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Summary

Dispersive partial differential equations (PDEs) have been arising widely from

the fields of quantum mechanics, plasma physics and nonlinear optics. In many

cases, the solutions of dispersive PDEs are highly oscillatory, which brings significant

analytical and numerical difficulties. Thus, it is important to design efficient and

accurate numerical methods for the oscillatory dispersive PDEs.

The aim of this thesis is to propose and analyse some fourth-order compact finite

difference schemes (4cFDs) for approximating several highly oscillatory dispersive

PDEs. Rigorous proofs of error estimates are presented and numerical results are

reported to verify the error bounds. Finally, we apply the 4cFD to discretize the

Laplace’s equation satisfying nonstandard boundary conditions (BCs) for prepar-

ing the initial data in simulations of quantized vortex interactions of the nonlinear

Schrödinger equation with periodic BCs.

This thesis mainly contains three parts. The first part considers the nonlinear

Klein-Gordon equitation (NKGE) in the nonrelativistic regime with a dimensionless

parameter ε ∈ (0, 1] inversely proportional to the speed of light. Two 4cFDs includ-

ing a Crank-Nicolson one and a semi-implicit one are derived for solving NKGE.

Under proper assumption on the analytical solutions, error estimates of the two

schemes are rigorously derived and they are at O(h4 + τ 2/ε6) with h mesh size and

viii



Summary ix

τ time step. From the error bounds, the strategy in choosing time step and mesh

size can be obtained. In addition, the energy conservation of the two schemes is also

studied.

The second part is devoted to efficiently solving the Zakharov system (ZS) in

the subsonic regime with a dimensionless parameter ε inversely proportional to the

acoustic speed. The solutions of ZS have highly oscillatory waves and outgoing initial

layers due to the perturbation from wave operator in ZS and the incompatibility of

the initial data. The solutions propagate waves with O(ε) wavelength in time,

O(1/ε) speed in space, and O(ε2) and O(1) amplitudes for well-prepared and ill-

prepared initial data, respectively. The high oscillation brings noticeable difficulties

in analysing the error bounds of numerical methods to ZS. At first, a conservative

semi-implicit 4cFD for ZS is given. For the well- and less-ill-prepared initial data, a

uniform error bound at O(h4 + τ 2α†/3) is derived, where 1 ≤ α† ≤ 2 is a parameter

independent of ε determined by the illness of initial data of ZS; and for the ill-

prepared initial data, an error bound at O(h4/ε1−α∗ + τ 2/ε3−α∗) is derived with

0 ≤ α∗ ≤ 1 a nonnegative parameter independent of ε describing the illness of

initial data. Then, a 4cFD for ZS in an asymptotic consistent formulation is given

to achieve uniform error bounds for both well- and ill-prepared initial data. The

uniform error bound for the well prepared initial data is O(h4 + τ 4/3) and the error

bound for the ill-prepared initial data is O(h4 + τ (1+α∗)/(2+α∗)). The main tools in

the proof include energy methods, cut-off techniques, and the error between ZS and

its limiting equation. The compact schemes provide much better spatial resolution

than standard second order finite difference methods. Thus, the computational cost

can be reduced a lot, especially for cases with ill-prepared initial data. Since we

have uniform error bounds, the mesh size can be chosen independently of ε.

The last part is an application of the compact finite difference scheme to a numer-

ical simulation of interactions of quantized vortices under the nonlinear Schrödinger

equation with periodic BCs in two dimensions. An efficient way of initial setups via

solving the Laplace’s equation with non-standard boundary condition by a 4cFD is



x Summary

proposed. The numerical simulation results confirm the existing reduced dynamical

laws in the case that the initial data satisfy the zero momentum limit condition. We

also study vortex dynamics for initial data with nonzero momentum limit and vortex

interactions on rectangle domains. Based on our results, we formulate a conjecture

on generalized reduced dynamical laws for vortex dynamics of NLSE with periodic

BCs.
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Chapter 1
Introduction

This chapter serves as an introduction of this thesis. Firstly, the background of

dispersive partial differential equations (PDEs) and three typical nonlinear disper-

sive PDEs with high oscillations are introduced. Then, the compact finite difference

methods are briefly reviewed, and the main contributions of this thesis are given.

1.1 Motivation

Dispersive partial differential equations refer to PDEs with solutions experienc-

ing dispersion phenomena that waves of different wavelength propagate at different

phase velocities [76]. Dispersive PDEs have been widely used in the modelling of

quantum mechanics, plasma physics, and nonlinear optics [24,50,63]. Based on their

vast applications, there are extensive studies on dispersive PDEs both analytical-

ly [1, 76,92,107] and numerically [13,24,106].

In some singular limit regimes, such as nonrelativistic, subsonic, and semi-

classical limit regimes, the oscillation in solutions of dispersive PDEs will give severe

numerical burdens [16, 116]. Without designing special solver based on the struc-

ture of the waves of the solutions, the Shannon sampling theorem [62] requires us to

resolve the finest wavelength properly, i.e., using several grid points per wavelength,

in order to get accurate numerical results. And, applications to real-world problems,

1
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especially in two or three dimensional space, give rise to a demand of the spatial

discretization formulations with high resolution capacity as well as low computation

and memory cost.

1.2 Some oscillatory dispersive PDEs

1.2.1 Nonlinear Klein-Gordon equation (NKGE)

The Klein-Gordon equation is the relativistic version of the Schrödinger equation,

which describes the quantized version of the relativistic energy-momentum relation.

It is prevalently adopted to model bosons without spin, such as the Higgs boson

and the weakly-interacting massive particles. The nonlinear Klein-Gordon equation

(NKGE) in d dimensions reads

~2

mc2
∂ttu(x, t)− ~2

m
∆u(x, t) +mc2u(x, t) + f(u(x, t)) = 0, x ∈ Rd, t > 0, (1.2.1)

where t is time, x is the spatial coordinate in d dimensions with d = 1, 2, 3, m is

mass of the particles, c is the speed of light and ~ is the reduced Plank constant.

Applying the change of variables: t → ~
mε2c2

t and x → ~
mεc

x with ε = 1√
mc

, the

NKGE (1.2.1) takes the following dimensionless form [9,24,48,79,99,111]:

ε2∂ttu(x, t)−∆u(x, t) +
1

ε2
u(x, t) + f(u(x, t)) = 0, x ∈ Rd, t > 0, (1.2.2)

with initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) =
1

ε2
u1(x), x ∈ Rd. (1.2.3)

Here, ε is a dimensionless parameter in (0, 1] which is inversely proportional to

the speed of light, u = u(x, t) is the unknown complex-valued wave function with

temporal wavelength of O(ε2), u0 and u1 are O(1) functions determining the initial

data, f(u) : C→ C is a given gauge invariant nonlinearity describing the nonlinear

interaction [48], which is independent of ε and satisfies

f(eiθu) = eiθf(u), ∀θ ∈ [0, 2π].
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In most applications and theoretical investigations of NKGE (1.2.2) , f(u) is taken

as the pure power nonlinearity [52,53,80,81,103], i.e.

f(u) = g(|u|2)u, with g(ρ) = λρp for some λ ∈ R, p ∈ N.

When p = 1, the nonlinear term f(u) = λ|u|2u describes the standard cubic non-

linear interaction in real application on radiation theory, plasma physics, general

relativity and quantum vortices [45,59,120]. An important feature of NKGE (1.2.2)

is that it preserves the total energy [24,79,89]

E(t) :=

∫
Rd

[
ε2|∂tu|2 + |∇u|2 +

1

ε2
|u|2 + F (|u|2)

]
dx

≡ E(0) =

∫
Rd

[
1

ε2
(|u0|2 + |u1|2) + |∇u0|2 + F (|u0|2)

]
dx, t ≥ 0, (1.2.4)

where

F (ρ) =

∫ ρ

0

g(s)ds =
λ

p+ 1
ρp+1. (1.2.5)

Since Klein-Gordon equation was proposed in 1920s, extensive analytical and

numerical studies of the equation have been carried out in the literature. These

studies include existence and uniqueness of analytical solutions [80, 81, 100, 103] as

well as all kinds of different schemes for numerical solutions from finite difference

time domain methods [9, 12, 24, 31, 43, 49, 87, 105] to spectral methods [8, 33, 46, 70]

and time integrator methods [8,9,11,117]. A recent work of Bao and Zhao in [24] has

reviewed lots of finite difference schemes including Crank-Nicolson, leap-frog, semi-

implicit and explicit finite difference methods, which are all second order methods

in space. However, there are few studies on designing high order finite difference

schemes for NKGE in the nonrelativistic regime.

1.2.2 Zakharov system (ZS)

Consider the Zakharov system (ZS) in d dimensions describing the propagation

of Langmuir waves in plasma,
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
i∂tE

ε(x, t) + ∆Eε(x, t)−N ε(x, t)Eε(x, t) = 0, x ∈ Rd, t > 0,

ε2∂ttN
ε(x, t)−∆N ε(x, t)−∆ |Eε(x, t)|2 = 0, x ∈ Rd, t > 0,

Eε(x, 0) = E0(x), N ε(x, 0) = N ε
0 (x), ∂tN

ε(x, 0) = N ε
1 (x), x ∈ Rd,

(1.2.6)

where Eε(x, t) is a complex function describing the slowly varying envelope of a high-

frequency plasma field, N ε(x, t) is a real function representing the plasma ion density

fluctuation from its equilibrium position, x is the spatial coordinate, t is the temporal

coordinate, and ε ∈ (0, 1] is a dimensionless parameter inversely proportional to the

ion acoustic speed. E0(x), N ε
0 (x) and N ε

1 (x) are given initial data with N ε
1 (x)

satisfying
∫

Rd N
ε
1 (x)dx=0.

The Zakharov system is a simplified model to describe the nonlinear interac-

tion between the envelope of the electric field Eε and the mean mode of the ionic

fluctuations of density N ε in plasma. The Schrödinger operator is three-scale ap-

proximation of Maxwell’s equations and the wave operator is the classical long-wave

approximation of the Euler equations [64,108]. There have been extensive theoretical

and numerical studies on the ZS (1.2.6) since Zakharov described the propagation

of Langmuir waves in plasma [122]. For the analytical part, the well-posedness of

the Cauchy problem for ZS is discussed in [2, 30, 51]; the well-posedness of ZS in

the subsonic regime and their convergence to a nonlinear Schrödinger equation are

given in [30, 82, 91, 98]; blow-up solutions for ZS are considered in [54, 84]. For the

numerical part, an energy preserving first order finite difference method was firstly

given in [55,56]. Then Chang, Guo and Jiang improved the estimate to the optimal

second-order convergence [38]. For methods other than finite difference methods,

Bao, Sun and Wei proposed exponential-wave-integrator spectral methods in [19].

Spectral time splitting methods are considered [18,63]. In [106], Su gave an overview

of several pseudo-spectral and time-splitting methods. For other numerical methods,

we refer to [10,16,17,78,112,118] and references therein.

From the analytical analysis on ZS in [30, 51], we know that the ZS (1.2.6)
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conserves the wave energy

M ε(t) = ‖Eε(·, t)‖2
L2(Rd) :=

∫
Rd
|Eε(x, t)|2 dx ≡

∫
Rd
|E0(x)|2 dx = M ε(0), t ≥ 0,

(1.2.7)

and the Hamiltonian

Hε(t) :=

∫
Rd

[
|∇Eε|2 +N ε |Eε|2 +

1

2

(
ε2 |∇U ε|2 + |N ε|2

)]
dx ≡ Hε(0), t ≥ 0,

(1.2.8)

with U ε := U ε(x, t) defined by ∆U ε(x, t) = −∂tN ε(x, t), x ∈ Rd,

lim|x|→∞ U
ε(x, t) = 0, t ≥ 0.

(1.2.9)

As pointed out in [2, 32, 82], under some proper assumptions on the compat-

ible condition for the initial data, the ZS (1.2.6) converges to a cubic nonlinear

Schrödinger equation (NLSE) i∂tE(x, t) + ∆E(x, t) + |E(x, t)|2E(x, t) = 0, x ∈ R, t > 0,

E(x, 0) = E0(x), x ∈ R,
(1.2.10)

as ε ↓ 0. The compatibility of the initial data between the ZS (1.2.6) and the NLSE

(1.2.10) indicates that the initial values of (1.2.6) satisfy

N ε
0 (x) = −|E0(x)|2 + εαw0(x), (1.2.11)

N ε
1 (x) = 2 Im(Ē0(x)∆E0(x)) + εβ−1w1(x), (1.2.12)

with α, β ≥ 0 non-negative parameters for w0(x) and w1(x) smooth enough O(1)

functions. The initial data are classified into well-prepared (α, β ≥ 2), less-ill-

prepared (min{α, β} ∈ [1, 2)), and ill-prepared (min{α, β} ∈ [0, 1)) cases through

considering the leading order oscillatory term in the density N ε [2, 17,32,82]:

1. The leading order oscillation for the well-prepared initial data comes from the

ε2∂ttN
ε term in equation with scale O(ε2);

2. The leading order oscillations for the less-ill-prepared initial data comes from

the first initial layer with scale O(εmin{α,β}) and bounded expansion term ∂tN
ε;
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3. The leading order oscillations for the ill-prepared initial data comes from the

firstO(εmin{α,β}) initial layer ofN ε with unbounded ∂tN
ε of scaleO(εmin{α,β}−1).

Due to the fast out-going initial layer from the wave operator in (1.2.6), the com-

putational domain should be of order O(1/ε). The high oscillation in time and the

large computational domain in space demand a spatial discretization formulation

with high resolution to achieve a small memory and computational cost.

1.2.3 Nonlinear Schrödinger equation (NLSE)

The nonlinear Schrödinger equation (NLSE), also called the Gross-Pitaevskii

equation, is a well-known mean-field model for the dynamics of a quantum system of

weakly interacting identical bosons near absolute zero temperature, such as the Bose-

Einstein condensation [6,13,28,34]. It is a frequently used model for the simulation

of quantized vortices in superfluids and Bose-Einstein condensation. Consider a

NLSE with a dimensionless parameter ε > 0 in a two dimensional (2D) rectangular

domain Ω = (0, a)× (0, b):

i∂tψ
ε(x, t) = ∆ψε +

1

ε2
(1− |ψε|2)ψε, x = (x, y) ∈ Ω, t > 0, (1.2.13)

with initial condition

ψε(x, 0) = ψε0(x), x ∈ Ω, (1.2.14)

and satisfying the periodic boundary conditions (BCs) on Ω.

As mentioned in [6, 15, 36], the NLSE (1.2.13) has properties of mass conser-

vation, energy conservation and momentum conservation. With mass, energy and

momentum defined as

M(t) =

∫
Ω

|ψε(x, t)|2dx, (1.2.15)

E(t) =

∫
Ω

[
1

2
|∇ψε(x, t)|2 +

1

4ε2
(1− |ψε(x, t)|2)2]dx, (1.2.16)

P(t) = Im

(∫
Ω

ψ̄ε(x, t)∇ψε(x, t)dx
)
. (1.2.17)
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When taking ψε0(x) = C as a constant initial, the (1.2.13) has an analytical solution

ψε(x, t) = C exp(it(|C|2 − 1)/ε2). (1.2.18)

The solution of (1.2.13) experiences high temporal oscillations even with simple

constant initials as (1.2.18) showed.

Quantized vortex refers to a quantized flux circulation of some physical quantity,

such as the circle of quantized super current carrying magnetic flux in the type II

superconductors [39] and the quantized angular momentum in superfluid and Bose-

Einstein condensate [25]. In the mathematical model, it is a topological defect of

the order parameters ψε with the distinguished property that the flux circulation∫
γ
∇ arg(ψε) · d~l (with γ a closed curve in Ω) is quantized, which means the the flux

circulation of a vortex can only take several fixed discrete numbers [25, 47, 65]. For

example, the circulation of the velocity of superfluid governed by the dimensionless

NLSE along any circle enclosing a vortex takes value of 2nπ, with n ∈ Z\{0}. In

two dimensional space, the vortex center refers to a point where the value of ψε is

zero, which is a two dimensional simplification of rectilinear vortex lines in three

dimensional space [39, 93]. The leading order of quantized vortex interactions of

the superfluid governed by the nonlinear Schrödinger equation are summarized into

some ODE system sketching the motion of vortex centers called reduced dynamical

laws as described in [25,41,47,61,72–75].

1.3 Fourth-order compact finite difference (4cFD)

methods

Compact finite difference schemes are frequently used in higher-order numerical

solvers for the Navier-Stokes equations for their efficiency and stability [35,44,58,69,

110, 123]. The key idea of compact finite schemes is to approximate the derivative

with fewer grid points with implicit finite difference operator than the explicit central

difference method. [68] gives a summary on systematic procedure to construct higher
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order compact schemes for first, second and third derivatives up to tenth order

compact schemes. Among the compact finite difference schemes, the fourth-order

compact finite difference scheme (4cFD) is a most commonly used one [113,114,116,

119,129]. We quote the derivation of fourth-order compact finite difference operator

in [68] as follows.

Given a uniform spatial mesh h in one dimensional space with nodes denoted by

xj = jh, for a smooth function f(x), let fj = f(xj) and let f ′′j be the finite difference

approximation to f ′′(xj). Write the approximation in form

βf ′′j−2+αf ′′j−1 + f ′′j + αf ′′j+1 + βf ′′j+2 (1.3.1)

= a
fj+1 − 2fj + fj−1

h2
+ b

fj+2 − 2fj + fj−2

4h2
+ c

fj+3 − 2fj + fj−3

9h2
,

and balance the coefficients a, b, c and α, β by matching the coefficients of monomials

of h from the Taylor expansions of f(x) at x′js from low degree to high. The first

unmatched coefficient determines the order of the approximation in (1.3.1). The

constraints on the coefficients for approximation orders are:

a+ b+ c = 1 + 2α + 2β, (second order) (1.3.2)

a+ 22b+ 22c =
4!

2!
(α + 22β), (fourth order) (1.3.3)

a+ 24b+ 24c =
6!

4!
(α + 24β), (sixth order) (1.3.4)

· · · · · ·

Equation (1.3.2) and (1.3.3) together provide the requirement for a fourth order

approximation. In order to get a compact scheme with less stencil on both sides of

(1.3.1), we choose c = β = 0. Then, we have

a =
4

3
(1− α), b =

1

3
(10α− 1). (1.3.5)

Let b = 0, we have three-node stencils on both sides of (1.3.1)

1

10
f ′′j−1 + f ′′j +

1

10
f ′′j+1 =

6

5

fj+1 − 2fj + fj−1

h2
. (1.3.6)
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Denote the finite difference operator δ2
xfj =

fj+1−2fj+fj−1

h2
and Ah = I + h2

12
δ2
x, then

(1.3.6) can be expressed as

Ahf ′′j = δ2
xfj. (1.3.7)

We get the fourth order compact finite difference approximation to the second order

derivatives of the form

f ′′j = A−1
h δ2

xfj. (1.3.8)

1.4 Contributions

As pointed out in Section 1.2, although there has been much effort devoted

to solve the above dispersive PDEs numerically, high resolution schemes and low

computational cost methods are still in demand, and detailed error bound of the

proposed schemes are worth studying.

By extending the second order finite difference operator to the fourth-order com-

pact finite difference operator, we get two 4cFDs for NLKG, including a Crank-

Nicolson one and a semi-implicit one. The optimal error estimates and the strategy

in choosing time step are rigorously analysed, and the energy conservation in the

discrete sense is also studied. With a proper smoothness and boundedness assump-

tion on the analytical solutions, we can prove that errors of the two schemes are

both of O(h4 + τ2

ε6
) through the energy methods and cut-off techniques.

For the Zakharov system in the subsonic regime, we also provide two 4cFDs,

including a conservative semi-implicit one and a uniform accurate one. The conser-

vative semi-implicit 4cFD has error bounds independent of ε only for well and less-ill

prepared initial data, and the uniform accurate 4cFD from an asymptotic consis-

tent formulation of ZS achieves uniform error bounds for both well and ill prepared

initial data. The uniform error bounds are constructed by the minimum of the error

bounds from energy method and the error bounds from the limiting equation.

For the application of the 4cFD to the quantized vortices under the nonlinear

Schrödinger equation with periodic BCs in 2D space. A method for initial setups
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via solving a Laplace’s equation with non-standard BCs is proposed. The numerical

simulation results coincide well with the existing reduced dynamical laws and fur-

ther simulations provide a conjecture on the generalization of the existing reduced

dynamical laws.

1.5 Organization of the thesis

This thesis is organized as follows.

In Chapter 2, two fourth-order compact finite difference schemes are given to

NKGE in the nonrelativistic regime. Detailed proof of solvability, stability and error

bounded of the schemes are given. Chapter 3 and 4 focus on the Zakharov system in

the subsonic regime. A Hamilton conservative semi-implicit fourth-order compact

finite difference scheme is given in Chapter 3; and a uniform accurate scheme from

the discretization of ZS in asymptotic consistent formulation is considered in Chapter

4. Chapter 5 is a numerical application on the simulation of quantized vortex of

NLSE in 2D with periodic BCs. Chapter 6 draws a conclusion of the thesis and

discusses some possible future works.



Chapter 2
Error Bounds of 4cFDs for NKGE

In this chapter, we aim to derive and analyse two fourth-order compact finite dif-

ference schemes, a conservative Crank-Nicolson scheme and a semi-implicit scheme,

for solving the complex nonlinear Klein-Gordon equation with power nonlinearity

in the nonrelativistic limit regime

ε2∂ttu(x, t)−∆u(x, t) +
1

ε2
u(x, t) + λ|u(x, t)|pu(x, t) = 0, x ∈ Rd, t > 0, (2.0.1)

with initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) =
1

ε2
u1(x), x ∈ Rd. (2.0.2)

Solvability, stability, and proof of the error bounds of the schemes are given.

2.1 NKGE in the nonrelativistic regime and time

oscillation

For simplicity, we only show the schemes and analysis in one spacial dimension.

Generalizations to higher dimensions are straightforward. For numerical compu-

tation, we truncate our computational domain into an interval Ω = (a, b) with

11
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homogeneous Dirichlet boundary conditions. That is to say, we consider the initial-

boundary value problem of NKGE as follows,

ε2∂ttu(x, t)− ∂xxu(x, t) +
1

ε2
u(x, t) + λ|u(x, t)|pu(x, t) = 0, x ∈ Ω, t > 0, (2.1.1)

u(a, t) = u(b, t) = 0, t ≥ 0, (2.1.2)

u(x, 0) = u0(x), ∂tu(x, 0) =
1

ε2
u1(x), x ∈ Ω̄. (2.1.3)

The key point of the high-order compact finite difference method is to approximate

the derivative with the fewest nodes to get the expected accuracy. The compact

schemes draw great interest in numerical PDEs since they play an important role in

the simulation of high frequency wave phenomena [26, 68, 86, 113, 130]. The fourth-

order compact finite difference scheme is the most simple case to achieve higher

spatial order with same amount of grids used in each spatial direction compared

with the central difference method.
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Figure 2.1: Oscillations at point x = 0 in time direction for different ε’s.

Apart from the energy conservation in Chapter 1, the high oscillation in time

is another key property of the NKGE in the nonrelativistic regime. As indicated

in [8,81,88], the NKGE (2.0.1) has O(ε2) length waves propagating in time direction

as ε ↓ 0. We plot the real part of uε(0, t) in Figure 2.1 for different ε’s. The three
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simulations have the same u0 and u1 in initial data as stated in the beginning of

Section 2.2.3. The figure contains nearly one period of wave for the case ε = 1
4

and 4

waves for the case ε = 1
8
. In each interval that contains one wave of case ε = 1

8
, there

are almost 4 waves for the case with ε = 1
16
. This supports the asymptotic analysis

results and suggests that we need time step τ fine enough and also depending on

ε to catch the oscillations in time direction. This also explains why we cannot get

ride of the dependency on ε for the temporal error for the finite difference schemes.

The remainder of this chapter is organized as follows. In Section 2.2, the com-

monly used second order Crank-Nicolson scheme is extended to a fourth-order com-

pact scheme, stability conditions and energy conservations are also discussed. The

corresponding error bounds are analysed rigorously. In Section 2.3, the scheme of

SI-4cFD is given. The solvability, error estimate and numerical simulation results

are also provided. Several numerical simulation results and comparison with second

order methods are reported in Section 2.4.

2.2 Conservative Crank-Nicolson 4cFD (CN-4cFD)

for NKGE

In this section, we derive an implicit and a semi-implicit fourth-order compact

finite difference schemes for NKGE and analyse their stability conditions. Define

mesh size h := (b − a)/J and time step τ := T/N with J,N two positive integers

and T > 0 a fixed time we compute to. Denote the grid points and time steps as:

xj := a+ jh, j = 0, 1, . . . , J ; tn := nτ, n = 0, 1, . . . , N.

Define TJ = {1, 2, · · · , J − 1} and T 0
J = {0, 1, 2, · · · , J} as the index sets of grid

points. Let unj denote the numerical approximation of u(xj, tn) for j ∈ T 0
J and let

XJ be a space of complex-valued grid functions defined as

XJ = {u = {uj} | j ∈ T 0
J , u0 = uJ = 0}⊂ CJ+1. (2.2.1)



14 Chapter 2. Error Bounds of 4cFDs for NKGE

We use the standard finite difference operators as noted in [9]:

δ+
t u

n
j =

un+1
j − unj
τ

, δ−t u
n
j =

unj − un−1
j

τ
, δ2

t u
n
j = δ−t δ

+
t u

n
j =

un+1
j − 2unj + un−1

j

τ 2
,

δ+
x u

n
j =

unj+1 − unj
h

, δ−x u
n
j =

unj − unj−1

h
, δ2

xu
n
j = δ−x δ

+
x u

n
j =

unj+1 − 2unj + unj−1

h2
.

The spatial 4th-order compact finite difference operator Ah is defined as

Ahunj =
1

12
(unj−1 + 10unj + unj+1), j ∈ TJ . (2.2.2)

This is directly from

Ahunj = (I +
h2

12
δ2
x)u

n
j , j ∈ TJ , (2.2.3)

where I denotes identical operator. As in [68,77,97], one can see thatAhuxx(xj, tn) =

δ2
xu(xj, tn) +O(h4) for u(·, tn) ∈ C6([a, b]).

2.2.1 The numerical scheme

Firstly, let us consider the fully implicit 4th-order compact finite difference

scheme (CN-4cFD) [126] from a variation of the second order Crank-Nicolson method

[37], which reads

ε2δ2
t u

n
j −

1

2
A−1
h δ2

x

(
un+1
j + un−1

j

)
+

1

2ε2

(
un+1
j + un−1

j

)
+G

(
un+1
j , un−1

j

)
= 0, (2.2.4)

for j ∈ TJ and n ≥ 1, where

G(w, v) =


F (w)− F (v)

2(|w|2 − |v|2)
(w + v), if w 6= v,

λ|w|pw, if w = v,

(2.2.5)

provides a numerical approximation of λ|u|pu with F (u) = λ
p+2
|u|p+2 as defined in

(1.2.5). For the initial boundary conditions (2.1.2) and (2.1.3), we use the following

discretization:

un0 =unJ = 0, n ≥ 0, (2.2.6)

u0
j =u0(xj), j ∈ T 0

J , (2.2.7)

u1
j =u0

j + sin
( τ
ε2

)
u1(xj) +

τ

2
sin
( τ
ε2

)[
A−1
h δ2

xu
0
j

− 1

τ
sin
( τ
ε2

)
u0
j − λ|u0

j |pu0
j

]
, j ∈ TJ . (2.2.8)
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Here we use (2.2.8) to compute u1
j instead of the classical method

u1
j = u0

j +
τ

ε2
u1(xj) +

τ 2

2ε2

[
A−1
h δ2

xu
0
j −

1

ε2
u0
j − λ|u0

j |pu0
j

]
, j ∈ TJ , (2.2.9)

by substituting τ
ε2

with sin( τ
ε2

). The benefit of this substitution is that u1 is uniformly

bounded for ε ∈ (0, 1] as mentioned in [8, 24].

