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We propose a spectral method by using the Jacobi functions for computing eigenvalue 
gaps and their distribution statistics of the fractional Schrödinger operator (FSO). In the 
problem, in order to get reliable gaps distribution statistics, we have to calculate accurately 
and efficiently a very large number of eigenvalues, e.g. up to thousands or even millions 
eigenvalues, of an eigenvalue problem related to the FSO. For simplicity, we start with the 
eigenvalue problem of the FSO in one dimension (1D), reformulate it into a variational 
formulation and then discretize it by using the Jacobi spectral method. Our numerical 
results demonstrate that the proposed Jacobi spectral method has several advantages over 
the existing finite difference method (FDM) and finite element method (FEM) for the 
problem: (i) the Jacobi spectral method is spectral accurate, while the FDM and FEM 
are only first order accurate; and more importantly (ii) under a fixed number of degree 
of freedoms M , the Jacobi spectral method can calculate accurately a large number of 
eigenvalues with the number proportional to M , while the FDM and FEM perform badly 
when a large number of eigenvalues need to be calculated. Thus the proposed Jacobi 
spectral method is extremely suitable and demanded for the discretization of an eigenvalue 
problem when a large number of eigenvalues need to be calculated. Then the Jacobi 
spectral method is applied to study numerically the asymptotics of the nearest neighbour 
gaps, average gaps, minimum gaps, normalized gaps and their distribution statistics in 1D. 
Based on our numerical results, several interesting numerical observations (or conjectures) 
about eigenvalue gaps and their distribution statistics of the FSO in 1D are formulated. 
Finally, the Jacobi spectral method is extended to the directional fractional Schrödinger 
operator in high dimensions and extensive numerical results about eigenvalue gaps and 
their distribution statistics are reported.
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1. Introduction

Consider the eigenvalue problem of the fractional Schrödinger operator (FSO) (or time-independent fractional Schrödinger 
equation in the dimensionless form) in one dimension (1D):

Find λ ∈R and a nonzero real-valued function u(x) �= 0 such that

LFSO u(x) :=
[
(−∂xx)

α/2 + V (x)
]

u(x) = λ u(x), x ∈ � := (a,b),

u(x) = 0, x ∈ �c := R\�,
(1.1)

where 0 < α ≤ 2, V (x) ∈ L∞(�) is a given real-valued function and the fractional Laplacian operator (FLO) (−∂xx)
α/2 is 

defined via the Fourier transform (see [71,28,42,46] and references therein) as

(−∂xx)
α/2 u(x) = F−1(|ξ |α(Fu)(ξ)), x, ξ ∈R, (1.2)

with F and F−1 the Fourier transform and the inverse Fourier transform [19,46,36], respectively. We remark here that an 
alternative way to define (−∂xx)

α/2 is through the principle value integral (see [63,65,29,49,28] and references therein) as

(−∂xx)
α/2 u(x) := Cα

1

∫
R

u(x) − u(y)

|x − y|1+α
dy, x ∈R, (1.3)

where Cα
1 is a constant whose value can be computed explicitly as

Cα
1 = 2α�((1 + α)/2)

π1/2|�(−α/2)| = α�((1 + α)/2)

21−απ1/2�(1 − α/2)
.

Another remark here is that the problem (1.1) is equivalent to the problem defined on the whole x-axis R by taking the 
potential V (x) = +∞ for x ∈ �c , while the claim on the equivalence between the two problems is well accepted for the 
Schrödinger operator, i.e. α = 2, and has been numerically verified for 0 < α ≤ 2 via the problem defined on the whole x-
axis R by taking a well potential V (x) = V 0 for x ∈ �c with V 0 → +∞ (see Section 4.5 in [12]). When α = 2, (1.1) collapses 
to the (classical) time-independent Schrödinger equation (or a standard Sturm-Liouville eigenvalue problem) which has been 
widely used for determining energy levels and their corresponding stationary states of a quantum particle within an external 
potential V (x) in quantum physics and chemistry [27] and many other areas [48,23,25]. When α = 1, the FLO (−	)1/2 and 
its variation (β − 	)1/2 with β > 0 a constant have been widely adopted in representing the Coulomb interaction and the 
dipole-dipole interaction in two dimensions (2D) [8,10,20,40] and modelling the relativistic quantum mechanics for boson 
star [32,9]. When 0 < α < 2, (1.1) is usually referred to the time-independent fractional Schrödinger equation (or fractional 
eigenvalue problem) which has been widely adopted for computing energy levels and their stationary states in fractional 
quantum mechanics [49,10,20,70,50,3], polariton condensation and quantum fluids of lights [21,57], while the FSO can be 
interpreted via the Feynman path integral approach over Brownian-like quantum paths or over the Lévy-like quantum paths, 
see [65,49,41] and references therein.

Without loss of generality, we assume that V (x) is non-negative, i.e. V (x) ≥ 0 for x ∈ �. Since all eigenvalues of (1.1)
are distinct (or all spectrum are discrete and no continuous spectrum) [5], we can rank (or order) all eigenvalues {λα

n | n =
1, 2, . . .} (with the superscript α referring to the fractional exponent instead of a power) of (1.1) as

0 < λα
1 < λα

2 ≤ . . . ≤ λα
n ≤ . . . , (1.4)

where the times that an eigenvalue λ of (1.1) appears in the above sequence (1.4) is the same as its algebraic multiplicity. 
When V (x) ≡ 0 for x ∈ �, all eigenvalues of (1.1) are simple eigenvalues, i.e. their algebraic multiplicities are all equal to 1, 
then all ≤ in (1.4) can be replaced by <. Define the nearest neighbour gaps as [39]

δα
nn(N) := λα

N+1 − λα
N , N = 1,2,3, . . . , (1.5)

where when N = 1, i.e., δα
nn(1) = λα

2 − λα
1 := δfg(α) (i.e. the difference between the first two smallest eigenvalues) is called 

as the fundamental gap of the FSO (1.1), which has been studied analytically and/or numerically for α = 2 [4,1,11,13] and 
0 < α ≤ 2 [12,16]; the minimum gaps as [18,61]

δα
min(N) := min

1≤n≤N
δα

nn(n) = min
1≤n≤N

λα
n+1 − λα

n , N = 1,2,3, . . . ; (1.6)

the average gaps as [39]

δα
ave(N) := 1

N

N∑
δα

nn(n) = 1

N

N∑(
λα

n+1 − λα
n

)= λα
N+1 − λα

1

N
, N = 1,2, · · · . (1.7)
n=1 n=1
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In addition, if there exist two constants γ > 0 and C > 0 such that

lim
n→+∞

λα
n

nγ
= C > 0, (1.8)

then the normalized gaps (or “unfolding” local statistics in the physics literature) are defined as [39,62]

δα
norm(N) := yα

N+1 − yα
N , N = 1,2, . . . , (1.9)

where

yα
n :=

(
λα

n

C

)1/γ

, n = 1,2, . . . . (1.10)

Then an interesting question is to study their asymptotics, i.e. the behaviour of δα
nn(N), δα

min(N), δα
ave(N) and δα

nrom(N) when 
N → +∞, and another interesting and very challenging question is to study the level spacing distribution Pα(s) := limiting 
distribution of the normalized gaps δα

norm(N), which is defined as [39,62]

#
{

1 ≤ n ≤ N | δα
norm(n) < x

}
N

N→+∞→
x∫

0

Pα(s)ds, 0 ≤ x < +∞, (1.11)

where #S denotes the number of elements in the set S .
When α = 2 and V (x) ≡ 0 in (1.1), it collapses to a standard Sturm-Liouville eigenvalue problem of the Laplacian operator 

as

LSO u(x) := −∂xx u(x) = −u′′(x) = λ u(x), x ∈ � = (a,b),

u(a) = u(b) = 0.
(1.12)

The eigenvalues and their corresponding eigenfunctions of (1.12) can be obtained analytically via the sine series as

λα=2
n =

(
nπ

b − a

)2

, un(x) = sin

(
nπ(x − a)

b − a

)
, n = 1,2, . . . . (1.13)

These results immediately imply that the fundamental gap δfg(α = 2) = 3π2

(b−a)2 and

δα=2
nn (N) =

(
(N + 1)π

b − a

)2

−
(

Nπ

b − a

)2

= π2

(b − a)2
(2N + 1),

δα=2
min (N) ≡ δα=2

nn (N = 1) = 3π2

(b − a)2
,

δα=2
ave (N) = 1

N

[(
(N + 1)π

b − a

)2

−
(

π

b − a

)2
]

= π2

(b − a)2
(N + 2),

δα=2
norm(N) = yα=2

N+1 − yα=2
N = N + 1 − N ≡ 1,

N = 1,2, . . . ; (1.14)

where

yα=2
n =

√
λα=2

n /

(
π

b − a

)2

=
√

n2 = n, n = 1,2, . . . .

From the last equation in (1.14), one can immediately obtain the level spacing distribution defined in (1.11) for α = 2 as

Pα=2(s) = δ(s − 1), s ≥ 0, (1.15)

where δ(·) is the Dirac delta function.
When α = 2 and V (x) �= 0 in (1.1), it collapses to a standard Sturm-Liouville eigenvalue problem, which has been exten-

sively studied in the literature. For analytical results, we refer to [44,48,38] and references therein. For numerical methods 
and results, we refer to [15,6,66] and references therein.

When 0 < α < 2, in general, one cannot find the eigenvalues of the eigenvalue problem (1.1) analytically and/or explicitly. 
For mathematical theories of the eigenvalue problem (1.1), we refer to [31,43] and references therein. Some numerical 
methods have been proposed to solve (1.1) numerically, including an asymptotic method was proposed in [71], a finite 
element method (FEM) [17] with piecewise linear element was presented in [41] and a finite difference method (FDM) was 
studied in [30]. The FDM and FEM are usually first order accurate when 0 < α < 2 and they can be adapted to compute 
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the first several eigenvalues [41,30,17]. However, if we want to calculate accurately and efficiently a very large number of 
eigenvalues, e.g. up to thousands or even millions eigenvalues, of the eigenvalue problem (1.1) in order to obtain a reliable 
gaps distribution statistics, the FDM and FEM have severe drawbacks. The main aim of this paper is to propose a spectral 
method by using the generalized Jacobi functions for computing different eigenvalue gaps and their distribution statistics 
of the fractional eigenvalue problem related to the FSO (1.1). The proposed numerical method has at least two advantages: 
(i) it is spectral accurate, and more importantly (ii) under a fixed number of degree of freedoms (DOF) M , it can calculate 
accurately a large number of eigenvalues with the number proportional to M . Thus this method is a very good candidate 
for solving our problem, i.e. to compute eigenvalue gaps and their distribution statistics of the fractional eigenvalue problem 
(1.1).

