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Abstract
This paper focuses on the three-dimensional simulation of the photoionization in streamer
discharges, and provides a general framework to efficiently and accurately calculate the
photoionization model using the integral form. The simulation is based on the
kernel-independent fast multipole method (FMM). The accuracy of this method is studied
quantitatively for different domains and various pressures in comparison with other existing
models based on partial differential equations (PDEs). The comparison indicates the numerical
error of the FMM is much smaller than those of other PDE-based methods, with the reference
solution given by direct numerical integration. Such accuracy can be achieved with affordable
computational cost, and its performance in both efficiency and accuracy is quite stable for
different domains and pressures. Meanwhile, the simulation accelerated by the FMM exhibits
good scalability using up to 1280 cores, which shows its capability of three-dimensional
simulations using parallel (distributed) computing. The difference of the proposed method and
other efficient approximations are also studied in a three-dimensional dynamic problem where
two streamers interact.

Keywords: streamer discharge, photoionization, parallel computing, fast multipole method,
kernel-independent FMM

(Some figures may appear in colour only in the online journal)

1. Introduction

As a natural phenomenon of non-thermal filamentary dis-
charges with a large amount of applications, a streamer dis-
charge happens when an insulating medium such as air is
exposed to a sufficiently strong electric field, where electron
avalanche occurs and forms filamentary streamers. The fil-
amentary streamer discharges are pivotal for many gas dis-
charges in nature [1, 2], e.g., the lightning [3] and the sprite
discharges in high altitude [4, 5]. It also has mature indus-

∗ Author to whom any correspondence should be addressed.

trial applications [6–8] like dust precipitator, ozone produc-
tion, and water purification [9, 10]. A review can be found in
[11].

Streamers can be classified into positive and negative ones.
The photoionization plays an important role in the propagation
of streamers in air, especially for positive ones. In particular,
the photoionization provides seed electrons ahead of the tips,
which are required by the propagation of positive streamers
[12–16]. Besides, the stochastic photoionization is shown to
have an impact on the branching of streamers [17–19].

Due to the importance of the photoionization to streamer
discharges, its modeling and simulation have attracted
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continuous attention. The classical model for oxygen–nitrogen
mixture derived by Zheleznyak et al in [20] is widely uti-
lized in the simulation of positive streamers [21, 22], and was
improved in [23, 24] to gain better accuracy and has been
extended to a stochastic version in [25].

Direct calculation of the classical integral model requires
a large amount of computation, especially in three dimensions
(3D) where streamer discharges inherently happen. To ease the
numerical difficulty and reduce the computational cost, some
approximation methods were proposed in [26–28] based on
the kernel expansion and conversion to Helmholtz equations.
Moreover, modeling of photoionization based on the radiative
transfer equation (RTE) also provides good results [29].

Less than two decades ago, the kernel-independent fast
multipole method (FMM) was proposed to compute particle
interactions efficiently and accurately [30]. It can be easily
applied to the convolutional integrals [31], and its computa-
tional complexity is comparable to the method of fast Fourier
transform (FFT). Compared with FFT, FMM can be applied
to more general computational domains and has better parallel
efficiency in distributed computations. In addition, it can be
directly applied on a broad class of different integral forms
compared with the kernel-dependent FMM which requires
specific kernel expansion and efficient translation for different
kernels [32].

Motivated by the good performance of the kernel-
independent FMM, this paper extends its application to the
computation of photoionization rates, and focuses on the fol-
lowing properties: (i) accuracy and robustness for different
pressures, (ii) good efficiency, and (iii) extensibility to other
integral models. The rest of this paper is organized as follows.
The classical integral method and its associated PDE-based
approximations are reviewed in section 2. Section 3 intro-
duces the FMM on a general numerical integral form. The
quantified performance of the FMM and comparisons with
other approximations for computing photoionization are pre-
sented in section 4, and for computing streamer discharges
are reported in section 5. Finally, conclusions are drawn in
section 6.

2. Model formulation

To make the contents self-contained, we briefly review com-
monly used approaches for photoionization calculations. We
focus on deterministic or continuum models in this paper,
and readers interested in stochastic models using Monte Carlo
collision method with discrete photon particles could refer
to [18, 19, 25].

2.1. Classical integral photoionization model by Zheleznyak
et al

The widely used photoionization model derived by
Zheleznyak et al [20] describes the photoionization rate
by

Sph(�x ) =
∫∫∫

V ′

I(�y)g(|�x −�y|)
4π|�x −�y|2 d�y, ∀ �x ∈ V , (1)

where �x = (x, y, z)T, V ′ is the source chamber in which the
photons are emitted, and V is the collector chamber where the
photons are absorbed, I(�y) is proportional to the intensity of
the source radiation:

I(�y) = ξ
pq

p+ pq

ω

α
Si(�y), (2)

where ξ is the photoionization efficiency, pq is the quenching
pressure, p is the gas pressure, ω and α are the excitation coef-
ficient of emitting states without quenching processes and the
effective Townsend ionization coefficient, respectively, with ω

α
being a coefficient to be determined by experiments, and Si is
the effective ionization rate. The function g(r) = g(|�x −�y|) in
(1) is given by

g(r)
pO2

=
exp(−χmin pO2r) − exp(−χmax pO2 r)

pO2r ln(χmax/χmin)
, (3)

where r = |�x −�y|, pO2 is the partial pressure of oxygen,
χmax = 2 cm−1 Torr−1 and χmin = 0.035 cm−1 Torr−1 are
the maximum and minimum absorption coefficients of O2 in
wavelength 980–1025 Å, respectively, as indicated in [20].
Note that when we define g(r) in (3), we follow [20, 23, 26] to
write g(r)/pO2 on the left-hand side so that the right-hand side
is dependent directly on the product pO2r. Interested readers
may refer to [20, 23] for more details.

Clearly, equation (1) is a convolution in 3D. A naive numer-
ical implementation of (1) requires a whole domain quadra-
ture for every point �x ∈ V , which requires a time complexity
O(N2) with N being the total number of degrees of free-
dom. One idea to reduce the computational cost is to use a
coarse grid in the weak field at the price of possibly losing
some accuracy, as [13] did in the 3D cases with cylindrical
symmetry.

2.2. Exponential or Helmholtz PDE approximation

Instead of a straightforward computation of the integral, the
efficiency can be significantly enhanced by converting it into a
problem of differential equations at the expense of losing some
accuracy. One important and pioneer work was done in [28],
which approximates the photoionization kernel as the sum of
the fundamental solutions of a number of partial differential
equations. The function g(r) defined by (3) is approximated as
follows:

g(r)
pO2

≈ pO2r
NE∑
j=1

Cj exp(−λ jpO2r), (4)

where λ j and C j (1 � j � NE) are constants that can be fit
numerically [26, 28]. Consequently, it suffices to take the linear
combination of Sph, j to approximate the integral (1)

Sph(�x ) ≈
NE∑
j=1

CjSph, j(�x ), (5)

where Sph, j(�x ) is the solution of the following modified
Helmholtz equation

(−Δ+ (λ j pO2)2)Sph, j(�x ) = (pO2)2I(�x ). (6)
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Table 1. Coefficients of three-exponential (NE = 3) approximation
in (4) [26].

j C j (cm−2 Torr−2) λ j (cm−1 Torr−1)

1 1.986 × 10−4 0.0553
2 0.0051 0.1460
3 0.4886 0.89

The modified Helmholtz equation (6) can be solved effi-
ciently by numerous fast elliptic solvers like multigrid-
preconditioned FGMRES method [33].