Through out this chapter, we try to get as general as possible results with less re-

strictions on the parameters in (2.1.1). Although we show the existence of numerical

solutions only for nonnegative λ as [105] pointed out the blow-ups of exact solutions

for some nonlinearities with negative λ, we also consider the negative part of λ in

the discussion of stability. The error bounds are proved for all power nonlinearities

with real p ≥ 2.

For any grid function v ∈ XJ , we define the standard discrete `2 norm, semi-H1

norm and `∞ norm as

‖v‖`2 =

√√√√h
J−1∑
j=1

|vj|2, |v|1 =

√√√√h
J−1∑
j=0

|δ+
x vj|2,

|v|2 =

√√√√h
J−1∑
j=1

|δ2
xvj|2, ‖v‖`∞ = max

1≤j≤J−1
|vj|.

For grid functions v, w ∈ XJ , we introduce the discrete inner product as

〈v, w〉 = h
J−1∑
j=1

vjw̄j.

Denote δ2
xv = (0, δ2

xv1, · · · , δ2
xvJ−1, 0) ∈ XJ as the finite difference approximation to

the second order derivative with extended zero boundary. Then, it is easy to check

that

‖v‖2
`2 = 〈v, v〉, (2.2.10)

|v|21 = −〈v, δ2
xv〉, (2.2.11)

for any v ∈ XJ . Note that the (2.2.11) only holds for v ∈ XJ , in which vector has

zero boundary elements.
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Throughout the thesis, we denote C as generic positive constant which may

be dependent on the regularity of exact solution and the given initial data but

independent of the time step τ , the grid size h, and the dimensionless parameter

ε; and we use the notation w . v to present w ≤ Cv with w, v two non-negative

numbers.

Energy conservation for CN-4cFD method

Introducing two (J − 1)× (J − 1) matrices

A =
1

12



10 1

1 10 1
. . . . . . . . .

1 10 1

1 10


, Λ = − 1

h2



−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


,

which correspond to the linear operators Ah and −δ2
x, respectively, denote by M =

(mj,k) the product of A−1 and Λ, i.e., M = A−1Λ, and denote by W = (wj,k) the

product of Λ and M , i.e., W = ΛM = ΛA−1Λ. Under the above notations, one can

easily verify that

|v|1 =

√√√√h

J−1∑
j=1

J−1∑
k=1

v̄jbj,kvk =

√√√√−h J−1∑
j=1

v̄jδ2
xvj,

|v|2 =

√√√√h
J−1∑
j=1

J−1∑
k=1

v̄j b̃j,kvk =

√√√√h
J−1∑
j=1

δ2
xv̄jδ

2
xvj, (2.2.12)

where bj,k and b̃j,k are the components in row j and column k of Λ and Λ2 respectively.

By a direct computation, one can know that M is a real symmetric positive-

definite matrix with eigenvalues λj,M = 1
12

(
10 + 2cos jπ

J

)
for j ∈ TJ , hence, for any

grid function v ∈ XJ , it makes sense to define semi-norms of v as

|v|1,∗ =

√√√√h

J−1∑
j=1

J−1∑
k=1

v̄jmj,kvk, |v|2,∗ =

√√√√h

J−1∑
j=1

J−1∑
k=1

v̄jwj,kvk, (2.2.13)
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Similar to (2.2.12), one can prove that

|v|1,∗ =

√√√√−h J−1∑
j=1

v̄jA−1
h δ2

xvj =

√√√√−h J−1∑
j=1

vjA−1
h δ2

xv̄j, (2.2.14)

|v|2,∗ =

√√√√h
J−1∑
j=1

δ2
xv̄jA−1

h δ2
xvj =

√√√√h
J−1∑
j=1

δ2
xvjA−1

h δ2
xv̄j. (2.2.15)

Furthermore, by a similar discussion in [116], we have the following equivalence

relation of these norms:

|v|21 ≤ |v|21,∗ ≤
3

2
|v|21, |v|22 ≤ |v|22,∗ ≤

9

4
|v|22. (2.2.16)

Theorem 2.1. The CN-4cFD method conserves the discrete energy defined by

En =ε2
∥∥δ+
t u

n
∥∥2

`2
+

1

2
(|un+1|21,∗ + |un|21,∗) +

1

2ε2
(
∥∥un+1

∥∥2

`2
+ ‖un‖2`2)

+
h

2

J−1∑
j=1

(F (un+1
j ) + F (unj )), 0 ≤ n ≤ N − 1. (2.2.17)

Proof. As the proof for the Crank-Nicolson scheme of nonlinear Schrödinger equation

in [116], for any 1 ≤ n ≤ N − 1, multiplying h(ūn+1
j − ūn−1

j ) on scheme (2.2.4) and

summing up the result for all j ∈ TJ , we have

ε2h
J−1∑
j=1

(|δ+
t u

n
j |2 − |δ+

t u
n−1
j |2)− 1

2
h
J−1∑
j=1

(
ūn+1
j A−1

h δ2
xu

n+1
j − ūn−1

j A−1
h δ2

xu
n−1
j

)
+

1

2ε2
h

J−1∑
j=1

(
|un+1
j |2 − |un−1

j |2
)

+
1

2
h
J−1∑
j=1

(
F (un+1

j )− F (un−1
j )

)
= 0, (2.2.18)

where (2.2.14) and the summation-by-part formula being used. The above equation

immediately indicates

En − En−1 = 0, 1 ≤ n ≤ N − 1. (2.2.19)

This completes the proof.

Solvability of the difference equations

Lemma 2.1. (Solvability for CN-4cFD) For any un, un−1 ∈ XJ (1 ≤ n ≤ N − 1),

the solution un+1 of CN-4cFD (2.2.4) exists. In addition, under the assumption that

τ . h and λ ≥ 0, there exists h0 > 0 such that the solution is unique for h ∈ (0, h0).
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Proof. First, we prove the existence of the CN-4cFD (2.2.4). For simplicity, we

define the average value of un+1 and un−1 as ũn, i.e.,

ũnj =
1

2
(un+1

j + un−1
j ), for j ∈ TJ . (2.2.20)

For any j ∈ TJ , we can express (2.2.4) as

ũn = un +
τ 2

2ε2
F n(ũn) (2.2.21)

with F n : XJ → XJ defined as

(F n(v))j =

[
A−1
h δ2

x −
1

ε2
−
F (2vj − un−1

j )− F (un−1
j )

(|2vj − un−1
j |2 − |un−1

j |2)

]
vj, j ∈ TJ . (2.2.22)

Define a mapping Gn : XJ → XJ as

Gn(v) = v − un − τ 2

2ε2
F n(v), v ∈ XJ . (2.2.23)

Then it is obvious that Gn is continuous. And for any v ∈ XJ , when λ ≥ 0, we have

Re〈Gn(v), v〉 = ‖v‖2
`2 − Re〈un, v〉 − Re〈 τ

2

2ε2
F n(v), v〉

≥ ‖v‖2
`2 − Re〈un, v〉

≥ ‖v‖`2(‖v‖`2 − ‖u
n‖`2),

which implies,

lim
‖v‖`2→∞

|Re〈Gn(v), v〉|
‖v‖`2

=∞. (2.2.24)

ThereforeGn is surjective. From the Brouwer fixed point theorem [7,66], we conclude

that there exists a solution v∗ such that Gn(v∗) = 0, witch provides a solution

2v∗ − un−1 to (2.2.4). Note the first inequality above is due to Re〈 τ2
2ε2
F n(v), v〉 =

τ2

2ε2
〈F n(v), v〉 ≤ 0 for non-negative λ:

〈F n(v), v〉 = −|v|21,∗ −
‖v‖2

`2

ε2
−

J∑
j=0

F (2vj − un−1
j )− F (un−1

j )

(|2vj − un−1
j |2 − |un−1

j |2)
|vj|2. (2.2.25)

Considering the summand in last term of (2.2.25), for any α, β ∈ C with α 6= β, we

have:

F (α)− F (β)

(|α|2 − |β|2)
=

2λ

p+ 2

(|α|2)
p
2

+1 − (|β|2)
p
2

+1

(|α|2 − |β|2)
= λξ

p
2
α,β ≥ 0, (2.2.26)
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for some ξα,β between |α|2 and |β|2 through the mean value theorem.

Next, we prove the uniqueness. Due to un+1 ∈ XJ for n = 0, 1, 2, · · · , N , then

we obtain from the inverse inequality [109] that

‖un‖`∞ . |u
n|1, n = 0, 1, 2, · · · , N. (2.2.27)

Considering (2.2.16) and the conservation of energy (2.2.17), we can extend (2.2.27)

to

∥∥un+1
∥∥
`∞
. |un+1|1 . |un+1|1,∗ . En = E0, n = 0, 1, 2, · · · , N − 1. (2.2.28)

For any given un, un−1 ∈ XJ (n ≥ 1), suppose that there exist two solutions

un+1, vn+1 ∈ XJ satisfying (2.2.4) and denote w = un+1 − vn+1. Then we have

ε2

τ 2
wj =

1

2
A−1
h δ2

xwj−
1

2ε2
wj−

(
G
(
un+1
j , un−1

j

)
−G

(
vn+1
j , un−1

j

))
, j ∈ TJ . (2.2.29)

Multiply w̄j on both sides and sum up the equations for all j ∈ TJ , noticing (2.2.28),

we have

‖w‖2
`2 .

τ 2

ε2
(E0)2‖w‖2

`2 . (2.2.30)

When h is small enough and τ . h, we can have ‖w‖2
`2 ≤

1
2
‖w‖2

`2 for some small

enough τ ≤ τ0, which implies ‖w‖2
`2 = 0 and the solution is unique.

Stability of CN-4cFD

Through a standard Von Neumann analysis [104], we have the following stability

condition for the locally linearized CN-4cFD:

Theorem 2.2. (linear stability) Suppose p = 0 and λ > −ε−2, for the linear form

of equation (2.1.1), the CN-4cFD method is unconditionally stable for any τ > 0,

and h > 0.

Proof. Plugging

un−1
j =

∑
l

Ûle
2ijlπ/J , unj =

∑
l

γlÛle
2ijlπ/J , un+1

j =
∑
l

γ2
l Ûle

2ijlπ/J , (2.2.31)
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into equation (2.2.4), with γl denoting the amplification factor of the l-th mode in

phase space.

Then we have characteristic equation with structure of form

γ2
l − 2θlγl + 1 = 0, l = −J

2
, · · · , J

2
− 1, (2.2.32)

with θl determined by the corresponding schemes. The quadratic equation above

has two solutions γl = θl ±
√
θ2
l − 1. The stability conditions of the two schemes

become

|γl| ≤ 1⇐⇒ |θl| ≤ 1, l = −J
2
, · · · , J

2
− 1. (2.2.33)

For the CN-4cFD, we have

θl =
2ε4

2ε4 + τ 2
(
ε2µ2

l /
(
1− 1

3
sin2( lπ

J
)
)

+ ε2λ+ 1
) , (2.2.34)

where

µl =
2

h
sin

(
lπ

J

)
. (2.2.35)

Since λ > −ε2, we have the denominator of (2.2.34) is larger than the dominator,

i.e., |θl| ≤ 1 unconditionally.

2.2.2 Error estimates

In order to get rigorous error estimates on our numerical methods, based on the

theoretical analysis on NKGE given in [80,89], we require the following assumption

on the exact solution u of (2.1.1):

u ∈ C5
(
[0, T ];L2

)
∩ C4

(
[0, T ];W 2,∞) ∩ C3

(
[0, T ];W 4,∞) ∩ C1([0, T ],W 6,∞

0 ∩H1
0 ),

‖∂rt ∂sxu(x, t)‖L∞(ΩT ) .
1

ε2r
, 0 ≤ r ≤ 5 & 0 ≤ r + s ≤ 7. (2.A)

Here, ΩT = (a, b) × (0, T ) with T less than the maximum existence time of the

solution.

Define the error function en ∈ XJ for n = 0, 1, · · · , N as

enj = u(xj, tn)− unj , j ∈ T 0
J , (2.2.36)
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with u(xj, tn) and unj the exact solution and the numerical solution at the point

(xj, tn).

We state the error estimate results of the proposed numerical schemes as follows.

Theorem 2.3. (Error estimates for CN-4cFD) Assume τ . h and under the as-

sumption (2.A), there exist τ0, h0 > 0 sufficiently small and independent of ε such

that for any ε ∈ (0, 1], we have the following error estimate of the CN-4cFD scheme

for any τ ∈ (0, τ0], h ∈ (0, h0] :

‖en‖`2 +
∥∥δ+

x e
n
∥∥
`2
. h4 +

τ 2

ε6
, 0 ≤ n ≤ N. (2.2.37)

In this subsection, we aim to prove Theorem 2.3. Define the local truncation

error ξn ∈ Xh of the CN-4cFD scheme for n = 0, 1, 2, · · · , N − 1 as

ξ0
j :=δ+

t u (xj, 0)− 1

ε2
u1(xj)−

τ

2ε2

[
A−1
h δ2

xu0(xj)−
1

ε2
u0(xj)− λ|u0(xj)|2u0(xj)

]
,

(2.2.38)

ξnj :=ε2δ2
t (u (xj, tn))− 1

2
A−1
h

[
δ2
x (u (xj, tn+1)) + δ2

x (u (xj, tn−1))
]

(2.2.39)

+
1

2ε2
[u (xj, tn+1) + u (xj, tn−1)] +G (u (xj, tn+1) , u (xj, tn−1)) , n ≥ 1.

For the CN-4cFD method (2.2.4), we have following local truncation error and

total error estimate.

Lemma 2.2. (Local truncation errors for CN-4cFD) Assume τ . h and under the

assumptions (2.A), we have

‖ξn‖`2 . h4 +
τ 2

ε6
,
∥∥δ+

t ξ
n
∥∥
`2
.

1

ε2
(h4 +

τ 2

ε6
), 0 ≤ n ≤ N. (2.2.40)

Proof. Taking Taylor series expansions of u(x, t) at (xj, 0) to approximate the values

u(xj±1, 0) and u(xj, τ), we have:

ξ0
j =

1

τ

(
u (xj, 0) + τ∂tu (xj, 0) +

τ 2

2
∂2
t u (xj, 0) +

τ 3

6
∂3
t u (xj, τ

∗)− u (xj, 0)

)
− u1(xj)

ε2

− τ

2ε2

[
A−1
h

(
u

(2)
0 (xj) +

h2

12
u

(4)
0 (xj) +

h4

360
u

(6)
0

(
x∗j
))
− 1

ε2
u0(xj)− λ|u0(xj)|2u0(xj)

]
=
τ 2

6
∂3
t u(xj, τ

∗) +
7τh4

1440ε2
A−1
h u

(6)
0

(
x∗∗j
)
,



22 Chapter 2. Error Bounds of 4cFDs for NKGE

for some τ ∗ ∈ (0, τ) and x∗j , x
∗∗
j ∈ (xj−1, xj+1). Therefore,

|ξ0
j | . τ 2

∥∥∂3
t u
∥∥
L∞(ΩT )

+
h4τ

ε2

∥∥∂6
xu0

∥∥
L∞(ΩT )

.
τ 2

ε6
+
h4τ

ε2
.
τ 2

ε6
+ h4. (2.2.41)

Similarly, we can have:

|ξnj | .ε2τ 2
∥∥∂4

t u
∥∥
L∞(ΩT )

+ τ 2
∥∥∂2

t ∂
2
xu
∥∥
L∞(ΩT )

+ h4
∥∥∂6

xu
∥∥
L∞(ΩT )

+ τ 2

[∥∥∂2
t u
∥∥
L∞(ΩT )

+ ‖∂tu‖2
L∞(ΩT ) +

1

2ε2

∥∥∂2
t u
∥∥
L∞(ΩT )

]
(2.2.42)

.
τ 2

ε6
+ h4;

and

|δ+
t ξ

n
j | .ε2τ 2

∥∥∂5
t u
∥∥
L∞(ΩT )

+ τ 2
∥∥∂3

t ∂
2
xu
∥∥
L∞(ΩT )

+ h4
∥∥∂t∂6

xu
∥∥
L∞(ΩT )

+ τ 2

[∥∥∂3
t u
∥∥
L∞(ΩT )

+
∥∥∂2

t u
∥∥2

L∞(ΩT )
+

1

2ε2

∥∥∂3
t u
∥∥
L∞(ΩT )

]
(2.2.43)

.
1

ε2
(
τ 2

ε6
+ h4).

This completes the proof.

Note that if we consider the local truncation error with first step scheme (2.2.8),

then we have a new local truncation error ξ̃0 for the first step: ξ̃0
j = δ+

t u (xj, 0) −

1/τ sin( τ
ε2

)u1(xj)− 1
2

sin( τ
ε2

)
[
A−1
h δ2

xu0(xj)− 1/τ sin( τ
ε2

)u0(xj)− λ|u0(xj)|2u0(xj)
]
.

Then,
∣∣∣ξ̃0
j − ξ0

j

∣∣∣ ≤ ∣∣ξ0
j

∣∣+ τ
ε2

∣∣1− sin( τ
ε2

)/ τ
ε2

∣∣(‖u1‖∞+‖u0‖w2,∞) .
∣∣ξ0
j

∣∣+ τ3

ε6
. Therefore,

the error bounds for local truncation errors in (2.2.40) work for both (2.2.8) and

(2.2.9) initial steps.

Since u is bounded under assumption (2.A), we adapt the standard cut-off tech-

nique [5,7] to truncate the nonlinearity into a global Lipschitz function with compact

support.

Denote M0 = ‖u‖L∞(ΩT ), B = (1 +M0)2 , and choose a smooth function ρ(θ) ∈

C∞0 (R+) such that

ρ(θ) =


1, 0 ≤ θ < 1,

∈ [0, 1], 1 ≤ θ < 2,

0, θ ≥ 2,

(2.2.44)
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and define

ρB(θ) = ρ(θ/B)θ, θ ∈ R+. (2.2.45)

Then ρB(θ) is a smooth function with compact support and therefore globally Lip-

schitz, i.e., there exists a positive constant CB > 0, independent of ε, s.t.

|ρB (θ1)− ρB (θ2)| ≤ CB|
√
θ1 −

√
θ2|, ∀θ1, θ2 ∈ R+ (2.2.46)

Substituting the nonlinearity λ|u|pu in (2.1.1) by λρ
p/2
B (|u|2)u with ρ

p/2
B (|u|2) =

(ρB(|u|2))
p/2

, then for initial value û0 = u0, û1 = u1, the discretization of CN-4cFD

scheme becomes

ε2δ2
t û

n
j −

1

2
A−1
h δ2

x

(
ûn+1
j + ûn−1

j

)
+

1

2ε2

(
ûn+1
j + ûn−1

j

)
+ Ĝ

(
ûn+1
j , ûn−1

j

)
= 0, (2.2.47)

where

Ĝ(w, v) =


λ

ρ
p
2

+1

B (|w|2)− ρ
p
2

+1

B (|v|2)

2(p+ 2)(ρB(|w|2)− B(|v|2))
(w + v), if w 6= v,

λ|w|pw, if w = v.

(2.2.48)

Noting

G (u (xj, tn+1) , u (xj, tn−1)) = Ĝ (u (xj, tn+1) , u (xj, tn−1)) ,

we know that the local truncation error of the scheme (2.2.47) is the same as the

CN-4cFD scheme (2.2.4). Hence, ûnj can be viewed as another approximation of

u(xj, tn) with modified nonlinearity approximation. Notice that the scheme (2.2.47)

is uniquely solvable for sufficiently small h and λ ≥ 0, as the case of Lemma 2.1.

Define the error function ên ∈ T 0
J for ûn as

ênj = u (xj, tn)− ûnj , j ∈ T 0
J , n ≥ 0, (2.2.49)

and

ηnj = Ĝ (u (xj, tn+1) , u (xj, tn−1))− Ĝ
(
ûn+1
j , ûn−1

j

)
, j ∈ T 0

J , 1 ≤ n ≤ N (2.2.50)

then we have the following results.
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Lemma 2.3. Under assumption (2.A), there exist h0 > 0 and τ0 > 0 sufficiently

small, such that for h ∈ (0, h0], τ ∈ (0, τ0] we have

‖η̂n‖2
`2 .

∥∥ên−1
∥∥2

`2
+
∥∥ên+1

∥∥2

`2
, (2.2.51)

|η̂n|21 .
∥∥ên−1

∥∥2

`2
+
∣∣ên−1

∣∣2
1

+
∥∥ên+1

∥∥2

`2
+
∣∣ên+1

∣∣2
1
, n ≥ 1. (2.2.52)

Proof. A direct calculation gives

η̂j =
λ

2(p+ 2)

ρ
p
2

+1

B (|u(xj, tn+1)|2)− ρ
p
2

+1

B (|u(xj, tn−1)|2)

ρB(|u(xj, tn+1)|2)− ρB(|u(xj, tn−1)|2)
(u(xj, tn+1) + u(xj, tn−1))

− λ

2(p+ 2)

ρ
p
2

+1

B (|ûn+1
j |2)− ρ

p
2

+1

B (|ûn−1
j |2)

ρB(|ûn+1
j |2)− ρB(|ûn−1

j |2)
(ûn+1

j + ûn−1
j )

=
λ(u(xj, tn+1) + u(xj, tn−1))

2(p+ 2)

(
ρ
p
2

+1

B (|u(xj, tn+1)|2)− ρ
p
2

+1

B (|u(xj, tn−1)|2)

ρB(|u(xj, tn+1)|2)− ρB(|u(xj, tn−1)|2)

−
ρ
p
2

+1

B (|ûn+1
j |2)− ρ

p
2

+1

B (|ûn−1
j |2)

ρB(|ûn+1
j |2)− ρB(|ûn−1

j |2)

)

+
λ

2(p+ 2)

ρ
p
2

+1

B (|ûn+1
j |2)− ρ

p
2

+1

B (|ûn−1
j |2)

ρB(|ûn+1
j |2)− ρB(|ûn−1

j |2)
(ên+1
j + ên−1

j ). (2.2.53)

ρ
p
2

+1

B (|u(xj, tn+1)|2)− ρ
p
2

+1

B (|u(xj, tn−1)|2)

ρB(|u(xj, tn+1)|2)− ρB(|u(xj, tn−1)|2)
−
ρ
p
2

+1

B (|ûn+1
j |2)− ρ

p
2

+1

B (|ûn−1
j |2)

ρB(|ûn+1
j |2)− ρB(|ûn−1

j |2)

=

∫ 1

0

(
θρB(|u(xj, tn+1)|2) + (1− θ)ρB(|u(xj, tn−1)|2)

) p
2 dθ

−
∫ 1

0

(
θρB(|ûn+1

j |2) + (1− θ)ρB(|ûn−1
j |2)

) p
2 dθ

=

∫ 1

0

ζ
p
2
−1

jθ

(
θ(ρB(|u(xj, tn+1)|2)− ρB(|ûn+1

j |2))

+(1− θ)(ρB(|u(xj, tn+1)|2)− ρB(|ûn+1
j |2))

)
dθ, (2.2.54)

for some ζjθ ∈ (0, 2B) from the mean value theorem.

For the other part, applying the mean value theorem on function g(x) = x
p
2

+1,

we have
ρ
p
2

+1

B (|ûn+1
j |2)− ρ

p
2

+1

B (|ûn−1
j |2)

ρB(|ûn+1
j |2)− ρB(|ûn−1

j |2)
=

2

p+ 2
ρ
p
2
B(ζnj ), (2.2.55)
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for some ζnj ∈ (0, 2B).

Combining (2.2.53),(2.2.54) and (2.2.55) together, we get:

|η̂j| . B
p
2
−1(|ên+1

j |+ |ên−1
j |) +B

p
2 (|ên+1

j |+ |ên−1
j |) . |ên+1

j |+ |ên−1
j |. (2.2.56)

This gives

h|η̂j|2 . h(|ên+1
j |2 + |ên−1

j |2). (2.2.57)

Sum up the above equations for all j ∈ TJ , then we have:

‖η̂n‖2
`2 .

∥∥ên−1
∥∥2

`2
+
∥∥ên+1

∥∥2

`2
.

Applying similar procedure to δ+
x η̂

n
j , we can get the second inequality (2.2.52). This

completes the proof.