Based on our extensive numerical results and observations, we speculate the following:

Conjecture (Gaps and their distribution statistics of the FSO in (1.1) without potential) Assume 0 < α < 2 and V (x) ≡ 0
in (1.1), then we have the following asymptotics of its eigenvalues:

λα
n =

(
nπ

b − a

)α

−
(

π

b − a

)α α(2 − α)

4
nα−1 + O (nα−2) = λα

loc(n)

[
1 − α(2 − α)

4n
+ O (n−2)

]
, n ≥ 1, (1.16)

where λα
loc(n) =

(
nπ
b−a

)α
(n = 1, 2, . . .) are the eigenvalues of the local fractional Laplacian operator on � = (a, b) with ho-

mogeneous Dirichlet boundary condition. Here the local fractional Laplacian denoted as Aα/2 is defined via the spectral 
decomposition of the Laplacian operator [12]: For a bounded domain � ⊂R, let λm and um (m ∈N) be the eigenvalues and 
their corresponding eigenfunctions of the Laplacian operator −	 on � with the homogeneous Dirichlet boundary condition, 
then for any α ∈ (0, 2) and φ(x) ∈ H1

0(�) with φ(x) =
∑

m∈N
amum(x) for x ∈ �, we define the operator Aα/2 in the following 

way Aα/2φ(x) =
∑

m∈N
am(λm)α/2um(x) for x ∈ �.

From (1.16), we obtain immediately the following approximations of different gaps:

δα
nn(N) ≈

(
π

b − a

)α [
αNα−1 + α(α − 1)(2 + α)

4
Nα−2 + O (Nα−3)

]
, 0 < α < 2,

δα
min(N) =

⎧⎪⎨
⎪⎩

δα
nn(1) = λα

2 − λα
1 , 1 < α < 2,

≈ δα
nn(1) = λα

2 − λα
1 , α = 1,

δα
nn(N) = λα

N+1 − λα
N ≈ α

(
π

b−a

)α
Nα−1, 0 < α < 1,

δα
ave(N) ≈

(
π

b − a

)α

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
Nα−1 + α(2+α)

4 Nα−2 + O (N−1)
]
, 1 < α < 2,[

1 +
(

3
4 − b−a

π λα=1
1

)
N−1 + O (N−2)

]
, α = 1,[

Nα−1 −
(

b−a
π

)α
λα

1 N−1 + O (Nα−2)
]
, 0 < α < 1,

δα
norm(N) ≈ 1 + O (N−2), 0 < α < 2,

N ≥ 1. (1.17)

In addition, for the gaps distribution statistics defined in (1.11), we have

Pα(s) = δ(s − 1), s ≥ 0, 0 < α ≤ 2. (1.18)

The paper is organized as follows. In Section 2, we begin with some scaling properties of (1.1) and propose a spectral-
Galerkin method by using the generalized Jacobi functions to discretize the fractional eigenvalue problem (1.1). In Section 3, 
we test the accuracy and resolution capacity (or trust region) with respect to the DOF M of the proposed Jacobi spectral 
method and compare it with the existing numerical methods such as FDM and FEM. In Section 4, we apply the proposed 
numerical method to study numerically the asymptotics of different eigenvalue gaps and their distribution statistics of (1.1)
without potential and formulate several interesting numerical observations (or conjectures). Similar results are reported in 
Section 5 for (1.1) with potential. Extensions of the numerical method and results to the directional fractional Schrödinger 
operator in high dimensions are presented in Section 6. Finally, some conclusions are drawn in Section 7.

2. A Jacobi spectral method

In this section, we begin with a re-scaling argument to the problem (1.1) so as to reduce it on a standard interval (−1, 1), 
then reformulate it into a variational formulation and discretize the problem by using the Jacobi spectral method.
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2.1. Re-scaling property

Introduce

x0 = a + b

2
, L = b − a

2
, x̃ = x − x0

L
, Ṽ (x̃) = Lα V (x), ũ(x̃) = u(x0 + Lx̃), x ∈ � = (a,b), (2.1)

and consider the re-scaled fractional eigenvalue problem:
Find λ̃ ∈R and a real-valued function ũ(x̃) �= 0 such that

L̃FSO ũ(x̃) :=
[
(−∂x̃x̃)

α/2 + Ṽ (x̃)
]

ũ(x̃) = λ̃ ũ(x̃), x̃ ∈ �̃ := (−1,1),

ũ(x̃) = 0, x̃ ∈ �̃c := R\�̃;
(2.2)

then we have

Lemma 2.1. Let λ̃ be an eigenvalue of (2.2) and ũ := ũ(x̃) be the corresponding eigenfunction, then λ = L−αλ̃ is an eigenvalue of (1.1)
and u := u(x) = ũ(x̃) = ũ

( x−x0
L

)
is the corresponding eigenfunction. Assume that 0 < λ̃α

1 < λ̃α
2 ≤ . . . ≤ λ̃α

n ≤ . . . are all eigenvalues of 
(2.2), then 0 < λα

1 < λα
2 ≤ . . . ≤ λα

n ≤ . . . (ranked as in (1.4)) with λα
n = L−αλ̃α

n (n = 1, 2, . . .) are all eigenvalues of (1.1). In addition, 
we have the scaling property on the different gaps as

δα
nn(N) = L−αδ̃α

nn(N), with δ̃α
nn(N) := λ̃α

N+1 − λ̃α
N ,

δα
min(N) = L−αδ̃α

min(N), with δ̃α
min(N) := min

1≤n≤N
δ̃α

nn(n),

δα
ave(N) = L−αδ̃α

ave(N), with δ̃α
ave(N) := 1

N

N∑
n=1

δ̃α
nn(n),

δα
norm(N) = δ̃α

norm(N), with δ̃α
norm(N) := ỹα

N+1 − ỹα
N , ỹα

N =
(

λ̃α
N

LαC

)1/γ

,

N = 1,2, . . . ; (2.3)

which immediately imply that the level spacing distribution Pα(s) of (1.1) does not change under the re-scaling (2.1), i.e. the problems 
(1.1) and (2.2) have the same level spacing distribution.

Proof. From (1.3) and noticing (2.1), a direct computation implies the re-scaling property of the fractional Laplacian operator

(−∂xx)
α/2 u(x) = Cα

1

∫
R

u(x) − u(y)

|x − y|1+α
dy = Cα

1

∫
R

u(x0 + Lx̃) − u(x0 + L ỹ)

|x0 + Lx̃ − x0 − L ỹ|1+α
L d ỹ

= L−αCα
1

∫
R

ũ(x̃) − ũ( ỹ)

|x̃ − ỹ|1+α
dỹ = L−α (−∂x̃x̃)

α/2 ũ(x̃), x ∈ �, x̃ ∈ �̃. (2.4)

Noticing

u(x) = 0, x ∈ �c ⇐⇒ ũ(x̃) = 0, x̃ ∈ �̃c . (2.5)

Substituting (2.4) into (2.2), noting (1.1), we get

λ̃ u(x) = λ̃ ũ(x̃) =
[
(−∂x̃x̃)

α
2 + Ṽ (x̃)

]
ũ(x̃) =

[
Lα (−∂xx)

α
2 + Ṽ

(
x − x0

L

)]
u(x)

= Lα

[
(−∂xx)

α
2 + L−α Ṽ

(
x − x0

L

)]
u(x)

= Lα
[
(−∂xx)

α
2 + V (x)

]
u(x), x ∈ �, x̃ ∈ �̃,

(2.6)

which immediately implies that u(x) is an eigenfunction of the operator (−∂xx)
α
2 + V (x) with the eigenvalue λ = L−αλ̃.

From the assumption (1.4) with � = (−1, 1) that 0 < λ̃α
1 < λ̃α

2 ≤ . . . ≤ λ̃α
n ≤ . . . are all eigenvalues of (2.2), we get 

immediately that 0 < λα
1 < λα

2 ≤ . . . ≤ λα
n ≤ . . . with λα

n = L−αλ̃α
n (n = 1, 2, . . .) are all eigenvalues of the eigenvalue problem 

(1.1). Then the re-scaling property on the different gaps (2.3) can be obtained straightforwardly by using λ̃α
n = Lαλα

n (n =
1, 2, . . .). �
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2.2. A variational formulation

Following those in the literature [45,35], we introduce the fractional functional space H
α
2 (R) through the Fourier trans-

form

H
α
2 (R) =

{
v ∈ D′(R) | ‖v‖ α

2 ,R < ∞
}

, (2.7)

where the norms are defined as

|v| α
2 ,R =

⎛
⎝∫
R

|ξ |α |(F v)(ξ)|2 dξ

⎞
⎠

1
2

, ‖v‖ α
2 ,R =

⎛
⎝∫
R

(1 + |ξ |2) α
2 |(F v)(ξ)|2 dξ

⎞
⎠

1
2

; (2.8)

and then the fractional functional space H
α
2 (�) can be obtained from H

α
2 (R) by extension [45,35]

H
α
2 (�) =

{
v : � → R | v̂ = E�v ∈ H

α
2 (R)

}
, (2.9)

where the norms are defined as

|v| α
2

:= |v| α
2 ,� = |E�v| α

2 ,R, ‖v‖ α
2

:= ‖v‖ α
2 ,� = ‖E�v‖ α

2 ,R, ∀v ∈ H
α
2 (�), (2.10)

with v̂ = E�v :R →R (extension of v from � to R) defined as

v̂(x) = (E�v)(x) =
{

v(x), x ∈ �,

0, x ∈R\�.
(2.11)

For any v ∈ H
α
2 (�), multiplying v to (1.1) and integrating over � and using integration by parts, we obtain the variational 

(or weak) formulation of the fractional eigenvalue problem (1.1) as:
find λ ∈R and 0 �= u ∈ H

α
2 (�) such that

a(u, v) = λ b(u, v), ∀v ∈ H
α
2 (�), (2.12)

where the bilinear forms a(·, ·) and b(·, ·) are given as

a(u, v) =
∫
�

[
(−∂xx)

α
2 u + V (x)u

]
vdx =

∫
�

[
(−∂xx)

α
4 u (−∂xx)

α
4 v + V (x)uv

]
dx,

b(u, v) =
∫
�

u(x)v(x)dx, ∀u, v ∈ H
α
2 (�).