NE = 2 was used in [28], and the constants λ j and C j were
chosen to fit the low-pressure experimental data from [34] (the
misprint of these constants is corrected in [35]). NE = 3 was
suggested in [26] for a better fitting for the range 1 < pO2r <
150 Torr cm, and the constants λ j and C j are chosen to fit the
function in equation (4) since it agrees well with the experi-
mental data in both low-pressure and atmospheric airs [34, 36],
as indicated in [37]. While zero boundary conditions were used
in [28], it is suggested in [26] that the boundary condition for
equation (6) can be provided by computing the integral (1). In
this paper, we take the three-term exponential approximation
and adopt the coefficients in [26] listed in table 1.

2.3. Three-group radiative transfer approximation

Another type of differential equations that can facilitate
the computation of the photoionization rate is the RTE. In
[26, 29, 38], the following multi-group approximation of the
steady-state RTE is chosen to describe the intensity of radia-
tion Ψ j for the jth group of spectral frequency:

�ω · ∇Ψ j(�x, �ω) + κ jΨ j(�x, �ω) =
nu(�x )
4πc τu

, j = 0, 1, . . . , Nν ,

(7)
where �ω ∈ S2 is the solid angle defined on the unit sphere, κ j

is the absorption coefficient, nu is the density of the species
with the excited state u, c is the speed of light and τ u is the
radiative relaxation time for the state u. Here the scattering and
the change in frequency of the photons during collisions with
molecules have been neglected [29, 38]. For photoionization
in air, κ j = λ j pO2 , and for simplicity, only one excited state is
considered

nu(�x )
τu

=
I(�x )
ξ

, (8)

with λ j to be determined by data fitting [20, 26, 38]. The pho-
toionization rate is then proportional to the weighted sum of
the integral of Ψ j over �ω ∈ S2:

Sph(�x ) =
Nν∑
j=1

A j ξ pO2c
∫

S2
Ψ j(�x, �ω)d�ω,

=

Nν∑
j=1

A j ξ pO2c
∫∫∫

V

nu(�y)
c τu

exp(−λ jpO2 |�x −�y|)
4π|�x −�y|2 d�y,

(9)
where A j are also parameters which can be fit according to the
experimental data. To determine the parameters, it is noticed

Table 2. Coefficients of three-group (Nν = 3) approximation in
(10) [26].

j A j (cm−1 Torr−1) λ j (cm−1 Torr−1)

1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994

that (9) is identical to (1) if

Nν∑
j=1

A jpO2 exp(−λ jpO2r) = g(r), r = |�x −�y|, (10)

where g(r) is given in (3), and the coefficient A j and λ j (1 �
j � Nν) are determined by fitting the left-hand side of (10)
with g(r) in the range of 0.1 < pO2 r < 150 Torr cm [26].
The coefficients for three-group (Nν = 3) approximation are
shown in table 2.

Instead of computing the integral in (9), a more efficient
way to get the intensity function Ψ j is to solve (7) as an dif-
ferential equation. For example, in [29], a direct solver of (7)
was employed for two-dimensional axisymmetric discharges
using the finite volume method for both space and angular
variables.

However, the radiative transfer equation (7) is still a five-
dimensional partial differential equation. Further reduction of
dimensionality can be realized by the improved Eddington or
SP3 approximation [26, 38, 39]. In [40], the simplified PN

(SPN) approximations of optically thick radiative heat trans-
fer equations are theoretically derived by asymptotic analy-
sis. SPN approximations are introduced in [38] to obtain a
fast numerical simulation for the photoionization source term
mainly with monochromatic (one-group) approximation. The
SPN approximations for photoionization are further improved
in [26], and extended to multi-group approximation, including
the three-group SP3 method which approximates the isotropic
part of the solution by [26, 38]

∫
S2
Ψ j(�x, �ω)d�ω =

γ2φ j,1(�x ) − γ1φ j,2(�x )
γ2 − γ1

, (11)

where γn = 5
7

[
1 + (−1)n3

√
6
5

]
with n = 1, 2, and φ j,1(�x ) and

φ j,2(�x ) are solutions of the following two Helmholtz equations

(
−Δ+

(λ jpO2)2

μ2
1

)
φ j,1(�x ) =

λ j pO2

μ2
1

nu(�x )
c τu

, (12)

(
−Δ+

(λ jpO2)2

μ2
2

)
φ j,2(�x ) =

λ j pO2

μ2
2

nu(�x )
c τu

, (13)

with the coefficients μn =

√
3
7 + (−1)n 2

7

√
6
5 (n = 1, 2). The

equations (12) and (13) need to be equipped with proper
boundary conditions (BCs). In [26], the BCs are obtained
directly from the integral model (1), which requires numerical
integrations over the whole domain for all the grid points on the
boundary. Later in [27], the same authors proposed the follow-
ing more efficient BCs based on [40] for a boundary surface

3
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without reflection and emission:

∇φ j,1 ·�n + α1(λ jpO2)φ j,1 = −β2(λ jpO2)φ j,2, (14)

∇φ j,2 ·�n + α2(λ jpO2)φ j,2 = −β1(λ jpO2)φ j,1, (15)

where �n is the outward unit normal vector, αn =
5

96

(
34 + (−1)n−111

√
6
5

)
and βn =

5
96

(
2 + (−1)n

√
6
5

)
(n = 1, 2).

3. Fast multipole method for accurate and efficient
evaluation of integral

As can be seen from sections 2.2 and 2.3, different meth-
ods based on differential equations have been proposed to
approximate the integral (1) or (9), leading to much higher
numerical efficiency than directly computing the integral (1).
However, the approximation errors of these methods might
be significant in some cases. On the other hand, despite the
high computational cost [35], the results calculated from the
integral form are free of further approximations, therefore,
these results are often used as reference solutions [26, 38, 41].
Moreover, the integral form can be easily extended to stochas-
tic versions [25, 42]. The importance of the integral form
inspires us to tackle the original integration problem (1)
directly using fast algorithms. The exponential decay of the
kernel with respect to the distance (see (3)) reminds us to adopt
the efficient and accurate FMM [30, 32], which utilizes the
low-rank structure of far-away interactions to gain significant
speed-up.