Lemma 2.4. (Error estimate for CN-4cFD with cutoff nonlinearity) Assume τ . h

and under the assumption (2.A), there exist τ0, h0 > 0 sufficient small and indepen-

dent of ε such that for any ε ∈ (0, 1], we have the following estimates of the scheme

(2.2.47) for any τ ∈ (0, τ0], h ∈ (0, h0] :

‖ên‖`2 + |ên|1 . h4 +
τ 2

ε6
, (2.2.58)

‖ûn‖`∞ ≤M0 + 1, 0 ≤ n ≤ N. (2.2.59)

Proof. Subtracting (2.2.47) and (2.2.9) from (2.2.39), we get the following error

equations for CN-4cFD:

ε2δ2
t ê
n
j −

1

2

(
A−1
h δ2

xê
n+1
j +A−1

h δ2
xê
n−1
j

)
+

1

2ε2

(
ên+1
j + ên−1

j

)
= ξnj − η̂nj , j ∈ TJ , n ≥ 2, (2.2.60)

with

ê0
j = 0, ê1

j = τ ξ̂0
j , j ∈ TJ . (2.2.61)

Define the energy for the error function ên as

Sn = ε2
∥∥δ+

t ê
n
∥∥2

`2
+

1

2

(
|ên|21,∗ +

∣∣ên+1
∣∣2
1,∗

)
+

1

2ε2

(
‖ên‖2

`2 +
∥∥ên+1

∥∥2

`2

)
. (2.2.62)
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Multiplying both sides of (2.2.60) by hτ(δ+
t

¯̂enj + δ+
t

¯̂en−1
j ) and summing up for all

j ∈ TJ , then we get

Sn − Sn−1 =hτ
J−1∑
j=1

(ξnj − η̂nj )(δ+
t

¯̂enj + δ+
t

¯̂en−1
j )

≤hτ
J−1∑
j=1

(|ξnj |+ |η̂nj |)|δ+
t ê

n
j + δ+

t ê
n−1
j |

≤τ
(

1

ε2
(‖ξn‖2

`2 + ‖η̂n‖2
`2) + ε2(

∥∥δ+
t ê

n
∥∥2

`2
+
∥∥δ+

t ê
n−1
∥∥2

`2
)

)
.τ(Sn + Sn−1) +

τ

ε2
(h4 +

τ 2

ε6
)2, n ≥ 1,

where Lemma 2.2 and Lemma 2.3 were used. Therefore, there exists τ0 > 0 small

enough and independent of ε and h such that for τ ∈ (0, τ0)

Sn − Sn−1 . τSn−1 +
τ

ε2
(h4 +

τ 2

ε6
)2, n ≥ 1. (2.2.63)

The discrete Gronwall’s inequality [40] indicates that

Sn . S0 +
T

ε2
(h4 +

τ 2

ε6
)2, n ≥ 1. (2.2.64)

Noting the local truncation errors from Lemma 2.2 gives

S0 = ε2
∥∥ξ0
∥∥2

`2
+
τ 2

2
|ξ0|21,∗ +

τ 2

ε2

∥∥ξ0
∥∥2

`2
. (h4 +

τ 2

ε6
)2(ε2 +

τ 2

2
+
τ 2

ε2
). (2.2.65)

Combining (2.2.65) and (2.2.64) gives

Sn .
1

ε2
(h4 +

τ 2

ε6
)2. (2.2.66)

The definition of Sn (2.2.62) reveals that

‖ên‖2
`2 +

∥∥ên+1
∥∥2

`2
≤ 2ε2Sn . (h4 +

τ 2

ε6
)2. (2.2.67)

For the H1-semi norm error, by multiplying both sides of (2.2.60) by hδ2
x(

¯̂en+1
j − ¯̂en−1

j )

and summing the resulting equation up for j ∈ TJ , then we get

− ε2
(∣∣δ+

t ê
n
∣∣2
1
−
∣∣δ+
t ê

n−1
∣∣2
1

)
− 1

2

(∣∣ên+1
∣∣2
2,∗ −

∣∣ên−1
∣∣2
2,∗

)
− 1

2ε2

(∣∣ên+1
∣∣2
1,∗ −

∣∣ên−1
∣∣2
1,∗

)
= h

J−1∑
j=1

(ξnj − η̂nj )δ2
x(

¯̂en+1
j − ¯̂en−1

j ). (2.2.68)
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Define energy

S̃n = ε2
∣∣δ+
t ê

n
∣∣2
1

+
1

2

(∣∣ên+1
∣∣2
2,∗ + |ên|22,∗

)
+

1

2ε2

(∣∣ên+1
∣∣2
1,∗ + |ên|21,∗

)
, (2.2.69)

and we have

S̃n − S̃n−1 = −h
J−1∑
j=1

(ξnj − η̂nj )δ2
x(

¯̂en+1
j − ¯̂en−1

j ). (2.2.70)

Therefore,

S̃n − S̃0 = −h
n∑
k=1

J−1∑
j=1

ξnj δ
2
x(

¯̂ek+1
j − ¯̂ek−1

j ) + h

n∑
k=1

J−1∑
j=1

η̂nj δ
2
x(

¯̂ek+1
j − ¯̂ek−1

j ). (2.2.71)

For the right parts of (2.2.71), by using the summation-by-part formula and the

Cauchy-Schwarz inequality, we have the following estimates,∣∣∣∣∣−h
n∑
k=1

J−1∑
j=1

ξnj δ
2
x(

¯̂ek+1
j − ¯̂ek−1

j )

∣∣∣∣∣
=

∣∣∣∣∣hτ
n∑
k=1

J−1∑
j=1

δ+
t ξ

n
j δ

2
x(

¯̂ek+1
j + ¯̂ekj ) + h

J−1∑
j=1

ξ1
j (δ

2
x(

¯̂e1
j + ¯̂e0

j))− h
J−1∑
j=1

ξn+1
j (δ2

x(
¯̂en+1
j + ¯̂enj ))

∣∣∣∣∣
.τ

n∑
k=1

(
ε2
∥∥δ+

t ξ
k
∥∥2

`2
+

1

ε2
|ek+1|22 +

1

ε2
|ek|22

)
+ ε2

∥∥ξ1
∥∥2

`2
+

1

ε2
|e1|22 +

1

ε2
|en+1|22 +

1

ε2
|en|22 + ε2

∥∥ξn+1
∥∥2

`2

.(h4 +
τ 2

ε6
)2 +

τ

ε2

n+1∑
k=1

|ek|22 . (h4 +
τ 2

ε6
)2 +

τ

ε2

n+1∑
k=1

|ek|22,∗, (2.2.72)

and

|h
n∑
k=1

J−1∑
j=1

η̂nj δ
2
x(

¯̂ek+1
j − ¯̂ek−1

j )|

=| − hτ
n∑
k=1

J−1∑
j=0

δ+
x η̂

k
j (δ+

x δ
+
t ê

k
j + δ+

x δ
+
t ê

k−1
j )|

.τ
n∑
k=1

(
1

ε2
|η̂k|21 + ε2(|δ+

t ê
k|21 + |δ+

t ê
k−1|21))

.
1

ε2
(h4 +

τ 2

ε6
)2 +

n∑
k=1

ε2(|δ+
t ê

k|21 + |δ+
t ê

k−1|21), (2.2.73)
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where (2.2.16), Lemma 2.2 and Lemma 2.3 were used.

Combining (2.2.71), (2.2.72) and (2.2.73) together, we get

S̃n . τ

n∑
k=1

S̃k + S̃0 +
1

ε2
(h4 +

τ 2

ε6
)2. (2.2.74)

Since S̃0 . 1
ε2

(h4 + τ2

ε6
)2 for local truncation error, from the Gronwall’s inequality

we have

S̃n .
1

ε2
(h4 +

τ 2

ε6
)2. (2.2.75)

The definition of S̃n (2.2.69) and the inequality (2.2.16) indicate

|ên|21 +
∣∣ên+1

∣∣2
1
≤ |ên|21,∗ +

∣∣ên+1
∣∣2
1,∗ ≤ 2ε2S̃n . (h4 +

τ 2

ε6
)2. (2.2.76)

Combining (2.2.67) and (2.2.76), we obtain the error estimate (2.2.58) immediately.

When h is small enough and considering τ . h, τ = o(ε3), we have:

‖ên‖l∞ ≤ C |ên|1 ≤ 1, n = 1, 2, · · · , N. (2.2.77)

And we get the boundedness of ûn in (2.2.59):

‖ûn‖l∞ ≤ ‖u (·, tn)‖L∞ + ‖ên‖l∞ ≤M0 + 1, n = 1, 2, · · · , N (2.2.78)

This completes the proof.

Based on the above analysis, we now give the proof of Theorem 2.3.

Proof. From (2.2.59) and the definition of ρ, we know that (2.2.47) and (2.2.4) share

the same solution, since Ĝ(ûn+1, ûn−1) equals to G(ûn+1, ûn−1) for ‖ûn‖2
`∞ ≤ B. From

the unique solvability of the CN-4cFD scheme in Lemma 2.1, we have un = ûn for

each 0 ≤ n ≤ N. Therefore, Theorem 2.3 is a direct inference from Theorem 2.4.

2.2.3 Numerical results

In this section, we show the numerical results to support our error estimates

in section 2.2.2. We choose the initial data for all the numerical solutions in this

section as follows,

λ = 4, p = 2, u0(x) = sech(x2) + ie−x
2

, u1(x) = 0, for x ∈ R.
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In order to quantify the convergence, we use following standard error functions as

in [9] for the discrete `∞-error, `2-error and H1-error,

e`∞ = ‖en‖`∞ , e`2 = ‖en‖`2 , eH1 =

√
‖en‖2

`2 + |en|21. (2.2.79)

During our numerical simulation, we truncate our computational domain to be

(a, b) = (−8, 8) and T = 0.4. Since the wave speed for the linear problem is O(1),

the domain is large enough for us to use the homogenous boundary condition to

simulation the original whole space problem (2.0.1). The ‘exact solution’ is computed

by a fine mesh with h = 2−10, τ = 10−7 for comparison. The following four figures

show that the spatial discretization errors of both methods converge in 4th order.

The first two figures in Figure 2.2 are the log-log plots of errors for CN-4cFD methods

with respect to spatial mesh size h for different ε’s. The slope of each error line is

the same as the dashed line for h4, which indicates that the spatial error has 4-th

order convergence rate. The errors are independent of ε since the error scale does

not change as ε decreases.

(a) (b)

Figure 2.2: Log-log plots of `2 errors (a) and H1 errors (b) w.r.t h for CN-4cFD.
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Table 2.1: Temporal `∞ errors for CN-4cFD with τ0 = 1
40
, ε0 = 1

4
and h = 2−8.

eH1 τ = τ0 τ = τ0/4 τ = τ0/4
2 τ = τ0/4

3 τ = τ0/4
4 τ = τ0/4

5

ε = ε0 4.64E-1 3.51E-2 2.24E-3 1.40E-4 8.75E-6 5.18E-7

Order - 1.86 1.98 1.99 2.00 2.04

ε = ε0/4
1
3 8.81 3.55E-1 2.27E-2 1.42E-3 8.86E-5 5.22E-6

Order - 0.66 1.98 2.00 2.00 2.04

ε = ε0/4
2
3 5.77E-1 1.70 2.41E-1 1.64E-2 1.02E-3 6.02E-5

Order - -0.80 1.41 1.94 2.00 2.04

ε = ε0/4
3
3 1.38 1.81E-1 2.24 1.44E-1 8.43E-3 4.94E-4

Order - 1.47 -1.87 2.03 2.05 2.05

ε = ε0/4
4
3 1.37 0.65 1.27 1.18 2.62E-1 1.54E-2

Order - 0.54 -0.48 -0.05 1.08 2.05

Table 2.2: Temporal H1 errors for CN-4cFD with τ0 = 1
40
, ε0 = 1

4
and h = 2−8.

eH1 τ = τ0 τ = τ0/4 τ = τ0/4
2 τ = τ0/4

3 τ = τ0/4
4 τ = τ0/4

5

ε = ε0 1.20 9.19E-2 5.87E-3 3.68E-4 2.30E-5 1.36E-6

Order - 1.85 1.98 2.00 2.00 2.04

ε = ε0/4
1
3 3.19 9.43E-1 6.14E-2 3.85E-3 2.40E-4 1.42E-5

Order - 0.88 1.97 2.00 2.00 2.04

ε = ε0/4
2
3 2.23 5.14 6.92E-1 4.59E-2 2.87E-3 1.69E-4

Order - -0.60 1.45 1.95 2.00 2.04

ε = ε0/4
3
3 3.68 1.10 6.42 0.49 2.97E-2 1.75E-3

Order - 0.87 -1.27 1.85 2.02 2.04

ε = ε0/4
4
3 3.83 2.54 3.84 4.13 7.16E-1 4.23E-2

Order - 0.29 -0.30 -0.05 1.26 2.04
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2.3 Semi-implicit 4cFD (SI-4cFD) for NKGE

2.3.1 The numerical scheme

In practice, however, the conservative scheme could be difficult to use when

|un+1
j | − |un−1

j | is close to zero, and the nonlinear system (2.2.4) generally needs

iterative solvers which are time consuming. Therefore, we consider the semi-implicit

4th-order compact finite difference scheme (SI-4cFD) as follows

ε2δ2
t u

n
j −

1

2
A−1
h δ2

x

(
un+1
j + un−1

j

)
+

1

2ε2

(
un+1
j + un−1

j

)
+ f(unj ) = 0, (2.3.1)

for j ∈ TJ and n ≥ 1.

Lemma 2.5. (Solvability for SI-4cFD) For any un, un−1 ∈ XJ (1 ≤ n ≤ N − 1),

there exists a unique solution un+1 of SI-4cFD (2.3.1).

The proof is similar to Lemma 2.1. The existence of a solution can be shown by

the solvability of G̃n(v) = 0 for the map G̃n : XJ → XJ defined by

G̃n(v) := v − un − τ 2

2ε2

[
(A−1

h δ2
x −

1

ε2
)v − f(un)

]
.

This can be proved by the Brouwer fixed point theorem similar as the procedure

in lemma 2.1. The uniqueness of the solution is directly from the linearity of the

SI-4cFD (2.3.1).

Theorem 2.4. (linear stability of SI-4cFD) Suppose p = 0 and λ > −ε−2, for the

linear form of equation (2.1.1), we have the following stability condition

1. when −ε−2 ≤ λ ≤ ε−2 the SI-4cFD scheme is unconditionally stable for any

τ, h > 0;

2. when ε−2 < λ the SI-4cFD scheme is stable under the condition

τ ≤ 2ε2

√
ε2λ− 1

. (2.3.2)
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Proof. Plugging (2.2.31) into equation (2.3.1), with γl denoting the the amplification

factor of the l-th mode in phase space. Then, we have characteristic equation of

form as in Theorem 2.2

γ2
l − 2θlγl + 1 = 0, l = −J

2
, · · · , J

2
− 1,

with

θl =
2ε4 − τ 2ε2λ

2ε4 + τ 2
(
ε2µ2

l /
(
1− 1

3
sin2( lπ

J
)
)

+ 1
) . (2.3.3)

When −ε−2 ≤ λ ≤ ε−2, we have the denominator of (2.3.3) larger than the

dominator, i.e., |θl| ≤ 1. When λ ≥ ε−2, we have 2ε4 − τ 2ε2λ ≥ −(2ε4 + τ 2) =⇒

θl ≥ −1. Therefore |θl| ≤ 1, which indicates τ ≤ 2ε2√
ε2λ−1

. We obtain the stability

condition for SI-4cFD as stated in Theorem 2.4.

2.3.2 Error estimates

Theorem 2.5. (Error estimates for SI-4cFD) Assume τ . h and under the as-

sumption (2.A), there exist τ0, h0 > 0 sufficient small and independent of ε such

that for any ε ∈ (0, 1], under the stability condition stated in theorem 2.2, we have

the following error estimate of the SI-4cFD scheme for any τ ∈ (0, τ0], h ∈ (0, h0] :

‖en‖`2 +
∥∥δ+

x e
n
∥∥
`2
. h4 +

τ 2

ε6
, 0 ≤ n ≤ N. (2.3.4)

Substituting u(xj, tn) into (2.2.9) and (2.3.1), we can have the following expres-

sion of local truncation errors for SI-4cFD scheme.

ξ0
j :=δ+

t u (xj, 0)− 1

ε2
u1(xj) (2.3.5)

− τ

2ε2

[
A−1
h δ2

xu0(xj)−
1

ε2
u0(xj)− λ|u0(xj)|2u0(xj)

]
, j ∈ TJ ,

ξnj :=ε2δ2
t (u (xj, tn))− 1

2
A−1
h

[
δ2
x (u (xj, tn+1)) + δ2

x (u (xj, tn−1))
]

(2.3.6)

+
1

2ε2
[u (xj, tn+1) + u (xj, tn−1)] + λ|u(xj, tn)|2u(xj, tn), j ∈ TJ , n ≥ 1.

Through Taylor expansions, we have the following error estimates for the local trun-

cation errors as in Lemma 2.2,

‖ξn‖`2 . h4 +
τ 2

ε6
,
∥∥δ+

t ξ
n
∥∥
`2
.

1

ε2
(h4 +

τ 2

ε6
), 0 ≤ n ≤ N.
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Define ηnj = λ|u(xj, tn)|2u(xj, tn) − λ|unj |2unj , then the error equation for SI-4cFD

method reads

ε2δ2
t e
n
j −

1

2

(
A−1
h δ2

xe
n+1
j +A−1

h δ2
xe
n−1
j

)
+

1

2ε2

(
en+1
j + en−1

j

)
= ξnj − ηnj , (2.3.7)

for j ∈ TM , n ≥ 2, with

e0
j = 0, e1

j = τξ0
j , j ∈ TJ . (2.3.8)

The proof to Theorem 2.5 is similar to the case of CN-4cFD method by constructing

2 energy functions

Sn = ε2
∥∥δ+

t e
n
∥∥2

`2
+

1

2

(
|en|21,∗ +

∣∣en+1
∣∣2
1,∗

)
+

1

2ε2

(
‖en‖2

`2 +
∥∥en+1

∥∥2

`2

)
, (2.3.9)

and

S̃n = ε2
∥∥δ+

x δ
+
t e

n
∥∥2

`2
+

1

2

(
|en|22,∗ +

∣∣en+1
∣∣2
2,∗

)
+

1

2ε2

(
|en|21,∗ +

∣∣en+1
∣∣2
1,∗

)
, (2.3.10)

and using the discrete Gronwall’s inequality and a mathematical induction argu-

ment.

2.3.3 Numerical results

We adopt the same initial data and mesh size for the numerical simulations of SI-

4cFD. Figure 2.3 shows result on spatial errors of the SI-4cFD method quite similar

to Figure 2.2. The slopes of each error line for different ε’s are the same as the line

h4, which indicates that the convergence rate of spatial errors are of 4-th order. the

error scale does not change with ε indicates that spatial errors are independent of ε.

Although converging at the same order, the error for the SI-4cFD scheme is smaller

than the CN-4cFD scheme under the same spatial mesh size especially for small h

cases. This is because of the tolerance error in the iteration solver for CN-4cFD. In

the numerical application of CN-4cFD, we choose the tolerance error of the iteration

solver to be 10−12 which is much large than numerical error introduce by solving the

SI-4cFD scheme, a conditional number of a normal matrix times the round-off error

of double precision.
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(a) (b)

Figure 2.3: Log-log plots of `2 errors (a) and H1 errors (b) w.r.t h for SI-4cFD.

Table 2.3: Temporal `∞ errors for SI-4cFD with τ0 = 1
40
, ε0 = 1

4
and h = 2−8.

e`∞ τ = τ0 τ = τ0/4 τ = τ0/4
2 τ = τ0/4

3 τ = τ0/4
4 τ = τ0/4

5

ε = ε0 2.71E-1 1.87E-2 1.18E-3 7.40E-5 4.58E-6 2.34E-7

Order - 1.93 1.99 2.00 2.01 2.14

ε = ε0/4
1
3 8.44E-1 2.68E-1 1.71E-2 1.07E-3 6.66E-5 3.92E-6

Order - 8.27E-1 1.99 2.00 2.00 2.04

ε = ε0/4
2
3 1.07 1.59 2.14E-1 1.44E-2 8.98E-4 5.29E-5

Order - -2.86E-1 1.45 1.95 2.00 2.04

ε = ε0/4
3
3 2.41 1.80E-1 2.43 1.38E-1 8.13E-3 4.77E-4

Order - 1.87 -1.88 2.07 2.04 2.05

ε = ε0/4
4
3 1.61 1.56 1.28 1.18 2.57E-1 1.51E-2

Order - 2.36E-2 1.42E-1 5.74E-2 1.10 2.04

From the Table 2.1–2.4 of temporal errors, we can see clearly that the temporal

convergence rates of both methods are second order. The bold diagonals of these

tables indicate that the temporal error has dependency on ε, which is of size O( τ
2

ε6
):

the data above each diagonal experience well second order convergence, while the



2.4 Comparison with existing methods 35

errors below the diagonals do not have second order convergence. The errors for

large time steps are always bounded, which coincides with our stability analysis in

section 2.2.1 that both schemes have good stability. The `∞ errors for two methods

also converge in second order, which is due to the special case of Sobolev embedding

theorem that H1(Ω) ⊂ L∞(Ω) for Ω ⊂ R.

Table 2.4: Temporal H1 errors for SI-4cFD with τ0 = 1
40
, ε0 = 1

4
and h = 2−8.

eH1 τ = τ0 τ = τ0/4 τ = τ0/4
2 τ = τ0/4

3 τ = τ0/4
4 τ = τ0/4

5

ε = ε0 7.79E-1 5.40E-2 3.42E-3 2.14E-4 1.32E-5 6.91E-7

Order - 1.93 1.99 2.00 2.01 2.13

ε = ε0/4
1
3 3.80 7.47E-1 4.80E-2 3.01E-3 1.87E-4 1.10E-5

Order - 1.17 1.98 2.00 2.00 2.04

ε = ε0/4
2
3 3.58 4.98 6.25E-1 4.10E-2 2.56E-3 1.51E-4

Order - -0.24 1.50 1.96 2.00 2.04

ε = ε0/4
3
3 5.84 9.70E-1 6.56 4.73E-1 2.88E-2 1.69E-3

Order - 1.30 -1.38 1.90 2.02 2.04

ε = ε0/4
4
3 4.35 4.44 3.96 4.17 7.04E-1 4.16E-2

Order - -1.53E-2 8.33E-2 -3.82E-2 1.28 2.04

2.4 Comparison with existing methods

2.4.1 Comparison with second order methods

In this section, we compare the time consumption of the 4cFDs with the corre-

sponding second order finite difference schemes. All algorithms are run on a single

kernel of Intel Xeon Gold6132 CPU with frequency at 2.60GHz for a fair compar-

ison. As introduced in [9], we adopt the following seconder order Crank-Nicolson

finite difference scheme (CNFD)

ε2δ2
t u

n
j −

1

2
δ2
x

(
un+1
j + un−1

j

)
+

1

2ε2

(
un+1
j + un−1

j

)
+G

(
un+1
j , un−1

j

)
= 0, (2.4.1)
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with G(·, ·) defined in (2.2.5), and the seconder order semi-implicit finite difference

scheme (SIFD)

ε2δ2
t u

n
j −

1

2
δ2
x

(
un+1
j + un−1

j

)
+

1

2ε2

(
un+1
j + un−1

j

)
+ f(unj ) = 0. (2.4.2)

We use the same numerical example as in Section 2.2.3. When comparing the time

consumption between SI-4cFD and SIFD in Table 2.6 and 2.8, we can find that

the time consumption for same mesh size are nearly equal for the two methods.

However, the time consumption for CN-4cFD and CNFD mainly depends on the

the number of iterations in each time step and therefore differs a lot as in Table 2.5

and 2.7. The semi-implicit methods use less time for both second-order and fourth-

order schemes. In our numerical example, the average CPU time consumption for

CN-4cFD is 2.4 times of SI-4cFD. The time consumption for CNFD is 5 times of

SIFD.

When it comes to achieve a fix accuracy for numerical solutions, the higher

order methods are much more efficient than second order methods. Considering the

bold columns in the four tables, the two bold columns have O(10−4) and O(10−5)

accuracy for all four methods respectively, but the time consumption for the second

order methods have the same order as the square of the fourth-order methods, which

imply the fourth-order methods can reduce the computational cost by a square root,

especially for the cases that need high accuracy.

Table 2.5: Spatial errors and time consumptions for CN-4cFD at t = 1 with ε = 1
24

.

h h0 = 1
4

h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6

eεH1(t = 1) 8.24E-1 4.24E-1 2.24E-4 1.43E-5 8.99E-7 5.62E-8 5.12E-9

Order - 9.58E-1 1.09E1 3.97 3.99 4.00 3.46

CPU time (s) 9.13 13.3 20.3 34.4 60.1 114 220
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Table 2.6: Spatial errors and time consumptions for SI-4cFD at t = 1 with ε = 1
24

.

h h0 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6

eεH1(t = 1) 8.24E-1 4.24E-1 2.24E-4 1.43E-5 8.99E-7 5.67E-8 3.52E-9

Order - 9.58E-1 1.09E1 3.97 3.99 3.99 4.01

CPU time (s) 3.35 5.45 8.15 14.2 25.9 49.6 94.8

Table 2.7: Spatial errors and time consumptions for CNFD at t = 1 with ε = 1
24

.

h h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6 h0/2

7 h0/2
8

eεH1(t = 1) 4.10E-1 2.08E-1 8.30E-3 2.10E-3 5.26E-4 1.32E-4 3.28E-5 8.11E-6

Order - 9.83E-1 4.64 1.98 2.00 2.00 2.00 2.02

CPU time (s) 23.2 39.1 68.0 1.24E2 2.42E2 4.57E2 8.90E2 1.76E3

Table 2.8: Spatial errors and time consumptions for SIFD at t = 1 with ε = 1
24

.

h h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6 h0/2

7 h0/2
8

eεH1(t = 1) 4.10E-1 2.08E-1 8.30E-3 2.10E-3 5.26E-4 1.32E-4 3.28E-5 8.11E-6

Order - 9.83 E-1 4.64 1.98 2.00 2.00 2.00 2.02

CPU time (s) 4.52 6.94 12.8 24.1 47.9 92.8 1.79E2 3.46E2
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2.4.2 Energy conservation of the 4cFDs
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Figure 2.4: Variation of the discrete energy for CN-4cFD

During our iteration solver of the CN-4cFD, the computational error tolerance

is taken as 10−12. From the Figure 2.4 we can see the relative change of the discrete

energy En in (2.2.17) is quite small and En is well conserved. Figure 2.5 shows a

comparison of the discrete energies w.r.t. different ε’s. The energy is the same order

of O( 1
ε2

) as the energy formula (1.2.4) shows. Therefore, we rescale each energy by

a factor ε2. In order to show the variation of the energy of SI-4cFD, the discrete

energies are calculated with a coarse spatial mesh with h = 1
8
.
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Figure 2.5: Plot of scaled energies for CN-4cFD (a) and SI-4cFD (b).



Chapter 3
Error Estimate of a 4cFD for ZS

3.1 ZS in the subsonic regime

In their recent work [32], Cai and Yuan considered a semi-implicit conservative

finite difference scheme to ZS in the subsonic regime. They got a rigorous uniform

error bounds independent of the dimensionless parameter ε for suitable initial data.

Due to the high speed outgoing wave from the initial layer [2,17,91], the numerical

method needs a large spatial domain, which arouses large computational cost if

we need small h to achieve a required accuracy. This situation can be severe for

the ill-prepared initial data, whose error bound is inversely proportional to a power

of ε, such as a spatial error of order O(h2/ε) for the scheme in [32]. Therefore,

we adopt the fourth-order compact scheme [68, 116] to ZS, by approximating the

spatial derivatives at a grid point with the same number of nodes as the second

order method needs to achieve a higher accuracy, and the computational cost can

be reduced with a coarser grid partition.

The rest of this chapter is organized as follows. In section 3.2, we introduce a

semi-implicit fourth-order compact finite difference scheme for ZS. The solvability,

stability, and conservation laws of both the discrete wave energy and the Hamiltonian

are also discussed. In section 3.3, the error estimates of the scheme, especially the

dependence of spatial and temporal errors on the small parameter ε, and a biased

39
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error estimate transferred by the nonlinear Schrödinger limit are analysed rigorously.

Several numerical simulations are reported in section 3.4 to test the convergence rate

from the theoretical analysis.

3.2 A conservative semi-implicit 4cFD (CSI-4cFD)

In this section, we present the conservative semi-implicit fourth order compact

finite difference (CSI-4cFD) method to approximate the ZS. For simplicity, we only

show the scheme and analysis in one spacial dimension. Generalizations to higher

dimensions are straightforward. For numerical computation, we truncate our com-

putational domain into an interval Ω = (a, b) with homogeneous Dirichlet boundary

conditions. The ZS (1.2.6) now collapses to



i∂tE
ε(x, t) + ∂xxE

ε(x, t)−N ε(x, t)Eε(x, t) = 0, x ∈ Ω, t > 0,

ε2∂ttN
ε(x, t)− ∂xxN ε(x, t)− ∂xx |Eε(x, t)|2 = 0, x ∈ Ω, t > 0,

Eε(x, 0) = E0(x), N ε(x, 0) = N ε
0 (x), ∂tN

ε(x, 0) = N ε
1 (x), x ∈ Ω,

Eε(x, t)|∂Ω = 0, N ε(x, t)|∂Ω = 0, t > 0,

(3.2.1)

With initials

N ε
0 (x) = −|E0(x)|2 + εαw0(x), (3.2.2)

N ε
1 (x) = 2 Im(Ē0(x)∆E0(x)) + εβ−1w1(x), (3.2.3)

where E0(x), w0(x), and E1(x) are smooth O(1) initial data with compact support

on Ω with parameter α, β ≥ 0. As the unbounded case in Section 1.2.2, we have the

three type of initial data classified as well-prepared initial data (α, β ≥ 2), less-ill-

prepared initial data (min{α, β} ∈ [1, 2)), and ill-prepared initial data (min{α, β} ∈

[0, 1)). The conserved wave energy and Hamiltonian for (3.2.1) are

M ε(t) = ‖Eε(·, t)‖2
L2(Ω) :=

∫
Ω

|Eε(x, t)|2 dx ≡
∫

Ω

|E0(x)|2 dx = M ε(0), (3.2.4)

and

Hε(t) :=

∫
Ω

(
|∂xEε(x, t)|2 +N ε |Eε|2 +

1

2

(
ε2 |∂xU ε|2 + |N ε(x, t)|2

))
dx, (3.2.5)
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with potential function U ε solves

− ∂xxU ε = N ε
t , U ε|∂Ω = 0. (3.2.6)

3.2.1 The numerical scheme

Define mesh size h := (b − a)/J and time step τ := T/N, with J,N positive

integers and T > 0 a fixed time less than the maximum common existence time for

the solutions of (3.2.1). Denote the grid points and time steps as

xj := a+ jh, j = 0, 1, . . . , J ; tn := nτ, n = 0, 1, . . . , N.