(2.13)

2.3. A spectral discretization by using the Jacobi functions

Since we are mainly interested in gaps and their distribution statistics, from the results in Lemma 2.1, without loss of 
generality, from now on, we always assume that � = (−1, 1), i.e. a = −1 and b = 1 in (1.1).

Let {P
α
2 , α

2
n (x)}∞n=0 denote the classical Jacobi polynomials (or Gegenbauer polynomials) which are orthogonal with respect 

to the weight function ω
α
2 , α

2 (x) = (1 − x2)
α
2 over the interval (−1, 1), i.e.

1∫
−1

P
α
2 , α

2
n (x) P

α
2 , α

2
m (x)ω

α
2 , α

2 (x)dx = Cnδnm, n,m = 0,1,2, . . . , (2.14)

where δnm is the Kronecker delta and

Cn = 2α+1

2n + α + 1

�(n + α/2 + 1)2

�(n + α + 1)n! n = 0,1,2 . . . . (2.15)

Based on the boundary behaviour of the solutions of the FLO [36,37,51] and easy to evaluate the Galerkin matrices, we 
define the generalized Jacobi functions

J− α
2 ,− α

2
n (x) = (1 − x2)

α
2 P

α
2 , α

2
n (x) = ω

α
2 , α

2 (x) P
α
2 , α

2
n (x), −1 ≤ x ≤ 1, n = 0,1,2, . . . . (2.16)

Then by Theorem 2 in Ref. [51], we have
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(−∂xx)
α
2 J− α

2 ,− α
2

n (x) = �(n + α + 1)

n! P
α
2 , α

2
n (x), −1 < x < 1, n = 0,1,2, . . . . (2.17)

Combining (2.16) and (2.17), we obtain

1∫
−1

(−∂xx)
α
2 J− α

2 ,− α
2

n (x) J− α
2 ,− α

2
m (x) dx =

1∫
−1

J− α
2 ,− α

2
n (x) (−∂xx)

α
2 J− α

2 ,− α
2

m (x) dx

=
1∫

−1

(−∂xx)
α
4 J− α

2 ,− α
2

n (x) (−∂xx)
α
4 J− α

2 ,− α
2

m (x) dx =
1∫

−1

�(n + α + 1)

n! P
α
2 , α

2
n (x) J− α

2 ,− α
2

m (x) dx

= �(n + α + 1)

n!
1∫

−1

P
α
2 , α

2
n (x) P

α
2 , α

2
m (x)ω

α
2 , α

2 (x) dx

= 2α+1�(n + α/2 + 1)2

(n!)2(2n + α + 1)
δnm, n,m = 0,1,2 . . . .

(2.18)

Introduce

φn(x) :=
√

2n + α + 1n!
2α/2+1/2�(n + α/2 + 1)

J− α
2 ,− α

2
n (x), −1 ≤ x ≤ 1, n = 0,1,2, . . . . (2.19)

Let M > 0 be a positive integer and define the finite dimensional space (which is an approximate subspace of H
α
2 (�)) as

WM := span {φm(x), 0 ≤ m ≤ M − 1} , (2.20)

then a Jacobi spectral method (JSM) for (2.12) is given as:
Find λM ∈R and 0 �= uM ∈WM such that

a(uM , v M) = λM b(uM , v M), ∀v M ∈WM . (2.21)

In order to cast the eigenvalue problem (2.21) into the matrix form, we express uM ∈WM as a linear combination of the 
basis functions as

uM(x) =
M−1∑
m=0

ûm φm(x), −1 ≤ x ≤ 1. (2.22)

Plugging (2.22) into (2.21) and noticing (2.18), after some detailed computation, we obtain the following standard matrix 
eigenvalue problem:

(IM + V) Û = λM B Û , (2.23)

where Û = (û0, ̂u1, · · · , ̂uM−1)
T ∈RM is the eigenvector, IM is the M × M identity matrix, and V = (vnm)0≤n,m≤M−1 ∈RM×M

and B = (bnm)0≤n,m≤M−1 ∈RM×M are given as

vnm =
1∫

−1

V (x)φn(x)φm(x)dx,

bnm =
1∫

−1

φn(x)φm(x)dx,

n,m = 0,1, . . . , M − 1. (2.24)

Plugging (2.19) into the second equation in (2.24), after a detailed computation, we get

bnm =

⎧⎪⎨
⎪⎩

(−1)
n−m

2
√

π(2n + α + 1)(2m + α + 1)�(α + 1)(n + m)!
2α+n+m+1�(α + n+m

2 + 3
2 )�(α

2 + n−1
2 + 1)�(α

2 + m−1
2 + 1)(n+m

2 )! , n + m even,

0, n + m odd.

(2.25)

If V (x) ≡ 0, then V = 0. Of course, if V (x) �= 0, then the integrals in the first equation in (2.24) can be computed numerically 
via numerical quadratures with spectral accuracy [59,14,64]. In our practical computations, we adopt the Jacobi-Gauss-
Lobatto quadrature (see details on Page 83 of [64]). Finally the matrix eigenvalue problem (2.23) can be solved numerically 
by the standard eigenvalue solvers such as QR-method [53].



8 W. Bao et al. / Journal of Computational Physics 421 (2020) 109733
We remark here that different numerical methods have been proposed in the literature for discretizing the fractional 
Laplacian operator (−∂xx)

α/2 via the formulation (1.3) or (1.2) or their equivalent forms for numerical simulation of fractional 
partial differential equations, see [47,69,2,51,56,60,24] and references therein. In fact, a method to discretize the fractional 
Laplacian operator (−∂xx)

α/2 can directly generate a method to solve the fractional eigenvalue problem (1.1). For example, 
a finite element method (FEM) with piecewise linear elements was proposed and analyzed in [41,17] for computing the 
eigenvalues of (1.1). Similarly, if we adopt the standard finite difference method to discretize the fractional Laplacian operator 
(−∂xx)

α/2 [22,47] in (1.1), we can obtain a finite difference method (FDM) for computing the eigenvalues of (1.1). The details 
are omitted here for brevity.

Due to the singularity of the eigenfunctions of (1.1) (see (4.11) below), only linear convergence rate can be achieved by 
using FEM or FDM with uniform mesh, even with high order methods, such as the fourth order compact FDM. Thus here 
we only compare the accuracy and resolution capacity of the proposed Jacobi spectral method with the lowest order FEM 
or FDM for simplicity. Very recently, the hp-FEM method with adaptive mesh refinement near the boundary was proposed 
for spectral fractional diffusion [7], which may likely to perform much better than the lowest order FEM or FDM for (1.1).

3. Accuracy and comparison with existing methods

In this section, we test the accuracy and resolution capacity of the Jacobi spectral method (JSM) presented in the previous 
section and compare it with the fractional centred finite difference method (FDM) proposed in [69,22] and the finite element 
method (FEM) with piecewise linear elements proposed in [41] for the eigenvalue problem (1.1) with � = (−1, 1). The 
‘exact’ eigenvalues λα

n (n = 1, 2, . . .) are obtained numerically by using the JSM (2.21) under a very large DOF M = M0, e.g. 
M0 = 12800. Let λα

n,M be the numerical approximation of λα
n (n = 1, 2, . . . , M) obtained by a numerical method with the 

DOF chosen as M . Define the absolute and relative errors of λα
n as

eα
n := ∣∣λα

n − λα
n,M

∣∣ , eα
n,r :=

∣∣∣λα
n − λα

n,M

∣∣∣
λα

n
, n = 1,2, . . . , (3.1)

respectively.

3.1. Accuracy test

We first test convergence rates of different numerical methods for the eigenvalue problem (1.1) including the JSM (2.21), 
FEM [41,17] and FDM [69,22,30]. Table 1 displays the absolute errors of computing the first eigenvalue of (1.1) with V (x) ≡ 0
and different α by using our JSM (2.21), FEM [41] and FDM [69,22]; and Table 2 lists the absolute errors of computing the 
first, second, fifth and tenth eigenvalues of (1.1) with α = 0.5 and V (x) ≡ 0 by using those methods. For comparison with 
the existing results, Table 3 lists the first three eigenvalues of (1.1) with V (x) ≡ 0 and different α obtained by using our 
JSM (2.21) under the DOF M = 160 and the asymptotic method in [71] under the DOF M = 5000. Fig. 1 shows convergence 
rates of our JSM (2.21) for computing the first, second, fifth and tenth eigenvalues of (1.1) with V (x) ≡ 0 and different α; 
and Fig. 2 lists similar results of (1.1) with V (x) = x2

2 and different α.
From Tables 1 & 2 and Figs. 1 & 2 and extensive additional results not shown here for brevity, we can draw the following 

conclusions: (i) For fixed DOF M and α ∈ (0, 2], the errors from our JSM (2.21) are significantly smaller than those from the 
FEM [41] and the FDM [69,22] (cf. Tables 1 & 2). (ii) Both the FEM [41] and the FDM [69,22] converge almost quadratically 
and linearly with respect to the DOF M when α = 2 and 0 < α < 2, respectively (cf. Tables 1 & 2). (iii) Our JSM method 
(2.21) converges spectrally and sub-spectrally (or super-linearly) with respect to the DOF M when α = 2 and 0 < α < 2, 
respectively (cf. Fig. 1 & 2). (iv) In Table 3, the numerical results reported by our JSM (2.21) have at least eight significant 
digits when the DOF M ≥ 160, while the results by the asymptotic method in [71] have at most four significant digits even 
when the DOF M = 5000. Thus our JSM method (2.21) is significantly accurate than those low-order numerical methods in 
the literatures for computing eigenvalues of the eigenvalue problem (1.1).