The FMM used in this paper [30] is established based on the
fast evaluation of the numerical quadrature of (1). For conve-
nience, we discretize Sph and ne on the same mesh. In general,
the integral (1) can be discretized as

Sph(�xi) =

Npt∑
j=1

G(�xi,�y j)I(�y j), i = 1, . . . , Npt, (16)

where G(·, ·) is the discrete kernel function calculated from
the corresponding function in (1) and the numerical quadrature
weights. In this paper, we apply the midpoint quadrature rule
on each grid cell unless�xi and�y j are in the same grid where the
second-order Gauss–Legendre quadrature rule is alternatively
applied. More specifically, the points�y j in (16) are taken as the
centers of each cell in the given mesh. As a result, Npt is the
number of cells in the mesh, and I(�y j) could be evaluated from
(2) where Si(�y j) is calculated locally by discrete values at this
cell. In practical implementation, we further multiply I(�y j) by
the volume of cell (quadrature weight) at �y j for all Npt points.
If a uniform mesh is applied for discretization, the multiplica-
tion factor is hxhyhz where hx , hy and hz are mesh size in x,
y and z, respectively. With this multiplication, G(·, ·) does not
contain factor hxhyhz and can be written as

G(�xi,�y j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(�xi −�y j)
4π|�xi −�y j|2

, i �= j,

3g(
√

(h2
x + h2

y + h2
z )/12)

π(h2
x + h2

y + h2
z )

, i = j,

where g(·) comes from (3). We remark that this is not essential
and other numerical quadrature can also be used.

The kernel-independent adaptive FMM [30] does not
require the implementation of multipole expansions [32, 43]
of the kernel function. Based on a hierarchical tree, it uses a
continuous equivalent density on a surface enclosing a box to
represent the potential generated by sources inside the box.
Given a set of Npt points in three dimensions, a hierarchical
octree is constructed adaptively such that each leaf cube of the
tree contains no more than m points, where m is a selected con-
stant. This octree can be built from a sufficiently large root
cube to contain all Npt points, and then subdivided to equal-
sized sub-cubes recursively if the current cube contains more
than m points. For illustrative purpose, an example of the hier-
archical tree in two dimensions (2D), i.e. quadtree, is shown in
figure 1.

To sketch the idea, we consider the simple case where the
source points are uniformly distributed. This corresponds to
the case when the uniform mesh is applied in the discretization
of I(�y) in (2). In this case, for each target point �xi in a cube or
box B, FMM splits the summation (16) into two parts, namely,
near interactions and far interactions:

Sph(�xi) =
∑

�y j∈N (B)

G(�xi,�y j)I(�y j) +
∑

�y j∈F (B)

G(�xi,�y j)I(�y j), (17)

where N (B) and F (B) are the near range and far range of
B, respectively. For �y j ∈ N (B), the interactions are calcu-
lated directly. For the points �y j ∈ F (B), the interactions can
be approximated with controlled accuracy due to the low-
rankness of G(�xi,�y j). If a box is centered at �c with side
length 2r, then N (B) is defined as a box centered at �c
with side length 6r, and F (B) is the domain outside N (B)
(see figure 2).

In (17), the summation for points�y j ∈ F (B) can be approx-
imated using the hierarchy tree. The idea is composed of two
parts: (1) represent the potential generated from source points
inside any box B by some equivalent source points enclos-
ing B; (2) represent the potential generated from source points
in F (B) by other equivalent source points enclosing B, which
gives an approximation to the summation for points�y j ∈ F (B)
in (17). The first part is implemented by post-order traversal
of the hierarchical tree. If B is a leaf box, the potential gener-
ated from the source points inside B is represented by several
equivalent points surrounding the box, as is called the multi-
pole expansion to be defined in (18). If B is not a leaf box, its
multipole expansion can be accumulated from the multipole
expansion of all its children boxes by ‘M2M translation’ to be
defined in (20). With the help of the equivalent source points in
the first part, we can approximate the potential in B from orig-
inal source points in F (B) by a small number of equivalent
source points in F (B) calculated from the first part. This is the
idea of the second part, and we similarly represent the poten-
tial generated from source points in F (B) by some equivalent
source points surrounding B, as is called the local expansion
to be defined in (19). The second part is implemented by pre-
order traversal of the hierarchical tree. If a non-root box B is
embedded in its parent box P(B), its local expansion is calcu-
lated from: the accumulation of the local expansion of P(B),

4
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Figure 1. An example of a hierarchical tree in 2D, with Npt = 10, m = 2. The arrows show the construction procedure, and the circles with
‘+’ denote the Npt points.

Figure 2. Cross section of near range N (B) and far range F(B) of a
box B in 3D. The blue thick side is the boundary of B, green part is
N (B) and red part is F(B).

which is called ‘L2L translation’ to be defined in (22); and
the multipole expansion of the boxes in N (P(B)) but not adja-
cent to B, as it is implemented by the operation called ‘M2L
translation’ to be defined (21).

We now show more details about the kernel-independent
FMM: firstly introduce multipole expansion and local expan-
sion in the FMM, and then show three translations among
them: M2M (multipole to multipole), M2L (multipole to local)
and L2L (local to local). For simplicity, we would like to
neglect the vector symbol on �x and�y when introducing FMM.

Multipole expansion

Multipole expansion of a box B is used to represent the poten-
tial in F (B), generated by the source inside B. Two surfaces of
the cube are introduced for the approximation, upward equiva-
lent surface yB,u and upward check surface xB,u. The equivalent
surface yB,u should be taken to enclose B, and check surface
xB,u encloses equivalent surface yB,u. Moreover, both yB,u and
xB,u should locate inside N (B). See these two box surfaces in
figure 3.

An upward density function φB,u(y), or the density φB,u
k =

φB,u(yB,u
k ) on several upward equivalent source points yB,u

k ∈
yB,u, is introduced to represent the potential in F (B), generated
by the source inside B. If the upward check potential qB,u(x)
at the check surface xB,u, evaluated from the source in B, is
equal to the potential qB,u(x) evaluated from the equivalent

sourceφB,u
k , then these source density pointsφB,u

k can be used to
represent the potential outside the check surface xB,u including
F (B). This is because of the uniqueness of the Dirichlet bound-
ary value problem (similar to the method of image charges in
electrostatics). The equality is written as

∑
k∈Id(yB,u)

G(xB,u
j , yB,u

k )φB,u
k = qB,u(xB,u

j )

=
∑
i∈IB

s

G(xB,u
j , yi)I(yi), ∀ j ∈ Id(xB,u), (18)

where IB
s is the index set of the source points inside B, Id(yB,u)

is the index set of discrete source points on yB,u and Id(xB,u)
is the index set of discrete check points on xB,u. A pre-
scribed number m0 is used to denote the number of discrete
equivalent source points at each side of yB,u, and this num-
ber is identical to the number of check points at each side
of xB,u. Equation (18) is solved by calculating the upward
check potential qB,u(xB,u

j ) from the second equality, and then
solving a linear system to get the upward equivalent density
φB,u

k from qB,u(xB,u
j ). This two-step procedure is also applica-

ble to the local expansion (19). For illustration, we marked
the first step as blue arrow and second step as red arrow in
figure 3.

