with mesh size h and time step k. In order to quantify the numerical results,
we define the error function as follows:

ẽh,k(sn) =
√
‖v(·, sn)− vnh,k‖2

l2 + ‖δ+
x (v(·, sn)− vnh,k)‖2

l2 . (5.5.3)

Tables 5.1-5.6 show the spatial and temporal errors of the CNFD (5.2.1) for the
oscillatory NKGE (5.5.1) with different β and ε. The results for other FDTD methods
are quite similar and they are omitted here for brevity.
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Figure 5.3: The solutions v(x, 1) of the oscillatory NKGE (5.5.1) with d = 1 and initial
data (5.5.2) for different ε and β: (a) β = 1, (b) β = 2.

From Tables 5.3-5.6 for the CNFD method and additional similar numerical results
for other FDTD methods not shown here for brevity, we can draw the following
observations on the FDTD methods for the oscillatory NKGE (5.5.1):

(i) For any fixed ε = ε0 > 0 or β = 0, the FDTD methods are uniformly second-order
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ẽh,ke(s = 1) h0 = 1/4 h0/2 h0/22 h0/23 h0/24

ε0 = 1 6.17E-2 1.68E-2 4.26E-3 1.07E-3 2.68E-4

order - 1.88 1.98 1.99 2.00

ε0/2 6.20E-2 1.70E-2 4.33E-3 1.09E-3 2.73E-4

order - 1.87 1.97 1.99 2.00

ε0/22 6.22E-2 1.71E-2 4.36E-3 1.09E-3 2.75E-4

order - 1.86 1.97 2.00 1.99

ε0/23 6.22E-2 1.71E-2 4.36E-3 1.10E-3 2.75E-4

order - 1.86 1.97 1.99 2.00

ε0/24 6.22E-2 1.71E-2 4.37E-3 1.10E-3 2.75E-4

order - 1.86 1.97 1.99 2.00

Table 5.1: Spatial errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 0 and (5.5.2).

ẽhe,k(s = 1) k0 = 0.025 k0/2 k0/22 k0/23 k0/24

ε0 = 1 4.11E-3 1.05E-3 2.64E-4 6.63E-5 1.66E-5

order - 1.97 1.99 1.99 2.00

ε0/2 3.85E-3 9.82E-4 2.48E-4 6.22E-5 1.56E-5

order - 1.97 1.99 2.00 2.00

ε0/22 3.79E-3 9.65E-4 2.43E-4 6.11E-5 1.53E-5

order - 1.97 1.99 1.99 2.00

ε0/23 3.77E-3 9.61E-4 2.42E-4 6.08E-5 1.52E-5

order - 1.97 1.99 1.99 2.00

ε0/23 3.77E-3 9.60E-4 2.42E-4 6.07E-5 1.52E-5

order - 1.97 1.99 2.00 2.00

Table 5.2: Temporal errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 0 and (5.5.2).
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ẽh,ke(s = 1) h0 = 1/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.68E-2 4.26E-3 1.07E-3 2.68E-4 6.72E-5

order - 1.98 1.99 2.00 2.00

ε0/4 5.60E-2 1.44E-2 3.63E-3 9.08E-4 2.27E-4

order - 1.96 1.99 2.00 2.00

ε0/42 2.00E-1 5.68E-2 1.45E-2 3.63E-3 9.07E-4

order - 1.82 1.97 2.00 2.00

ε0/43 4.83E-1 2.02E-1 5.70E-2 1.45E-2 3.63E-3

order - 1.26 1.83 1.97 2.00

ε0/44 6.21E-1 4.86E-1 2.03E-1 5.74E-2 1.48E-2

order - 0.35 1.26 1.82 1.96

Table 5.3: Spatial errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 1 and (5.5.2).