3.2. Resolution capacity (or trust region) test

In order to get reliable gaps and their distribution statistics, we have to calculate accurately and efficiently a very large 
number of eigenvalues, e.g. up to thousands or even millions eigenvalues. Specifically we need to make sure that the 
numerical errors are much smaller than the minimum gap of those gaps which are used to find numerically the distribution 
statistics. In general, to solve the eigenvalue problem (1.1) by a numerical method with a given DOF M , we can obtain 
M approximate eigenvalues. A key question is that how many eigenvalues or what fraction among the M approximate 
eigenvalues can be used to find numerically the distribution statistics, i.e. the errors to them are quite small. We remark 
here that for the Schrödinger operator, i.e. α = 2 in (1.1), by using a spectral method, it is proved that about 2

π fraction of 
the M approximate eigenvalues are quite accurate (or the errors are quite small) [66]. To see whether this property is still 
valid for our JSM (2.21) for the FSO (1.1), Fig. 3 displays the relative errors eα

n,r (n = 1, 2, . . . , 6400) of (1.1) with V (x) ≡ 0
and different α by using our JSM (2.21), FEM [41] and FDM [69,22] under the DOF M = 8192.
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Table 1
Absolute errors of computing the first eigenvalue of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α by using our JSM 
(2.21), FEM [41] and FDM [69,22].

M = 2 M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

JSM 3.63E-5 8.47E-9 1.36E-12 1.36E-12 1.39E-12 1.40E-12 1.17E-12 3.62E-12
α = 2.0 FEM 5.32E-1 1.29E-1 3.18E-2 7.92E-3 1.97E-3 4.87E-4 1.16E-4 2.32E-5

FDM 4.67E-1 1.24E-1 3.15E-2 7.90E-3 1.97E-3 4.87E-4 1.16E-4 2.32E-5

JSM 3.18E-5 1.68E-8 1.78E-11 2.49E-12 2.55E-12 2.24E-12 3.08E-12 2.12E-12
α = 1.95 FEM 4.96E-1 1.16E-2 2.79E-2 6.86E-3 1.72E-3 4.49E-4 1.24E-4 3.78E-5

FDM 2.31E-1 2.86E-2 5.16E-3 5.41E-4 2.75E-5 7.56E-6 3.76E-6 1.18E-6

JSM 2.31E-6 7.17E-7 1.57E-8 1.72E-10 2.16E-12 1.02E-12 6.64E-13 1.41E-12
α = 1.5 FEM 2.72E-1 6.86E-2 2.55E-2 1.18E-2 5.86E-3 2.96E-3 1.49E-3 7.53E-4

FDM 9.15E-2 6.78E-2 5.41E-2 3.21E-2 1.73E-2 9.01E-3 4.59E-3 2.31E-3

JSM 2.16E-5 6.32E-6 3.56E-7 1.15E-8 2.65E-10 4.67E-12 5.94E-13 5.53E-13
α = 1.0 FEM 1.66E-1 5.97E-2 2.29E-2 1.51E-2 7.83E-3 4.01E-3 2.03E-3 1.01E-3

FDM 1.15E-1 1.00E-1 6.03E-2 3.28E-2 1.71E-2 8.77E-3 4.44E-3 2.24E-3

JSM 1.22E-4 3.14E-5 3.95E-6 3.65E-7 2.80E-8 1.94E-9 1.26E-10 7.10E-12
α = 0.5 FEM 8.74E-2 3.93E-2 2.03E-2 1.06E-2 5.54E-3 2.84E-3 1.45E-3 7.35E-4

FDM 1.08E-1 7.00E-2 3.87E-2 2.04E-2 1.05E-2 5.40E-3 2.74E-3 1.38E-3

JSM 1.29E-4 4.01E-5 8.58E-6 1.57E-6 2.68E-7 4.49E-8 7.36E-9 1.06E-9
α = 0.1 FEM 2.02E-2 1.01E-2 5.27E-3 2.75E-3 1.42E-3 7.30E-4 3.72E-4 1.89E-4

FDM 3.12E-2 1.80E-2 9.59E-3 4.99E-3 2.56E-3 1.31E-3 6.65E-4 3.36E-4

Table 2
Absolute errors of computing the first, second, fifth and tenth eigenvalues of (1.1) with � = (−1, 1), α = 0.5 and 
V (x) ≡ 0 by using our JSM (2.21), FEM [41] and FDM [69,22].

M = 2 M = 4 M = 8 M = 16 M = 32 M = 64 M = 128 M = 256

JSM 1.22E-4 3.14E-5 3.95E-6 3.65E-7 2.80E-8 1.94E-9 1.26E-10 7.10E-12
eα

1 FEM 8.74E-2 3.93E-2 2.03E-2 1.06E-2 5.54E-3 2.84E-3 1.45E-3 7.35E-4
FDM 1.08E-1 7.00E-2 3.87E-2 2.04E-2 1.05E-2 5.40E-3 2.74E-3 1.38E-3

JSM NA 1.88E-4 2.54E-5 2.03E-6 1.41E-7 9.29E-9 5.90E-10 3.42E-11
eα

2 FEM NA 8.03E-2 3.10E-2 1.59E-2 8.49E-3 4.46E-3 2.31E-3 1.18E-3
FDM NA 2.54E-2 4.02E-2 2.71E-2 1.55E-2 8.36E-3 4.35E-3 2.23E-3

JSM NA NA 2.14E-3 7.30E-6 5.89E-7 4.14E-8 2.73E-9 1.16E-10
eα

5 FEM NA NA 1.26E-1 3.05E-2 1.33E-2 6.91E-3 3.66E-3 1.91E-3
FDM NA NA 1.19E-2 3.88E-3 1.13E-3 3.10E-4 8.17E-5 2.10E-5

JSM NA NA NA 1.02E-2 1.92E-6 1.31E-7 8.44E-9 5.01E-10
eα

10 FEM NA NA NA 1.41E-1 2.66E-2 9.96E-3 5.00E-3 2.63E-3
FDM NA NA NA 2.14E-3 5.99E-4 1.59E-4 4.14E-5 1.06E-5

Table 3
The first three eigenvalues of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α obtained numerically by our JSM 
(2.21) under the DOF M = 160 and the asymptotic method in [71] under the DOF M = 5000.

λα
1 λα

2 λα
3

JSM (2.21) Ref. [71] JSM (2.21) Ref. [71] JSM (2.21) Ref. [71]

α = 1.99 2.443691434 2.442 9.73318159 9.729 21.82868373 21.829
α = 1.9 2.244059359 2.243 8.59575252 8.593 18.71689400 18.718
α = 1.8 2.048734983 2.048 7.50311692 7.501 15.79989416 15.801
α = 1.5 1.597503545 1.597 5.05975992 5.059 9.59430576 9.957
α = 1.0 1.157773883 1.158 2.75475474 2.754 4.31680106 4.320
α = 0.5 0.970165419 0.970 1.60153773 1.601 2.02882105 2.031
α = 0.2 0.957464477 0.957 1.19653989 1.197 1.31909097 1.320
α = 0.1 0.972594401 0.973 1.09219649 1.092 1.14732244 1.148
α = 0.01 0.996634628 0.997 1.00871791 1.009 1.01374130 1.014

From Fig. 3, we can see that our JSM (2.21) is significantly better than the FEM and the FDM when a large number of 
eigenvalues are to be computed accurately. In fact, the FEM and the FDM can be used to compute the first a few eigenvalues 
of (1.1). However, when a large amount of eigenvalues are needed, one has to adapt a spectral method such as our JSM 
(2.21).

To quantify the resolution capacity of our JSM (2.21), Fig. 4 displays the relative errors eα
n,r (n = 1, 2, . . . , M) of (1.1) with 

V (x) ≡ 0 and different α under different DOFs M , i.e. M = 512, 2048 and 8192; and Fig. 5 shows similar results when 
V (x) = x2

.
2
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Fig. 1. Convergence rates of computing different eigenvalues of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α by using our JSM (2.21) for: (a) the first 
eigenvalue λα

1 , (b) the second eigenvalue λα
2 , (c) the fifth eigenvalue λα

5 , and (d) the tenth eigenvalue λα
10.

Fig. 2. Convergence rates of computing different eigenvalues of (1.1) with � = (−1, 1), V (x) = x2

2 and different α by using our JSM (2.21) for: (a) the first 
eigenvalue λα

1 , (b) the second eigenvalue λα
2 , (c) the fifth eigenvalue λα

5 , and (d) the tenth eigenvalue λα
10.
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Fig. 3. Relative errors of the first 6400 eigenvalues, i.e. eα
n,r (n = 1, 2, . . . , 6400) of (1.1) with � = (−1, 1) and V (x) ≡ 0 by using our JSM (2.21), the FEM 

[41] and the FDM [69,22] under the DOF M = 8192 for: (a) α = 1.95, (b) α = 1.5, (c) α = 1.0, and (d) α = 0.5. A horizonal (dash) line with ε0 := 10−9 and 
a vertical (dash) line with n := M/2 are added in each sub-figure.

From Figs. 4 & 5, we can see that our JSM (2.21) under a given DOF M has the following resolution capacity (or trust 
region)

eα
n,r :=

∣∣∣λα
n − λα

n,M

∣∣∣
λα

n
≤ ε0 := 10−9, n = 1,2, . . . , cr M, with cr ≈ 2

π
>

1

2
. (3.2)

Based on our numerical results, cr is almost independent of α ∈ (0, 2]. In fact, when α = 2, cr ≈ 2
π was rigorously proved in 

[66]. From our numerical results, cr ≈ 0.633 ≈ 2
π when α = 1.95, 1.5, 1.0 and 0.5 (cf. Figs. 4 & 5). Rigorous mathematical 

justification of the independence of cr on α ∈ (0, 2] is on-going.

4. Numerical results of the FSO in 1D without potential

In this section, we report numerical results on the eigenvalues of (1.1) with � = (−1, 1) and V (x) ≡ 0 by using our JSM 
(2.21) under the DOF M = 8192. All results are based on the first 4096 eigenvalues, i.e. we use half of the eigenvalues 
obtained numerically to present the results and to calculate distribution statistics.

4.1. Eigenvalues and their approximations

Fig. 6a plots the eigenvalues λα
n (n = 1, 2, . . .) and their leading order approximations as λα

n ≈ λ̃α
n := (nπ

2

)α (n = 1, 2, . . .), 
while λ̃α

n (n = 1, 2, . . .) are the eigenvalues of the local fractional Laplacian operator on � = (−1, 1) with homogeneous Dirich-
let boundary condition [11]. Fig. 6b displays the relative errors of the eigenvalues and their leading order approximations, 
i.e. ẽα

n,r :=
(
λ̃α

n − λα
n

)
/λ̃α

n , which immediately suggests a high order approximation at λα
n ≈ λ̂α

n := λ̃α
n

(
1 − Cα

3
n

)
(n = 1, 2, . . .). 