Local expansion

Local expansion is used to represent the potential inside a box
B, generated by the source in F (B). Similar to the multipole
expansion, a downward equivalent surface yB,d with downward
equivalent density φB,d on it, is introduced. At the same time,
downward check surface xB,d with downward check potential
qB,d is used to check the equality of potential generated by
the source in F (B) and the one generated by φB,d. Different
from the multipole expansion, yB,d should enclose xB,d , since
in the local expansion we want to approximate the potential
inside B. Again both yB,d and xB,d should locate between B and
F (B). Two surfaces are shown in figure 3 as an example, with
evaluation procedure.

The downward equivalent density satisfies:
∑

k∈Id(yB,d )

G(xB,d
j , yB,d

k )φB,d
k = qB,d(xB,d

j )

=
∑

i∈IF(B)
s

G(xB,d
j , yi)I(yi), ∀ j ∈ Id(xB,d), (19)

5
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Figure 3. Cross section of equivalent surfaces and check surfaces in multipole expansion (left subfigure) and local expansion (right
subfigure) of box B. Dashed lines with red dots denote equivalent surfaces, where red dots can be viewed as equivalent sources. Dotted lines
with blue dots denote check surface, where blue dots can be viewed as check points. Green shadow is the near range of B. Circles with ‘+’
denote source points. Step (1) in blue arrow is the evaluation of potential on check surface, and step (2) in red arrow is the calculation of
equivalent density on equivalent surface.

Figure 4. Cross section of M2M translation (left subfigure), M2L translation (middle subfigure) and L2L translation (right subfigure).
Dashed lines with red dots denote equivalent surfaces. Dotted lines with blue dots denote check surface. Step (1) in blue arrow is the
evaluation of potential on check surface, and step (2) in red arrow is the calculation of equivalent density on equivalent surface. P(B)
denotes parent box of B.

where IF (B)
s is the index set of the source points in F (B),

Id(yB,d) is the index set of source points on yB,d and Id(xB,d)
is the index set of check points on xB,d. Again a prescribed
finite number (related to m0) of index is chosen in Id(·).

M2M translation

M2M translation translates the upward equivalent density φB,u

of a box, to the upward equivalent density φP(B),u of its parent
box P(B). The idea is similar to (18), with an upward check
surface ofP(B) as xP(B),u, and the corresponding upward check
potential qP(B),u. The equality is given as

qP(B),u(xP(B),u
j ) =

∑
k∈Id(yP(B),u)

G(xP(B),u
j , yP(B),u

k )φP(B),u
k

=
∑

i∈Id(yB,u)

G(xP(B),u
j , yB,u

i )φB,u
i , ∀ j ∈ Id(xP(B),u).

(20)
In the implementation, we first add the potential from the

upward equivalent density of all children boxes to the check
surface of the parent box, which is marked as blue arrow in the
left-most subfigure of figure 4. After accumulation from all
children boxes to qP(B),u, we evaluate the upward equivalent
density φP(B),u which is marked as red arrow in the same sub-
figure. This implementation, which is adding potential to the

check surface and then calculating the equivalent density from
check potential, is also applied to the calculation of downward
equivalent density. Therefore, we also indicate the implemen-
tation by blue and red arrows in other subfigures related to
M2L and L2L translations in figure 4.

M2L translation

Two boxes A and B are well-separated if A ⊂ F (B) and B ⊂
F (A). If two boxes A and B are in same size and well-separated,
M2L translation can be used to translate the multipole expan-
sion of A to local expansion of B. In other words, M2L transla-
tion calculates the downward equivalent density of B from the
upward equivalent density of A, which accumulates the poten-
tial in B from the source in A. See this procedure in figure 4,
which satisfies

∑
k∈Id(yB,d )

G(xB,d
j , yB,d

k )φB,d
k = qB,d(xB,d

j )

=
∑

i∈Id(yA,u)

G(xB,d
j , yA,u

i )φA,u
i , ∀ j ∈ Id(xB,d). (21)

Since these two boxes A and B are in same size, FFT can be
used to speed up the calculation in (21), as indicated in [30].

6
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Table 3. Notations of several methods introduced in this paper.

Notation of method Brief description

Classical Int Direct calculation on (1), with (2) and (3)
Helmholtz zero BC Three-term summation on (5), by solving (6) with zero BC
Helmholtz Int BC Three-term summation on (5), by solving (6) with integral BC from (1)
SP3 Larsen BC Three-group summation on (9), by solving (12) and (13) with BCs (14) and (15)
SP3 Int BC Three-group summation on (9), by solving (12) and (13) with integral BC (1)
FMM classical Int FMM based on (1), with (2) and (3)

L2L translation

For a box B, F (P(B)) ⊂ F (B), therefore L2L translation is
used to calculation the local expansion of B from the local
expansion of P(B). This specifies the potential in B from the
source in F (P(B)). Similar as (20), the equation is

qB,d(xB,d
j ) =

∑
k∈Id(yP(B),d )

G(xB,d
j , yP(B),d

k )φP(B),d
k

=
∑

i∈Id(yB,d)

G(xB,d
j , yB,d

i )φB,d
i , ∀ j ∈ Id(xB,d).

(22)

Outline of the algorithm

The outline steps of the kernel-independent FMM is presented
as follows:

(a) Tree construction: to construct a hierarchical tree in pre-
order traversal, such that each leaf box contains no more
than m source points.

(b) Upward pass: to calculate the multipole expansion for
leaf boxes, and use M2M translation for multipole expan-
sion of all non-leaf boxes in a post-order traversal of the
hierarchical tree.

(c) Downward pass: for non-root boxes, use local expansion,
M2L and L2L translations to accumulate the potential
from far range in a pre-order traversal of the tree.

(d) Target potential: for each leaf box in pre-order traversal
of the tree, sum up the near interactions with the potential
calculated in the last step, get the target potential.

We would like to remark that we tested the backward sta-
ble pseudo-inverse trick indicated in [31] for (1), and find few
difference with results given by the original pseudo-inverse in
[30] for our problems. Therefore, we implement the kernel-
independent FMM by the original pseudo-inverse with pre-
scribed number m0 = 6 (number of equivalent source or check
points at each side of the enclosing box) in this paper. We
find that m0 = 6 gives a good balance between accuracy and
computational cost. Readers may consider increasing m0 to
obtain a more accurate result, or decreasing m0 for a faster
computation.

It should be emphasized that in order to capture the mul-
tiscale structure of streamers, a non-uniform mesh may be
adopted in the simulations like in [19, 44]. The aforementioned
fast multipole framework [30] still works for non-uniform and
unstructured meshes.