ẽhe,k(s = 1) k0 = 0.025 k0/4 k0/42 k0/43 k0/44

ε0 = 1 4.11E-3 2.64E-4 1.66E-5 1.05E-6 7.82E-8

order - 1.98 2.00 1.99 1.87

ε0/42/3 4.88E-2 3.24E-3 2.04E-4 1.28E-5 8.29E-7

order - 1.96 1.99 2.00 1.97

ε0/44/3 4.98E-1 5.06E-2 3.23E-3 2.02E-4 1.28E-5

order - 1.65 1.98 2.00 1.99

ε0/46/3 1.75 5.18E-1 5.13E-2 3.23E-3 2.02E-4

order - 0.88 1.67 1.99 2.00

ε0/48/3 1.93 1.71 5.27E-1 5.18E-2 3.24E-3

order - 0.09 0.85 1.67 2.00

Table 5.4: Temporal errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 1 and (5.5.2).
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ẽh,ke(s = 1) h0 = 1/8 h0/2 h0/22 h0/23 h0/24

ε0 = 1 1.68E-2 4.26E-3 1.07E-3 2.68E-4 6.72E-5

order - 1.98 1.99 2.00 2.00

ε0/2 5.64E-2 1.46E-2 3.66E-3 9.16E-4 2.30E-4

order - 1.95 2.00 2.00 2.00

ε0/22 2.01E-1 5.71E-2 1.46E-2 3.65E-3 9.12E-4

order - 1.82 1.97 2.00 2.00

ε0/23 4.83E-1 2.03E-1 5.71E-2 1.45E-2 3.64E-3

order - 1.25 1.83 1.98 1.99

ε0/24 6.22E-1 4.86E-1 2.03E-1 5.74E-2 1.48E-2

order - 0.36 1.26 1.82 1.96

Table 5.5: Spatial errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 2 and (5.5.2).

ẽhe,k(s = 1) k0 = 0.025 k0/4 k0/42 k0/43 k0/44

ε0 = 1 4.11E-3 2.64E-4 1.66E-5 1.05E-6 7.82E-8

order - 1.98 2.00 1.99 1.87

ε0/41/3 4.99E-2 3.31E-3 2.08E-4 1.31E-5 8.48E-7

order - 1.96 2.00 1.99 1.97

ε0/42/3 5.03E-1 5.13E-2 3.28E-3 2.05E-4 1.29E-5

order - 1.65 1.98 2.00 2.00

ε0/43/3 1.77 5.21E-1 5.17E-2 3.26E-3 2.04E-4

order - 0.88 1.67 1.99 2.00

ε0/44/3 1.93 1.72 5.28E-1 5.19E-2 3.25E-3

order - 0.08 0.85 1.67 2.00

Table 5.6: Temporal errors of the CNFD (5.2.1) for the oscillatory NKGE (5.5.1) with
β = 2 and (5.5.2).
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accurate in both spatial and temporal discretizations (cf. the first rows in Tables 5.3-5.6),
which agree with those results in the literature. (ii) In the intermediate oscillatory case,
i.e., β = 1, the second order convergence in space and time of the FDTD methods can
be observed only when 0 < h . ε1/2 and 0 < k . ε3/2 (cf. upper triangles above the
diagonals (corresponding to h ∼ ε1/2 and k ∼ ε3/2, and being labelled in bold letters)
in Tables 5.3-5.4), which confirm our error bounds. (iii) In the highly oscillatory case,
i.e., β = 2, the second order convergence in space and time of the FDTD methods
can be observed only when 0 < h . ε and 0 < k . ε3 (cf. upper triangles above the
diagonals (corresponding to h ∼ ε and k ∼ ε3, and being labelled in bold letters) in
Tables 5.5-5.6), which again confirm our error bounds. In summary, our numerical
results confirm our rigorous error bounds and show that they are sharp.

5.5.2 For EWI-FP method

We choose the following initial data

φ(x) = 1/(ex2 + e−x
2) and γ(x) = 2e−x2

, x ∈ R. (5.5.4)

The problem is solved on a bounded interval Ωε = [−4 − ε−β, 4 + ε−β], which is
large enough to guarantee that the periodic boundary condition does not introduce
a significant truncation error relative to the original problem. The ‘exact’ solution is
obtained numerically by the EWI-FP method with a very fine mesh size and a very
small time step, e.g. he = 1/16 and ke = 10−4. Denote vn as the numerical solution
at sn by the EWI-FP (5.3.6)-(5.3.7) with mesh size h and time step k. The errors are
denoted as ẽ(x, sn) ∈ XM with ẽ(x, sn) = v(x, sn) − IM(vn)(x). In order to quantify
the numerical results, we measure the H1 norm of ẽ(x, sn), i.e.,

‖ẽ(·, sn)‖1 = ‖ẽ(·, sn)‖+ ‖∇ẽ(·, sn)‖.