By fitting our numerical results, we can obtain numerically Cα
3 = α(2−α)

4 which is plotted in Fig. 6c. Finally Fig. 6d displays 
the absolute errors of the eigenvalues and their high order approximations, i.e. ẽα

n :=
∣∣∣λα

n − λ̂α
n

∣∣∣.
From Fig. 6, we can obtain numerically the following approximations of the eigenvalues of (1.1) with � = (−1, 1) and 

V (x) ≡ 0 as



12 W. Bao et al. / Journal of Computational Physics 421 (2020) 109733
Fig. 4. Relative errors of the eigenvalues of (1.1) with � = (−1, 1) and V (x) ≡ 0 by using our JSM (2.21) under different DOFs M for: (a) α = 1.95, (b) 
α = 1.5, (c) α = 1.0, and (d) α = 0.5. A horizonal (dash) line with ε0 := 10−9 and vertical (dash) lines with n := M/2 are added in each sub-figure.

Fig. 5. Relative errors of the eigenvalues of (1.1) with � = (−1, 1) and V (x) = x2

2 by using our JSM (2.21) under different DOFs M for: (a) α = 1.95, (b) 
α = 1.5, (c) α = 1.0, and (d) α = 0.5. A horizonal (dash) line with ε0 := 10−9 and vertical (dash) lines with n := M/2 are added in each sub-figure.
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Fig. 6. (a) Eigenvalues λα
n (n = 1, 2, . . . , 4096) of (1.1) with � = (−1, 1) and V (x) ≡ 0 for different α (symbols denote numerical results and solid lines are 

from the leading order approximation λ̃α
n = ( nπ

2

)α ); (b) Relative errors ẽα
n,r =

(
λ̃α

n − λα
n

)
/λ̃α

n (symbols denote numerical results and solid lines are from 
the fitting formula Cα

3 n−1 when n � 1); (c) Fitting results for Cα
3 ; and (d) absolute errors ẽα

n =
∣∣∣λα

n − λ̂α
n

∣∣∣ with λ̂α
n = λ̃α

n

(
1 − Cα

3 n−1
)
.

λα
n = λ̂α

n + O (nα−2) = λ̃α
n

[
1 − α(2 − α)

4n
+ O (n−2)

]
, n = 1,2, . . . , (4.1)

where

λ̃α
n =

(nπ

2

)α
, λ̂α

n =
(nπ

2

)α −
(π

2

)α α(2 − α)

4
nα−1 = λ̃α

n

[
1 − α(2 − α)

4n

]
, n ≥ 1, 0 < α ≤ 2. (4.2)

Combining (4.1) and Lemma 2.1, we can immediately obtain the conclusion (1.16).
To demonstrate high accuracy of our numerical method, Table 4 lists the eigenvalues of (1.1) with � = (−1, 1) and 

V (x) ≡ 0 for different α.

4.2. Asymptotic behaviour of different gaps

Fig. 7 plots different eigenvalue gaps of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α. From Fig. 7, we can draw the 
following conclusions based on our numerical results: (i) the nearest neighbour gaps δα

nn(N) increase and decrease with 
respect to N when 1 < α ≤ 2 and 0 < α < 1, respectively; and they are almost constant when α = 1 (cf. Fig. 7a). (ii) The 
minimum gaps δα

min(N) are almost constants and decrease with respect to N when 1 ≤ α ≤ 2 and 0 < α < 1, respectively (cf. 
Fig. 7b). (iii) The average gaps δα

ave(N) increase and decrease with respect to N when 1 < α ≤ 2 and 0 < α < 1, respectively; 
and they are almost constant when α = 1 (cf. Fig. 7c). (iv) The normalized gaps δα

norm(N) ≈ 1 when N � 1 (cf. Fig. 7d).
In fact, based on the numerical asymptotic approximation (4.1), we can formally obtain the following approximation of 

the nearest neighbour gaps as

δα
nn(N) = λα

N+1 − λα
N ≈ λ̂α

N+1 − λ̂α
N

=
(

(N + 1)π
)α

−
(π )α α(2 − α)

(N + 1)α−1 −
(

Nπ
)α

+
(π )α α(2 − α)

Nα−1
2 2 4 2 2 4
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Table 4
Eigenvalues of (1.1) with � = (−1, 1) and V (x) ≡ 0 for different α.

α = 0.1 α = 0.5 α = 1.0 α = 1.5 α = 1.95 α = 2.0

λα
1 0.9725944 0.9701654 1.157773883 1.5975035456 2.35198053244 2.4674011002

λα
2 1.0921964 1.6015377 2.754754742 5.0597599283 9.20812426623 9.8696044010

λα
3 1.1473224 2.0288210 4.316801066 9.5943057675 20.3833201062 22.206609902

λα
4 1.1868395 2.3871563 5.892147470 15.018786212 35.7934316323 39.478417604

λα
5 1.2165513 2.6947426 7.460175739 21.189425897 55.3737634238 61.685027506

λα
6 1.2412799 2.9728959 9.032852690 28.035207791 79.0793754673 88.826439609

λα
7 1.2619743 3.2256090 10.60229309 35.488011031 106.871259423 120.90265391

λα
8 1.2801923 3.4610502 12.17411826 43.507108689 138.718756729 157.91367041

λα
9 1.2961956 3.6805940 13.74410905 52.051027490 174.594065184 199.85948912

λα
10 1.3107082 3.8884472 15.31555499 61.092457389 214.473975149 246.74011002

λα
20 1.4082270 5.5522311 31.02330309 174.43784577 829.684155066 986.96044010

λα
40 1.5111219 7.8894197 62.43917339 495.95713648 3207.64320222 3947.8417604

λα
60 1.5742803 9.6777480 93.85508924 912.11187382 7073.79138904 8882.6439609

Fig. 7. Different eigenvalue gaps of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α for (symbols denote numerical results and solid lines are from fitting 
formulas when N � 1): (a) the nearest neighbour gaps δα

nn(N), (b) the minimum gaps δα
min(N), (c) the average gaps δα

ave(N), and (d) the normalized gaps 
δα

norm(N).

=
(π

2

)α
[
(N + 1)α − Nα − α(2 − α)

4

(
(N + 1)α−1 − Nα−1)]

=
(π

2

)α
[

Nα

((
1 + 1

N

)α

− 1

)
− α(2 − α)

4
Nα−1

((
1 + 1

N

)α−1

− 1

)]

=
(π )α

[
Nα

(
α + α(α − 1)

2
+ O (N−3)

)
− α(2 − α)

Nα−1
(

α − 1 + O (N−2)

)]

2 N N 4 N
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=
(π

2

)α
[
αNα−1 + α(α − 1)(2 + α)

4
Nα−2 + O (Nα−3)

]
, N = 1,2, . . . . (4.3)

Again, this asymptotic results also confirm that the nearest neighbour gaps δα
nn(N) increase and decrease with respect to N

when 1 < α ≤ 2 and 0 < α < 1, respectively; and they are almost constant when α = 1.
Based on the asymptotic results (4.3) and the numerical results in Fig. 7b, we can conclude that

δα
min(N) =

⎧⎨
⎩

δα
nn(1) = λα

2 − λα
1 , 1 < α < 2,

≈ δα
nn(1) = λα

2 − λα
1 , α = 1,

δα
nn(N) ≈ α

(
π
2

)α
Nα−1, 0 < α < 1.

N = 1,2, . . . . (4.4)

Again, these asymptotic results suggest that the minimum gaps δα
min(N) are almost constants and decrease with respect to 

N when 1 ≤ α ≤ 2 and 0 < α < 1, respectively.
Similarly, we have the asymptotic results for the average gaps as

δα
ave(N) = λα

N+1 − λα
1

N
≈ λ̂α

N+1 − λα
1

N

= 1

N

[(
(N + 1)π

2

)α

−
(π

2

)α α(2 − α)

4
(N + 1)α−1 − λα

1

]

=
(π

2

)α
[

Nα−1
(

1 + 1

N

)α

− α(2 − α)

4
Nα−2

(
1 + 1

N

)α−1

− λα
1

(
2

π

)α

N−1

]

=
(π

2

)α
[

Nα−1 + αNα−2 − α(2 − α)

4
Nα−2 − λα

1

(
2

π

)α

N−1 + O (Nα−3)

]

=
(π

2

)α
[

Nα−1 + α(2 + α)

4
Nα−2 − λα

1

(
2

π

)α

N−1 + O (Nα−3)

]
, N = 1,2, . . . . (4.5)

Thus when 1 < α < 2, we have

δα
ave(N) =

(π

2

)α
[

Nα−1 + α(2 + α)

4
Nα−2 + O (N−1)

]
, N = 1,2, . . . ; (4.6)

and when 0 < α < 1, we have

δα
ave(N) =

(π

2

)α
[

Nα−1 − λα
1

(
2

π

)α

N−1 + O (Nα−2)

]
, N = 1,2, . . . ; (4.7)

and when α = 1, we get

δα
ave(N) = π

2

[
1 +

(
3

4
− 2

π
λα=1

1

)
N−1 + O (N−2)

]
, N = 1,2, . . . . (4.8)

Again, these asymptotic results suggest that the average gaps δα
ave(N) increase and decrease with respect to N when 1 <

α ≤ 2 and 0 < α < 1, respectively; and they are almost constants when α = 1 (cf. Fig. 7c).
Based on the asymptotic results of the eigenvalue λα

n in (4.1), noticing (1.8)-(1.10), we can get the asymptotic results for 
the normalized gaps as

δα
norm(N) = 2

π

[(
λα

N+1

)1/α − (
λα

N

)1/α
]

= (N + 1)

(
1 − α(2 − α)

4(N + 1)
+ O ((N + 1)−2)

)1/α

− N

(
1 − α(2 − α)

4N
+ O (N−2)

)1/α

= N + 1 − 2 − α

4
− C̃

N + 1
+ O ((N + 1)−2) − N + 2 − α

4
+ C̃

N
− O (N−2)

= 1 + C̃

N(N + 1)
+ O (N−3), N = 1,2, . . . , (4.9)

where C̃ is a constant. Again, this asymptotic result suggests that the normalized gaps δα
norm(N) ≈ 1 when N � 1 (cf. Fig. 7d).