4. Results and comparison for computing
photoionization

In this section, we compare the performance, in terms of accu-
racy and efficiency, of different methods for the evaluation
of the photoionization Sph defined in (1) with (2). We take
V = V ′ = [0, xd] × [0, yd] × [0, zd] cm3 and denote its center
as �x0 = (x0, y0, z0)T = (xd/2, yd/2, zd/2)T cm. The box V is
partitioned uniformly by nx × ny × nz cells, with nx , ny and nz

the number of cells along x, y, z directions, respectively.
For simplicity, different numerical methods to be compared

are summarized in table 3. The numerical simulations were
performed on the Tianhe2-JK cluster located at Beijing Com-
putational Science Research Center. More details can be found
at https://www.csrc.ac.cn/en/facility/cmpt/2015-05-07/8.html.
In our computations via the MPI parallelism, excepted stated
otherwise, we always use 4 nodes with 20 cores in each node
in the simulation.

The accuracy of different numerical methods is quantified
by the following relative errors:

EV :=
‖Snum

ph (�x ) − Sref
ph (�x )‖2

‖Sref
ph (�x )‖2

× 100%,

Eδ(�x0) :=
1

Ntot

∑
|�x−�x0|�δ

|Snum
ph (�x ) − Sref

ph (�x )|
Sref

ph (�x )
× 100%,

(23)

where ‖ · ‖2 is the standard discrete L2-norm on V , �x0 ∈ V ,
δ > 0 is a constant to be fixed later, Sref

ph (�x ) is the reference
result calculated by the (discrete) classical Int method, Snum

ph (�x )
is the numerical approximation by a numerical method, and
Ntot is the number of grid points located within a δ-radius of
�x0. In fact, here EV and Eδ(�x0) can be regarded as the global
relative error over the whole domain V and the local relative
error over a ball centered at �x0 with a radius of δ, respectively.

The elliptic equations in Helmholtz or SP3 methods are
solved by the efficient multigrid-preconditioned FGMRES
solver [33], whose performance was shown in [33] for solving
elliptic equations with either constant or varied coefficients.

4.1. Gaussian emission source term with different sizes of
the domain

The first example is to compute the photoionization rate Sph(�x )
in (1) generated from a single Gaussian emission source, which
is taken from [26]. The Gaussian ionization source Si(�x ) in (2)
is given as

7
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Figure 5. Photoionization rate Sph calculated from one Gaussian source in (24). xd = yd = 0.4 cm, zd = 0.2 cm, σ = 0.01 cm. The figures in
the left column are Sph along line x = y = 0.2 cm, while the figures in the right column are contours of Sph on the plane z = 0.1 cm, with the
values of the contour lines being 2 × 1018, 2 × 1019, 2 × 1020, 2 × 1021 cm−3 s−1. The line color and format in the right-hand side subfigures
are same as the one in the left-hand side in the same row.

Figure 6. Photoionization rate Sph calculated from one Gaussian source in (24). xd = yd = 0.04 cm, zd = 0.02 cm, σ = 0.001 cm. Left-hand
side subfigures are Sph along line x = y = 0.02 cm, while right-hand side subfigures are contour line of Sph on z = 0.01 cm plane, with contour
values 2 × 1018, 2 × 1019, 2 × 1020 cm−3 s−1. The line color and format in the right-hand side subfigures are same as the one in the left-hand
side in the same row.

8
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Table 4. Time usage and relative error of methods indicated in
table 3, for the case of single Gaussian source xd = yd = 0.4 cm,
zd = 0.2 cm, σ = 0.01 cm. �x0 = (0.2, 0.2, 0.1)T cm and δ = 5σ.

Method Time usage (s) EV Eδ(�x0)

Classical Int 184 248 — —
FMM classical Int 27.1897 0.21% 1.30%
Helmholtz zero BC 3.660 44 25.33% 16.37%
Helmholtz Int BC 3.76133 + 4606.20a 25.32% 15.54%
SP3 Larsen BC 12.9268 12.05% 8.49%
SP3 Int BC 7.30268 + 4606.20a 12.05% 8.53%

aTime usage to compute the boundary values, which is estimated from clas-
sical Int method, with multiplication to a factor 2(nx × ny + nx × nz + ny ×
nz)/(nx × ny × nz).

Table 5. Time usage and relative error of methods indicated in
table 3, for the case of one Gaussian source xd = yd = 0.04 cm,
zd = 0.02 cm, σ = 0.001 cm. �x0 = (0.02, 0.02, 0.01)T cm and
δ = 5σ.

Method Time usage (s) EV Eδ(�x0)

Classical Int 183 761 — —
FMM classical Int 27.6406 0.22% 0.53%
Helmholtz zero BC 3.873 27 83.26% 48.03%
Helmholtz Int BC 4.09442 + 4594.03a 82.96% 44.82%
SP3 Larsen BC 17.3571 68.92% 16.67%
SP3 Int BC 7.88867 + 4594.03a 68.88% 16.53%

aEstimated from the time usage of classical Int method, with multiplication to
a factor 2(nx × ny + nx × nz + ny × nz)/(nx × ny × nz).

Si(�x ) = 1.53 × 1025 exp
(
−
(
(x − x0)2 + (y − y0)2

+ (z − z0)2
)
/σ2

)
cm−3 s−1, (24)

where σ > 0 is a constant to be fixed later. The other physics
parameters in (1)–(3) are chosen as [26, 38]: pq = 30 Torr,
p = 760 Torr, ξ = 0.1, ω/α = 0.6, pO2 = 150 Torr. We take
δ = 5σ in (23).

We take a relatively small grid size nx = ny = 320 and
nz = 160 because direct computation of the classical inte-
gral (1) is too time-consuming even if parallel computing is
utilized.

Similar to [26], we demonstrate the influence of differ-
ent ranges of pO2r by considering two different sizes of the
domain V:

(a) xd = yd = 0.4 cm, zd = 0.2 cm, σ = 0.01 cm;
(b) xd = yd = 0.04 cm, zd = 0.02 cm, σ = 0.001 cm.

The numerical results are shown in figures 5 and 6, and the
relative errors are then shown in tables 4 and 5.

As it is clearly shown in figures 5 and 6, the FMM classical
Int method always gives the most accurate results, especially
for the smaller domain. In all the figures, the lines for ‘FMM
classical Int’ almost coincide with the lines for ‘classical Int’.
The deviations of the solutions of the other four methods
from the reference results are clearly observable, especially
in the central area where the peak locates. Near the bound-
aries, the methods based on modified Helmholtz equations and
SP3 equations are accurate only when the boundary values are
computed from direct integration. Tables 4 and 5 also show

the superiority of the FMM method in terms of accuracy. Its
relative error is one or two orders of magnitude less than other
methods.

Regarding the efficiency, it should be noted that both
Helmholtz Int BC method and SP3 Int BC method take the
boundary values from the classical Int method, and the time
to compute the BCs is also included in tables 4 and 5 for a
fair comparison. Both tables show that the FMM classical Int
method is significantly faster than the classical Int method. In
fact, the integration only for the boundary nodes is already
much more expensive than the FMM classical Int method.
For the three efficient methods, including FMM classical Int,
Helmholtz zero BC, and SP3 Larsen BC, their computational
times have similar magnitudes, and the speed-accuracy trade-
off can be observed, meaning that higher computational cost
yields better accuracy. Nevertheless, the remarkably lower
numerical error and the mildly higher computational cost
of the FMM classical Int method indicate its outstanding
competitiveness among all the approaches for computing the
photoionization rates. Additionally, the time usages of FMM
classical Int method are stable for different problem settings,
while that of SP3 Larsen BC method varies significantly (see
tables 4 and 5).