We first test the spatial discretization errors at s = 1 for different 0 < ε ≤ 1 and
0 ≤ β ≤ 2. In order to do this, we fix the time step as ke = 10−4 such that the temporal
error can be ignored, and solve the oscillatory NKGE (5.4.1) with different mesh size h.
Table 5.7 depicts the spatial errors for β = 0, β = 1 and β = 2. Then we check the
temporal errors at s = 1 for different 0 < ε ≤ 1 and 0 ≤ β ≤ 2 with different time step
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k and a very fine mesh size he = 1/16 such that the spatial errors can be neglected.
Tables 5.8-5.10 show the temporal errors for β = 0, β = 1 and β = 2, respectively.

‖ẽ(·, 1)‖1 h0 = 1 h0/2 h0/22 h0/23

β = 0

ε0 = 1 3.66E-2 1.15E-3 7.13E-6 9.27E-11

ε0/2 5.15E-2 5.43E-4 2.55E-6 5.08E-11

ε0/22 5.61E-2 6.35E-4 1.62E-6 4.58E-11

ε0/23 5.73E-2 6.89E-4 1.55E-6 4.41E-11

ε0/24 5.76E-2 7.04E-4 1.55E-6 4.40E-11

β = 1

ε0 = 1 3.66E-2 1.15E-3 7.13E-6 9.27E-11

ε0/2 1.08E-1 1.23E-3 7.86E-6 1.36E-10

ε0/22 1.78E-1 4.00E-3 1.23E-5 3.50E-10

ε0/23 2.26E-1 9.90E-3 2.72E-5 8.81E-10

ε0/24 4.43E-2 1.81E-2 5.90E-5 2.01E-9

β = 2

ε0 = 1 3.66E-2 1.15E-3 7.13E-6 9.27E-11

ε0/2 1.64E-1 3.43E-3 1.72E-5 3.35E-10

ε0/22 4.94E-2 1.78E-2 6.16E-5 2.03E-9

ε0/23 2.73E-1 1.83E-2 6.03E-5 6.92E-9

ε0/24 1.60E-1 1.90E-2 8.86E-5 6.95E-9

Table 5.7: Spatial errors of the EWI-FP (5.3.6)-(5.3.7) for the oscillatory NKGE (5.5.1)
with initial data (5.5.4) for different β and ε.

From Tables 5.7-5.10 and additional numerical results not shown here for brevity,
we can draw the following observations:

(i) In space, the EWI-FP (5.3.6)-(5.3.7) converges uniformly with exponential
convergence rate for any fixed 0 < ε ≤ 1 and 0 ≤ β ≤ 2 (cf. each row in Table 5.7).

(ii) In time, for any fixed ε = ε0 > 0, the EWI-FP (5.3.6)-(5.3.7) is uniformly second-
order accurate (cf. the first rows in Tables 5.8-5.10), which agree with the results in the
literature. For the classical case, i.e., β = 0, Table 5.8 indicates that the temporal error
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‖ẽ(·, 1)‖1 k0 = 0.1 k0/2 k0/22 k0/23 k0/24

ε0 = 1 1.08E-2 2.68E-3 6.70E-4 1.67E-4 4.18E-5

order - 2.01 2.00 2.00 2.00

ε0/2 3.99E-3 9.95E-4 2.48E-4 6.21E-5 1.55E-5

order - 2.00 2.00 2.00 2.00

ε0/22 1.15E-3 2.86E-4 7.15E-5 1.79E-5 4.46E-6

order - 2.01 2.00 2.00 2.00

ε0/23 2.98E-4 7.43E-5 1.86E-5 4.64E-6 1.16E-6

order - 2.00 2.00 2.00 2.00

ε0/24 7.52E-5 1.88E-5 4.68E-6 1.17E-6 2.97E-7

order - 2.00 2.01 2.00 1.98

Table 5.8: Temporal errors of the EWI-FP (5.3.6)-(5.3.7) for the oscillatory NKGE
(5.5.1) with β = 0 and initial data (5.5.4).