Finally, combining (4.3), (4.4), (4.6), (4.7), (4.8), (4.9) and (2.3), we can get the conjecture (1.17) stated in Section 1.
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Fig. 8. The histogram of the normalized gaps {δα
norm(n) | 1 ≤ n ≤ N = 4096} of (1.1) with � = (−1, 1) and V (x) ≡ 0 for different α: (a) α = 2.0, (b) α = 1.9, 

(c) α = √
3, (d) α = 1.5, (e) α = 1.0, and (f) α = 0.5.

4.3. The gaps distribution statistics

Fig. 8 displays the histogram of the normalized gaps {δα
norm(n) | 1 ≤ n ≤ N = 4096} defined in (4.9) for (1.1) with � =

(−1, 1), V (x) ≡ 0 and different α.
From Fig. 8, we can conclude that the gaps distribution statistics of (1.1) with V (x) ≡ 0 is Pα(s) = δ(s − 1) for 0 < α ≤ 2.

4.4. Eigenfunctions and their singularity characteristics

Denote uα
n (x) be the eigenfunction satisfying ‖uα

n ‖L2(�) = 1 and duα
n (x)
dx

∣∣∣
x=−1

> 0, which corresponds to the eigenvalue λα
n

(n = 1, 2, . . .) of (1.1) with � = (−1, 1) and V (x) ≡ 0. The ‘exact’ eigenfunctions uα
n (x) (n = 1, 2, . . .) are obtained numerically 

by using the JSM (2.21) under a very large DOF M = M0, e.g. M0 = 512. Let uα
n,M(x) be the numerical approximation of uα

n (x)
(n = 1, 2, . . . , M) obtained by a numerical method with the DOF chosen as M . Define the absolute errors of uα

n (x) as

euα
n

:= ‖uα
n − uα

n,M‖l2 , n = 1,2, . . . . (4.10)

Fig. 9 shows convergence rates of our JSM (2.21) for computing the first, second, fifth and tenth eigenfunctions of (1.1) with 
� = (−1, 1), V (x) ≡ 0 and different α. Fig. 10 plots different eigenfunctions of (1.1) with � = (−1, 1), V (x) ≡ 0 and different 
α. Finally Fig. 11 displays different eigenfunctions of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α near the boundary 
layer 0 < ξ := x + 1 � 1 to show the singularity characteristics of the eigenfunctions uα

n (x) at the boundary x = −1.
From Figs. 9–11, we can draw the following conclusions: (i) Our JSM method (2.21) converges sub-spectrally (or super-

linearly) with respect to the DOF M for computing the eigenfunctions uα
n (x) (cf. Fig. 9). (ii) For fixed 0 < α < 2, the 

eigenfunctions uα
n (x) (n = 1, 2, . . .) can be characterised as

uα
n (x) = (1 − x2)α/2 vα

n (x), −1 ≤ x ≤ 1, (4.11)

where vα
n (x) (n = 1, 2, . . .) are smooth functions over the interval �̄ = [−1, 1] (cf. Fig. 11). In addition, our numerical results 

indicate that, when n → ∞ (cf. Fig. 10d), the eigenfunctions uα
n (x) (n ≥ 1) of (1.1) with � = (−1, 1) and V (x) ≡ 0 converge 

to the eigenfunctions uα=2
n (x) = sin

(
nπ(x+1)

2

)
(n ≥ 1) of (1.1) with α = 2, � = (−1, 1) and V (x) ≡ 0, i.e.

uα
n (x) → sin

(
nπ(x + 1)

2

)
= uα=2

n (x), x ∈ �̄, n → ∞. (4.12)

Based on the above results, for the eigenvalue problem of the FSO in high dimensions, i.e.
Find λ ∈R and a nonzero real-valued function u(x) �= 0 such that

LFSO u(x) :=
[
(−	)α/2 + V (x)

]
u(x) = λ u(x), x ∈ � ⊂ Rd,

u(x) = 0, x ∈ �c := Rd\�,

(4.13)
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Fig. 9. Convergence rates of computing different eigenfunctions uα
n (x) (n = 1, 2, 5, 10) of (1.1) with � = (−1, 1) and V (x) ≡ 0 by using our JSM (2.21) for 

different α: (a) α = 1.95, (b) α = 1.5, (c) α = 1.0 and (d) α = 0.5.

Fig. 10. Plots of different eigenfunctions of (1.1) with � = (−1, 1), V (x) ≡ 0 and different α for: (a) the first eigenfunction uα
1 (x), (b) the second eigenfunc-

tion uα
2 (x), (c) the fifth eigenfunction uα

5 (x), and (d) the tenth eigenfunction uα
10(x).
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Fig. 11. Singularity characteristics of different eigenfunctions of (1.1) with � = (−1, 1) and V (x) ≡ 0 (symbols denote numerical results and solid lines are 
from the fitting formula Cξα/2 when 0 < ξ = x + 1 � 1) for different α: (a) α = 1.95, (b) α = 1.5, (c) α = 1.0 and (d) α = 0.5.

where d ≥ 2, 0 < α < 2, � is a bounded domain and the fractional Laplacian (−	)α/2 is defined via the Fourier transform 
[19,54], we conjecture here that the eigenfunction u(x) can be written as

u(x) = v(x) (dist(x, ∂�))α/2 , x ∈ �̄, (4.14)

where v(x) is a smooth function over �̄ and dist(x, ∂�) represents the distance from x ∈ � to ∂�.
We remark here that the singularity characteristics of the eigenfunctions in (4.11) for 1D (or (4.14) for high dimensions) 

is quite different with the singularity characteristics given in [16] for fractional PDEs as

u(x) ≈ (dist(x, ∂�))α/2 + v(x), x ∈ �̄, (4.15)

where v(x) is a smooth function over �̄. From our numerical results, we speculate that the correct singularity characteristics 
of the solutions of the fractional PDEs should be (4.14) instead of (4.15)!

5. Numerical results of the FSO in 1D with potential

In this section, we report numerical results on the eigenvalues of (1.1) with � = (−1, 1) and V (x) �= 0 by using our JSM 
(2.21) under the DOF M = 8192. All results are based on the first 4096 eigenvalues, i.e. we use half of the eigenvalues 
obtained numerically to present the results and to calculate gaps distribution statistics. Here we consider four different 
external potentials given as:

Case I. V (x) = x2

2 ;
Case II. V (x) = 4x2;
Case III. V (x) = 4x2 + sin( π

2 x);
Case IV. V (x) = 50x2 + sin(2πx).

5.1. Eigenvalues and their asymptotics

Table 5 lists the eigenvalues of (1.1) with � = (−1, 1) and V (x) = x2

2 for different α. Fig. 12 plots the eigenvalues of (1.1)
with � = (−1, 1), different external potentials V (x) and different α.

From Fig. 12, we can conclude that, when n � 1, the leading order asymptotics of the eigenvalues λα
n in (4.1) is still valid 

for the eigenvalue problem of the FSO (1.1) with potential V (x).
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Table 5
Different eigenvalues of (1.1) with � = (−1, 1), V (x) = x2

2 and different α obtained numerically by our JSM (2.21).

α = 0.5 α = 1.0 α = 1.5 α = 1.9 α = 2.0

λα
1 1.0599238 1.240244372 1.6707307180 2.31063679348 2.53245197432

λα
2 1.7684725 2.918074603 5.2120578091 8.73899699079 10.0106621605

λα
3 2.1903345 4.481368142 9.7550085449 18.8734566366 22.3620761310

λα
4 2.5518267 6.058660406 15.182580104 32.6230979973 39.6388288214

λα
5 2.8580498 7.626501974 21.354271585 49.8832020720 61.8477048695

λα
6 3.1370031 9.199495156 28.200700106 70.5802261928 88.9903414346

λα
7 3.3893161 10.76885112 35.653816621 94.6494682651 121.067291745

λα
8 3.6251388 12.34077821 43.673146060 122.040857583 158.078785000

λα
9 3.8445549 13.91072820 52.217197374 152.708819987 200.024930128

λα
10 4.0526430 15.48221913 61.258734930 186.615849002 246.905784303

λα
20 5.5522311 31.02330310 174.43784577 697.513597025 986.960440109

λα
40 7.8894197 62.43917340 495.71364899 2606.30876720 3947.84176043

λα
60 9.6777480 93.85508927 912.11187382 5633.40862247 8882.64396098

Fig. 12. Eigenvalues λα
n (n = 1, 2, . . . , 4096) of (1.1) with � = (−1, 1) and different α for differential external potentials (symbols denote numerical results 

and solid lines are from fitting formulas when n � 1): (a) Case I, (b) Case II, (c) Case III, and (d) Case IV.

5.2. Gaps and their distribution statistics

Fig. 13 plots different eigenvalue gaps of (1.1) with � = (−1, 1), V (x) = x2

2 and different α. Fig. 14 displays the histogram 
of the normalized gaps {δα

norm(n) | 1 ≤ n ≤ N = 4096} defined in (4.9) for (1.1) with � = (−1, 1), V (x) = x2

2 and different α. 
For other potentials, our numerical results show similar behaviour on eigenvalues and their gaps, which are omitted here 
for brevity.

Again, from Figs. 13 and 14, we can conclude that, when n � 1, the asymptotics of the eigenvalue gaps given in (4.3), 
(4.4), (4.6), (4.7), (4.8) and (4.9) are still valid for the eigenvalue problem of the FSO (1.1) with potential V (x). In addition, 
the gaps distribution statistics is still Pα(s) = δ(s − 1) for 0 < α ≤ 2 in this case.
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Fig. 13. Different eigenvalue gaps of (1.1) with � = (−1, 1), V (x) = x2

2 and different α for (symbols denote numerical results and solid lines are from fitting 
formulas when N � 1 in a-c): (a) the nearest neighbour gaps δα

nn(N), (b) the minimum gaps δα
min(N), (c) the average gaps δα

ave(N), and (d) the normalized 
gaps δα

norm(N).