4.2. Gaussian emission source with different pressures

The second example is to compute the photoionization rate
Sph(�x ) in (1) generated from a single Gaussian radiation
source, which is taken from [29], in order to test the effect of
the partial pressure of oxygen pO2 in the kernel g given in (3).
The Gaussian source of radiation I in (2) is taken as [29]

I(�x ) = 4πξc exp

[
− (x − x0)2 + (y − y0)2 + (z − z0)2

σ2

]
cm−3 s−1,

(25)

where c is the speed of light. Similar to [29], we take ξ = 0.1,
σ = 0.01 cm, c = 2.99792458× 1010 cm s−1, δ = 5σ and
V = [0, 0.25] × [0, 0.25]× [0, 1.4] cm3. We fix the ratio of the
partial pressure of oxygen and the air pressure pO2/p = 0.2 in
this example. Finally, the box V is uniformly partitioned by
256 × 256 × 320 cells.

In this example, when the partial pressure of oxygen pO2 in
(3) is lower, the photoionization rate decays slower as the dis-
tance from the emission source increases. Therefore, we would
like to test the performance of different methods under differ-
ent pressures pO2 . The robustness of the methods under differ-
ent pressures is of great significance in practical applications
such as sprite discharges [4, 45].

For comparison purpose, two different pressures are con-
sidered: (i) pO2 = 160 Torr; (ii) pO2 = 10 Torr. The photoion-
ization rate along the central vertical line is plotted in figures 7
and 8, and the time usage and the numerical error are shown
in tables 6 and 7.

Figure 7 shows that in the high-pressure case, all meth-
ods give similar results despite obvious mismatch of the peak
values. As the pressure decreases, the discrepancy between dif-
ferent methods becomes more obvious, as shown in figure 8.
The curves given by the Helmholtz and SP3 methods (with
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Figure 7. Photoionization rate Sph along line x = y = 0.125 cm, calculated from one Gaussian in (25) with pO2 = 160 Torr.

Figure 8. Photoionization rate Sph along line x = y = 0.125 cm, calculated from one Gaussian in (25) with pO2 = 10 Torr.

Table 6. Time usage and relative error of methods indicated in
table 3, for the case of one Gaussian in (25) with pO2 = 160 Torr. �x0
is the center of domain V and δ = 0.05 cm.

Method Time usage (s) EV Eδ(�x0)

Classical Int 292 196 — —
FMM classical Int 24.7371 0.15% 1.24%
Helmholtz zero BC 5.594 05 31.93% 16.49%
Helmholtz Int BC 5.60994 + 6391.79a 31.93% 15.95%
SP3 Larsen BC 17.6286 21.31% 8.74%
SP3 Int BC 11.2337 + 6391.79a 21.31% 8.73%

aEstimated from the time usage of classical Int method, with multiplication to
a factor 2(nx × ny + nx × nz + ny × nz)/(nx × ny × nz).

Table 7. Time usage and relative error of methods indicated in
table 3, for the case of one Gaussian in (25) with pO2 = 10 Torr. �x0
is the center of domain V and δ = 0.05 cm.

Method Time usage (s) EV Eδ(�x0)

Classical Int 292 426 — —
FMM classical Int 24.8619 0.19% 0.44%
Helmholtz zero BC 6.173 37 88.73% 65.87%
Helmholtz Int BC 6.01811 + 6396.82a 88.29% 63.03%
SP3 Larsen BC 23.5598 77.74% 35.11%
SP3 Int BC 12.2226 + 6396.82a 77.71% 35.16%

aEstimated from the time usage of classical Int method, with multiplication to
a factor 2(nx × ny + nx × nz + ny × nz)/(nx × ny × nz).

both BCs) deviate significantly from the curves of classical Int
method in the low-pressure case. On the contrary, the results of

Figure 9. Error EV (red color, solid line) and time usages (blue
color, dotted line) of FMM classical Int, Helmholtz zero BC and SP3
Larsen BC methods with different air pressures.

the FMM classical Int method and the reference classical Int
method are in good agreement regardless of the air pressure.
The values of the errors provided in tables 6 and 7 again show
the advantage of the FMM classical Int method in accuracy.
In fact, for the case of low air pressure, the time used by the
FMM classical Int is quite close to the method of SP3 Larsen
BC.

In order to see the relationship between the error and com-
putational time with respect to different pressures, we compute
more numerical examples under the same settings with differ-
ent partial pressures of oxygen ranging from 10 Torr to 160
Torr. Results for the three most efficient methods, i.e., FMM

10
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Figure 10. Photoionization rate Sph calculated from multi-peak source in (26). xd = yd = 0.4 cm, zd = 0.2 cm. The figures in the left
column are Sph along line x = y = 0.2 cm, while the figures in the right column are contours of Sph on the plane z = 0.1 cm, with the values
of the contour lines being 2 × 1019, 2 × 1020, 2 × 1021 cm−3 s−1. The line color and format in the right-hand side subfigures are same as the
one in the left-hand side in the same row.

classical Int, Helmholtz zero BC and SP3 Larsen BC methods,
are plotted in figure 9. The FMM classical Int method always
provides the most accurate results for all pressures, and the
error is basically stable as the pressure varies. For the other two
methods, the error increases as pressure decreases. Moreover,
the global relative error EV of the FMM classical Int method is,
in general, at least two order of magnitudes less than those of
the other two methods. The time usage of the FMM classical
Int method is also independent of pressure while the compu-
tation times of the other two methods increase slightly as the
pressure becomes lower. As the pressure decreases, the time
cost between the FMM classical Int method and the SP3 Larsen
BC method trends to be the same.

It should be mentioned here that the results of Helmholtz
methods and SP3 methods in this example are based on the
fitting coefficients in tables 1 and 2. These results may be bet-
ter if the coefficients are fit according to different pO2 in this
example. However, the large approximating errors, which is

two order of magnitudes larger compared to the FMM clas-
sical Int method, over all ranges of pO2 in figure 9 imply the
FMM classical Int method would give more accurate results
even when better fitting is applied.

4.3. Multi-peak emission source

The examples in previous two subsections compute the pho-
toionization from one single Gaussian emission source, which
is typical for comparison of photoionization and was used in
[26, 29]. In order to see the performance of different meth-
ods on other shapes of emission sources, we designed the
third example, which computes the photoionization rate Sph

generated from a multi-peak emission source.
All the parameters including physics parameters, simula-

tion domain and grid size are taken identical to the example
(i) in section 4.1 except changing the source term Si(�x )
from (24) to

Si(�x ) =

⎧⎪⎪⎨
⎪⎪⎩

1.53 × 1025 sin2(50πx)sin2(50πy)sin2(50πz) cm−3 s−1,

�x ∈ [0.25xd, 0.75xd] × [0.25yd, 0.75yd] × [0.25zd, 0.75zd],

0, �x /∈ [0.25xd, 0.75xd] × [0.25yd, 0.75yd] × [0.25zd , 0.75zd],

(26)
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Table 8. Time usage and relative error of methods indicated in
table 3, for the case of multi-peak source in section 4.3.
�x0 = (0.2, 0.2, 0.1)T cm and δ = 0.05 cm.