‖ẽ(·, 1)‖1 k0 = 0.1 k0/2 k0/22 k0/23 k0/24

ε0 = 1 1.08E-2 2.68E-3 6.70E-4 1.67E-4 4.18E-5

order - 2.01 2.00 2.00 2.00

ε0/2 2.57E-2 6.26E-3 1.55E-3 3.88E-4 9.69E-5

order - 2.04 2.01 2.00 2.00

ε0/22 5.01E-2 1.15E-2 2.81E-3 7.00E-4 1.75E-4

order - 2.12 2.03 2.01 2.00

ε0/23 2.57E-1 2.12E-2 4.78E-3 1.17E-3 2.91E-4

order - 3.60 2.15 2.03 2.01

ε0/24 1.70E-1 1.09E-1 7.47E-3 1.70E-3 4.17E-4

order - 0.64 3.87 2.14 2.03

Table 5.9: Temporal errors of the EWI-FP (5.3.6)-(5.3.7) for the oscillatory NKGE
(5.5.1) with β = 1 and initial data (5.5.4).
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‖ẽ(·, 1)‖1 k0 = 0.1 k0/4 k0/42 k0/43 k0/44

ε0 = 1 1.08E-2 6.70E-4 4.18E-5 2.59E-6 1.89E-7

order - 2.01 2.00 2.01 1.89

ε0/2 1.98E-1 1.10E-2 6.85E-4 4.27E-5 2.51E-6

order - 2.08 2.00 2.00 2.04

ε0/22 3.25 1.22E-1 6.82E-3 4.22E-4 2.48E-5

order - 2.37 2.08 2.01 2.04

ε0/23 1.33 1.95 4.71E-2 2.51E-3 1.47E-4

order - -0.28 2.69 2.11 2.05

ε0/24 4.81E-1 5.33E-1 9.88E-1 1.68E-2 7.42E-4

order - -0.07 -0.45 2.93 2.25

Table 5.10: Temporal errors of the EWI-FP (5.3.6)-(5.3.7) for the oscillatory NKGE
(5.5.1) with β = 2 and initial data (5.5.4).

of the EWI-FP (5.3.6)-(5.3.7) behaves like O(ε2k2) (cf. each row and column in Table
5.8); When β = 1, the EWI-FP(5.3.6)-(5.3.7) converges quadratically in time when
k . ε (cf. each row in the upper triangle above the diagonal (corresponding to k ∼ ε

and being labelled in bold letters) in Table 5.9). When β = 2, the EWI-FP(5.3.6)-(5.3.7)
converges quadratically in time when k . ε2 (cf. each row in the upper triangle above
the diagonal (corresponding to k ∼ ε2 and being labelled in bold letters) in Table 5.10).
In summary, our numerical results confirm our rigorous error estimates.

5.5.3 For TSFP method

In this subsection, we report the numerical results of the TSFP method for solving
the oscillatory equation (5.5.1) with the complex initial data

φ(x) = (3 + i)e−x2/2 and γ(x) = sech(x2), x ∈ R. (5.5.5)

The problem is solved on a bounded interval Ωε = [−8 − ε−β, 8 + ε−β], which is
large enough to guarantee that the periodic boundary condition does not introduce
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a significant truncation error relative to the original problem. The ‘exact’ solution
v(x, s) is obtained numerically by using the TSFP (5.4.9)-(5.4.10) with a fine mesh size
he = 1/16 and a very small time step ke = 5 × 10−6. We also measure the H1 norm
and the errors are displayed at T0 = 1 with different ε and β.

‖ẽ(·, 1)‖1 h0 = 1 h0/2 h0/22 h0/23

β = 0

ε0 = 1 1.40E-1 1.63E-3 5.20E-6 1.09E-10

ε0/2 1.08E-1 2.30E-3 4.59E-6 9.72E-11

ε0/22 7.59E-2 2.01E-3 4.42E-6 9.66E-11

ε0/23 6.31E-2 2.01E-3 4.40E-6 9.67E-11

ε0/24 5.95E-2 2.01E-3 4.40E-6 9.68E-11

β = 1

ε0 = 1 1.40E-1 1.63E-3 5.20E-6 1.09E-10

ε0/2 1.78E-1 3.29E-3 6.61E-6 1.60E-10

ε0/22 1.35E-1 3.12E-3 8.78E-6 2.40E-10

ε0/23 8.48E-2 3.29E-3 1.12E-5 3.34E-10

ε0/24 1.00E-1 1.62E-3 1.18E-5 4.10E-10

β = 2

ε0 = 1 1.40E-1 1.63E-3 5.20E-6 1.09E-10

ε0/2 3.23E-1 4.59E-3 1.00E-5 2.43E-10

ε0/22 1.28E-1 1.53E-3 1.20E-5 4.14E-10

ε0/23 1.59E-1 3.61E-3 1.61E-5 1.58E-10

ε0/24 1.21E-1 3.81E-3 1.34E-5 2.22E-10

Table 5.11: Spatial errors of the TSFP (5.4.9)-(5.4.10) for the NKGE (5.5.1) with initial
data (5.5.5) for different β and ε.