Let TJ = {1, 2, · · · , J−1} and T 0
J = {0, 1, 2, · · · , J} be the index sets of grid points.

Let Eε,n
j and N ε,n

j be the numerical approximation of Eε(xj, tn) and N ε(xj, tn) for

j ∈ T 0
J and denote the possible solution space as

XJ = {u = (uj)j∈T 0
J
| u0 = uJ = 0} ⊂ CJ+1. (3.2.7)

We use the standard finite difference operators as noted in section 2.2:

δ+
t u

n
j = 1

τ

(
un+1
j − unj

)
, δ−t u

n
j = 1

τ

(
unj − un−1

j

)
, δ2

t u
n
j = 1

τ2

(
un+1
j − 2unj + un−1

j

)
,

δ+
x u

n
j = 1

h

(
unj+1 − unj

)
, δ−x u

n
j = 1

h

(
unj − unj−1

)
, δ2

xu
n
j = 1

h2

(
unj+1 − 2unj + unj−1

)
,

for unj = Eε,n
j or N ε,n

j . Let Ah be the standard fourth order approximation of the

discrete Laplacian as in Section 2.2:

Ahunj = unj +
h2

12
δ2
xu

n
j . (3.2.8)

Then we give the conservative SI-4cFD scheme [125] as

iδ−t E
ε,n
j =

[
−A−1

h δ2
x +

N ε,n−1
j +N ε,n

j

2

]
Eε,n−1
j + Eε,n

j

2
, j ∈ TJ , n ≥ 1, (3.2.9)

ε2δ2
tN

ε,n
j =

1

2
A−1
h δ2

x

(
N ε,n+1
j +N ε,n−1

j

)
+A−1

h δ2
x

∣∣Eε,n
j

∣∣2 , j ∈ TJ , n ≥ 1, (3.2.10)

with boundary and initial conditions

Eε,n
0 = Eε,n

J = 0, N ε,n
0 = N ε,n

J = 0,

Eε,0
j = E0 (xj) , N ε,0

j = − |E0 (xj)|2 + εαw0 (xj) ,
(3.2.11)
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and

N ε,1
j ≈ N ε

0 (xj) + τ∂tN
ε (xj, 0) +

τ 2

2
∂ttN

ε (xj, 0)

≈ N ε
0 (xj) + τ

(
2 Im

(
A−1
h Ē0 (xj) δ

2
xE0 (xj)

)
+ εβ−1w1 (xj)

)
(3.2.12)

+
τ 2

2
εα−2A−1

h δ2
xw0 (xj) .

Note that the equations for initial conditions in (3.2.11) are from the discretization

of (3.2.2) and (3.2.3). In order to ensure the boundedness of N ε,1 for α, β ≥ 0, we

adopt the method in [32] and [24] to bound the terms containing εβ−1 and εα−2 in

(3.2.12), using the trigonometric function sin(τ/ε) which is uniformly bounded for

ε ∈ (0, 1], and substitute (3.2.12) by:

N ε,1
j = N ε

0 (xj) + 2τ Im
(
A−1
h Ē0 (xj) δ

2
xE0 (xj)

)
+ εβ sin(

τ

ε
)w1 (xj)

+
εα

2
sin2(

τ

ε
)A−1

h δ2
xw0 (xj) . (3.2.13)

For any grid function u ∈ XJ , we recall the standard discrete L2 norm ‖·‖`2 , semi-H1

norm |·|1, the equivalent semi-H1 norm |·|1,∗ and `∞ norm ‖·‖`∞ respectively as

‖u‖`2 =

√√√√h
J−1∑
j=1

|uj|2, |u|1 =

√√√√h
J−1∑
j=0

|δ+
x uj|2,

|v|1,∗ =

√√√√−h J−1∑
j=1

v̄jA−1
h δ2

xvj, ‖u‖`∞ = max
1≤j≤J−1

|uj|.

3.2.2 Energy conservation

Theorem 3.1. The CSI-4cFD scheme preserves the discrete wave energy and Hamil-

ton defined by

M ε,n =‖Eε,n‖2
`2 , 0 ≤ n ≤ N, (3.2.14)

Hε,n+ 1
2 =

1

2

(∣∣Eε,n+1
∣∣2
1,∗ + |Eε,n|21,∗

)
+
ε2

2

∣∣∣U ε,n+ 1
2

∣∣∣2
1,∗

+
1

4

(∥∥N ε,n+1
∥∥2

`2
+ ‖N ε,n‖2

`2

)
+
h

4

J−1∑
j=1

(N ε,n+1
j +N ε,n

j )(|Eε,n+1
j |2 + |Eε,n

j |2), 0 ≤ n ≤ N − 1, (3.2.15)
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where U
ε,n+ 1

2
j solves −A−1

h δ2
xU

ε,n+ 1
2

j = δ+
t N

ε,n
j with homogeneous Dirichlet boundary

U ε,n
0 = U ε,n

J = 0, for 0 ≤ n ≤ N .

Proof. For proof of (3.2.14), multiplying h(Ēε,n
j + Ēε,n−1

j ) on both side of (3.2.9),

and summing them up for all j ∈ TJ , we have:

i

τ

(
‖Eε,n‖2

`2 −
∥∥Eε,n−1

∥∥2

`2
+ 2i Im(

J−1∑
j=1

Eε,n
j Ēε,n−1

j )

)

=
∣∣Eε,n + Eε,n−1

∣∣2
1,∗ + h

J−1∑
j=1

N
ε,n− 1

2
j

∣∣Eε,n
j + Eε,n−1

j

∣∣2, 1 ≤ n ≤ N,

(3.2.16)

where N
ε,n− 1

2
j = 1

2
(N ε,n

j + N ε,n−1
j ) is real-valued. The imaginary part of the above

equation indicates

i

τ

(
‖Eε,n‖2

`2 −
∥∥Eε,n−1

∥∥2

`2

)
= 0, 1 ≤ n ≤ N, (3.2.17)

i.e.,

‖Eε,n‖2
`2 =

∥∥Eε,n−1
∥∥2

`2
, 1 ≤ n ≤ N. (3.2.18)

For proof of (3.2.15), multiplying h(Ēε,n
j − Ē

ε,n−1
j ) on both side of (3.2.9), summing

them up for all j ∈ TJ , and considering the real parts, we have

1

2
|Eε,n|1,∗−

1

2

∣∣Eε,n−1
∣∣
1,∗+

1

2
〈N ε,n− 1

2 , |Eε,n|2−|Eε,n−1|2〉 = 0, 1 ≤ n ≤ N. (3.2.19)

Multiplying τh(U
ε,n+ 1

2
j +U

ε,n− 1
2

j ) on both side of (3.2.10), and summing them up for

all j ∈ TJ , we have

ε2
∣∣∣U ε,n+ 1

2

∣∣∣
1,∗
− ε2

∣∣∣U ε,n− 1
2

∣∣∣
1,∗

+
1

2

∥∥N ε,n+1
∥∥2

`2
− 1

2

∥∥N ε,n−1
∥∥2

`2

+ 〈|Eε,n|2, N ε,n+1 −N ε,n−1〉 = 0, 1 ≤ n ≤ N − 1.

(3.2.20)
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(3.2.19)+1
2
(3.2.20) reveals

1

2

(∣∣Eε,n+1
∣∣2
1,∗ + |Eε,n|21,∗

)
+
ε2

2

∣∣∣U ε,n+ 1
2

∣∣∣2
1,∗

+
1

4

(∥∥N ε,n+1
∥∥2

`2
+ ‖N ε,n‖2

`2

)
+
h

4

J∑
j=0

(N ε,n+1
j +N ε,n

j )(|Eε,n+1
j |2 + |Eε,n

j |2)

=
1

2

(∣∣Eε,n−1
∣∣2
1,∗ + |Eε,n|21,∗

)
+
ε2

2

∣∣∣U ε,n− 1
2

∣∣∣2
1,∗

+
1

4

(∥∥N ε,n−1
∥∥2

`2
+ ‖N ε,n‖2

`2

)
+
h

4

J∑
j=0

(N ε,n−1
j +N ε,n

j )(|Eε,n−1
j |2 + |Eε,n

j |2), 1 ≤ n ≤ N − 1, (3.2.21)

i.e.,

Hε,n+ 1
2 = Hε,n− 1

2 , 1 ≤ n ≤ N − 1. (3.2.22)

This completes the proof.

3.2.3 Solvability of the difference equations

Lemma 3.1. (Solvability for the CSI-4cFD) For any given initial data Eε,0, N ε,0, N ε,1 ∈

XJ , there exists a unique set of solutions Eε,n and N ε,n to the CSI-4cFD (3.2.9) and

(3.2.10) for n > 1.

Proof. The lemma can be proof by induction. During the sequential update of the

numerical solutions:

Eε,1 → N ε,2 → Eε,2 → N ε,3 → · · · , (3.2.23)

a linear system is solved at each step. Therefore, the solution exists and is unique

since two non-degenerated linear systems are solved consecutively in each iteration.

3.3 Error estimates

Let T ∗ be the maximum common existence time for the solutions (Eε(x, t), N ε(x, t))

and E(x, t) to the ZS (3.2.1) and the corresponding cubic NLSE (1.2.10) respective-

ly. For any T ∈ (0, T ∗], as the asymptotic analysis showed, we may assume that
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the exact solutions (Eε(x, t), N ε(x, t)) and E(x, t) are smooth enough and satisfy-

ing the homogeneous Dirichlet boundary conditions and the following boundedness

assumptions:

‖Eε‖L∞([0,T ];W 7,∞(Ω)) + ‖Eε‖W 1,∞([0,T ];W 4,∞(Ω)) + ε1−α∗ ‖Eε‖W 2,∞([0,T ];W 3,∞(Ω))

+ ε2−α† ‖Eε‖W 3,∞([0,T ];W 1,∞(Ω)) . 1,

‖N ε‖L∞([0,T ];W 7,∞(Ω)) + ε1−α∗ ‖N ε‖W 1,∞([0,T ];W 6,∞(Ω)) + ε2−α† ‖N ε‖W 2,∞([0,T ];W 2,∞(Ω))

+ ε3−α† ‖N ε‖W 3,∞([0,T ];W 2,∞(Ω)) + ε4−α† ‖N ε‖W 4,∞([0,T ];W 1,∞(Ω)) . 1,

(3.A)

with the convergence

‖Eε − E‖L∞([0,T ],H1(Ω)) . ε1+α∗ ,
∥∥N ε − |E|2

∥∥
L∞([0,T ],L2(Ω))

. εα
†
, (3.B)

under a good initial data assumption

‖E0‖H6(Ω) + ‖w0‖H4(Ω) + ‖w1‖H4(Ω) . 1, (3.C)

where

α∗ = min(1, α, β), α† = min(α, β, 2). (3.3.1)

Define the error functions eε,n, νε,n ∈ XJ for n ≥ 0 as

eε,nj = Eε(xj, tn)− Eε,n
j , νε,nj = N ε(xj, tn)−N ε,n

j , j ∈ T 0
J , (3.3.2)

3.3.1 Main results

For the CSI-4cFD (3.2.9), we have the following error estimates.

Theorem 3.2. (Error estimates for well-prepared and less-ill-prepared initial data)

Assume τ . h and under the assumption (3.A), there exist τ0, h0 > 0 sufficiently

small and independent of ε such that for any ε ∈ (0, 1], we have the following error

estimate of the CSI-4cFD scheme with well-prepared and less-ill-prepared initial data

(α, β ≥ 1) for any τ ∈ (0, τ0], h ∈ (0, h0] :

‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 . h4 +
τ 2

ε3−α† , 0 ≤ n ≤ T

τ
, (3.3.3)
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‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 . h4 + τ 2 + εα
†
, 0 ≤ n ≤ T

τ
. (3.3.4)

Furthermore, combining (3.3.3) and (3.3.4) together, we have the following uniform

error estimate independent of ε:

‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 . h4 + τ 2α†/3, 0 ≤ n ≤ T

τ
. (3.3.5)

Particularly, for the well-prepared initial data case (α, β ≥ 2), we have α† = 2 and

‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 . h4 + τ 4/3, 0 ≤ n ≤ T

τ
. (3.3.6)

Theorem 3.3. (Error estimates for ill-prepared initial data) Assume τ . h and

under the assumption (3.A), there exist τ0, h0 > 0 sufficiently small and independent

of ε such that for any ε ∈ (0, 1], we have the following error estimate of the CSI-

4cFD scheme with ill-prepared initial data (min{α, β} ∈ [0, 1)) for any τ ∈ (0, τ0],

h ∈ (0, h0] :

‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 .
h4

ε1−α∗ +
τ 2

ε3−α∗ , 0 ≤ n ≤ T

τ
. (3.3.7)

Note that the uniform error bound (3.3.5) in Theorem 3.2 can be illustrated in

the following triangle diagram with error scales labelled on each arrow connecting

two terms:

(Eε,n, N ε,n)
O(h4 + τ2

ε3−α† )
(Eε, N ε).

O(h 4
+ τ 2

+ εα †)

(E,−|E|2)
O(ε

1+α
∗ + εα

† )

Define the local truncation errors ηε,n, ξε,n ∈ XJ of CSI-4cFD (3.2.9) and (3.2.10) as

ηε,nj = iδ−t E
ε(xj, tn) +

[
A−1
h δ2

x −
N ε(xj, tn−1) +N ε(xj, tn)

2

]
Eε(xj, tn−1) + Eε(xj, tn)

2
,

(3.3.8)

ξε,nj = ε2δ2
tN

ε(xj, tn)−A−1
h δ2

x

(
N ε(xj, tn+1) +N ε(xj, tn−1)

2
+ |Eε(xj, tn)|2

)
,

(3.3.9)

for j ∈ TJ , n ≥ 1.
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Lemma 3.2. Under assumption (3.A), we have

‖ηε,n‖`2 + ‖ξε,n‖`2 + |ηε,n|1 . h4 +
τ 2

ε2−α† , (3.3.10)

‖δtξε,n‖`2 .
h4

ε1−α∗ +
τ 2

ε3−α† . (3.3.11)

Proof. For each n ≥ 1 and j ∈ TJ , take Taylor expansion of Eε(x, t) at point

(xj, tn − τ
2
), and Eε

xx(x, t) at points (xj, tn) and (xj, tn−1) we have

ηε,nj =iδ−t E
ε(xj , tn) +

[
A−1
h δ2

x −
N ε(xj , tn−1) +N ε(xj , tn)

2

]
Eε(xj , tn−1) + Eε(xj , tn)

2

−
(
i∂tE

ε(xj , tn− 1
2
) + ∂2

xE
ε(xj , tn− 1

2
)−N ε(xj , tn− 1

2
)Eε(xj , tn− 1

2
)
)

=i
(
δ−t E

ε(xj , tn)− ∂tEε(xj , tn− 1
2
)
)
+

(
∂2
xE

ε(xj , tn−1) + ∂2
xE

ε(xj , tn)

2
− ∂2

xE
ε(xj , tn− 1

2
)

)
+

(
A−1
h δ2

x

Eε(xj , tn−1) + Eε(xj , tn)

2
− ∂2

xE
ε(xj , tn−1) + ∂2

xE
ε(xj , tn)

2

)
+
N ε(xj , tn−1) +N ε(xj , tn)

2

(
Eε(xj , tn− 1

2
)− Eε(xj , tn−1) + Eε(xj , tn)

2

)
+

(
N ε(xj , tn− 1

2
)− N ε(xj , tn−1) +N ε(xj , tn)

2

)
Eε(xj , tn− 1

2
) (3.3.12)

=
iτ2

8

∫ 1

0

∫ θ

0

∫ s

−s
∂3
tE

ε
(
xj ,

στ

2
+ tn− 1

2

)
dσdsdθ +

τ2

8

∫ 1

0

∫ θ

−θ
∂2
t ∂

2
xE

ε
(
xj ,

sτ

2
+ tn− 1

2

)
dsdθ

+

(
A−1
h δ2

x

Eε(xj , tn−1) + Eε(xj , tn)

2
− ∂2

xE
ε(xj , tn−1) + ∂2

xE
ε(xj , tn)

2

)
− τ2

16
(N ε (xj , tn−1) +N ε (xj , tn))

∫ 1

0

∫ θ

−θ
∂2
tE

ε
(
xj , sτ/2 + tn−1/2

)
dsdθ

− τ2

8
Eε
(
xj , tn−1/2

) ∫ 1

0

∫ θ

−θ
∂2
tN

ε
(
xj , sτ/2 + tn−1/2

)
dsdθ.

For the third term in the last equality of (3.3.12), we have

Ah
(
A−1
h δ2

xE
ε(xj, tn)− ∂2

xE
ε(xj, tn)

)
= δ2

xE
ε(xj, tn)−Ah∂2

xE
ε(xj, tn)

= − h4

240
∂6
xE

ε(ζj, tn), (3.3.13)

for some ζj ∈ (xj−1, xj+1). Therefore, we have the following bound∣∣∣∣A−1
h δ2

x

Eε(xj, tn−1) + Eε(xj, tn)

2
− ∂2

xE
ε(xj, tn−1) + ∂2

xE
ε(xj, tn)

2

∣∣∣∣ . h4
∥∥∂6

xE
ε
∥∥
L∞(ΩT )

.
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Under assumption (3.A), we have

|ηε,nj | .h4
∥∥∂6

xE
ε
∥∥
∞ + τ 2

(∥∥∂3
tE

ε
∥∥
∞ +

∥∥∂2
t ∂

2
xE

ε
∥∥
∞

+‖N ε‖∞
∥∥∂2

tE
ε
∥∥
∞ + ‖Eε‖∞

∥∥∂2
tN

ε
∥∥
∞

)
.h4 +

τ 2

ε2−α† .

(3.3.14)

Similarly, we have

|ξε,nj | .h4
(∥∥∂6

xN
ε
∥∥
∞ +

∥∥∂6
x|Eε|2

∥∥
∞

)
+ τ 2

(
ε2
∥∥∂4

tN
ε
∥∥
∞ +

∥∥∂2
t ∂

2
xN

ε
∥∥
∞

)
.h4 +

τ 2

ε2−α† . (3.3.15)

Apply δ+
x and δt to (3.3.8) and (3.3.9) respectively, we have

|δ+
x η

ε,n
j | .h4

∥∥∂7
xE

ε
∥∥
∞ + τ 2

(∥∥∂3
t ∂xE

ε
∥∥
∞ +

∥∥∂2
t ∂

3
xE

ε
∥∥
∞ + ‖∂xN ε‖∞

∥∥∂2
tE

ε
∥∥
∞

+‖N ε‖∞
∥∥∂2

t ∂xE
ε
∥∥
∞ + ‖∂xEε‖∞

∥∥∂2
tN

ε
∥∥
∞ + ‖Eε‖∞

∥∥∂2
t ∂xN

ε
∥∥
∞

)
.h4 +

τ 2

ε2−α† ,

|δtξε,nj | .h4
(∥∥∂6

x∂tN
ε
∥∥
∞ +

∥∥∂6
x∂t|Eε|2

∥∥
∞

)
+ τ 2

(
ε2
∥∥∂5

tN
ε
∥∥
∞ +

∥∥∂3
t ∂

2
xN

ε
∥∥
∞

)
.

h4

ε1−α∗ +
τ 2

ε3−α† .

Lemma 3.3. Under assumption (3.A) and (3.C), we have the following estimates

for the first step error:

∥∥νε,1∥∥
`2
.

τh4

ε1−α∗ +
τ 3

ε3−α† ,
∥∥δ−t νε,1∥∥`2 . h4

ε1−α∗ +
τ 2

ε3−α† . (3.3.16)

The first estimation in (3.3.16) is from a direct Taylor expansion of N ε(x, t) at

(xj, 0) for (3.2.13). The second estimation is a direct induction of the first one.

In order to give a rigorous error estimate without presumption on the bound-

edness of the numerical solutions, we adopt the cut-off technique to the nonlinear

terms in ZS (3.2.1) as [5, 7, 32] did. We apply the cut-off function onto Eε for

the nonlinear terms N εEε,∆|Eε|2 in (3.2.1) as in [32]. Choose a sooth function



3.3 Error estimates 49

ρ(s) ∈ C∞([0,+∞)) such that

ρ(s) =


1, 0 ≤ s < 1,

∈ [0, 1], 1 ≤ s < 2,

0, s ≥ 2.

(3.3.17)

Let M0 be a uniform upper bound of E(x, t) and Eε(x, t) for all ε ∈ (0, 1] on

ΩT = Ω× (0, T ). For example, choose

M0 = max{‖E(x, t)‖L∞(ΩT ), sup
ε∈(0,1]

‖Eε(x, t)‖L∞(ΩT )}, (3.3.18)

Define the cut-off function for norms

ρB(s) = sρ(s/B), s ≥ 0, (3.3.19)

where B = (1 +M0)2. Let

g(u, v) =

∫ 1

0

ρ′B(θ|u|2 + (1− θ)|v|2)dθ. (3.3.20)

Let Êε,0 = Eε,0, N̂ ε,0 = N ε,0, N̂ ε,1 = N ε,1 and let (Êε,n, N̂ ε,n) be the solution of

a variation of the CSI-4cFD scheme (3.2.9) and (3.2.10):

iδ−t Ê
ε,n
j =

[
−A−1

h δ2
x +

N̂ ε,n
j + N̂ ε,n−1

j

2
g(Êε,n

j , Êε,n−1
j )

]
Êε,n
j + Êε,n−1

j

2
, (3.3.21)

ε2δ2
t N̂

ε,n
j =

1

2
A−1
h δ2

x

(
N̂ ε,n+1
j + N̂ ε,n−1

j

)
+A−1

h δ2
xf
(
|Êε,n

j |2
)
, (3.3.22)

for j ∈ TJ , n ≥ 1. Notice that (Êε,n, N̂ ε,n) is another numerical approximation of

(Eε(xj, tn), N ε(xj, tn)) and is equal to (Eε,n, N ε,n) if the function g(Êε,n
j , Êε,n−1

j ) = 1

in (3.3.21) and ρB

(
|Êε,n

j |2
)

= |Êε,n
j |2 in (3.3.22) for all j, n. Since ρ′B is bounded, we

know ρB and g are Lipschitz functions. Therefore, the system composed by (3.3.21)

and (3.3.22) is uniquely solvable for small time step τ. In the following context, we

will prove the theorem 3.2 and 3.3 type error estimates for (Êε,n, N̂ ε,n) at first.
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3.3.2 An error bound via the energy method

We will show (3.3.3) type error estimate for (Êε,n, N̂ ε,n). Define new error func-

tion êε,n, ν̂ε,n ∈ XJ for n ≥ 0 as

êε,nj = Eε(xj, tn)− Êε,n
j , ν̂ε,nj = N ε(xj, tn)− N̂ ε,n

j , j ∈ T 0
J , (3.3.23)

and local truncation error η̂ε,n, ξ̂ε,n ∈ XJ for the new scheme (3.3.21) and (3.3.22).

η̂ε,nj =iδ−t E
ε(xj, tn) +

[
A−1
h δ2

x −
N ε(xj, tn−1) +N ε(xj, tn)

2
g(Eε(xj, tn−1), Eε(xj, tn))

]
× Eε(xj, tn−1) + Eε(xj, tn)

2
,

ξ̂ε,nj =ε2δ2
tN

ε(xj, tn)−A−1
h δ2

x

(
N ε(xj, tn) +N ε(xj, tn−1)

2
+ f

(
|Eε(xj, tn)|2

))
,

for j ∈ TJ , n ≥ 1.

Under assumption (3.A), we have g(Eε(xj, tn−1), Eε(xj, tn)) = 1 and ρB (|Eε(xj, tn)|2)

= |Eε(xj, tn)|2. Therefore, η̂ε,nj = ηε,nj and ξ̂ε,nj = ξε,nj . As in Lemma 3.2, we have the

following error bounds for η̂ε,n, ξ̂ε,n ∈ XJ :

‖η̂ε,n‖`2 +
∥∥∥ξ̂ε,n∥∥∥

`2
+ |η̂ε,n|1 . h4 +

τ 2

ε2−α† ,
∥∥∥δtξ̂ε,n∥∥∥

`2
.

h4

ε1−α∗ +
τ 2

ε3−α† ,

∥∥ν̂ε,1∥∥
`2
.

τh4

ε1−α∗ +
τ 3

ε3−α† ,
∥∥δ−t ν̂ε,1∥∥`2 . h4

ε1−α∗ +
τ 2

ε3−α† . (3.3.24)

As in the conservation proof of the discrete Hamilton, we introduce the discrete

potential function ûε,n−
1
2 ∈ XJ such that

−A−1
h δ2

xû
ε,n− 1

2
j = δ−t ν̂

ε,n
j , (3.3.25)

for j = 1, · · · , J − 1, n ≥ 1. Note that (3.3.25) and (3.3.24) give the bound of first

layer of ûε ∥∥ûε,1∥∥
`2
.
∥∥δ−t ν̂ε,1∥∥`2 . h4

ε1−α∗ +
τ 2

ε3−α† . (3.3.26)

Subtracting (3.3.21) from (3.3.8) and (3.3.22) from (3.3.9), we get the following

error equations:

iδ−t ê
ε,n
j = −1

2
A−1
h δ2

x(ê
ε,n
j + êε,n−1

j ) + R̂n
j + η̂ε,nj , (3.3.27)

ε2δ2
t ν̂

ε,n
j = A−1

h δ2
x

(
ν̂ε,nj + ν̂ε,n−1

j

2
+ P̂ n

j

)
+ ξ̂ε,nj , (3.3.28)
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for j ∈ TJ , n ≥ 1, with

R̂n
j =

1

4
(N ε (xj, tn) +N ε (xj, tn−1))

× g (Eε (xj, tn) , Eε (xj, tn−1)) (Eε (xj, tn) + Eε (xj, tn−1))

− 1

4
(N ε,n

j +N ε,n−1
j )g(Êε,n

j , Êε,n−1
j )(Êε,n

j + Êε,n−1
j ),

(3.3.29)

P̂ n
j = ρB(|Eε(xj, tn)|2)− ρB(|Êε,n

j |2). (3.3.30)

In order to bound R̂n
j by |êε,nj | and |ν̂ε,nj |’s, we rewrite R̂n

j as a summation of three

differences:

R̂n
j =

1

4
(ν̂ε,nj + ν̂ε,n−1

j )g(Êε,n
j , Êε,n−1

j )(Êε,n
j + Êε,n−1

j )

+
1

4
(N ε(xj, tn) +N ε(xj, tn−1))g(Êε,n

j , Êε,n−1
j )(êε,nj + êε,n−1

j )

+
1

4
(g(Eε(xj, tn), Eε(xj, tn−1))− g(Êε,n

j , Êε,n−1
j ))

× (N ε(xj, tn) +N ε(xj, tn−1))(Eε(xj, tn) + Eε(xj, tn−1)).