Method Time usage (s) EV Eδ(�x0)

Classical Int 171 714 — —
FMM classical Int 17.1896 0.69% 0.82%
Helmholtz zero BC 3.228 09 26.13% 14.13%
Helmholtz Int BC 3.51407 + 4292.85a 25.67% 15.06%
SP3 Larsen BC 14.5592 13.84% 8.87%
SP3 Int BC 6.91124 + 4292.85a 13.82% 8.98%

aTime usage to compute the boundary values, which is estimated from clas-
sical Int method, with multiplication to a factor 2(nx × ny + nx × nz + ny ×
nz)/(nx × ny × nz).

where xd = yd = 0.4 cm and zd = 0.2 cm. The emission
source in (26) has hundreds of peaks, and has discontinuity
inside the simulation domain V .

The numerical results are depicted in figure 10, and
the relative errors as well as the time usage are given in
table 8.

Figure 10 illustrates the FMM classical Int method still
gives the most accurate results when the source contains hun-
dreds of peaks. All the lines of the FMM classical Int method
greatly coincide with the lines of the classical Int method, espe-
cially near the center of domain where the photoionization
rate Sph has several peaks. This coincidence still holds when
the contour line of 2 × 1021 cm−3 s−1 are highly oscillatory,
which can be observed on the right subfigures of figure 10.
On the other hand, the deviation of the other four approxima-
tion methods are clearly observable near the central region,
and the contours of these approximation methods could not
well follow the oscillatory contour line of 2 × 1021 cm−3 s−1

for the classical Int method. The accurate approximation of
the FMM classical Int method can also be observed quanti-
tatively in table 8, where the errors of FMM Int are at least
one order of magnitude less than that of other approximation
methods.

The results of efficiency in table 8 are similar to the results
in table 4. Compared with the single Gaussian emission source
used in table 4, the time usage of the FMM classical Int
method as well as its difference to the other two efficient
methods (Helmholtz zero BC and SP3 Larsen BC) becomes
smaller in this multi-peak example, and the FMM classi-
cal Int method still gives remarkably lower numerical error
which verifies again the robustness of the FMM classical Int
method.

5. Results and comparison for computing
streamer discharges

To further compare the performances of different methods for
treating the photoionization Sph(�x ) in (1), we study the dynam-
ics of streamers with photoionization, where Sph appears as the
source term of the transport of charged particles. The govern-
ing equations for streamer discharges are given as [33, 44]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ne

∂t
−∇ · (μe�Ene) −∇ · (De∇ne) = Si + Sph,

∂np

∂t
+∇ · (μp�Enp) = Si + Sph,

−Δφ =
e
ε0

(np − ne), �E = −∇φ,

(27)

where e and ε0 are the elementary charge and the vac-
uum dielectric permittivity, respectively; ne := ne(�x, t) and
np := np(�x, t) are the densities of electrons and positive ions,
respectively; μe and μp are the mobility coefficients for elec-
trons and positive ions, respectively; De is the diffusion coef-
ficient; φ and �E denote the electric potential and electric field,
respectively. Here the photoionization rate Sph is given in
(1)–(3) with Si defined as

Si = μeneα|�E|, with

α :=α(|�E|) = 5.7p exp(−260p/|�E|) cm−1, (28)

while α is taken from [46], p is the air pressure, ne and �E are
the solution of (27).

The streamer discharge between two parallel plates are
used for comparison. The computational domain V is set to
be a three-dimensional axis-aligned hyper-rectangle. For the
Poisson equation, the Dirichlet BCs are applied on the two
faces perpendicular to the z axis, i.e., φ = φ0 on the upper
face and φ = 0 on the bottom face; and the homogeneous
Neumann BCs are applied on the other four faces. Homoge-
neous Neumann BCs are assigned on all boundaries for ne and
the inflow boundaries for np. The initial value is set as

ne(�x, t = 0) = np(�x, t = 0) = ñ0(�x ). (29)

The parameters are selected as follows [33, 46]: μe = 2.9 ×
105/p cm2 (V s)−1, μp = 2.6 × 103/p cm2 (V s)−1; p = 760
Torr, φ0 = 52 kV. De = 1800 cm2 s−1 [47]. Two constants e
and ε0 are the elementary charge and permittivity of vacuum,
respectively. The other physics parameters in (1)–(3) are cho-
sen as [26, 38]: pq = 30 Torr, ξ = 0.1,ω/α = 0.6. It should be
noted that for different percentages of oxygen in the mixture,
the coefficients should be chosen accordingly. For convenience
and comparison, we simply choose the fixed coefficients in
nitrogen, and the presented results in this section are numeri-
cal experiments which simply consider the major mechanism
of the streamer.

The numerical method for discretizing (27) follows our pre-
vious work [33, 39]. For spatial discretization, the second-
order MUSCL method with Koren limiter is applied to the drift
terms, and the central difference scheme is chosen for the dif-
fusion term. The second-order explicit method is adopted for
the time integration of (27) [39]. The multigrid-preconditioned
FGMRES is used as the efficient algebraic elliptic solver to
solve the Poisson equation in (27) iteratively. The iteration ter-
minates when the relative residual is less than 10−8. The other
elliptic equations (6), (12) and (13) are solved by the same
algebraic elliptic solver, with a weaker stopping condition that
the relative residual is less than 10−6.
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Figure 11. Contours of different electron density values at ne = 1 × 1013, 5 × 1013, 9 × 1013, 1.3 × 1014 cm−3, on plane y = 0.25 cm at
1.5 ns for pO2 = 150 Torr (left) and pO2 = 0.1 Torr (right).

5.1. Double-headed streamers in air

In this subsection, we consider the interaction of two double-
headed streamers and compare the numerical results of the
three most efficient methods: FMM classical Int method,
Helmholtz zero BC method and SP3 Larsen BC method.

The initial value ñ0 in (29) is taken as

ñ0(�x ) = 1014
(
exp

(
−
(
(x − 0.22)2 + (y − 0.25)2

+ (z − 0.41)2
)
/(0.03)2

)
+ exp

(
−
(
(x − 0.28)2

+ (y − 0.25)2 + (z − 0.59)2
)
/(0.03)2

))
cm−3.

The computational domain is fixed as V = [0, 0.5] ×
[0, 0.5] × [0, 1] cm3, which is partitioned by a uniform
grid of 512 × 512 × 1280 cells. The time step is chosen
as Δt = 2.5 × 10−3 ns. In order to see the interaction with
respect to different pO2 , we pick two values as pO2 = 0.1 Torr
and pO2 = 150 Torr, respectively, in our simulations.