For spatial error analysis, we fix the time step as ke = 5 × 10−6 such that the
temporal errors can be neglected; for temporal error analysis, a very fine mesh size
he = 1/16 is chosen such that the spatial error can be ignored. Table 5.11 shows the
spatial errors under different mesh size for these three cases and Tables 5.12-5.14 depict
the temporal errors for β = 0, 1, 2, respectively.
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‖ẽ(·, 1)‖1 k0 = 0.1 k0/2 k0/22 k0/23 k0/24 k0/25

ε0 = 1 2.91E-1 7.06E-2 1.75E-2 4.37E-3 1.09E-3 2.73E-4

order - 2.04 2.01 2.00 2.00 2.00

ε0/2 4.30E-2 1.06E-2 2.65E-3 6.63E-4 1.66E-4 4.14E-5

order - 2.02 2.00 2.00 2.00 2.00

ε0/22 4.84E-3 1.21E-3 3.01E-4 7.53E-5 1.88E-5 4.71E-6

order - 2.00 2.01 2.00 2.00 2.00

ε0/23 6.69E-4 1.67E-4 4.17E-5 1.04E-5 2.61E-6 6.52E-7

order - 2.00 2.00 2.00 1.99 2.00

ε0/24 1.34E-4 3.34E-5 8.35E-6 2.09E-6 5.22E-7 1.30E-7

order - 2.00 2.00 2.00 2.00 2.01

ε0/25 3.16E-5 7.88E-6 1.97E-6 4.92E-7 1.23E-7 3.07E-8

order - 2.00 2.00 2.00 2.00 2.00

Table 5.12: Temporal errors of the TSFP (5.4.9)-(5.4.10) for the NKGE (5.5.1) with
β = 0 and initial data (5.5.5).

From Tables 5.11-5.14 and additional results not shown here, we can draw the
following observations, which verify the efficiency of the TSFP (5.4.9)-(5.4.10):

(1). The TSFP (5.4.9)-(5.4.10) is uniformly and spectrally accurate in space for any
0 < ε ≤ 1 and 0 ≤ β ≤ 2.

(2). Tables 5.12-5.14 illustrate that for any fixed ε = ε0 > 0, the TSFP method is
second-order accurate in time when k is small enough. Specifically, for β = 0, Table
5.12 indicates that the temporal error bounds of the TSFP method behave like O(ε2k2),
which confirms the estimate in Theorem 5.4.1. In the cases β = 1 and β = 2, the
second order convergence in time can be observed only when the time step k is under
some meshing strategy (cf. the upper triangles above the diagonals in Tables 5.13 and
5.14). When β = 1, the TSFP converges quadratically in the regime k . ε (the upper
triangle above the diagonal in Table 5.13). While for β = 2, the upper triangle above
the diagonal in Table 5.14 shows that the temporal error is at O(k2/ε2) when k . ε2.
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‖ẽ(·, 1)‖1 k0 = 0.1 k0/2 k0/22 k0/23 k0/24 k0/25

ε0 = 1 2.91E-1 7.06E-2 1.75E-2 4.37E-3 1.09E-3 2.73E-4

order - 2.04 2.01 2.00 2.00 2.00

ε0/2 2.70E-1 6.45E-2 1.60E-2 3.98E-3 9.94E-4 2.48E-4

order - 2.07 2.01 2.01 2.00 2.00

ε0/22 2.96E-1 6.71E-2 1.64E-2 4.09E-3 1.02E-3 2.55E-4

order - 2.14 2.03 2.00 2.00 2.00

ε0/23 4.74E-1 6.90E-2 1.60E-2 3.92E-3 9.76E-4 2.44E-4

order - 2.78 2.11 2.03 2.01 2.00

ε0/24 4.21E-1 1.31E-1 1.81E-2 4.18E-3 1.03E-3 2.55E-4

order - 1.68 2.86 2.11 2.02 2.01

ε0/25 4.30E-1 1.33E-1 3.84E-2 5.10E-3 1.18E-3 2.90E-4

order - 1.69 1.79 2.91 2.11 2.02

Table 5.13: Temporal errors of the TSFP (5.4.9)-(5.4.10) for the NKGE (5.5.1) with
β = 1 and initial data (5.5.5).