(3.3.31)

From the construction of f and g, we know ‖f ′‖∞, ‖f ′′‖∞ are bounded. Therefore

we have

|ρB(|Eε(xj, tn)|2)− ρB(|Êε,n
j |2)| ≤

√
CB|ênj |, (3.3.32)

|g(Eε(xj, tn), Eε(xj, tn−1))− g(Êε,n
j , Êε,n−1

j )| . |ênj |+ |ên−1
j |, (3.3.33)

|ge(Eε(xj, tn), Eε(xj, tn−1))− ge(Êε,n
j , Êε,n−1

j )| . |ênj |+ |ên−1
j |, (3.3.34)

|δ+
x (ge(E

ε(xj, tn), Eε(xj, tn−1))− ge(Êε,n
j , Êε,n−1

j ))| .
n∑

m=n−1

(|êmj |+ |êmj+1|+ |δ+
x ê

m
j |),

(3.3.35)

where ge(u, v) = g(u, v)(u+v), for u, v ∈ C, and CB is a number depending on B and

ρ(·). After combining (3.3.31), (3.3.33) and (3.3.34) and using Cauchy inequality,

we have ∣∣∣R̂n
j

∣∣∣ . ∣∣êε,nj ∣∣+
∣∣êε,n−1
j

∣∣+
∣∣ν̂ε,nj ∣∣+

∣∣ν̂ε,n−1
j

∣∣. (3.3.36)

In order to bound the ‖êε,nj ‖`2 term, multiplying hτ(¯̂eε,nj + ¯̂eε,n−1
j ) on both side of

(3.3.27), summing up for all j, and taking the imaginary part, we have:

‖êε,n‖`2 − ‖ê
ε,n−1‖`2 = τ Im〈R̂n, êε,n + êε,n−1〉+ τ Im〈η̂ε,n, êε,n + êε,n−1〉. (3.3.37)
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In order to bound the |êε,nj |1 term, which is equivalent to |êε,nj |1,∗ as showed in

(2.2.16), multiplying h(¯̂eε,nj − ¯̂eε,n−1
j ) on both side of (3.3.27), summing up for all j,

and taking the real part, we have:

1

2

(
|êε,n|1,∗ − |ê

ε,n−1|1,∗
)

= −Re〈R̂n, êε,n + êε,n−1〉 −Re〈η̂ε,n, êε,n − êε,n−1〉. (3.3.38)

In order to bound the ‖ν̂ε,nj ‖`2 term, multiplying hτ(û
ε,n+ 1

2
j + û

ε,n− 1
2

j ) on both side

of (3.3.27) and summing up for all j, we have:

ε2
(
|ûε,n+ 1

2 |1,∗ − |û
ε,n− 1

2 |1,∗
)

+
1

2

(
‖ν̂ε,n+1‖`2 − ‖ν̂

ε,n−1‖`2
)

+ 〈P̂ n, ν̂ε,n+1 − ν̂ε,n−1〉 = −τ〈ξ̂ε,n, ûε,n+ 1
2 + ûε,n−

1
2 〉.

(3.3.39)

For energy Ŝn defined by

Ŝn =3CB‖êε,n‖2
`2 + 2|êε,n|21,∗ + ε2|ûε,n+ 1

2 |
2

1,∗

+
1

2
‖ν̂ε,n+1‖2

`2 +
1

2
‖ν̂ε,n‖2

`2 + 〈P̂ n, ν̂ε,n+1 + ν̂ε,n〉,
(3.3.40)

3CB(3.3.37) + 4(3.3.38) + (3.3.39) indicates

Ŝn − Ŝn−1 =3CBτ Im〈R̂n, êε,n + êε,n−1〉+ 3CBτ Im〈η̂ε,n, êε,n + êε,n−1〉

+
(
〈P̂ n − P̂ n−1, ν̂ε,n + ν̂ε,n−1〉 − 4 Re〈R̂n, êε,n + êε,n−1〉

)
− 4 Re〈η̂ε,n, êε,n − êε,n−1〉 − τ〈ξ̂ε,n, ûε,n+ 1

2 + ûε,n−
1
2 〉.

(3.3.41)

Note that the coefficient 3CB in Ŝn is designed to make sure

Ŝn ≥ C
(
‖êε,n‖`2 + |êε,n|1,∗ + ‖ν̂ε,n‖`2

)2

for some positive constant C. We have the following lemma to bound each term on

the RHS of (3.3.41).

Lemma 3.4. Under assumption (3.A), we have the following estimates∣∣∣Im〈R̂n, êε,n + êε,n−1〉
∣∣∣ . ‖êε,n‖2

`2 + ‖ν̂ε,n‖2
`2 +

∥∥êε,n−1
∥∥2

`2
+
∥∥ν̂ε,n−1

∥∥2

`2
, (3.3.42)∣∣Im〈η̂ε,n, êε,n + êε,n−1〉

∣∣ . ‖η̂ε,n‖2
`2 + ‖êε,n‖2

`2 +
∥∥êε,n−1

∥∥2

`2
, (3.3.43)∣∣∣〈P̂ n, ν̂ε,n + ν̂ε,n+1〉

∣∣∣ ≤ 2
∥∥∥P̂ n

∥∥∥2

`2
+

1

4

(
‖ν̂ε,n‖2

`2 +
∥∥ν̂ε,n+1

∥∥2

`2

)
, (3.3.44)

∣∣Re〈η̂ε,n, êε,n − êε,n−1〉
∣∣ . τ

(
|η̂ε,n|21,∗ + ‖η̂ε,n‖2

`2 +
n∑
n−1

(‖êε,m‖2
`2 + |êε,m|21,∗ + ‖ν̂ε,m‖2

`2)

)
,

(3.3.45)
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∣∣∣〈P̂ n − P̂ n−1, ν̂ε,n + ν̂ε,n−1〉 − 4 Re〈R̂n, êε,n + êε,n−1〉
∣∣∣

.τ

(
‖η̂ε,n‖2

`2 +
n∑

m=n−1

(
‖êε,m‖2

`2 + |êε,m|21,∗ + ‖ν̂ε,m‖2
`2

))
,

(3.3.46)

and ∣∣∣∣∣τ
n∑

m=1

〈ξ̂ε,m, ûε,m+ 1
2 + ûε,m−

1
2 〉

∣∣∣∣∣ ≤ τ
n−1∑
m=1

(
C
∥∥∥δtξ̂ε,m∥∥∥2

`2
+ ‖ν̂ε,m‖2

`2

)

+
1∑

m=0

(
C
∥∥∥ξ̂ε,m∥∥∥2

`2
+ C

∥∥∥ξ̂ε,n+1−m
∥∥∥2

`2
+ ‖ν̂ε,m‖2

`2 +
∥∥ν̂ε,n+m

∥∥2

`2

)
,

(3.3.47)

with C a constant independent of h, τ and ε.

Proof. The first 4 inequalities are direct from the Cauchy inequality. For any u, v ∈

XJ and any positive constant C, we have

|〈u, v〉| ≤ C

2
‖u‖2

`2 +
1

2C
‖v‖2

`2 . (3.3.48)

Substituting the error equation (3.3.27) into (3.3.44), we have

Re〈η̂ε,n, êε,n − êε,n−1〉 = τ Im〈η̂ε,n,−1

2
A−1
h δ2

x(ê
ε,n + êε,n−1) + R̂n + η̂ε,n〉. (3.3.49)

Then, (3.3.42)-(3.3.45) are direct inference of (3.3.48).

For (3.3.46), from the definition of R̂n
j and P̂ n

j in (3.3.31) and (3.3.30), we have

〈P̂ n − P̂ n−1,ν̂ε,n + ν̂ε,n−1〉 − 4 Re〈R̂n, êε,n + êε,n−1〉

= Re〈(ν̂ε,n + ν̂ε,n−1)Gn
e , E

ε(x, tn)− Eε(x, tn−1)〉

− Re〈(N ε(x, tn) +N ε(x, tn−1))Gn
e , ê

ε,n + êε,n−1〉,

(3.3.50)

where x = (x0 = a, x1, x2, · · · , xJ = b) is the vector of all spatial grid points, and

Gn
e = ge(E

ε(x, tn), Eε(x, tn−1))− ge(Êε,n, Êε,n−1).

From (3.3.34), we have ‖Gn
e‖`2 . ‖êε,n‖`2 + ‖êε,n−1‖`2 . From Cauchy inequality and
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mean value theorem, we get

|Re〈(ν̂ε,n + ν̂ε,n−1)Gn
e , E

ε(x, tn)− Eε(x, tn−1)〉|

.τ‖∂tEε(x, t)‖∞
(
‖êε,n‖2

`2 + ‖ν̂ε,n‖2
`2 +

∥∥êε,n−1
∥∥2

`2
+
∥∥ν̂ε,n−1

∥∥2

`2

)
.τ
(
‖êε,n‖2

`2 + ‖ν̂ε,n‖2
`2 +

∥∥êε,n−1
∥∥2

`2
+
∥∥ν̂ε,n−1

∥∥2

`2

)
,

(3.3.51)

|Re〈(N ε(x, tn) +N ε(x, tn−1))Gn
e , ê

ε,n + êε,n−1〉|

=|τ Im〈(N ε(x, tn) +N ε(x, tn−1))Gn
e ,−

1

2
A−1
h δ2

x(ê
ε,n + êε,n−1) + R̂n + η̂ε,n〉|

.τ

(
‖η̂ε,n‖`2 +

n∑
m=n−1

(
‖êε,m‖2

`2 + ‖ν̂ε,m‖2
`2 + |êε,m|21,∗

))
.

(3.3.52)

Combining (3.3.51) and (3.3.52) together, then we have the bound in (3.3.46).

For (3.3.47), we have the Abel summation:

− τ
n∑

m=1

〈ξ̂ε,m, ûε,m+ 1
2 + û

ε,m− 1
2

j 〉 =
n∑

m=1

〈(δ2
x)
−1Ahξ̂ε,m, ν̂ε,m+1 − ν̂ε,m−1〉 (3.3.53)

=τ
n−1∑
m=2

〈δt(δ2
x)
−1Ahξ̂ε,m, ν̂ε,m〉+

1∑
m=0

〈(δ2
x)
−1Ahξ̂ε,m, ν̂ε,m〉+

n+1∑
m=n

〈(δ2
x)
−1Ahξ̂ε,m, ν̂ε,m〉.

Since (δ2
x)
−1Ahξ̂ε,n ∈ XJ has zero boundary, there exists a positive constant C

independent of h, τ and ε, based on the discrete Poincaré inequality such that∥∥∥(δ2
x)
−1Ahξ̂ε,n

∥∥∥
`2
≤ C

∥∥∥ξ̂ε,n∥∥∥
`2
. (3.3.54)

The estimate (3.3.47) holds for a direct application of Cauchy inequality (3.3.48) to

(3.3.53).

From (3.3.44) and (3.3.32), we get∣∣∣〈P̂ n, ν̂ε,n + ν̂ε,n+1〉
∣∣∣ ≤ 2CB‖êε,n‖2

`2 +
1

4

(
‖ν̂ε,n‖2

`2 +
∥∥ν̂ε,n+1

∥∥2

`2

)
. (3.3.55)

Therefore, the Ŝn defined in (3.3.40) has a lower bound

Ŝn ≥ CB‖êε,n‖2
`2 + |êε,n|21,∗ +

1

4
‖ν̂ε,n‖2

`2 ≥ 0. (3.3.56)
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Summing up (3.3.41) for time steps from 1 to n < T
τ

and applying the estimations

in Lemma 3.4, we obtain

Ŝn ≤Ŝ0 +
1∑

m=0

(
C
∥∥∥ξ̂ε,m∥∥∥2

`2
+ C

∥∥∥ξ̂ε,n+1−m
∥∥∥2

`2
+ ‖ν̂ε,m‖2

`2 +
∥∥ν̂ε,n+m

∥∥2

`2

)
+ Cτ

n∑
m=1

(
‖êε,n‖2

`2 + |êε,n|21,∗ + ‖ν̂ε,n‖2
`2 + ‖η̂ε,n‖2

`2 + |η̂ε,n|21,∗ +
∥∥∥ξ̂ε,n∥∥∥2

`2

)
.

(
h4

ε1−α∗ +
τ 2

ε3−α†

)2

+ τ
n∑

m=1

Ŝm, (3.3.57)

with C a large enough positive number independent of h, τ , and ε. The last inequality

above depends on

Ŝ0 =2|êε,0|21,∗ + ε2|ûε,
1
2 |

2

1,∗ +
1

2
‖ν̂ε,1‖2

`2 + 〈P̂ n, ν̂ε,1 + ν̂ε,0〉

.

(
h4

ε1−α∗ +
τ 2

ε3−α†

)2

.

(3.3.58)

From the discrete Gronwall’s inequality, for sufficiently small τ > 0, we have

Ŝn .

(
h4

ε1−α∗ +
τ 2

ε3−α†

)2

. (3.3.59)

Combining (2.2.16), (3.3.56) and (3.3.59), we get

‖êε,n‖`2 + |êε,n|1 + ‖ν̂ε,n‖`2 . ‖ê
ε,n‖`2 + |êε,n|1,∗ + ‖ν̂ε,n‖`2 .

h4

ε1−α∗ +
τ 2

ε3−α† .

(3.3.60)

3.3.3 Another error bound via the limiting equation

We will show (3.3.4) type error estimate for (Êε,n, N̂ ε,n) in this subsection. Define

the biased error function as

ẽε,nj = E(xj, tn)− Êε,n
j , ν̃ε,nj = N(xj, tn)− N̂ ε,n

j , j ∈ T 0
J , n ≥ 1, (3.3.61)

where N(xj, tn) = −|E(xj, tn)|2. Also define the discrete potential ũε,n−
1
2 ∈ XJ

satisfying ũε,n−
1
2 = −(δ2

x)
−1Ahδ−t ν̃

ε,n
j and define local truncation errors η̃ε,n, ξ̃ε,n ∈



56 Chapter 3. Error Estimate of a 4cFD for ZS

XJ as

η̃ε,nj =iδ−t E(xj, tn) +

[
A−1
h δ2

x −
N(xj, tn−1) +N(xj, tn)

2
g(E(xj, tn−1), E(xj, tn))

]
× E(xj, tn−1) + E(xj, tn)

2
, (3.3.62)

ξ̃ε,nj =ε2δ2
tN(xj, tn)

−A−1
h δ2

x

(
N(xj, tn) +N(xj, tn−1)

2
+ f

(
|E(xj, tn)|2

))
. (3.3.63)

As proved in Lemma 3.2 and 3.3, under assumption (3.A) and (3.B), we have the

following local truncation errors

‖η̃ε,n‖`2 +
∥∥δ+

x η̃
ε,n
∥∥
`2
. h4 + τ 2,

∥∥∥ξ̃ε,n∥∥∥
`2

+
∥∥∥δtξ̃ε,n∥∥∥

`2
. h4 + τ 2 + ε2, (3.3.64)

and∥∥ν̃ε,1∥∥
`2
. τh4 + τ 2 + εα + εβ,

∥∥∥ũε, 12∥∥∥
`2
.
∥∥δ−t ν̃ε,1∥∥`2 . h4 + τ + εα−1 + εβ−1.

(3.3.65)

The differences between (3.3.62),(3.3.63) and (3.3.21),(3.3.22) yield the error func-

tions

iδ−t ẽ
ε,n
j = −1

2
A−1
h δ2

x(ẽ
ε,n
j + ẽε,n−1

j ) + R̃n
j + η̃ε,nj , (3.3.66)

ε2δ2
t ν̃

ε,n
j = A−1

h δ2
x

(
ν̃ε,nj + ν̃ε,n−1

j

2
+ P̃ n

j

)
+ ξ̃ε,nj , (3.3.67)

for j ∈ TJ , n ≥ 1, with R̃n
j and P̃ n

j defined similarly as R̂n
j and P̂ n

j in Section 3.3.2:

R̃n
j =

1

4
(N (xj, tn−1) +N (xj, tn))

× g (E (xj, tn) , E (xj, tn−1)) (E (xj, tn−1) + E (xj, tn))

− 1

4
(N ε,n−1

j +N ε,n
j )g(Êε,n

j , Êε,n−1
j )(Êε,n−1

j + Êε,n
j ),

(3.3.68)

P̃ n
j = f(|E(xj, tn)|2)− f(|Êε,n

j |2). (3.3.69)

Define a discrete energy function

S̃n =3CB‖ẽε,n‖2
`2 + 2|ẽε,n|21,∗ + ε2|ũε,n+ 1

2 |
2

1,∗

+
1

2
‖ν̃ε,n+1‖2

`2 +
1

2
‖ν̃ε,n‖2

`2 + 〈P̃ n, ν̃ε,n+1 + ν̃ε,n〉.
(3.3.70)
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Similar to the procedure in Section 3.3.1, with the discrete Gronwall’s inequality,

we have(
‖ẽε,n‖`2 + |ẽε,n|1,∗ + ‖ν̃ε,n‖`2

)2

. S̃n . (h4 + τ 2 + εα + εβ + ε2)2. (3.3.71)

Combining (3.3.71) with assumption (3.B) and we have

‖êε,n‖`2 + |êε,n|1,∗ + ‖ν̂ε,n‖`2

≤‖ẽε,n‖`2 + |ẽε,n|1,∗ + ‖E(·, tn)− Eε(·, tn)‖H1 + ‖N(·, tn)−N ε(·, tn)‖L2

.h4 + τ 2 + εα
†
.

(3.3.72)

3.3.4 Proof of the main results

Based on the above analysis, we now give the proof of (3.3.3) in Theorem 3.2

and (3.3.7) in Theorem 3.3. For any u ∈ XJ , from the discrete Sobolev inequality,

there exists a constant CΩ depending on the domain Ω such that

‖u‖∞ ≤ CΩ|u|1. (3.3.73)

Under assumption (3.A) and (3.C) and from (3.3.60), we have∥∥∥Êε,n
∥∥∥
∞
≤ ‖Eε(x, t)‖∞ + ‖êε,n‖∞ ≤M0 + 1, (3.3.74)

for small enough h and τ . Then we have Êε,n = Eε,n and N̂ ε,n = N ε,n, since the

equations for Êε,n and N̂ ε,n collapse to (3.2.9) and (3.2.10). From the uniqueness of

the solution of the CSI-4cFD method in Lemma 3.1, we have the boundedness of the

original numerical solutions (Eε,n, N ε,n). Applying the whole estimating procedure

of Section 3.3.1 to eε,n and νε,n, we have the error bound

‖eε,n‖`2 + |eε,n|1 + ‖νε,n‖`2 .
h4

ε1−α∗ +
τ 2

ε3−α† , 0 ≤ n ≤ T

τ
, (3.3.75)

as in (3.3.60).

For well- and less-ill prepared initial data cases, (3.3.75) becomes (3.3.3) since

α∗ = 1. Applying the procedure in Section 3.3.2 to eε,n and νε,n as above, we
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obtain the error bound (3.3.4) in Theorem 3.2 as (3.3.72) with the extra assumption

(3.B). Taking the minimum of (3.3.3) and (3.3.4), followed by taking the supreme

for ε ∈ (0, 1], we have an ε independent error bound:

‖eε,n‖`2 +
∥∥δ+

x e
ε,n
∥∥
`2

+ ‖νε,n‖`2 . h4 + sup
ε∈(0,1]

min{τ 2 + εα
†
,
τ 2

ε3−α† }, 0 ≤ n ≤ T

τ
.

The two terms τ 2 + εα
†

and τ2

ε3−α†
have the same order when τ 2 ∼ ε3, therefore

sup
ε∈(0,1]

min{τ 2 + εα
†
,
τ 2

ε3−α† } . τ 2α†/3. (3.3.76)

For the ill-prepared initial date case, α† = α∗ = min{α, β} < 1, and we get (3.3.7)

from (3.3.75).

3.4 Numerical results

In this section, we present numerical results of the CSI-4cFD scheme (3.2.9) and

(3.2.10) for the ZS (3.2.1). The initial data is chosen as [32]:

E0(x) = e−x
2/2, w0(x) = e−x

2/4, w1(x) = xe−x
2/4. (3.4.1)

The parameter α and β are taken several typical cases:

Case I. A well-prepared initial data, α = 2 and β = 2;

Case II. A less-ill-prepared initial data, α = 1 and β = 1;

Case III. An ill-prepared initial data, α = 0 and β = 0;

Case IV. An ill-prepared initial data, α = 0 and β = 2;

Case V. An ill-prepared initial data, α = 1 and β = 0.5.

During our numerical simulation, the computational domain is fixed to Ω =

(200, 200), such that the error due to the truncation with homogeneous Dirichlet

boundary condition is negligible. The ‘exact solution’ is computed by a finer mesh

or by the time splitting spectral method introduced in [18] with a fine enough mesh

h = 1/32, τ = 10−7.
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In order to quantify the convergence, we use following standard error functions

for the discrete `2-error and H1-error at tn = nτ :

eε`2(tn) = ‖eε,n‖`2 , e
ε
H1(tn) = ‖eε,n‖`2 + |eε,n|1, νε`2(tn) = ‖νε,n‖`2 . (3.4.2)

Tables 3.1-3.5 and Figures 3.1-3.5 show the spatial errors of the 5 cases all converge

at 4-th order. As Table 3.1 and Figure 3.1 show, the spatial convergence rate is

independent of the dimensionless parameter ε for well-prepared initial data, which

coincides well with theorem 3.2. This is also true for the less-ill-prepared initial

data with example Case II showed in Table 3.2 and Figure 3.2. For the ill-prepared

initial data with α = β = 0 in Case III, the convergence rate of νε is reciprocal to ε

as showed in Figure 3.3 (b).

In Figure 3.1 (a), the L2 error lines for N ε are parallel to the dashed reference

line h4, which shows the spatial convergence rates are of fourth order. In the plot of

νε`2 v.s. ε, the error lines become parallel to horizontal axis as ε decreases to zero,

which shows the converge in space is uniform of ε. The error lines for Eε are not

well separated, therefore, we list the convergence tables of the H1 Errors for Eε’s.

In Table 3.1, apart form the fourth order convergence rate detected in each row,

the error in each column will not increase as ε ↓ 0, which shows the spatial error is

uniform of ε. The analysis for the other four groups of initial cases is similar.
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Figure 3.1: Log-log plots of `2 errors of N ε w.r.t h (a) and ε (b) with Case I initial

data.

Table 3.1: Spatial errors of CSI-4cFD at t = 1 for the well-prepared initial data

Case I with ε0 = 1/4, h0 = 0.8 at t = 1.

eεH1(t = 1) h = h0 h = h0/2 h = h0/2
2 h = h0/2

3 h = h0/2
4

ε = ε0 9.85E-2 7.85E-3 5.27E-4 3.29E-5 2.05E-6

Order - 3.65 3.90 4.00 4.01

ε = ε0/2 1.01E-1 8.43E-3 5.42E-4 3.38E-5 2.10E-6

Order - 3.59 3.96 4.00 4.01

ε = ε0/2
2 1.00E-1 8.62E-3 5.58E-4 3.48E-5 2.16E-6

Order - 3.54 3.95 4.00 4.01

ε = ε0/2
3 1.00E-1 8.64E-3 5.60E-4 3.50E-5 2.17E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
4 1.00E-1 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
5 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01
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Figure 3.2: Log-log plots of `2 errors of N ε w.r.t h (a) and ε (b) with Case II initial

data.

Table 3.2: Spatial errors of CSI-4cFD at t = 1 for the less-ill-prepared initial data

Case II with ε0 = 1/4, h0 = 0.8 at t = 1.

eεH1(t = 1) h = h0 h = h0/2 h = h0/2
2 h = h0/2

3 h = h0/2
4

ε = ε0 = 9.80E-2 8.02E-3 5.40E-4 3.37E-5 2.10E-6

Order - 3.61 3.89 4.00 4.01

ε = ε0/2 1.01E-1 8.45E-3 5.46E-4 3.40E-5 2.12E-6

Order - 3.58 3.95 4.00 4.01

ε = ε0/2
2 1.00E-1 8.60E-3 5.56E-4 3.47E-5 2.16E-6

Order - 3.54 3.95 4.00 4.01

ε = ε0/2
3 1.00E-1 8.64E-3 5.60E-4 3.49E-5 2.17E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
4 1.00E-1 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
5 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01
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Table 3.3: Spatial errors of CSI-4cFD at t = 1 for the ill-prepared initial data Case

III with ε0 = 1/4, h0 = 0.8 at t = 1.

eεH1(t = 1) h = h0 h = h0/2 h = h0/2
2 h = h0/2

3 h = h0/2
4

ε = ε0 1.20E-1 1.06E-2 7.00E-4 4.37E-5 2.72E-6

Order - 3.50 3.92 4.00 4.01

ε = ε0/2 1.01E-1 9.95E-3 6.90E-4 4.32E-5 2.69E-6

Order - 3.34 3.85 4.00 4.01

ε = ε0/2
2 9.93E-2 8.50E-3 5.53E-4 3.45E-5 2.15E-6

Order - 3.55 3.94 4.00 4.01

ε = ε0/2
3 9.97E-2 8.61E-3 5.59E-4 3.48E-5 2.17E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
4 9.99E-2 8.64E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
5 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01
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Figure 3.3: Log-log plots of `2 errors of N ε w.r.t h (a) and ε (b) with Case III initial

data.
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Figure 3.4: Log-log plots of `2 errors of N ε w.r.t h (a) and ε (b) with Case IV initial

data.

Table 3.4: Spatial errors of CSI-4cFD at t = 1 for the ill-prepared initial data Case

IV with ε0 = 1/4, h0 = 0.8 at t = 1.

eεH1(t = 1) h = h0 h = h0/2 h = h0/2
2 h = h0/2

3 h = h0/2
4

ε = ε0 9.34E-2 8.50E-3 5.79E-4 3.61E-5 2.25E-6

Order - 3.46 3.88 4.00 4.01

ε = ε0/2 9.64E-2 8.87E-3 5.96E-4 3.72E-5 2.32E-6

Order - 3.44 3.90 4.00 4.01

ε = ε0/2
2 9.82E-2 8.29E-3 5.32E-4 3.31E-5 2.06E-6

Order - 3.57 3.96 4.00 4.01

ε = ε0/2
3 9.94E-2 8.57E-3 5.55E-4 3.46E-5 2.15E-6

Order - 3.54 3.95 4.00 4.01

ε = ε0/2
4 9.98E-2 8.63E-3 5.60E-4 3.49E-5 2.17E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
5 9.99E-2 8.64E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01
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Table 3.5: Spatial errors of CSI-4cFD at t = 1 for the ill-prepared initial data Case

V with ε0 = 1/4, h0 = 0.8 at t = 1.

eεH1(t = 1) h = h0 h = h0/2 h = h0/2
2 h = h0/2

3 h = h0/2
4

ε = ε0 1.03E-1 8.37E-3 5.60E-4 3.49E-5 2.17E-6

Order - 3.63 3.90 4.00 4.01

ε = ε0/2 1.01E-1 8.57E-3 5.55E-4 3.46E-5 2.16E-6

Order - 3.56 3.95 4.00 4.01

ε = ε0/2
2 1.00E-1 8.61E-3 5.58E-4 3.48E-5 2.16E-6

Order - 3.54 3.95 4.00 4.01

ε = ε0/2
3 1.00E-1 8.64E-3 5.60E-4 3.49E-5 2.17E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
4 1.00E-1 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01

ε = ε0/2
5 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6

Order - 3.53 3.95 4.00 4.01
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Figure 3.5: Log-log plots of `2 errors of N ε w.r.t h (a) and ε (b) with Case V initial

data.
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The left part of Figure 3.1-3.5 shows that the spatial error converges in 4-th order

for all types of initial data when ε is fixed. The right part of the figures shows that

only the ill-prepared initial data has spatial errors depending on the dimensionless

parameter ε. These numerical results verify our statements in Theorem 3.2 and 3.3.

Furthermore, the error scales showed in Figures 3.3(b), 3.4(b), 3.5(b) have different

dependent rate −1,−1, and −1
2

on ε. This coincides with the O( h4

ε1−α∗
) spatial error

bounds given in Theorem 3.3, which is a tight spatial error bound depending on ε.

The time convergence test corresponding to Case I-V is showed in Tables 3.6-

3.10. For a fixed ε, the temporal error of each case converges in second order. When

ε decreases to 0, the error eεH1 of Eε(x, t) remains the same scale, but the error νε`2

of N ε(x, t) starts to increase. This situation is more clear for the ill-prepared data.

In Table 3.8, for the last three columns of νε`2 , the error in each row is approximate 8

times of the value of the above row form the line of ε = 1
4
, which shows the temporal

error is of order O(τ 2/ε3) and coincides with Theorem 3.3.
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Figure 3.6: Wave energy (a) and Hamiltonian (b) variation w.r.t. t.