5.3. Comparison on eigenvalues of (1.1) without/with potential

Let 0 < λ
α,0
1 < λ

α,0
2 < . . . < λ

α,0
n < . . . be all eigenvalues of (1.1) with � = (−1, 1) and V (x) ≡ 0, and denote all eigenval-

ues of (1.1) with a potential V as in (1.4). Fig. 15 plots differences of the eigenvalues of (1.1) with the potential V (x) and 
without potential, i.e. δV

n := λα
n −λ

α,0
n −CV (1 ≤ n ≤ N = 4096) for different potentials V (x) and α, where C V = 1

2

∫ 1
−1 V (x)dx.

From Fig. 15, we can draw the following conclusion for the eigenvalues of (1.1) with potential V (x):

λα
n = λα,0

n + C V + O
(

n−τ1(α)
)

, n � 1, (5.1)

where τ1(α) can be obtained numerically as

τ1(α) =
{

α, 0 < α ≤ 2&α �= 1,

≈ 4.5, α = 1,
(5.2)

5.4. Eigenfunctions

Fig. 16 plots different eigenfunctions uα
n (x) of (1.1) with � = (−1, 1) and V (x) = x2

2 for different α.
From Fig. 16, the singularity characteristics of the eigenfunctions given in (4.11) is still valid for the eigenvalue prob-

lem of the FSO (1.1) with potential V (x). In addition, when 0 < α < 2, our numerical results indicate that, when n → ∞
(cf. Fig. 10d), the eigenfunctions uα

n (x) (n ≥ 1) of (1.1) with potential V (x) converge to the eigenfunctions uα=2
n (x) =

sin
(

nπ(x+1)
2

)
(n ≥ 1) which are the eigenfunctions of (1.1) with α = 2 and V (x) ≡ 0.

Finally, based on our extensive numerical results and observations, we speculate the following observation (or conjecture) 
for the FSO in (1.1) with potential:

Conjecture II (Gaps and their distribution statistics of the FSO in (1.1) with potential) Assume 1 < α ≤ 2 and V (x) ∈
L∞(�) in (1.1), then we have the following asymptotics of its eigenvalues:
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Fig. 14. The histogram of the normalized gaps {δα
norm(n) | 1 ≤ n ≤ N = 4096} of (1.1) with � = (−1, 1) and V (x) = x2

2 for different α: (a) α = 2.0, (b) 
α = 1.9, (c) α = √

3, (d) α = 1.5, (e) α = 1.0, and (f) α = 0.5.

Fig. 15. Differences of the eigenvalues of (1.1) with potential V and without potential, i.e. δV
n := λα

n − λ
α,0
n − C V (1 ≤ n ≤ N = 4096) for different potentials 

V (x) and α: (a) α = 2, (b) α = √
2, (c) α = 1, and (d) α = 0.5.

λα
n =

⎧⎪⎪⎨
⎪⎪⎩

(
nπ
b−a

)α −
(

π
b−a

)α
α(2−α)

4 nα−1 + C V + O (nα−2), 1 < α ≤ 2,
nπ
b−a − π

4(b−a)
+ C V + O (n−1), α = 1,(

nπ
b−a

)α + C V −
(

π
b−a

)α
α(2−α)

4 nα−1 + O (n−α), 0 < α < 1,

n � 1, (5.3)

where
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Fig. 16. Plots of different eigenfunctions of (1.1) with � = (−1, 1), V (x) = x2

2 and different α: (a) the first eigenfunction uα
1 (x), (b) the second eigenfunction 

uα
2 (x), (c) the fifth eigenfunction uα

5 (x), and (d) the tenth eigenfunction uα
10(x).

C V = 1

|�|
∫
�

V (x)dx = 1

b − a

b∫
a

V (x)dx. (5.4)

In addition, we have the following asymptotics for different gaps:

δα
nn(N) ≈

(
π

b − a

)α [
αNα−1 + α(α − 1)(2 + α)

4
Nα−2 + O (Nα−3)

]
, 0 < α ≤ 2,

δα
min(N) = λα

N+1 − λα
N ≈ α

(
π

b − a

)α

Nα−1, 0 < α < 1,

δα
ave(N) ≈

(
π

b − a

)α

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
Nα−1 + α(2+α)

4 Nα−2 + O (N−1)
]
, 1 < α ≤ 2,[

1 +
(

3
4 − b−a

π λα=1
1

)
N−1 + O (N−2)

]
, α = 1,[

Nα−1 −
(

b−a
π

)α
λα

1 N−1 + O (Nα−2)
]
, 0 < α < 1,

δα
norm(N) ≈ 1 + O (N−2), 0 < α ≤ 2,

N � 1. (5.5)

In addition, for the gaps distribution statistics defined in (1.11), we have

Pα(s) = δ(s − 1), s ≥ 0, 0 < α ≤ 2. (5.6)

6. Extension to the directional fractional Schrödinger operator in high dimensions

In this section, we extend the Jacobi spectral method (JSM) presented in Section 2 to the directional fractional 
Schrödinger operator (D-FSO) in high dimensions and apply it to study numerically its eigenvalues and their gaps as well as 
gaps distribution statistics.

6.1. The D-FSO in high dimensions

Consider the eigenvalue problem related to the D-FSO in high dimensions:
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Find λ ∈R and a nonzero real-valued function u(x) �= 0 such that

LD-FSO u(x) := [
Dα

x + V (x)
]

u(x) = λ u(x), x ∈ � := (−L1, L1) × . . . (−Ld, Ld) ⊂ Rd,

u(x) = 0, x ∈ �c := Rd\�,
(6.1)

where d ≥ 2, x = (x1, x2, . . . , xd)
T , 0 < α ≤ 2, V (x) ∈ L∞(�) is a given real-valued function and the directional fractional 

Laplacian operator Dα
x :=∑d

j=1(−∂x j x j )
α/2 is defined via the Fourier transform (see [19,54,46] and references therein) as

Dα
x u(x) = F−1

⎛
⎝ d∑

j=1

|ξ j|α(Fu)(ξ )

⎞
⎠ , x, ξ ∈Rd, (6.2)

with ξ = (ξ1, ξ2, . . . , ξd)
T , F and F−1 the Fourier transform and the inverse Fourier transform over Rd [58,64], respectively. 

We remark here that the directional fractional Laplacian operator Dα
x has been widely used in the literature for different 

fractional PDEs, see [47,68,52,33,46] and references therein. Again, when α = 2, (6.1) collapses to the Schrödinger operator 
in high dimensions. Specifically, when α = 2, d = 2 and L1 = L2 in (6.1), gaps and their distribution of a square billiard can 
be found in [26,34]. Without loss of generality, we assume that L1 ≥ L2 ≥ . . . ≥ Ld > 0.

Again, since all eigenvalues of (6.1) are distinct (or all spectrum are discrete and no continuous spectrum) [5], similar to 
(1.4) for (1.1), we can also rank (or order) all eigenvalues of (6.1) as (1.4), while again the times that an eigenvalue λ of (6.1)
appears in the sequence (1.4) is the same as its algebraic multiplicity. Under the order of all eigenvalues in (1.4) for (6.1), 
we define the fraction of the repeated eigenvalues of (6.1) as

Rα(N) := #{2 ≤ n ≤ N | λα
n = λα

n−1}
N

, N = 2,3, . . . . (6.3)

In addition, let 0 < λ
α,0
1 < λ

α,0
2 < . . . < λ

α,0
n < . . . be all eigenvalues of (1.1) with � = (−1, 1) and V (x) ≡ 0, and uα,0

n (x)
(n = 1, 2, . . .) be the corresponding eigenfunctions. Then when V (x) ≡ 0 in (6.1), all eigenvalues of the problem (6.1) can be 
given as

λα
j1... jd

=
d∑

l=1

L−α
l λ

α,0
jl

, j1, . . . , jd = 1,2, . . . , (6.4)

and their corresponding eigenfunctions can be given as

uα
j1... jd

(x) = �d
l=1uα,0

jl
(xl/Ll), x ∈ �̄, j1, . . . , jd = 1,2, . . . . (6.5)

The above results immediately imply that the fundamental gap of (6.1) with V (x) ≡ 0 can be obtained as

δfg(α) = L−α
1 λ

α,0
2 +

d∑
l=2

L−α
l λ

α,0
1 −

d∑
l=1

L−α
l λ

α,0
1 = L−α

1

(
λ
α,0
2 − λ

α,0
1

)
≥ λ

α,0
2 − λ

α,0
1

(D/2)α
, (6.6)

where D is the diameter of �.
The JSM presented in Section 2 can be easily extended to solve the eigenvalue problem (6.1) by tensor product [52]. The 

details are omitted here for brevity.

6.2. Numerical results in 2D without potential

We take d = 2, L1 = 1 and V (x) ≡ 0 in (6.1). In this case, noting (6.4) and (6.5) with d = 2, instead of using the JSM in 
2D to compute eigenvalues and their corresponding eigenfunctions of (6.1), a simple and more efficient and accurate way is 
to first use the JSM in 1D to compute the eigenvalues and their corresponding eigenfunctions of (1.1) with � = (−1, 1) and 
V (x) ≡ 0, and then to get the eigenvalues and their corresponding eigenfunctions of (6.1) with d = 2 and V (x) ≡ 0 via (6.4)
and (6.5) with d = 2.

In our computations, we first use the JSM in 1D with M = 8192 to compute numerically the eigenvalues of (1.1) with 
� = (−1, 1) and V (x) ≡ 0. Then we use the first N = 4096 computed eigenvalues to get the eigenvalues of (6.1) with d = 2
and V (x) ≡ 0 via (6.4) with d = 2 and then rank (or order) the total 4096 × 4096 eigenvalues of (6.1) as (1.4). Finally, we 
take (up to) the first N = 4000000 eigenvalues to compute the gaps and their distribution statistics.

Fig. 17 displays the eigenvalues (in increasing order) of (6.1) for different L2 and α, which suggests that λα
n ∼ nα/2 when 

n � 1 for 0 < α ≤ 2. Then we fit numerically λα
n when n � 1 by Cα

2 nα/2. Fig. 18 displays the fitting results of Cα
2 with 

respect to the area S = 4L2 of � and α, which suggests that

Cα
2 = 4

(
4π

)α/2

, 0 < α ≤ 2, S = 4L2 > 0. (6.7)

2 + α S
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Fig. 17. Eigenvalues of (6.1) with d = 2, L1 = 1, V (x) ≡ 0 and different L2 and α (symbols denote numerical results and solid lines are from the fitting 
formula Cα

2 nα/2 when n � 1): (a) α = 1.9, (b) α = 1.5, (c) α = 1.0, and (d) α = 0.5.