The numerical result is much better than the analysis for β ∈ (0, 2].

5.6 Comparisons of different methods
Based on the numerical results of the CNFD method, EWI-FP method and TSFP

method in the previous sections, in view of both spatial and temporal accuracy and
ε-scalability, we conclude that the TSFP and EWI-FP methods perform much better
than the CNFD method (the FDTD methods) for the numerical approximations of the
oscillatory NKGE (5.5.1), especially when 0 < ε� 1.

The solution of the oscillatory NKGE (5.5.1) has no oscillation in space and propa-
gates waves with wavelength O(εβ) in time. The ε-scalability of the FDTD methods is
h = O(εβ/2) and τ = O(ε3β/2), which is under-resolution in both space and time with
respect to ε ∈ (0, 1] in terms of the resolution capacity of the Shannon’s information
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‖ẽ(·, 1)‖1 k0 = 0.1 k0/4 k0/42 k0/43 k0/44 k0/45

ε0 = 1 2.91E-1 1.75E-2 1.09E-3 6.83E-5 4.27E-6 2.66E-7

order - 2.03 2.00 2.00 2.00 2.00

ε0/2 3.42 1.56E-1 9.61E-3 6.00E-4 3.75E-5 2.34E-6

order - 2.23 2.01 2.00 2.00 2.00

ε0/22 1.36E+1 7.32E-1 4.08E-2 2.53E-3 1.58E-4 9.87E-6

order - 2.11 2.08 2.01 2.00 2.00

ε0/23 7.33 2.64 1.34E-1 7.62E-3 4.74E-4 2.95E-5

order - 0.74 2.15 2.07 2.00 2.00

ε0/24 2.52 2.14 6.93E-1 2.76E-2 1.57E-3 9.75E-5

order - 0.12 0.81 2.33 2.07 2.00

ε0/25 8.99E-1 6.94E-1 5.56E-1 1.77E-1 6.46E-3 3.66E-4

order - 0.19 0.16 0.83 2.39 2.07

Table 5.14: Temporal errors of the TSFP (5.4.9)-(5.4.10) for the NKGE (5.5.1) with
β = 2 and initial data (5.5.5).

Temporal

Spatial
FD 4cFD spectral

FD O(h2

εβ + τ2

ε3β ) O(h4

εβ + τ2

ε3β ) O(hm0 + τ2

ε3β )

EWI O(h2

εβ + ε2−3βτ 2) O(h4

εβ + ε2−3βτ 2) O(hm0 + ε2−3βτ 2)

TS O(h2

εβ + ε2−3βτ 2) O(h4

εβ + ε2−3βτ 2) O(hm0 + ε2−3βτ 2)

Table 5.15: Error bounds of different numerical methods for solving the NKGE (5.5.1)
with the mesh size h and time step τ .
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Method CNFD EWI-FP TSFP

Time symmetric Yes Yes Yes

Unconditionally stable Yes No Yes

Explicit scheme No Yes Yes

Spatial accuracy 2nd Spectral Spectral

Temporal accuracy 2nd 2nd 2nd

Memory cost O(M) O(M) O(M)

Computational cost � O(M) O(M lnM) O(M lnM)

Resolution h = O(εβ/2) h = O(1) h = O(1)

when 0 < ε� 1 τ = O(ε3β/2) τ = O(εβ) τ = O(εβ)

Table 5.16: Comparison of the properties of different numerical methods for solving the
NKGE (5.5.1) with M being the number of grid points in space.

theory [91, 130, 131]- to resolve a wave one needs a few points per wavelength. The
ε-scalability of the EWI-FP and TSFP methods is h = O(1) and τ = O(εβ), which is
optimal resolution in both space and time with respect to ε ∈ (0, 1]. The temporal
discretization error of the EWI-FP and TSFP methods behaves like O(ε2−3βτ 2). The
TSFP method is shown as equivalent to the Deuflhard-type EWI-FP method, but it has
an improved error bound regarding to the small parameter ε ∈ (0, 1] when 0 < ε� 1.
Thus, the TSFP method is the best choice among these methods of different spatial
and temporal discretizations to solve the oscillatory NKGE (5.5.1).