Figure 3.6 shows the variations of discrete wave energy and Hamiltonian for Case

III initials with ε = 1
32

, J = 128, and τ = 0.05. We run the simulation to a long time

T = 40. The variations of wave energy and Hamiltonian are close to the round-off

error of the double precision, which verifies the conservation numerically.
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Table 3.6: Temporal errors of CSI-4cFD at t = 1 for the well-prepared initial data

Case I with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.62E-2 4.77E-3 1.24E-3 3.12E-4 7.81E-5 1.95E-5 4.87E-6

Order - 1.77 1.95 1.99 2.00 2.00 2.00

ε = ε0/2 1.39E-2 4.10E-3 1.06E-3 2.68E-4 6.71E-5 1.68E-5 4.18E-6

Order - 1.76 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
2 1.36E-2 3.97E-3 1.03E-3 2.58E-4 6.45E-5 1.61E-5 4.02E-6

Order - 1.78 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
3 1.44E-2 4.03E-3 1.04E-3 2.62E-4 6.55E-5 1.64E-5 4.08E-6

Order - 1.83 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
4 1.43E-2 4.06E-3 1.05E-3 2.63E-4 6.58E-5 1.65E-5 4.10E-6

Order - 1.82 1.96 1.99 2.00 2.00 2.00

ε = ε0/2
5 1.43E-2 4.07E-3 1.05E-3 2.64E-4 6.60E-5 1.65E-5 4.11E-6

Order - 1.82 1.96 1.99 2.00 2.00 2.00

νε`2 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.67E-3 4.18E-4 1.04E-4 2.61E-5 6.52E-6 1.63E-6 4.09E-7

Order - 2.00 2.00 2.00 2.00 2.00 2.00

ε = ε0/2 4.69E-3 1.20E-3 3.01E-4 7.53E-5 1.88E-5 4.70E-6 1.17E-6

Order - 1.97 1.99 2.00 2.00 2.00 2.00

ε = ε0/2
2 1.29E-2 3.85E-3 9.96E-4 2.51E-4 6.27E-5 1.57E-5 3.91E-6

Order - 1.75 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
3 9.74E-3 3.46E-3 1.38E-3 3.77E-4 9.51E-5 2.38E-5 5.93E-6

Order - 1.50 1.33 1.87 1.99 2.00 2.00

ε = ε0/2
4 8.76E-3 3.97E-3 1.30E-3 4.83E-4 1.52E-4 3.91E-5 9.77E-6

Order - 1.14 1.61 1.43 1.66 1.96 2.00

ε = ε0/2
5 4.30E-3 2.68E-3 1.48E-3 5.87E-4 1.83E-4 6.86E-5 1.86E-5

Order - 6.83E-1 8.55E-1 1.33 1.68 1.42 1.88
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Table 3.7: Temporal errors of CSI-4cFD at t = 1 for the less-ill-prepared initial data

Case II with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.62E-2 4.77E-3 1.24E-3 3.12E-4 7.81E-5 1.95E-5 4.87E-6

Order - 1.77 1.95 1.99 2.00 2.00 2.00

ε = ε0/2 1.45E-2 4.29E-3 1.11E-3 2.80E-4 7.02E-5 1.75E-5 4.37E-6

Order - 1.76 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
2 1.46E-2 4.23E-3 1.09E-3 2.74E-4 6.87E-5 1.72E-5 4.28E-6

Order - 1.79 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
3 1.49E-2 4.17E-3 1.08E-3 2.71E-4 6.77E-5 1.69E-5 4.22E-6

Order - 1.83 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
4 1.47E-2 4.13E-3 1.06E-3 2.67E-4 6.67E-5 1.67E-5 4.15E-6

Order - 1.83 1.96 1.99 2.00 2.00 2.00

ε = ε0/2
5 1.49E-2 4.15E-3 1.06E-3 2.67E-4 6.69E-5 1.67E-5 4.17E-6

Order - 1.84 1.96 1.99 2.00 2.00 2.00

νε`2 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.67E-3 4.18E-4 1.04E-4 2.61E-5 6.52E-6 1.63E-6 4.09E-7

Order - 2.00 2.00 2.00 2.00 2.00 2.00

ε = ε0/2 5.73E-3 1.45E-3 3.65E-4 9.12E-5 2.28E-5 5.70E-6 1.42E-6

Order - 1.98 1.99 2.00 2.00 2.00 2.01

ε = ε0/2
2 1.67E-2 4.69E-3 1.20E-3 3.02E-4 7.55E-5 1.89E-5 4.71E-6

Order - 1.83 1.96 1.99 2.00 2.00 2.00

ε = ε0/2
3 4.12E-2 1.12E-2 3.02E-3 7.73E-4 1.94E-4 4.85E-5 1.21E-5

Order - 1.88 1.89 1.97 2.00 2.00 2.00

ε = ε0/2
4 9.59E-2 3.68E-2 1.03E-2 2.65E-3 6.70E-4 1.68E-4 4.18E-5

Order - 1.38 1.84 1.96 1.98 2.00 2.00

ε = ε0/2
5 9.55E-2 6.30E-2 3.11E-2 9.87E-3 2.56E-3 6.44E-4 1.61E-4

Order - 6.00E-1 1.02 1.66 1.95 1.99 2.00
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Table 3.8: Temporal errors of CSI-4cFD at t = 1 for the ill-prepared initial data

Case III with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.62E-2 4.77E-3 1.24E-3 3.12E-4 7.81E-5 1.95E-5 4.87E-6

Order - 1.77 1.95 1.99 2.00 2.00 2.00

ε = ε0/2 1.71E-2 4.98E-3 1.29E-3 3.25E-4 8.13E-5 2.03E-5 5.07E-6

Order - 1.78 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
2 2.70E-2 7.27E-3 1.85E-3 4.64E-4 1.16E-4 2.90E-5 7.23E-6

Order - 1.90 1.97 2.00 2.00 2.00 2.00

ε = ε0/2
3 2.73E-2 7.72E-3 2.00E-3 5.05E-4 1.26E-4 3.16E-5 7.87E-6

Order - 1.82 1.95 1.99 2.00 2.00 2.00

ε = ε0/2
4 4.28E-2 1.07E-2 2.67E-3 6.67E-4 1.67E-4 4.16E-5 1.04E-5

Order - 2.00 2.00 2.00 2.00 2.00 2.00

ε = ε0/2
5 8.87E-2 2.04E-2 4.99E-3 1.24E-3 3.09E-4 7.72E-5 1.92E-5

Order - 2.12 2.03 2.01 2.00 2.00 2.00

νε`2 τ0 τ0/2 τ0/2
2 τ0/2

2 τ0/2
3 τ0/2

4 τ0/2
5

ε = ε0 1.67E-3 4.18E-4 1.04E-4 2.61E-5 6.52E-6 1.63E-6 4.09E-7

Order - 2.00 2.00 2.00 2.00 2.00 2.00

ε = ε0/2 8.61E-3 2.17E-3 5.44E-4 1.36E-4 3.40E-5 8.49E-6 2.11E-6

Order - 1.99 2.00 2.00 2.00 2.00 2.01

ε = ε0/2
2 4.34E-2 1.12E-2 2.82E-3 7.07E-4 1.77E-4 4.42E-5 1.10E-5

Order - 1.96 1.99 2.00 2.00 2.00 2.00

ε = ε0/2
3 3.10E-1 8.22E-2 2.09E-2 5.24E-3 1.31E-3 3.28E-4 8.17E-5

Order - 1.91 1.98 1.99 2.00 2.00 2.00

ε = ε0/2
4 1.51 5.75E-1 1.60E-1 4.06E-2 1.02E-2 2.55E-3 6.35E-4

Order - 1.39 1.85 1.98 2.00 2.00 2.00

ε = ε0/2
5 3.04 2.00 9.85E-1 3.11E-1 8.05E-2 2.02E-2 5.04E-3

Order - 6.01E-1 1.02 1.66 1.95 1.99 2.00



3.4 Numerical results 69

Table 3.9: Spatial errors for second-order semi-implicit finite difference scheme at

t = 1 of Case III initial data with ε = 1
25

.

h h0 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6 h0/2

7

eεH1(t = 1) 3.74E-1 9.90E-2 2.71E-2 6.88E-3 1.72E-3 4.31E-4 1.08E-4 2.69E-5

Order - 1.92 1.87 1.98 2.00 2.00 2.00 2.00

CPU time (s) 3.72 9.02 2.35E1 6.59E1 2.01E2 5.39E2 1.40E3 4.47E3

Table 3.10: Spatial errors for CSI-4cFD at t = 1 of Case III initial data with ε = 1
25

.

h h0 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5 h0/2
6 h0/2

7

eεH1(t = 1) 9.97E-2 8.61E-3 5.59E-4 3.48E-5 2.18E-6 1.36E-7 8.46E-9 4.98E-10

Order - 3.53 3.95 4.00 4.00 4.00 4.01 4.08

CPU time (s) 3.08 7.48 2.14E1 5.59E1 1.58E2 4.04E2 1.20E3 3.96E3

Table 3.9 and 3.10 provide a comparison between the second-order semi-implicit

finite difference scheme in [32] and our CSI-4cFD. From last rows of the two tables,

we can see the computation cost at a fixed mesh are the same for both methods.

Comparing two consecutive time consumptions in both tables, we find that a spatial

mesh refining will increase the CPU time by a factor around 2.7 for both method-

s. The bold cases in two tables are four groups of experiments that achieve same

numerical error for both methods respectively. The CSI-4cFD reduces the computa-

tional cost a lot to achieve an aimed accuracy comparing to the second order method

since the CSI-4cFD methods has higher spatial convergence rate.



Chapter 4
Uniform Error Estimate of a 4cFD for ZS

4.1 An asymptotic consistent formulation

Consider the Zakharov system (ZS) in d dimensions describing the propagation

of Langmuir waves in plasma,
i∂tE

ε(x, t) + ∆Eε(x, t)−N ε(x, t)Eε(x, t) = 0, x ∈ Rd, t > 0,

ε2∂ttN
ε(x, t)−∆N ε(x, t)−∆ |Eε(x, t)|2 = 0, x ∈ Rd, t > 0,

Eε(x, 0) = E0(x), N ε(x, 0) = N ε
0 (x), ∂tN

ε(x, 0) = N ε
1 (x), x ∈ Rd,

(4.1.1)

where Eε(x, t) is a complex function describing the slowly varying envelope of a high-

frequency plasma field, N ε(x, t) is a real function representing the plasma ion density

fluctuation from its equilibrium position, x is the spatial coordinate, t is the time

coordinate, and ε ∈ (0, 1] is a dimensionless parameter inversely proportional to the

ion acoustic speed. E0(x), N ε
0 (x) and N ε

1 (x) are given initials with N ε
1 (x) satisfying∫

Rd N
ε
1 (x)dx=0. The asymptotic expansion [32] of the solution (Eε(x, t), N ε(x, t))

as ε ↓ 0 is

Eε(x, t) =E(x, t) + ε2E(1)(x, t) + ε3E(2)(x, t) + · · ·

+ ε1+α†U (0)(x, t/ε) + ε1+α∗U (1)(x, t/ε) + · · · , (4.1.2)

N ε(x, t) =− |E(x, t)|2 + ε2N (1)(x, t) + ε3N (2)(x, t) + · · ·

+ εαV (1)(x, t/ε) + εβV (2)(x, t/ε) + εα
∗
V (3)(x, t/ε) +O(ε2), (4.1.3)

70
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with V (1), V (2) satisfying
∂ssV

(1)(x, s)−∆V (1)(x, s) = 0,

V (1)(x, 0) = w0(x),

∂sV
(1)(x, 0) = 0,


∂ssV

(2)(x, s)−∆V (2)(x, s) = 0,

V (2)(x, 0) = 0,

∂sV
(2)(x, 0) = w1(x).

(4.1.4)

The initial data can be classified into well and less-ill prepared (α, β ≥ 1) and ill

prepared (min{α, β} ∈ [0, 1)) cases through considering the leading oscillation in

the density N ε as [2,17,32,82] did. Inspired by the fitting corrector adopted by [2],

we introduce the following asymptotic consistent formulation for the incompatible

initial data as in [16]. Solve a linear wave function Gε(x, t) from
∂ssG

ε(x, s)− 1
ε2

∆Gε(x, s) = 0, x ∈ Rd, s > 0,

Gε(x, 0) = εαw0(x), x ∈ Rd,

∂sG
ε(x, 0) = εβ−1w1(x), x ∈ Rd,

(4.1.5)

and let

F ε(x, t) = |Eε(x, t)|2 +N ε(x, t)−Gε(x, t), x ∈ Rd, t ≥ 0. (4.1.6)

Substituting (4.1.6) into ZS (4.1.1), we get the asymptotic consistent formulation of

ZS: 
i∂tE

ε(x, t) + ∆Eε(x, t) + [|Eε(x, t)|2 −Gε(x, t)− F ε(x, t)]Eε(x, t) = 0,

ε2∂ttF
ε(x, t)−∆F ε(x, t)− ε2∂tt |Eε(x, t)|2 = 0, x ∈ Rd, t > 0,

Eε(x, 0) = E0(x), F ε(x, 0) = 0, ∂tF
ε(x, 0) = 0, x ∈ Rd.

(4.1.7)

Note that the fitting corrector term Gε(x, t) is exactly the union of the first and

second initial layers of N ε(x, t) arising in (4.1.2). It can be solved exactly as long as

the initial data w0 and w1 are given. When ε ↓ 0, the convergence to NLSE (1.2.10)

can be depicted by higher order approximation: Eε(x, t) → Ẽε(x, t) with Ẽε(x, t)

satisfying a nonlinear Schrödinger equation with an oscillatory potential Gε(x, t)

(NLS-OP): i∂tẼ
ε(x, t) + ∆Ẽε(x, t) +

(
|Ẽε(x, t)|2 −Gε(x, t)

)
Ẽε(x, t) = 0,

Eε(x, 0) = E0(x).
(4.1.8)



72 Chapter 4. Uniform Error Estimate of a 4cFD for ZS

[16] proposed a uniform accurate finite difference method for the Zakharov sys-

tem with asymptotic consistent form. They achieved uniform second order spatial

convergence independent of the dimensionless parameter ε. Due to the high speed

outgoing wave from the initial layer [2, 17, 91], the numerical method needs a large

spatial domain of size O(T
ε
), which arouses large computational cost if we need small

h to achieve a required accuracy. Fortunately, the high oscillation in ZS wavelength

of ZS is O(1) on spatial direction provided non-oscillatory initials [16, 32]. and we

are not restrict to use tiny h for spatial resolutions. Therefore, we adopt the 4th

order compact scheme to ZS, by approximating the spatial derivatives at a point

with the same number of nodes as the second order method needs to achieve a higher

accuracy. The computational cost can be reduced a lot with a coarser grid partition

than the second order method for an aimed error.

In this chapter, we apply the fourth order compact finite difference schemes to

the asymptotic preserving formulation. For simplicity, we only show the schemes

and analysis in one spatial dimension. Generalizations to higher dimensions are

straightforward. For numerical computation, we truncate our computational domain

into an interval Ω = (a, b) with zero Dirichlet boundary conditions. The asymptotic

consistent form of ZS (4.1.7) is i∂tE
ε(x, t) + ∂xxE

ε(x, t) + [|Eε(x, t)|2 −Gε(x, t)− F ε(x, t)]Eε(x, t) = 0,

ε2∂ttF
ε(x, t)− ∂xxF ε(x, t)− ε2∂tt |Eε(x, t)|2 = 0, x ∈ Ω, t > 0,

(4.1.9)

with boundary condition Eε(x, 0) = E0(x), F ε(x, 0) = 0, ∂tF
ε(x, 0) = 0, x ∈ Ω,

Eε(x, t)|∂Ω = 0, F ε(x, t)|∂Ω = 0, t ≥ 0,
(4.1.10)

where Gε(x, t) solves
∂ssG

ε(x, s)− 1
ε2
∂xxG

ε(x, s) = 0, x ∈ Ω, s > 0,

Gε(x, 0) = εαω0(x), ∂sG
ε(x, 0) = εβ−1ω1(x), x ∈ Ω,

Gε(x, s)|∂Ω = 0, s ≥ 0.

(4.1.11)
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The rest of this chapter is organized as follows. In Section 4.2, we introduced

the uniform accurate fourth order compact scheme (UA-4cFD) for the asymptotic

consistent formulation. The solvability, stability, and main results on error esti-

mation are also presented. In Section 4.3, the uniform accurate error estimates of

the UA-4cFD, combined by the optimal dependence of spatial and temporal errors

on the small parameter ε, and error bounds through the biased error function are

analysed rigorously. Several numerical simulations are reported in Section 4.4 to

test the convergence rate from the theoretical analysis.

4.2 A uniform accurate 4cFD (UA-4cFD)

4.2.1 The numerical scheme

For mesh size h := (b−a)/J and time step τ := T/N, with J,N positive integers

and T > 0 a fixed time less than the maximum common existence time for the

solutions of (4.1.9). Denote the grid points and time steps as:

xj := a+ jh, j = 0, 1, . . . , J ; tn := nτ, n = 0, 1, . . . , N.

Let TJ = {1, 2, · · · , J−1} and T 0
J = {0, 1, 2, · · · , J} be the index sets of grid points;

let Eε,n
j and F ε,n

j be the numerical approximation of Eε(xj, tn) and F ε(xj, tn) for

j ∈ T 0
J ; and denote the possible solution space as

XJ = {u = (uj)j∈T 0
J

: u0 = uJ = 0} ⊂ CJ+1. (4.2.1)

Apart from the standard finite difference operators as noted in Section 3.2.1, we

introduce two more finite difference operators:

δtu
n
j =

un+1
j − un−1

j

2τ
, δxu

n
j =

unj+1 − unj−1

2h
,

for unj = Eε,n
j or N ε,n

j . Let Ah be the standard fourth order approximation of the

second order derivative as

Ahunj = unj +
h2

12
δ2
xu

n
j , (4.2.2)
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then we have the uniform accurate fourth-order compact scheme (UA-4cFD) [124]

of form:

iδtE
ε,n
j =

[
−A−1

h δ2
x +

F ε,n−1
j + F ε,n+1

j

2
+Gε,n

j −
∣∣Eε,n

j

∣∣2] Eε,n−1
j + Eε,n+1

j

2
, (4.2.3)

ε2δ2
tF

ε,n
j =

1

2
A−1
h δ2

x

(
F ε,n−1
j + F ε,n+1

j

)
+ ε2δ2

t

∣∣Eε,n
j

∣∣2 , j ∈ TJ , n ≥ 1, (4.2.4)

with boundary and initial conditions

Eε,0
j = E0 (xj) , F ε,0

j = 0, j ∈ T 0
J ,

Eε,n
0 = Eε,n

J = 0, F ε,n
0 = F ε,n

J = 0, n ≥ 0,

and first step discretization from the Taylor expansion of (4.1.9) at t = 0:

Eε,1
j = E0(xj) + τφ2(xj) +

τ 2

2
φ3(xj), F

ε,1
j =

τ 2

2
φ4(xj), j ∈ TJ , (4.2.5)

where

φ1(x) := ∂tN
ε(x, 0) = 2 Im(E ′′0 (x)E0(x)),

φ2(x) := ∂tE
ε(x, 0) = i (E ′′0 (x)−N ε

0 (x)E0(x)) ,

φ3(x) := ∂ttE
ε(x, 0) = i (φ′′2(x)−N ε

1 (x)E0(x)−N ε
0 (x)φ2(x)) ,

φ4(x) := ∂ttF
ε(x, 0) = 2 Im

(
φ2(x)E ′′0 (x) + E0(x)φ′′2(x)

)
,

x ∈ Ω. (4.2.6)

In order to ensure the boundedness of N ε,1 constructed from N ε,1 = Gε,1− |Eε,1|2−

F ε,1 for α, β ≥ 0, we adopt the method in [32] and [16] to bound the terms con-

taining εβ−1 in (4.2.5) originating from (1.2.12): using the trigonometric function

sin(τ/ε) which is uniformly bounded for ε ∈ (0, 1]. Then, the first equation of (4.2.5)

becomes:

Eε,1
j =E0(xj) + τφ2(xj) +

iτ 2

2
(φ′′2(xj)− φ1(xj)E0(xj)−N ε

0 (xj)φ2(xj))

− iτεβ

2
sin(

τ

ε
)E0(xj)w1(xj). (4.2.7)

The Gε,n
j can be solved directly by the sine pseudo-spectral method. After sine

transform of the initial values, the amplitude of each mode in time can be integrated
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exactly in the phase space. We have

Gε,n
j =

J−1∑
k=1

sin

(
jkπ

J

)(
εαw̃0k cos

(µk
ε
tn

)
+
εβ

µk
w̃1k sin

(µk
ε
tn

))
, (4.2.8)

where

µk =
kπ

b− a
, w̃0k =

2

J

J−1∑
k=1

w0(xj) sin

(
jkπ

J

)
, w̃1k =

2

J

J−1∑
k=1

w1(xj) sin

(
jkπ

J

)
.

We treat the Gε,n as a source term in the iteration solver of (4.2.3) and (4.2.4). For

simplicity, we introduce time average symbols at time t = tn for a grid function

un ∈ XJ (with n ≥ 0) and a continuous function v(x, t) on ΩT :

[u]nj =
un−1
j + un+1

j

2
, n ≥ 1, j ∈ TJ ;

(v)(x, tn) =
v(x, tn−1) + v(x, tn+1)

2
, x ∈ Ω.

Then, the 4th-order compact schemes (4.2.3) and (4.2.4) become

iδtE
ε,n
j =

(
−A−1

h δ2
x + [F ε]nj +Gε,n

j −
∣∣Eε,n

j

∣∣2) [Eε]nj , (4.2.9)

ε2δ2
tF

ε,n
j = A−1

h δ2
x[F

ε]nj + ε2δ2
t

∣∣Eε,n
j

∣∣2 , j ∈ TJ , n ≥ 1. (4.2.10)

4.2.2 Solvability of the difference equations

As in Lemma 2.1, the solvability of (4.2.3) and (4.2.4) can be proved by the

Brouwer fixed point theorem as in [9, 115].

Lemma 4.1. (Solvability for the UA-4cFD) For any given initial data Eε,0, F ε,0,

Eε,1, F ε,1 ∈ XJ , there exists a unique set of solutions Eε,n and F ε,n to the UA-4cFD

(4.2.3) and (4.2.4) for n > 1.

Proof. Firstly, we will show the solvability of the UA-4cFD. For every j ∈ TJ , we

can rewrite (4.2.9) and (4.2.10) as

[Eε]nj = Eε,n−1
j + iτ

(
A−1
h δ2

x +
∣∣Eε,n

j

∣∣2 − [F ε]nj −G
ε,n
j

)
[Eε]nj , (4.2.11)

[F ε]nj = F ε,n
j +

τ 2

ε2
A−1
h δ2

x[F
ε]nj + [|Eε|2]nj −

∣∣Eε,n
j

∣∣2. (4.2.12)
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Define a continuous map ψn : XJ × YJ → XJ × YJ by

ψn(u, v) = (ψn1 (u, v), ψn2 (u, v)) (4.2.13)

with

(ψn1 (u, v))j = uj − Eε,n−1
j − iτ

(
A−1
h δ2

x +
∣∣Eε,n

j

∣∣2 − vj −Gε,n
j

)
uj,

(ψn2 (u, v))j = vj −
τ 2

ε2
A−1
h δ2

xvj +
∣∣Eε,n

j

∣∣2 − F ε,n
j − 2|uj|2 + 2 Re(ujE

ε,n
j )− 2

∣∣Eε,n
j

∣∣2,
for u ∈ XJ , v ∈ YJ = {v = (v0, v1, · · · , vJ) ∈ RJ+1 : v0 = vj = 0}. Thus, we can

express (4.2.11) and (4.2.12) by

ψn([Eε]n, [F ε]n) = 0. (4.2.14)

Note that

lim
‖u‖`2→∞

Re〈ψn1 (u, v), u〉
‖u‖`2

= +∞ (4.2.15)

since

Re〈ψn1 (u, v), u〉 = ‖u‖2
`2 − Re〈Eε,n−1, u〉 ≥ 1

2

(
‖u‖2

`2 −
∥∥Eε,n−1

∥∥2

`2

)
. (4.2.16)

Similarly, we have

〈ψn2 (u, v), v〉 ≥ ‖v‖2
`2 +

τ 2

ε2
|v|21,∗ − C(u)‖v‖`2 (4.2.17)

and

lim
‖v‖`2→∞

〈ψn2 (u, v), v〉
‖v‖`2

= +∞. (4.2.18)

Combine (4.2.15) and (4.2.18) together, we have

lim
‖u‖`2 ,‖v‖`2→∞

|〈ψn(u, v), (u, v)〉|
‖u‖`2 + ‖v‖`2

= +∞. (4.2.19)

Since ψn is a continuous self mapping on finite dimensional space XJ × YJ , we

know ψn is a surjection from [57]. The Brouwer fixed point theorem [7,66] indicates

that ψn has a preimage (u∗, v∗) for 0, i.e., ψn(u∗, v∗) = 0. Then 2u∗ − Eε,n−1 and

2v∗ − F ε,n−1 are solutions to (4.2.3) and (4.2.4) respectively.
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4.3 Uniform error bounds

Let T ∗ be the maximum common existence time for the solution (Eε(x, t), F ε(x, t))

to the ZS (4.1.9) and the solution Ẽε(x, t) to the corresponding NLS-OP (4.1.8).

For any T ∈ (0, T ∗], as the asymptotic analysis showed, we may assume the ex-

act solution (Eε(x, t), F ε(x, t)) of the ZS (4.1.9) and the exact solution Ẽε(x, t) of

the NLS-OP (4.1.8) are smooth enough and satisfying the homogeneous Dirichlet

boundary conditions with the following assumptions:

‖Eε‖L∞([0,T ];W 7,∞(Ω)) + ‖Eε‖W 1,∞([0,T ];W 3,∞(Ω)) + ε ‖Eε‖W 2,∞([0,T ];W 4,∞(Ω))

+ ε2 ‖Eε‖W 3,∞([0,T ];W 4,∞(Ω)) . 1,∥∥∥Ẽε
∥∥∥
L∞([0,T ];W 7,∞(Ω))

+
∥∥∥Ẽε

∥∥∥
W 1,∞([0,T ];W 3,∞(Ω))

+ ε1−α∗
∥∥∥Ẽε

∥∥∥
W 2,∞([0,T ];W 4,∞(Ω))

. 1,

‖F ε‖L∞([0,T ];W 7,∞(Ω)) . ε2, ‖F ε‖W 1,∞([0,T ];W 2,∞(Ω)) . ε,

‖F ε‖W 2,∞([0,T ];W 3,∞(Ω)) + ε ‖F ε‖W 3,∞([0,T ];W 2,∞(Ω)) + ε2 ‖F ε‖W 4,∞([0,T ];W 3,∞(Ω)) . 1,

(4.A)

where

α∗ = min(1, α, β). (4.3.1)

Under a good initial data assumption

‖E0‖H6(Ω) + ‖w0‖H4(Ω) + ‖w1‖H4(Ω) . 1, (4.B)

we can obtain

‖Gε‖Wm,∞([0,T ],W 3,∞(Ω)) . εα
∗−m, m = 0, 1, 2, 3. (4.3.2)

Define the error functions eε,n, f ε,n ∈ XJ for n ≥ 0 as

eε,nj = Eε(xj, tn)− Eε,n
j , f ε,nj = F ε(xj, tn)− F ε,n

j , j ∈ T 0
J , (4.3.3)

and we have the following error estimates.