Fig. 18. Numerical results of Cα
2 (symbols denote numerical results and solid lines are from the fitting formula (6.7)) for different areas S = |�| = 4L2 and 

α: (a) plots of Cα
2 as a function of S for different α, and (b) plots of Cα

2 as a function of α for different S .

These results immediately suggest that

λα
n = 4

2 + α

(
4π

S

)α/2

nα/2 + o(nα/2), n � 1. (6.8)

Specifically, when α = 2, our numerical results suggest that

λα=2
n = 4π

S

[
n + C1n1/2 + O (1)

]
, n � 1, (6.9)

where C1 ≈ 0.5943 from our numerical results. In fact, (6.9) can be regarded as an improved Weyl law when α = 2 [67], 
and (6.8) can be regarded as an extension of the Weyl law for α = 2 [67] to 0 < α ≤ 2, and we call (6.8) as the generalized 
Weyl law on the asymptotics of the eigenvalues of the D-FSO in 2D.
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Fig. 19. Different eigenvalue gaps of (6.1) with d = 2, L1 = 1, V (x) ≡ 0, L2 = 3√2
2 and different α for: (a) the nearest neighbour gaps δα

nn(N), (b) the 
minimum gaps δα

min(N), (c) the average gaps δα
ave(N) (symbols denote numerical results and solid lines are from fitting formulas when N � 1), and (d) the 

normalized gaps δα
norm(N).

In fact, combining (6.8) and (1.7), we can obtain the asymptotic of the average gaps of the D-FSO in (6.1) as

δα
ave(N) = λα

N+1 − λα
1

N

= 1

N

[
4

2 + α

(
4π

S

)α/2

(N + 1)α/2 + o((N + 1)α/2) − λα
1

]

= 4

2 + α

(
4π

S

)α/2

N(α−2)/2 + o(N(α−2)/2)

= O (N(α−2)/2), N � 1, (6.10)

which immediately implies that, when α = 2, δα
ave(N) ∼ 1 (i.e. almost a constant) when N � 1, and respectively, when 

0 < α < 2, δα
ave(N) ∼ N(α−2)/2 (decrease with respect to N) when N � 1.

In addition, Fig. 19 plots different eigenvalue gaps of (6.1) with d = 2, L1 = 1, V (x) ≡ 0, L2 = 3
√

2/2 and different α. 
Fig. 20 displays the histogram of the normalized gaps {δα

norm(n) | 1 ≤ n ≤ N = 4000000} for different α and L2. Fig. 21 plots 
1 − Rα(N) vs N (N � 1) for different α and L2.

From Figs. 19–21, we can draw the following conclusions:
(i) The minimum gaps δmin(N) → 0 when N → +∞ (cf. Fig. 19b); and the average gaps δave(N) ∼ 1 when N � 1 for 

α = 2, and respectively, δave(N) ∼ N(α−2)/2 when N � 1 for 0 < α < 2 (cf. Fig. 19c), which confirm the asymptotic results 
in (6.10).

(ii) When L2 = 1 and 0 < α ≤ 2 or α = 2 and L2 ∈ Q or α = 1 and L2 ∈ Q, the gaps distribution statistics Pα(s) = δ(s)
(cf. Fig. 20a,b,d,g,h,j and Fig. 21). In these cases, Rα(N) → 1 when N → ∞ (cf. Fig. 21) and our numerical results suggest 
the following asymptotics: Rα(N) = 1 − N−τ2(L2) when α = 2 for different L2 ∈ Q (cf. Fig. 21a); Rα(N) = 1 − N−1/2 when 
α = 1 for different L2 ∈ Q (cf. Fig. 21b); and Rα(N) = 1 − N−τ3(α) when L2 = 1 for different 0 < α ≤ 2 (cf. Fig. 21c). In 
addition, Fig. 22 plots τ2(L2) and τ3(α) based on our numerical results.

(iii) When L2 /∈ Q and 0 < α < 1 or 1 < α ≤ 2, Pα(s) can be well approximated by a Poisson distribution (cf. 
Fig. 20c,e,f,l,m), i.e.
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Fig. 20. The histogram of the normalized gaps {δα
norm(n) | 1 ≤ n ≤ N = 4000000} of (6.1) with d = 2, L1 = 1 and V (x) ≡ 0 for different 0 < α ≤ 2 and 

0 < L2 ≤ 1: (a) α = 2.0 and L2 = 1, (b) α = 2.0 and L2 = 2/3, (c) α = 2.0 and L2 = 3√2
2 ; (d) α = 1.5 and L2 = 1, (e) α = 1.5 and L2 = 2/3, (f) α = 1.5 and 

L2 = 3√2
2 ; (g) α = 1.0 and L2 = 1, (h) α = 1.0 and L2 = 2/3, (i) α = 1.0 and L2 = 3√2

2 ; (j) α = 0.5 and L2 = 1, (l) α = 0.5 and L2 = 2/3, (m) α = 0.5 and 
L2 = 3√2

2 . Solid lines are fitting curves for the gaps distribution statistics Pα(s).

Pα(s) = τ (α)e−τ (α) s, s ≥ 0. (6.11)

In addition, Fig. 23 plots τ (α), which suggests that

τ (α) ≈
{

1, 1 < α ≤ 2,

1.057α−0.385, 0 < α < 1.
(6.12)

(iv) When α = 1 and L2 /∈Q, Pα(s) can be well approximated by a bimodal distribution [55] (cf. Fig. 20i).
(v) The classification of the gaps distribution statistics Pα(s) for different 0 < α ≤ 2 and L1 > 0 and L2 > 0 is summarized 

in Table 6.

6.3. Numerical results in 2D with potential

Here we use the JSM in 2D to compute numerically the eigenvalues and their corresponding eigenfunctions of (6.1)
with d = 2 and a non-zero potential V (x, y). In our computations, we choose the total DOF M = 144 × 144, i.e. with DOFs 
M1 = 144 and M2 = 144 in x1 and x2 directions, respectively. With the M eigenvalues computed, we only use M/4 (or even 
less) numerical eigenvalues to compute gaps and their distribution statistics. We take L1 = 1 and V (x, y) = x2+y2

in (6.1).
2
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Fig. 21. Plots of 1 − Rα(N) vs N (N � 1) for different α and L2: (a) α = 2 for different L2 ∈Q; (b) α = 1 for different L2 ∈Q; and (c) L2 = 1 for different 
0 < α ≤ 2.

Fig. 22. Fitting results of τ2(L2) for different L2 ∈Q (left) and τ3(α) for different α (right).

Fig. 23. Fitting results of τ (α) for different α.

Table 6
Summary of the gaps distribution statistics of (6.1) with d = 2 and 
V (x) ≡ 0 for different 0 < α ≤ 2 and L1 > 0 and L2 > 0.

L2/L1 = 1 1 �= L2/L1 ∈Q 1 �= L2/L1 /∈Q

α = 2 δ(s) δ(s) Poisson
1 < α < 2 δ(s) Poisson Poisson
α = 1 δ(s) δ(s) Bimodal distribution
0 < α < 1 δ(s) Poisson Poisson

Fig. 24 plots different eigenvalue gaps of (6.1) with L2 = 3
√

2/2 for different α, and Fig. 25 displays the histogram of the 
normalized gaps {δα

norm(n) | 1 ≤ n ≤ N = 4096} for different α and L2.
We also carry out numerical simulations on the eigenvalues and their different gaps as well as the gaps distribution 

statistics of (6.1) in 2D with different other potentials. Our numerical results suggest that the asymptotic behaviour of the 
eigenvalue λα

n in (6.8) and (6.9) are still valid when (6.1) is with a potential V (x) ∈ L∞(�). In addition, similar to the 1D 
case, the gaps and their distribution statistics of (6.1) with a potential are quite similar to those without potential, which 
are reported in Figs. 19&20. Those numerical results are omitted here for brevity.
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Fig. 24. Different gaps of (6.1) with d = 2, L1 = 1, L2 = 3
√

2/2 and V (x, y) = x2+y2

2 : (a) the average gaps δα
ave(N) (symbols denote numerical results and 

solid lines are from fitting formulas when N � 1), and (b) the minimum gaps δα
min(N).

Fig. 25. The histogram of the normalized gaps {δα
norm(n) | 1 ≤ n ≤ N = 4096} of (6.1) with d = 2 and V (x, y) = x2+y2

2 : (a) α = 2 and L2 = 1; and (b) α = √
2

and L2 = 3
√

2/2 (the solid line is a fitting curve by the Poisson distribution).

Finally, based on our extensive numerical results and observations, we speculate the following observation (or conjecture) 
for the D-FSO in (6.1) without/with potential:

Conjecture III (Gaps and their distribution statistics of the D-FSO in (6.1) in 2D, i.e. d = 2) Assume 0 < α ≤ 2 and 
V (x) ∈ L∞(�) in (6.1), then we have the following asymptotics of its eigenvalues:

λα
n = 4

2 + α

(
4π

S

)α/2

nα/2 + o(nα/2), n � 1, (6.13)

where S is the area of �. In addition, we have the following asymptotics of different gaps:

δα
min(N) → 0, N → +∞,

δα
ave(N) = 4

2 + α

(
4π

S

)α/2

N(α−2)/2 + o(N(α−2)/2), N � 1.
(6.14)

Finally the gaps distribution statistics summarized in Table 6 is also valid for (6.1) in 2D with potential V (x).

7. Conclusion

We proposed a Jacobi-Galerkin spectral method for accurately computing a large amount of eigenvalues of the fractional 
Schrödinger operator (FSO). A very important advantage of the proposed numerical method is that, under a fixed number of 
degree of freedoms M , the Jacobi spectral method can calculate accurately a large number of eigenvalues with the number 
proportional to M . Based on the eigenvalues obtained numerically by the proposed method, we obtained several important 
and interesting results for the eigenvalues and their different gaps of the FSO in 1D and the directional FSO in 2D. Based on 
the gaps, the distribution statistics of the normalized gaps were obtained numerically for the FSO.
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