For convenience, we summarize the error bounds of different numerical methods
in Table 5.15 and the properties of these numerical methods for the NKGE (5.5.1) in
Table 5.16.

148



CHAPTER 6. CONCLUSION AND FUTURE WORK

Chapter 6

Conclusion and Future Work
This thesis is devoted to the error estimates of numerical methods for the long-time

dynamics of the nonlinear Klein-Gordon equation (NKGE). The numerical methods
studied here include the finite difference methods, exponential wave integrator methods
as well as the time-splitting methods and particular attentions are paid on the error
bounds of different numerical methods up to the time t = T0/ε

β with 0 ≤ β ≤ 2 and
T0 fixed. The main work in the thesis is summarized as follows and possible topics for
future work are also discussed.

1. Error estimates of finite difference methods
Finite difference discretization in time combined with different spatial discretizations

is applied to solve the NKGE with weak nonlinearity in the long-time regime. Four
frequently used finite difference time domain (FDTD) methods are analyzed, and their
stability conditions as well as error estimates are rigorously established up to the time
t = T0/ε

β with 0 ≤ β ≤ 2. It is found out that all the FDTD methods share the same
spatial and temporal resolution. The CNFD is unconditionally stable, while others
suffer from stability conditions. The fourth-order compact finite difference (4cFD)
method is also used for studying the long-time dynamics of the NKGE, which has better
spatial resolution than FDTD methods. The finite difference Fourier pseudospectral
(FDFP) method is investigated as well, which discretizes the NKGE by Fourier spectral
method in space and has the uniformly spectral accuracy in space in the long-time
regime.

2. Study of exponential wave integrator methods
Exponential wave integrator (EWI) methods are adapted to study the long-time
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dynamics of the NKGE with weak nonlinearity. Uniform error bounds of the exponen-
tial wave integrator Fourier pseudospectral (EWI-FP) are rigorously established and
numerical results are presented to validate the error estimates. For comparisons, the
numerical schemes and corresponding error estimates for the EWI methods combined
with central finite difference and fourth-order compact finite difference discretizations
in space are also carried out.

3. Error estimates and comparisons of time-splitting methods
The NKGE is reformulated into a relativistic nonlinear Schrödinger equation (NLSE)

and the time-splitting methods are used to discretize it numerically. An efficient and
accurate time-splitting Fourier pseudospectral (TSFP) method is proposed and analyzed
for the long-time dynamics of the NKGE with weak nonlinearity or small initial data.
Uniform error bounds of the TSFP method are rigorously carried out up to the time at
O(ε−2). The error bounds of the time-splitting finite difference (TS-FD) method and
TS-4cFD method are also established. Comparisons of different time integrators and
applications in 2D and 3D cases are presented.

4. Extensions to an oscillatory nonlinear Klein-Gordon equation
The error estimates of different numerical methods for the long-time dynamics of the

NKGE with weak nonlinearity up to the time at O(ε−β) are extended to the dynamics
of an oscillatory NKGE up to the fixed time at O(1). The solution of the oscillatory
NKGE propagates waves with wavelength at O(1) in space and O(εβ) in time, and
wave speed in space at O(ε−β). The FDTD methods, EWI-FP method and TSFP
method are studied for the oscillatory NKGE. The error bounds as well as the spacial
and temporal resolution of these numerical methods are obtained straightforwardly.

Some future work is listed below:

• Improve the error estimates of the TSFP method for the NKGE in the long-time
regime when 0 < ε� 1.

• Propose multiscale methods to solve the NKGE in the long-time regime efficiently.
The total time steps could be fixed in the long-time regime, which means that
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the total computational cost for the long-time dynamics up to the time Tε =
T0/ε

β(0 ≤ β ≤ 2) with T0 fixed can be reduced.

• Extend the error estimates of numerical methods to the NKGE in different scalings.
Some error estimates may be established just in short-time such as the NKGE
with strong nonlinearity, while we can do some numerical simulations in the
long-time regime.

• Study the long-time dynamics of other partial differential equations (PDEs) such
as the Dirac/nonlinear Dirac equation, Burgers-Hilbert equation, Benjamin-Bona-
Mahony (BBM) equation, etc. Based on the analytical result of the life-span of
these PDEs, carry out the error bounds of different numerical methods in the
long-time regime.
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