4.3.1 Main results

Theorem 4.1. (Error estimates for well-prepared and ill-prepared initial data) As-

sume τ . h and under the assumption (4.A), there exist τ0, h0 > 0 sufficiently
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small and independent of ε such that for any ε ∈ (0, 1], we have the following error

estimate of the UA-4cFD for any τ ∈ (0, τ0], h ∈ (0, h0] :

‖eε,n‖`2 + |eε,n|1 + ‖f ε,n‖`2 . h4 +
τ 2

ε
, 0 ≤ n ≤ T

τ
, (4.3.4)

‖eε,n‖`2 + |eε,n|1 + ‖f ε,n‖`2 . h4 + τ 2 + τεα
∗

+ ε1+α∗ , 0 ≤ n ≤ T

τ
. (4.3.5)

Furthermore, combining (4.3.4) and (4.3.5) together, we have the following uniform

error estimate independent of ε:

for well-prepared and less-ill-prepared initial data (α, β ∈ [1,+∞)),

‖eε,n‖`2 + |eε,n|1 + ‖f ε,n‖`2 . h4 + min{τ 2 + τεα
∗

+ ε2,
τ 2

ε
} . h4 + τ 4/3; (4.3.6)

for ill-prepared initial data (α, β ∈ [0, 1)),

‖eε,n‖`2 + |eε,n|1 + ‖f ε,n‖`2 . h4 + min{τ 2 + εα
∗
(τ + ε),

τ 2

ε
} . h4 + τ 1+ α∗

2+α∗ , (4.3.7)

for 0 ≤ n ≤ T
τ
.

In order to get theorem 4.1, we use the energy method and cut-off technique

to prove the optimal error bound (4.3.4) and use the NLS-OP as a middle term

to prove the error bound (4.3.5). The diagram below shows the two approaches to

estimate the error between (Eε,n, F ε,n) and (Eε, F ε) with the error scales labelled

on each arrow. The first path gives the error bound in (4.3.4) while the second path

gives (4.3.5).

(Eε,n, F ε,n)
O(h4 + τ2

ε )
(Eε, F ε)

O(h 4
+ τ 2

+ τεα∗
+ ε 1+α∗

)
(Ẽε, 0)

O(ε
2 )

Define the local truncation error ηε,n, ξε,n ∈ XJ of UA-4cFD (4.2.3) and (4.2.4)

as

ηε,nj =iδtE
ε(xj, tn)

+
[
A−1
h δ2

x + |Eε(xj, tn)|2 −Gε,n
j − (F ε)(xj, tn)

]
(Eε)(xj, tn), (4.3.8)

ξε,nj =ε2δ2
tF

ε(xj, tn)−A−1
h δ2

x(F
ε)(xj, tn)− ε2δ2

t |Eε(xj, tn)|2 , (4.3.9)
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for j ∈ TJ , n ≥ 1.

Lemma 4.2. Under assumption (4.A), we have

‖ηε,n‖`2 + |ηε,n|1 . h4 +
τ 2

ε
, (4.3.10)

‖ξε,n‖`2 . ε2h4 + τ, (4.3.11)

‖δtξε,n‖`2 . εh4 +
τ 2

ε
. (4.3.12)

Proof. For each n ≥ 1 and j ∈ TJ , take Taylor expansion of Eε(x, t) at point (xj, tn),

and, Eε
xx(x, t) at points (xj, tn+1) and (xj, tn−1) we have

ηε,nj =
i

2τ

∫ tn+1

tn−1

∂tE
ε (xj, s) ds

+
[
A−1
h δ2

x + |Eε(xj, tn)|2 −Gε,n
j − (F ε)(xj, tn)

]
(Eε)(xj, tn)

=
i

2τ

∫ tn+1

tn−1

[(−∂2
xE

ε − |Eε|2Eε + EεF ε) (xj, s) + Eε (xj, s)G
ε (xj, s)]ds

+
[
A−1
h δ2

x + |Eε(xj, tn)|2 − (F ε)(xj, tn)−Gε,n
j

]
(Eε)(xj, tn)

=− τ 2

4

∫ 1

−1

(1− |s|)2∂2
t ∂

2
xE

ε (xj, sτ + tn) ds

+
(
A−1
h δ2

x(E
ε)(xj, tn)− (∂2

xE
ε)(xj, tn)

)
(4.3.13)

+
τ 2

4

∫ 1

−1

(1− |s|)2∂2
t (E

εF ε − |Eε|2Eε) (xj, sτ + tn) ds

+
τ 2

2

(
|Eε(xj, tn)|2 −Gε,n

j − (F ε)(xj, tn)
) ∫ 1

−1

(1− |s|)2∂2
tE

ε (xj, sτ + tn) ds

− τ 2

2
Eε (xj, tn)

∫ 1

−1

(1− |s|)2∂2
t F

ε (xj, sτ + tn) ds

+
1

2τ

∫ tn+1

tn−1

Eε (xj, s)G
ε (xj, s) ds− Eε (xj, tn)Gε,n

j .

For the second term in the last part of (4.3.13), we have

Ah
(
A−1
h δ2

xE
ε(xj, tn)− ∂2

xE
ε(xj, tn)

)
= δ2

xE
ε(xj, tn)−Ah∂2

xE
ε(xj, tn) = − h4

240

∂6Eε(ζj, tn)

∂x6
,

(4.3.14)

for some ζj ∈ (xj−1, xj+1). Therefore, we have the following bound∣∣A−1
h δ2

x(E
ε)(xj, tn)− (∂2

xE
ε)(xj, tn)

∣∣ . h4
∥∥∂6

xE
ε
∥∥
L∞(ΩT )

. (4.3.15)
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Under assumption (4.A), we have

|ηε,nj | .h4
∥∥∂6

xE
ε
∥∥
∞ + τ 2

(∥∥∂2
t ∂

2
xE

ε
∥∥
∞ +

∥∥∂2
t (|Eε|2Eε)

∥∥
∞ + ‖Eε‖∞

∥∥∂2
t F

ε
∥∥
∞

+ (‖∂tGε‖∞ + ‖∂tF ε‖∞) ‖∂tEε‖∞ +
(
‖Eε‖2

∞ + ‖Gε‖∞ + ‖F ε‖∞
) ∥∥∂2

tE
ε
∥∥
∞

)
.h4 +

τ 2

ε
,

(4.3.16)

for j ∈ TJ , 1 ≤ n ≤ T/τ − 1. Similarly, we have

|ξε,nj | .h4
∥∥∂6

xF
ε
∥∥
∞ + τ 2

(
ε2
∥∥∂4

t F
ε
∥∥
∞ + ε2

∥∥∂4
tE

ε
∥∥
∞ +

∥∥∂2
t ∂

2
xF

ε
∥∥
∞

)
.ε2h4 + τ 2,

(4.3.17)

for j ∈ TJ , 1 ≤ n ≤ T/τ − 1. Apply δ+
x and δt to (4.3.8) and (4.3.9) respectively, we

have

|δ+
x η

ε,n
j | .h4

∥∥∂7
xE

ε
∥∥
∞ + τ 2

(∥∥∂t2∂3
xE

ε
∥∥
∞ +

∥∥∂2
t ∂x(|Eε|2Eε)

∥∥
∞ + ‖∂xEε‖∞

∥∥∂2
t F

ε
∥∥
∞

+ (‖∂tGε‖∞ + ‖∂tF ε‖∞) ‖∂t∂xEε‖∞ +
(
‖Eε‖2

∞ + ‖Gε‖∞ + ‖F ε‖∞
) ∥∥∂2

t ∂xE
ε
∥∥
∞

+ ‖Eε‖∞
∥∥∂2

t ∂xF
ε
∥∥
∞ + (‖∂t∂xGε‖∞ + ‖∂t∂xF ε‖∞) ‖∂tEε‖∞

+
(
‖∂xEε‖2

∞ + ‖∂xGε‖∞ + ‖∂xF ε‖∞
) ∥∥∂2

tE
ε
∥∥
∞

)
.h4 +

τ 2

ε
,

for j ∈ TJ , 1 ≤ n ≤ T/τ − 1.

|δtξε,nj | .h4
∥∥∂t∂6

xF
ε
∥∥
∞ + τ 2

(
ε2
∥∥∂5

t F
ε
∥∥
∞ + ε2

∥∥∂5
tE

ε
∥∥
∞ +

∥∥∂3
t ∂

2
xF

ε
∥∥
∞

)
.εh4 +

τ 2

ε
,

for j ∈ TJ , 2 ≤ n ≤ T/τ − 2.

Lemma 4.3. Under assumptions (4.A) and (4.B), we have the following estimates

for the first step errors:

eε,0 = 0,
∣∣eε,1∣∣+

∣∣δ+
x e

ε,1
∣∣ . τ 2

ε
,
∣∣eε,1∣∣ . τ 3

ε2
,
∣∣δ+
t e

ε,0
∣∣ . τ 2

ε2
,

f ε,0 = 0,
∣∣f ε,1∣∣ . τ 3

ε
,
∣∣δ+
t f

ε,0
∣∣ . τ 2

ε
.

(4.3.18)

The first row estimation in (4.3.18) is from a direct Taylor expansion of Eε(x, t) at

(xj, 0) for (4.2.7); the second row is from the fact f̂ ε,0 = 0 and the Taylor expansion

of F ε(x, t) at (xj, 0).
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4.3.2 An error bound via the energy method

In order to give the error bound without prior assumptions on the boundedness

of our numerical solutions, we adopt the cut-off technique to the nonlinear terms in

ZS (4.1.9) as [5, 16] did. We apply the cut-off function onto Eε for the nonlinear

terms |Eε|2 and F εEε in (4.1.9) as in [16] and [32]. Choose a sooth function ρ(s) ∈

C∞([0,+∞)) such that

ρ(s) =


1, 0 ≤ s ≤ 1,

∈ (0, 1), 1 < s < 2,

0, s ≥ 2.

(4.3.19)

Let M0 be a uniform upper bound of E(x, t) and Eε(x, t) for ε on ΩT = Ω× (0, T ).

For example, choose

M0 = max{‖E(x, t)‖L∞(ΩT ), sup
ε∈(0,1]

∥∥∥Ẽε(x, t)
∥∥∥
L∞(ΩT )

}, (4.3.20)

Define the cut-off function for norms

ρB(s) = sρ(s/B), s ≥ 0, (4.3.21)

where B = (1 +M0)2. Let

g(u, v) =

∫ 1

0

ρ′B(θ|u|2 + (1− θ)|v|2)dθ =
ρB(|u|2)− ρB(|v|2)

|u|2 − |v|2
. (4.3.22)

Let Êε,0 = Eε,0, F̂ ε,0 = F ε,0, Êε,1 = Eε,1 and F̂ ε,1 = F ε,1. Choose (Êε,n, F̂ ε,n)

to be the solution of a variation of the UA-4cFD (4.2.3) and (4.2.4) with cut-off

nonlinearity:

iδtÊ
ε,n
j =

[
−A−1

h δ2
x +Gε,n

j +
(
−ρB

(
|Êε,n

j |2
)

+ [F̂ ε]nj
)
g(Êε,n−1

j , Êε,n+1
j )

]
[Êε,n

j ],

(4.3.23)

ε2δ2
t F̂

ε,n
j = A−1

h δ2
x[F̂

ε]nj + ε2δ2
t ρB

(
|Êε,n

j |2
)
, (4.3.24)

for j ∈ TJ , n ≥ 1. Notice that (Êε,n, F̂ ε,n) is another approximation of (Eε(xj, tn),

F ε(xj, tn)) and it is equal to (Eε,n, F ε,n) if the function g(Êε,n−1
j , Êε,n+1

j ) = 1 in
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(4.3.23) and ρB

(
|Êε,n

j |2
)

= |Êε,n
j |2 in (4.3.24) for all j, n. Since ρ′(s) is bounded, we

know ρB and g are Lipschitz functions. Therefore the system composed by (4.3.23)

and (4.3.24) is uniquely solvable for small time step τ. In the following context,

we will prove (3.3.3) type error estimates for (Êε,n, F̂ ε,n) at first. Define the error

functions êε,n, f̂ ε,n ∈ XJ for n ≥ 0 as

êε,nj = Eε(xj, tn)− Êε,n
j , f̂ ε,nj = F ε(xj, tn)− F̂ ε,n

j , j ∈ T 0
J , (4.3.25)

then we have the following error estimate.

Theorem 4.2. (Error estimates from the standard energy method) Assume τ .

h and under the assumption (4.A), there exist τ1, h1 > 0 sufficiently small and

independent of ε such that for any ε ∈ (0, 1], we have the following error estimate

of the UA-4cFD for any τ ∈ (0, τ1], h ∈ (0, h1] :

‖êε,n‖`2 + |êε,n|1 +
∥∥∥f̂ ε,n∥∥∥

`2
. h4 +

τ 2

ε
, 0 ≤ n ≤ T

τ
. (4.3.26)

Subtracting (4.3.23) from (4.3.8) and (4.3.24) from (4.3.9), we get the following

error equations:

iδtê
ε,n
j =

(
−A−1

h δ2
x +Gε,n

j

)
[êε]nj + R̂n

j + η̂ε,nj , (4.3.27)

ε2δ2
t f̂

ε,n
j = A−1

h δ2
x[f̂

ε]nj + ε2δ2
t P̂

n
j + ξ̂ε,nj , (4.3.28)

for j ∈ TJ , n ≥ 1, with

R̂n
j =

(
(F ε)(xj, tn)− |Eε(xj, tn)|2

)
(Eε)(xj, tn)

+
(
ρB(|Êε,n

j |2)− [F̂ ε]nj
)
g
(
Êε,n+1
j , Êε,n−1

j

)
,

(4.3.29)

P̂ n
j = ρB(|Eε(xj, tn)|2)− ρB(|Êε,n

j |2). (4.3.30)

In order to bound R̂n
j by |êε,nj | and |f̂ ε,nj |’s, we rewrite R̂n

j as summation differences:

R̂n
j = qn1 + qn2 , (4.3.31)

with qn1 , q
n
2 ∈ XJ defined by

qn1,j =
(
(F ε)(xj, tn)− |Eε(xj, tn)|2

) (
(Eε)(xj, tn)− g

(
Êε,n+1
j , Êε,n−1

j

))
,

qn2,j = −
(
P̂ n
j − [F̂ ε]nj

)
g
(
Êε,n+1
j , Êε,n−1

j

)
, j ∈ TJ .
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From the construction of ρ and g, we know ‖ρ′B‖∞, ‖ρ′′B‖∞ are bounded. Therefore

we have

|ρB(|Eε(xj, tn)|2)− ρB(|Eε,n
j |2)| ≤

√
CB|ênj |, (4.3.32)

|g(Eε(xj, tn+1), Eε(xj, tn−1))− g(Êε,n+1
j , Êε,n−1

j )| . |ên+1
j |+ |ên−1

j |, (4.3.33)

|ge(Eε(xj, tn+1), Eε(xj, tn−1))− ge(Êε,n+1
j , Êε,n−1

j )| ≤ |ên+1
j |+ |ên−1

j |, (4.3.34)

|δ+
x (ge(E

ε(xj, tn+1), Eε(xj, tn−1))− ge(Êε,n+1
j , Êε,n−1

j ))|

.
∑

m=n±1

(|êmj |+ |êmj+1|+ |δ+
x ê

m
j |), (4.3.35)

where ge(u, v) = g(u, v)(u+v), and CB is a number depending on B and ρ(·). Then,

combining (4.3.31), (4.3.33) and (4.3.34) and using Cauchy inequality, we have∣∣∣R̂n
j

∣∣∣ . ∣∣êε,n+1
j

∣∣+
∣∣êε,nj ∣∣+

∣∣êε,n−1
j

∣∣+
∣∣∣f̂ ε,n+1
j

∣∣∣+
∣∣∣f̂ ε,n−1
j

∣∣∣. (4.3.36)

In order to bound the ‖êε,nj ‖`2 term, multiplying 2hτ(¯̂eε,n+1
j + ¯̂eε,n−1

j ) on both side of

(4.3.27), summing up for all j, and taking the imaginary part, we have:

‖êε,n+1‖`2 − ‖ê
ε,n−1‖`2 = 4τ Im〈R̂n + η̂ε,n, [êε]n〉; (4.3.37)

In order to bound the |êε,nj |1 term, which is equivalent to |êε,nj |1,∗ as argued in (2.2.16),

multiplying 2h(¯̂eε,n+1
j − ¯̂eε,n−1

j ) on both side of (4.3.27), summing up for all j, and

taking the real part, we have:

|êε,n+1|1,∗ − |ê
ε,n−1|1,∗ = −2 Re〈Gε,n[êε]n + R̂n + η̂ε,n, êε,n+1 − êε,n−1〉; (4.3.38)

In order to bound the ‖ν̂ε,nj ‖`2 term, multiplying hτ(û
ε,n+ 1

2
j + û

ε,n− 1
2

j ) on both side

of (4.3.27) and summing up for all j, we have:

ε2
(
|ûε,n+ 1

2 |1,∗ − |û
ε,n− 1

2 |1,∗
)

+
1

2

(
‖f̂ ε,n+1‖`2 − ‖f̂

ε,n−1‖`2
)

= 〈[f̂ ε], 2τδtP̂ n〉+ τ〈ξ̂ε,n, ûε,n+ 1
2 + ûε,n−

1
2 〉.

(4.3.39)

Here, û
ε,n+ 1

2
j is the solution of

−A−1
h δ2

xû
ε,n+ 1

2
j = δ+

t (f̂ ε,nj − P̂ n
j ). (4.3.40)
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For energy Ŝn defined by

Ŝn =CB

(
‖êε,n‖2

`2 +
∥∥êε,n+1

∥∥2

`2

)
+ |êε,n|21,∗ + |êε,n+1|21,∗

+ ε2|ûε,n+ 1
2 |

2

1,∗ +
1

2
‖f̂ ε,n+1‖

2

`2 +
1

2
‖f̂ ε,n‖

2

`2 ,
(4.3.41)

CB(4.3.37) + 4(4.3.38) + (4.3.39) indicates

Ŝn − Ŝn−1 =4τ Im〈R̂n + η̂ε,n, [êε]n〉 − 2 Re〈Gε,n[êε]n + R̂n + η̂ε,n, êε,n+1 − êε,n−1〉

+ 〈[f̂ ε], 2τδtP̂ n〉+ τ〈ξ̂ε,n, ûε,n+ 1
2 + û

ε,n− 1
2

j 〉.
(4.3.42)

Note that the CB coefficient in Ŝn is designed to make sure

Ŝn ≥ CB
2

(
‖êε,n‖2

`2 +
∥∥êε,n+1

∥∥2

`2

)
≥ 〈P̂ n, P̂ n+1〉.

We have the following lemma to bound each term on the RHS of (4.3.42).

Lemma 4.4. Under assumption (4.A), we have the following estimates∣∣∣Im〈R̂n, [êε]n〉
∣∣∣ . Sn + Sn−1, (4.3.43)

|Im〈η̂ε,n, [êε]n〉| . ‖η̂ε,n‖2
`2 + Sn + Sn−1, (4.3.44)

4 Re〈Gε,n[êε]n + R̂n + η̂ε,n, τδtê
ε,n〉 . |η̂ε,n|21,∗ + ‖η̂ε,n‖2

`2 + Sn + Sn−1, (4.3.45)

Re〈R̂n, 4τδtê
ε,n〉 . τ(‖η̂ε,n‖2

`2 + Sn + Sn−1), (4.3.46)∣∣∣Re〈R̂n, 4τδtê
ε,n〉 − 〈[f̂ ε], 2τδtP̂ n〉

∣∣∣ . τ(‖η̂ε,n‖2
`2 + Sn + Sn−1), (4.3.47)

and∣∣∣∣∣− Ŝn4 + τ
n∑

m=1

〈ξ̂ε,m, ûε,m+ 1
2 + ûε,m−

1
2 〉

∣∣∣∣∣ . Ŝ0 + τ
n−1∑
m=2

(∥∥∥δtξ̂ε,m∥∥∥2

`2
+ Ŝm

)

+
2∑

m=1

(∥∥∥ξ̂ε,m∥∥∥2

`2
+
∥∥∥ξ̂ε,n+1−m

∥∥∥2

`2

)
,

(4.3.48)

The proof is mainly based on Cauchy inequality as in Lemma 3.4. (4.3.48) used

the technique of summation by part. Summing up (4.3.42) for time steps from 1 to

n < T
τ

and applying the estimations in Lemma 4.4, we obtain
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Ŝn .Ŝ0 + τ
n−1∑
m=1

Ŝm +
2∑

m=0

(∥∥∥ξ̂ε,m∥∥∥2

`2
+
∥∥∥ξ̂ε,n+1−m

∥∥∥2

`2

)

+ τ

n∑
m=1

(
‖η̂ε,n‖2

`2 + |η̂ε,n|21,∗
)

+ τ

n−1∑
m=2

∥∥∥δtξ̂ε,n∥∥∥2

`2

.

(
h4 +

τ 2

ε

)2

+ τ

n∑
m=1

Ŝm,

(4.3.49)

The last inequality above depends on

Ŝ0 =|êε,0|21,∗ + ε2|ûε,
1
2 |

2

1,∗ +
1

2
‖f̂ ε,1‖

2

`2

.

(
h4 +

τ 2

ε

)2

.

(4.3.50)

From the discrete Gronwall’s inequality, there exists τ1 > 0 such that for 0 < τ ≤ τ1,

we have

Ŝn .

(
h4 +

τ 2

ε

)2

. (4.3.51)

Combine (2.2.16) and (4.3.51) , we get

‖êε,n‖`2 +
∥∥δ+

x ê
ε,n
∥∥
`2

+
∥∥∥f̂ ε,n∥∥∥

`2
. ‖êε,n‖`2 + |êε,n|1,∗ +

∥∥∥f̂ ε,n∥∥∥
`2
. h4 +

τ 2

ε
.

(4.3.52)

4.3.3 Another error bound via the limiting equation

We will show (4.3.5) type error estimate for (Êε,n, F̂ ε,n) in this subsection. Define

the biased error function as

ẽε,nj = E(xj, tn)− Êε,n
j , f̃ ε,nj = 0− F̂ ε,n

j , j ∈ T 0
J , n ≥ 1, (4.3.53)

Theorem 4.3. (Error bound from limiting equation) Assume τ . h and under the

assumption (4.A), there exist τ2, h2 > 0 sufficiently small and independent of ε such

that for any ε ∈ (0, 1], we have the following error estimate of the UA-4cFD for any

τ ∈ (0, τ2], h ∈ (0, h2] :

‖ẽε,n‖`2 +
∣∣δ+
x ẽ

ε,n
∣∣
1

+
∥∥∥f̃ ε,n∥∥∥

`2
. h4 + τ 2 + τεα

∗
+ ε1+α∗ , 0 ≤ n ≤ T

τ
. (4.3.54)
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Define the discrete potential ũε,n−
1
2 ∈ XJ satisfying ũε,n−

1
2 = −(δ2

x)
−1Ahδ−t (f̃ ε,nj −

pnj ) and define local truncation errors η̃ε,n, ξ̃ε,n ∈ XJ :

η̃ε,nj =iδct Ẽ
ε (xj, tn) +

(
A−1
h δ2

x −G
ε,n
j

)
(Ẽε) (xj, tn)

+ ρB

(∣∣∣Ẽε (xj, tn)
∣∣∣2) g (Ẽε (xj, tn+1) , Ẽε (xj, tn−1)

)
=iδct Ẽ

ε (xj, tn) +

(
A−1
h δ2

x +
∣∣∣Ẽε (xj, tn)

∣∣∣2 −Gε,n
j

)
(Ẽε) (xj, tn) (4.3.55)

ξ̃ε,nj =− ε2δ2
t ρB

(∣∣∣Ẽε (xj, tn)
∣∣∣2) = −ε2δ2

t

(∣∣∣Ẽε (xj, tn)
∣∣∣2) , j ∈ TJ (4.3.56)

As proved in Lemma 4.2 and 4.3, under assumption (A) and (B), we have the

following local truncation errors

‖η̃ε,n‖`2 + |η̃ε,n|1 . h4 + τ 2 + τε∗,
∥∥∥ξ̃ε,n∥∥∥

`2
. ε2,

∥∥∥δtξ̃ε,n∥∥∥
`2
. ε1+α∗ , (4.3.57)

and ∥∥∥f̃ ε,1∥∥∥
`2
. τ 2,

∥∥∥ũε, 12∥∥∥
`2
.
∥∥∥δ−t f̃ ε,1∥∥∥

`2
. h4 + τ + εα−1 + εβ−1. (4.3.58)

The differences between (4.3.55),(4.3.56) and (4.3.23),(4.3.24) yield the error func-

tions

iδ−t ẽ
ε,n
j = (−A−1

h δ2
x +Gε,n

j )[ẽε]nj + R̃n
j + η̃j, (4.3.59)

ε2δ2
t f̃

ε,n
j = A−1

h δ2
x[f̃

ε]nj + ε2δ2
t P̃

n
j + ξ̃j, (4.3.60)

for j ∈ TJ , n ≥ 1, with R̃n
j and P̃ n

j defined similar as R̂n
j and P̂ n

j in Section 3.3.2:

R̃n
j =−

∣∣∣Ẽε(xj, tn)
∣∣∣2(Ẽε)(xj, tn)

+
(
ρB(|Êε,n

j |2)− [F̂ ε]nj
)
g
(
Êε,n+1
j , Êε,n−1

j

)
,

(4.3.61)

P̃ n
j = |Ẽε(xj, tn)|2 − ρB(|Êε,n

j |2). (4.3.62)

Define a discrete energy function

S̃n =CB

(
‖ẽε,n‖2

`2 +
∥∥ẽε,n+1

∥∥2

`2

)
+ |ẽε,n|21,∗ + |ẽε,n+1|21,∗

+ ε2|ũε,n+ 1
2 |

2

1,∗ +
1

2
‖f̃ ε,n+1‖2

`2 +
1

2
‖f̃ ε,n‖2

`2 ,
(4.3.63)
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Similar to the procedure in Section 3.3.2, with the discrete Gronwall’s inequality,

we have(
‖ẽε,n‖`2 + |ẽε,n|1,∗ +

∥∥∥f̃ ε,n∥∥∥
`2

)2

. S̃n . (h4 + τ 2 + τεα
∗

+ ε1+α∗)2. (4.3.64)

Combining (4.3.64) with assumption (4.B) and (4.3.2), we have

‖êε,n‖`2 + |êε,n|1,∗ +
∥∥∥f̂ ε,n∥∥∥

`2

≤‖ẽε,n‖`2 + |ẽε,n|1,∗ +
∥∥∥Ê(·, tn)− Eε(·, tn)

∥∥∥
H1

+ ‖F ε(·, tn)‖L2

.h4 + τ 2 + εα
∗
(τ + ε).

(4.3.65)

4.3.4 Proof of the main results

Based on the above analysis, we now give the proof of (4.3.6) and (4.3.7) in

Theorem 4.1. For any u ∈ XJ , from the discrete Sobolev inequality, there exist a

constant CΩ depending on the domain Ω such that

‖u‖∞ ≤ CΩ|u|1. (4.3.66)

Under assumption (4.A) and (4.B) and from (4.3.52), we have∥∥∥Êε,n
∥∥∥
∞
≤ ‖Eε(x, t)‖∞ + ‖êε,n‖∞ ≤M0 + 1, (4.3.67)

for small enough h and τ . Then we have Êε,n = Eε,n and F̂ ε,n = F ε,n, since

the equations for Êε,n and F̂ ε,n collapse to (4.2.3) and (4.2.4). Thus, we have the

boundedness of the original numerical solutions (Eε,n, F ε,n). Applying the whole

estimating procedure of Section 3.3.2 to eε,n and f ε,n, we have the error bounds

(4.3.6) and (4.3.7).