For a proper approximation, we fit new groups of
coefficients for 10−4 < pO2r < 0.2 for the simulation
using Helmholtz zero BC method and SP3 Larsen BC
method with pO2 = 0.1 Torr. The new coefficients for
Helmholtz zero BC method replace table 1 by: C1 = 9.7496,
λ1 = 8.2035, C2 = 56.065, λ2 = 61.588, C3 = 565.99 and
λ3 = 494.18. The new coefficients for SP3 Larsen BC method
replace table 2 by: A1 = 0.019 219, λ1 = 0.000 064 638,
A2 = 0.107 96, λ2 = 0.101 89, A3 = 0.358 54 and
λ3 = 1.3474. These two groups of coefficients are only
used for pO2 = 0.1 Torr in this paper.

We first compare the three methods by observing the elec-
tron density. The contours of the electron densities at 1.5 ns
are shown in figure 11, where the curves of different meth-
ods are plotted as different line styles and colors. Generally,
the results of the three different methods are in good agree-
ment in most part of the domain for both partial pressures of
oxygen, while some differences can be observed at the heads
of streamers. The differences are particularly obvious at the
head of positive streamer, which is zoomed in the same figure.
The generally good agreement can be attributed to a stronger
influence of the impact ionization comparing to the photoion-
ization in the region with higher electric field, while the pro-
nounced difference at the head of positive streamer may be

due to the fact that photoionization plays a more important
role in the propagation of positive streamers compared with the
negative ones.

Additionally, figure 11 also displays the difference among
three methods with respect to different pO2 . As expected from
section 4.2, the difference between three methods are smaller
in higher partial pressure of oxygen (150 Torr), and more
observable when pO2 is lower (0.1 Torr). This implies the valid-
ity of using the Helmholtz zero BC method and SP3 Larsen BC
for the photoionization in higher pO2 and also the necessity of
using the FMM classical Int method in lower pO2for long-time
simulations.

Besides observing the electron density at a fixed time 1.5 ns
in figure 11, the third component Ez of the electric field
�E = (Ex, Ey, Ez)T along the line x = y = 0.25 cm at 0.5 ns,
1.0 ns, 1.5 ns and 2.0 ns is also shown in figure 12. As expected
from figure 11, the differences of the three methods are gen-
erally small, while the difference are easier to be observed
near the heads of streamers (the leftmost and rightmost min-
imum points). The difference is larger when pO2 is small as
0.1 Torr, and the deviation increases over time, which is con-
sistent with the results in [29]. One can see that, in the result
of the FMM classical int method, the head of the streamer
propagates slightly faster than the other two, which is possi-
bly due to the underestimation of photoionization using the
Helmholtz zero BC method and SP3 Larsen BC method. As a
summary, these results indicate that the accurate approxima-
tion of the photoionization could be significant in simulations
with long-time propagation of streamers, especially when the
partial pressure of oxygen is low.

We remark that though accurate simulation of photoion-
ization is targeted, the accuracy might be not so significant
in some cases when the applied field is strong enough and
the collision ionization dominates the streamer development
because the photoionization only provides the seed electrons.
For these cases, the FMM could be accelerated by only con-
sidering a smaller domain. For example, one could evaluate
Sph only for a small portion of the domain where photoion-
ization is important, and only considering those I(�y j) larger
than a threshold. However, for PDE-based methods, they have
to compute all the values in the domain due to the influence
of BCs.
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Figure 12. The third component Ez of the electric field �E along line x = y = 0.25 cm, at 0.5, 1.0, 1.5 and 2.0 ns for pO2 = 150 Torr (left)
and pO2 = 0.1 Torr (right).

Table 9. Time usage (s) using different nodes over two meshes. 20 cores are used in each
node. Mesh 1: 256 × 256 × 160; mesh 2: 512 × 512 × 320.

No. of nodes 1 2 4 8 16 32 64

Mesh 1 3828.76 2031.27 1062.88 565.840 302.655 157.927 90.5602
Mesh 2 32019.2 15803.7 8046.33 4114.26 2112.47 1153.09 619.401

Figure 13. Relative speedups over two meshes: 256 × 256 × 160 (left) and 512 × 512 × 320 (right). 20 cores are used in each node.

5.2. Scalability of the FMM classical Int method

As demonstrated previously, one advantage of the FMM
method is the scalability in parallel computing with distributed
memory, which means the ability to reduce the execution time
as the number of processes increases. In this subsection, we
study the scalability of the FMM classical Int method, which
is quantified by the relative speed-up, defined by the ratio of
the execution time using the smallest number of cores over the
execution time of the parallel program.

In this test, the governing equation is again (27), and the
initial value ñ0 in (29) is set as one Gaussian,

ñ0(�x ) = 1014 exp
(
−
(
(x − 0.2)2 + (y − 0.2)2

+ (z − 0.1)2
)
/(0.03)2

)
cm−3.

All physics parameters are similar as those in previous sub-
section except stated otherwise. We set the computational
domain as [0, 0.4] × [0, 0.4] × [0, 0.2] cm3, and adopt two
uniform meshes with 256 × 256 × 160 and 512 × 512 × 320
grid cells. The simulation is run until 5 × 10−2 ns with a

fixed time step 1 × 10−3 ns. It should be noted that Sph

is evaluated twice in each time step, and therefore the
FMM classical Int method is applied 100 times in one
simulation.

The time usage for the FMM classical Int method in whole
simulation (100 evaluations) using different numbers of CPU
cores is given in table 9 and plotted in figure 13, where a
satisfactory scalability can be observed.

6. Conclusion

This paper focuses on the accurate and efficient calculation
of the photoionization, and proposes the kernel-independent
FMM to directly compute the photoionization rate efficiently.

Quantified accuracy and time usage of the FMM are stud-
ied in comparison of the classical integral model and exist-
ing approximation models based on conversion to differential
equations. The comparison shows when calculating the pho-
toionization, the FMM outperforms previous approximations
in the following senses:

14



Plasma Sources Sci. Technol. 29 (2020) 125010 B Lin et al

(a) It is significantly efficient (or computationally cheaper)
compared with the direct calculation by the classical
integral under similar accuracy;

(b) It is much more accurate compared with those PDE-based
approximations (with simple or efficient BCs) under
similar computational cost (same order), despite of the
pressure;

(c) It is no need to fit additional parameters for the photoion-
ization model, and the method is more robust with respect
to domain sizes and pressures;

(d) It is easy to be extended to unstructured meshes.

In summary, in terms of efficiency and accuracy as well
as applicability to arbitrary domain with unstructured mesh,
the FMM demonstrates better performance than those exist-
ing numerical methods for the calculation of photoionization
in streamer discharges in the literature.

Finally, we remark that it is straightforward to apply the
kernel-independent FMM to compute photoionization models
with other integral forms, and thus we provide a general frame-
work for the fast and accurate evaluation of newly proposed
integral models of photoionization in streamer discharges.

Future works include applying the method to other integral
models and taking the stochastic effect into consideration.
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