Applying the procedure in Section 4.3.2 to eε,n and f ε,n as above, we have the

error bound (4.3.5) in Theorem 4.1 as (4.3.65) with an extra assumption (B). Taking

the minimum of (4.3.4) and (4.3.5), we have

‖eε,n‖`2 +
∣∣δ+
x e

ε,n
∣∣
1

+ ‖f ε,n‖`2 . h4 + min{τ 2 + εα
∗
(τ + ε),

τ 2

ε
}, (4.3.68)

for 0 ≤ n ≤ T
τ

. Take a common upper bound of RHS independent of ε gives (4.3.7).

When α, β ≥ 1, α∗ is 1 and we get (4.3.6).
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4.4 Numerical results

In this section, we present numerical results of the UA-4cFD (4.2.3, 4.2.4) for

ZS (4.1.9). The initial data is chosen as [32]:

E0(x) = e−x
2/2, w0(x) = e−x

2/4, w1(x) = sin(x)e−x
2/3. (4.4.1)

The parameter α and β are taken several typical cases:

Case I. A well-prepared initial data, α = 2 and β = 2;

Case II. A less-ill-prepared initial data, α = 1 and β = 1;

Case III. An ill-prepared initial data, α = 0 and β = 0;

During our numerical simulation, the computational domain is fixed to Ω =

(200, 200), such that the error due to the truncation with homogeneous Dirichlet

boundary condition is negligible. The ‘exact solution’ is computed by a finer mesh

or by the time splitting spectral method introduced in [18] with a fine enough mesh

h = 1/32, τ = 10−7.

In order to quantify the convergence, we use following standard error functions

as in [32] for the discrete `2-error and H1-error at tn = nτ :

eεL2(tn) = ‖eε,n‖`2 , e
ε
H1(tn) = ‖eε,n‖`2 + |eε,n|1, νεL2(tn) = ‖νε,n‖`2 . (4.4.2)

Tables 4.1-4.3 show the spatial errors of the 3 cases all converge at 4-th order.

As showed in each column of the three table, the error does not increasing when

ε decreases, which means the spatial convergence rate is independent of the di-

mensionless parameter ε for all the initial data, which is exact as in Theorem 4.1.

Table 4.4 to 4.6 have second order time convergence rate for τ much smaller than ε,

which coincide with the error bound in (4.3.4). Although the convergence in time

is disturbed in the resonance region of the temporal error tables, the error scale is

unchanged when ε ↓ 0 with τ fixed, especially for the cases where ε decreases near

to ε0/2
9. This shows that the temporal error of UA-4cFD is uniform for ε.

As in the analysis for (3.3.76), the resonance regions for ZS in subsonic regime

is from the matching τ 2 + εα
∗
(τ + ε) ∼ τ2

ε
raised in (4.3.68). For the well-prepared
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and less-ill prepared initial data, the resonance region is τ = O(ε3/2) from ε3 ∼ τ 2

for α∗ = 1. For the ill prepared initial data, the resonance region is τ = O(ε(2+α∗)/2)

from ε2+α∗ ∼ τ 2. We show the convergence rate in the resonance direction in Table

4.7 - 4.9 for the Case I-III initial data. Corresponding convergence rates in these

tables coincide well with the uniform temporal error bounds stated in Theorem

4.1. For the well-prepared and less-ill-prepared cases, the numerical convergence

rates in Table 4.7 and 4.8 for resonance region are nearly equal to 4/3; for the ill-

prepared case, the numerical convergence rates in Table 4.9 for resonance region are

approximately equal to 1. The errors in Table 4.7 - 4.9 are from the bold case errors

in Table 4.4-4.6.
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Table 4.1: Spatial errors of UA-4cFD at t = 1 for the well-prepared initial data Case

I with ε0 = 1, h0 = 0.8 at t = 1.

eεH1(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 6.69E-2 9.18E-3 6.15E-4 3.84E-5 2.39E-6 1.40E-7

Order - 2.87 3.90 4.00 4.01 4.09

ε = ε0/2 5.49E-2 8.44E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 2.70 3.91 4.00 4.01 4.09

ε = ε0/2
2 9.88E-2 7.85E-3 5.28E-4 3.29E-5 2.05E-6 1.20E-7

Order - 3.65 3.90 4.00 4.01 4.09

ε = ε0/2
3 1.01E-1 8.43E-3 5.42E-4 3.38E-5 2.10E-6 1.23E-7

Order - 3.59 3.96 4.00 4.01 4.09

ε = ε0/2
7 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 3.53 3.95 4.00 4.01 4.09

ε = ε0/2
9 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 3.53 3.95 4.00 4.01 4.09

νεL2(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 4.46E-2 1.67E-3 9.87E-5 6.09E-6 3.78E-7 2.38E-8

Order - 4.74 4.08 4.02 4.01 3.99

ε = ε0/2 4.37E-2 2.60E-3 1.51E-4 9.27E-6 5.75E-7 3.29E-8

Order - 4.07 4.11 4.03 4.01 4.13

ε = ε0/2
2 3.84E-2 2.73E-3 1.61E-4 9.81E-6 6.07E-7 3.64E-8

Order - 3.81 4.09 4.03 4.01 4.06

ε = ε0/2
3 1.85E-2 8.66E-4 5.98E-5 3.65E-6 2.25E-7 1.56E-8

Order - 4.42 3.86 4.03 4.02 3.85

ε = ε0/2
7 1.53E-2 3.85E-4 2.35E-5 1.46E-6 9.08E-8 5.75E-9

Order - 5.31 4.03 4.01 4.01 3.98

ε = ε0/2
9 1.53E-2 3.84E-4 2.34E-5 1.45E-6 9.04E-8 5.34E-9

Order - 5.31 4.04 4.01 4.01 4.08
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Table 4.2: Spatial errors of UA-4cFD at t = 1 for the less-ill-prepared initial data

Case II with ε0 = 1, h0 = 0.8 at t = 1.

eεH1(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 6.69E-2 9.18E-3 6.15E-4 3.84E-5 2.39E-6 1.40E-7

Order - 2.87 3.90 4.00 4.01 4.09

ε = ε0/2 5.56E-2 8.66E-3 5.78E-4 3.60E-5 2.24E-6 1.32E-7

Order - 2.68 3.91 4.00 4.01 4.09

ε = ε0/2
2 1.01E-1 8.02E-3 5.40E-4 3.37E-5 2.10E-6 1.23E-7

Order - 3.65 3.89 4.00 4.01 4.09

ε = ε0/2
3 1.03E-1 8.57E-3 5.51E-4 3.44E-5 2.14E-6 1.25E-7

Order - 3.58 3.96 4.00 4.01 4.09

ε = ε0/2
7 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 3.53 3.95 4.00 4.01 4.09

ε = ε0/2
9 9.99E-2 8.65E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 3.53 3.95 4.00 4.01 4.09

νεL2(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 4.46E-2 1.67E-3 9.87E-5 6.09E-6 3.78E-7 2.38E-8

Order - 4.74 4.08 4.02 4.01 3.99

ε = ε0/2 4.60E-2 2.64E-3 1.53E-4 9.41E-6 5.84E-7 3.30E-8

Order - 4.12 4.11 4.03 4.01 4.14

ε = ε0/2
2 3.93E-2 2.73E-3 1.60E-4 9.80E-6 6.07E-7 3.59E-8

Order - 3.85 4.09 4.03 4.01 4.08

ε = ε0/2
3 1.90E-2 8.73E-4 6.01E-5 3.68E-6 2.26E-7 1.52E-8

Order - 4.44 3.86 4.03 4.02 3.89

ε = ε0/2
7 1.53E-2 3.85E-4 2.35E-5 1.46E-6 9.08E-8 5.75E-9

Order - 5.31 4.03 4.01 4.01 3.98

ε = ε0/2
9 1.53E-2 3.84E-4 2.34E-5 1.45E-6 9.04E-8 5.34E-9

Order - 5.31 4.04 4.01 4.01 4.08
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Table 4.3: Spatial errors of UA-4cFD at t = 1 for the ill-prepared initial data Case

III with ε0 = 1, h0 = 0.8 at t = 1.

eεH1(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 6.69E-2 9.18E-3 6.15E-4 3.84E-5 2.39E-6 1.40E-7

Order - 2.87 3.90 4.00 4.01 4.09

ε = ε0/2 7.45E-2 9.51E-3 6.35E-4 3.96E-5 2.47E-6 1.45E-7

Order - 2.97 3.91 4.00 4.01 4.09

ε = ε0/2
2 1.82E-1 1.10E-2 7.20E-4 4.49E-5 2.79E-6 1.66E-7

Order - 4.05 3.93 4.00 4.01 4.07

ε = ε0/2
3 3.13E-1 1.83E-2 1.14E-3 7.12E-5 4.43E-6 2.61E-7

Order - 4.09 4.01 4.00 4.01 4.09

ε = ε0/2
7 9.97E-2 8.56E-3 5.55E-4 3.46E-5 2.15E-6 1.27E-7

Order - 3.54 3.95 4.00 4.01 4.09

ε = ε0/2
9 9.99E-2 8.64E-3 5.61E-4 3.50E-5 2.18E-6 1.28E-7

Order - 3.53 3.95 4.00 4.01 4.09

νεL2(t = 1) h0 = 0.8 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = ε0 4.46E-2 1.67E-3 9.87E-5 6.09E-6 3.78E-7 2.38E-8

Order - 4.74 4.08 4.02 4.01 3.99

ε = ε0/2 5.33E-2 2.89E-3 1.67E-4 1.03E-5 6.37E-7 3.80E-8

Order - 4.20 4.11 4.03 4.01 4.07

ε = ε0/2
2 7.05E-2 3.21E-3 1.89E-4 1.16E-5 7.19E-7 4.45E-8

Order - 4.46 4.08 4.03 4.01 4.01

ε = ε0/2
3 6.99E-2 2.37E-3 1.43E-4 8.86E-6 5.50E-7 3.13E-8

Order - 4.88 4.05 4.02 4.01 4.14

ε = ε0/2
7 1.51E-2 3.94E-4 2.40E-5 1.49E-6 9.29E-8 5.84E-9

Order - 5.27 4.04 4.01 4.01 3.99

ε = ε0/2
9 1.52E-2 3.85E-4 2.34E-5 1.46E-6 9.05E-8 5.35E-9

Order - 5.31 4.04 4.01 4.01 4.08
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Table 4.4: Temporal errors of UA-4cFD at t = 1 for the well-prepared initial data

Case I with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 4.45E-2 1.64E-2 4.82E-3 1.25E-3 3.14E-4 7.77E-5 1.85E-5

Order - 1.44 1.77 1.95 1.99 2.01 2.07

ε = ε0/2 3.47E-2 1.40E-2 4.14E-3 1.08E-3 2.70E-4 6.69E-5 1.59E-5

Order - 1.30 1.76 1.95 1.99 2.01 2.07

ε = ε0/2
2 2.96E-2 1.22E-2 3.70E-3 9.66E-4 2.43E-4 6.01E-5 1.43E-5

Order - 1.28 1.72 1.94 1.99 2.01 2.07

ε = ε0/2
3 3.63E-2 1.33E-2 3.71E-3 9.55E-4 2.40E-4 5.93E-5 1.41E-5

Order - 1.45 1.84 1.96 1.99 2.01 2.07

ε = ε0/2
7 3.63E-2 1.36E-2 3.87E-3 9.97E-4 2.50E-4 6.19E-5 1.47E-5

Order - 1.42 1.81 1.96 1.99 2.01 2.07

ε = ε0/2
9 3.63E-2 1.36E-2 3.87E-3 9.97E-4 2.50E-4 6.19E-5 1.47E-5

Order - 1.42 1.81 1.96 1.99 2.01 2.07

νεL2(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 2.67E-3 6.73E-4 1.70E-4 4.28E-5 1.07E-5 2.65E-6 6.33E-7

Order - 1.99 1.98 1.99 2.00 2.01 2.07

ε = ε0/2 5.67E-3 1.51E-3 3.85E-4 9.71E-5 2.43E-5 6.01E-6 1.43E-6

Order - 1.91 1.97 1.99 2.00 2.01 2.07

ε = ε0/2
2 1.23E-2 4.15E-3 1.13E-3 2.89E-4 7.25E-5 1.80E-5 4.28E-6

Order - 1.56 1.88 1.97 1.99 2.01 2.07

ε = ε0/2
3 5.72E-3 2.46E-3 1.19E-3 3.55E-4 9.15E-5 2.28E-5 5.44E-6

Order - 1.21 1.05 1.74 1.96 2.01 2.07

ε = ε0/2
5 1.61E-3 9.33E-4 7.05E-4 3.81E-4 1.40E-4 6.06E-5 1.62E-5

Order - 7.87E-1 4.04E-1 8.89E-1 1.44 1.21 1.91

ε = ε0/2
7 1.39E-3 3.45E-4 1.04E-4 6.68E-5 5.91E-5 4.60E-5 2.37E-5

Order - 2.01 1.73 6.40E-1 1.77E-1 3.61E-1 9.57E-1

ε = ε0/2
9 1.39E-3 3.28E-4 8.28E-5 2.08E-5 6.44E-6 4.31E-6 4.21E-6

Order - 2.09 1.99 2.00 1.69 5.79E-1 3.49E-2
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Table 4.5: Temporal errors of UA-4cFD at t = 1 for the less-ill-prepared initial data

Case II with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 4.45E-2 1.64E-2 4.82E-3 1.25E-3 3.14E-4 7.77E-5 1.85E-5

Order - 1.44 1.77 1.95 1.99 2.01 2.07

ε = ε0/2 3.63E-2 1.45E-2 4.31E-3 1.12E-3 2.81E-4 6.96E-5 1.66E-5

Order - 1.32 1.75 1.95 1.99 2.01 2.07

ε = ε0/2
2 3.07E-2 1.25E-2 3.80E-3 9.94E-4 2.50E-4 6.19E-5 1.47E-5

Order - 1.30 1.72 1.94 1.99 2.01 2.07

ε = ε0/2
3 3.72E-2 1.36E-2 3.80E-3 9.78E-4 2.45E-4 6.07E-5 1.45E-5

Order - 1.46 1.83 1.96 1.99 2.01 2.07

ε = ε0/2
7 3.63E-2 1.36E-2 3.87E-3 9.97E-4 2.50E-4 6.19E-5 1.47E-5

Order - 1.42 1.81 1.96 1.99 2.01 2.07

ε = ε0/2
9 3.63E-2 1.36E-2 3.87E-3 9.97E-4 2.50E-4 6.19E-5 1.47E-5

Order - 1.42 1.81 1.96 2.00 2.01 2.07

νεL2(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 2.67E-3 6.73E-4 1.70E-4 4.28E-5 1.07E-5 2.65E-6 6.33E-7

Order - 1.99 1.98 1.99 2.00 2.01 2.07

ε = ε0/2 6.20E-3 1.65E-3 4.20E-4 1.06E-4 2.65E-5 6.57E-6 1.56E-6

Order - 1.91 1.97 1.99 2.00 2.01 2.07

ε = ε0/2
2 1.26E-2 4.21E-3 1.14E-3 2.92E-4 7.33E-5 1.81E-5 4.33E-6

Order - 1.58 1.88 1.97 1.99 2.01 2.07

ε = ε0/2
3 6.09E-3 2.52E-3 1.18E-3 3.53E-4 9.10E-5 2.27E-5 5.41E-6

Order - 1.27 1.09 1.75 1.96 2.01 2.07

ε = ε0/2
5 1.63E-3 9.47E-4 7.14E-4 3.86E-4 1.41E-4 6.05E-5 1.62E-5

Order - 7.85E-1 4.07E-1 8.86E-1 1.45 1.22 1.91

ε = ε0/2
7 1.40E-3 3.48E-4 1.05E-4 6.71E-5 5.93E-5 4.62E-5 2.38E-5

Order - 2.00 1.73 6.45E-1 1.78E-1 3.62E-1 9.57E-1

ε = ε0/2
9 1.39E-3 3.30E-4 8.34E-5 2.10E-5 6.48E-6 4.32E-6 4.21E-6

Order - 2.08 1.98 1.99 1.69 5.86E-1 3.60E-2
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Table 4.6: Temporal errors of UA-4cFD at t = 1 for the ill-prepared initial data

Case III with ε0 = 1, τ0 = 0.05 at t = 1.

eεH1(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 4.45E-2 1.64E-2 4.82E-3 1.25E-3 3.14E-4 7.77E-5 1.85E-5

Order - 1.44 1.77 1.95 1.99 2.01 2.07

ε = ε0/2 4.56E-2 1.66E-2 4.86E-3 1.26E-3 3.16E-4 7.83E-5 1.87E-5

Order - 1.46 1.77 1.95 1.99 2.01 2.07

ε = ε0/2
2 5.47E-2 1.74E-2 5.00E-3 1.29E-3 3.25E-4 8.04E-5 1.91E-5

Order - 1.65 1.80 1.95 1.99 2.01 2.07

ε = ε0/2
3 1.08E-1 3.04E-2 7.94E-3 2.01E-3 5.01E-4 1.24E-4 2.95E-5

Order - 1.84 1.94 1.98 2.00 2.02 2.07

ε = ε0/2
7 5.72E-2 3.40E-2 6.15E-3 1.63E-3 4.19E-4 1.05E-4 2.50E-5

Order - 7.49E-1 2.47 1.92 1.96 2.00 2.07

ε = ε0/2
9 5.60E-2 4.48E-2 1.33E-2 8.19E-3 1.27E-3 3.25E-4 8.01E-5

Order - 3.22E-1 1.75 7.00E-1 2.69 1.96 2.02

νεL2(t = 1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε = ε0 2.67E-3 6.73E-4 1.70E-4 4.28E-5 1.07E-5 2.65E-6 6.33E-7

Order - 1.99 1.98 1.99 2.00 2.01 2.07

ε = ε0/2 7.66E-3 2.03E-3 5.18E-4 1.31E-4 3.27E-5 8.09E-6 1.93E-6

Order - 1.92 1.97 1.99 2.00 2.01 2.07

ε = ε0/2
2 1.64E-2 5.07E-3 1.35E-3 3.45E-4 8.65E-5 2.14E-5 5.10E-6

Order - 1.69 1.90 1.97 2.00 2.01 2.07

ε = ε0/2
3 1.27E-2 4.32E-3 1.46E-3 4.10E-4 1.05E-4 2.60E-5 6.21E-6

Order - 1.56 1.57 1.83 1.97 2.01 2.07

ε = ε0/2
5 7.04E-3 2.92E-3 1.43E-3 6.94E-4 2.37E-4 7.45E-5 1.90E-05

Order - 1.27 1.03 1.04 1.55 1.67 1.97

ε = ε0/2
7 1.29E-2 6.02E-3 1.50E-3 4.86E-4 1.99E-4 9.38E-5 4.31E-5

Order - 1.10 2.01 1.62 1.29 1.09 1.12

ε = ε0/2
9 1.24E-2 1.29E-2 3.12E-3 1.49E-3 3.63E-4 1.02E-4 3.01E-5

Order - -6.59E-2 2.05 1.06 2.04 1.84 1.75
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Table 4.7: Temporal errors of UA-4cFD at t = 1 for the well-prepared initial data

Case I with ε0 = 1, τ0 = 0.05 in resonance regions at t = 1.

τ τ0 τ0/2
3 τ0/2

6

ε ε0/2 ε0/2
3 ε0/2

5

νεL2(t = 1) 5.67E-3 3.55E-4 1.62E-5

Order - 1.33 1.48

Table 4.8: Temporal errors of UA-4cFD at t = 1 for the less-ill-prepared initial data

Case II with ε0 = 1, τ0 = 0.05 in resonance regions at t = 1.

τ τ0 τ0/2
3 τ0/2

6

ε ε0/2 ε0/2
3 ε0/2

5

νεL2(t = 1) 6.20E-3 3.53E-4 1.62E-5

Order - 1.38 1.48

Table 4.9: Temporal errors of UA-4cFD at t = 1 for the ill-prepared initial data

Case III with ε0 = 1, τ0 = 0.05 in resonance regions at t = 1.

τ τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6

ε ε0/2
2 ε0/2

3 ε0/2
4 ε0/2

5 ε0/2
6 ε0/2

7

νεL2(t = 1) 5.07E-3 1.46E-3 5.51E-4 2.37E-4 1.06E-4 4.31E-5

Order - 1.80 1.40 1.22 1.16 1.30



Chapter 5
Quantized Vortex Interactions in NLSE

with Periodic BCs

In this chapter, we will study the interaction of quantized vortices under the non-

linear Schrödinger equation with periodic boundary conditions (BCs). An efficient

way of initial setups is proposed and the numerical simulation results coincide well

with the reduced dynamical laws under the zero initial momentum limit assumption

on flat torus. We also simulate the non-vanishing momentum cases as well as gener-

al rectangle domain cases, which provide us some extending guesses on the reduced

dynamical laws. Some interesting vortex interaction configurations, such as periodic

vortex trajectories, vortex merging, and leapfrogging type motions, are also studied.

5.1 The NLSE in two dimensions

Consider the two-dimensional nonlinear Schrödinger equation (NLSE) or the

Gross–Pitaevskii equation under the periodic BCs with a dimensionless parameter

ε > 0:

i∂tψ
ε(x, t) = ∆ψε +

1

ε2
(1− |ψε|2)ψε, x = (x, y) ∈ Ω, t > 0, (5.1.1)

with initial condition

ψε(x, 0) = ψε0(x), x ∈ Ω, (5.1.2)

97
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and periodic BCs on rectangular domain

Ω = (0, a)× (0, b),

i.e.,ψε(x, 0, t) = ψε(x, b, t), ∂yψ
ε(x, 0, t) = ∂yψ

ε(x, b, t), for x ∈ [0, a], t ≥ 0;

ψε(0, y, t) = ψε(a, y, t), ∂xψ
ε(0, y, t) = ∂xψ

ε(a, y, t), for y ∈ [0, b], t ≥ 0.
(5.1.3)

As mentioned in [36], the NLSE (5.1.1) with periodic BCs has properties of mass

conservation, energy conservation and momentum conservation. With mass, energy

and momentum defined as

M(t) := M(ψε(·, t)) =

∫
Ω

|ψε(x, t)|2dx, (5.1.4)

E(t) := E(ψε(·, t)) =

∫
Ω

[
1

2
|∇ψε(x, t)|2 +

1

4ε2
(1− |ψε(x, t)|2)2]dx, (5.1.5)

P(t) := P(ψε(·, t)) = Im

(∫
Ω

ψ̄ε(x, t)∇ψε(x, t)dx
)
, (5.1.6)

we have

M(t) ≡M(0), E(t) ≡ E(0), and P(t) ≡ P(0). (5.1.7)

Note that for the current j defined by

j(ψε(x, t)) = Im
(
ψ̄ε(x, t)∇ψε(x, t)

)
, (5.1.8)

we have

P(ψε(·, t)) =

∫
Ω

j(ψε(x, t))dx, (5.1.9)

and conservation of mass flow

d

dt
|ψε(x, t)|2 + 2∇ · j(ψε(x, t)) = 0. (5.1.10)

These three conserved quantities in (5.1.7) can be used to validate our numerical

simulations, since they should to be kept in acceptable numerical errors. The NLSE

is also unchanged under the rescaling x → Cx, t → C2t, and ε → Cε with C > 0

a positive constant. Therefore, without loss of generality, we can assume the edge

lengths of Ω are O(1) and then study the influence of ε and vortex center distances

on vortex dynamics.
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5.2 Quantized vortices and setups of initial data

A quantum vortex of the 2D NLSE (5.1.1) is a topological defect of the solution

ψε(x, t), where the density is zero at the vortex center and the phase change along

any closed curve enclosing the vortex center is a nonzero integral multiple of 2π.

And the integer is called degree or winding number of the quantized vortex [21,42].

A simple vortex refers to a vortex with winding numbers ±1 and it is the only kind

of stable vortex under small disturbance of initial data or the potential function in

NLSE [85,128]. Therefore, we only consider simple vortices in following context.

A special property from periodic BCs is that the summation of all winding num-

bers is zero: let arg(z) be the argument of complex number z, and Arg(z) be the

principle argument (between 0 and 2π), then from the periodicity of initial data

(5.1.3), we have ∫
∂Ω

∇arg(ψε0) · τds = 0, (5.2.1)

where τ is the unit tangent vector along ∂Ω, and s is the arc length parameter of

∂Ω.

This exerts a restriction on the vortex configuration of the initial data of our

numerical simulation: we need even number of initial vortices and half of them have

winding number 1 while the other half have winding number −1. We can assume

that the initial data ψε0(x) has 2M distinct simple vortices with center located at

x0
j and winding number dj ∈ {−1, 1} for j = 1, 2, · · · , 2M . For easy description, let

xεj(t) denote the location of j-th vortex center at time t.

We set up the initial profile by multiplying the profile of several simple vortex

in steady state with proper phase tune. The initial value is of form

ψε0(x) = exp(iq(x))
2M∏
j=1

φεdj(x− x0
j), (5.2.2)

where φεdj(x − x0
j) is a single steady vortex profile with winding number dj and

center x0
j for Dirichlet BCs on domain Ω, which has constant modulus near ∂Ω.

And q(x) ∈ R is a phase tune for ψε0(x) that satisfies
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• ∆q(x) = 0;

• ψε0(x) is periodic on Ω.

5.2.1 A single vortex profile under Dirichlet BCs

In [21], there are detailed descriptions of setting initial data φεdj(x − x0
j) for

Dirichlet BCs. At first, we can assume that the single steady solution has radial

symmetric form

φεd(x) = f ε(|x|)eidθ(x) (5.2.3)

with θ(x) = Arg(x+ iy) , d = ±1, and f ε(r) chosen as

f ε(r) =

1, for r > R0,

fv(
r
ε
), for 0 ≤ r ≤ R0,

(5.2.4)

where fv is the solution of[1
r

d
dr

(r d
dr

)− 1
r2

+ (1− (fv(r))
2)]fv(r) = 0, 0 < r < R̃0,

fv(0) = 0, fv(R̃0) = 1.

(5.2.5)

Here R0 is the maximum radius for computing the modulus profile of an initial vortex

and should be less than the distance between initial vortex centers and ∂Ω. R̃0 is

a truncate radius that is far greater than 1 and makes sure that each single vortex

profile φεdj(x− x0
j) has constant modulus near ∂Ω (R̃0 ≤ R0/ε). The proposition of

fv(r) is for calculating (5.2.5) once and working for all initial single vortex profiles

with smaller ε. Equation (5.2.5) is derived from substituting single vortex profile φεd

into NLSE (5.1.1) with the time derivative term eliminated:

∆φεd +
1

ε2
(1− |φεd|2)φεd = 0. (5.2.6)

This is a common handling procedure of the initialization for vortex simulations as

in [3,20,23,65,127,128]. φd in (5.2.6) is called a steady state of a single vortex since

its modulus is time independent. We can discretize (5.2.5) into a finite difference
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scheme and then use Newton iteration to get numerical solutions to (5.2.5) with a

proper initial guess from asymptotic analysis [90, 128]. Here is a plot of f ε(r) for

different ε’s in Figure 5.1, which shows that the core size of our initial setups is O(ε)

clearly.
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Figure 5.1: Plot of f ε(r) for different ε’s.

5.2.2 Conditions on initial data satisfying periodic BCs

After acquiring the Dirichlet boundary type initial value ψεDC(x) =
∏2M

j=1 φ
ε
dj

(x−

x0
j), we can construct a periodic initial value ψε0 through (5.2.2) with solving∆q(x) = 0;

q(x) + Arg(ψεDC(x)) is periodic up to first-order derivatives on Ω.

(5.2.7)
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Note that the solution of q(x) is only unique up to a constant and the periodicity

of phase is up to 2π. Without lost of generality, we may assume
∫

Ω
q(x)dx = 0.

Since the initial data satisfies
∑2M

j=1 dj = 0, we can view the initial data as mul-

tiplication of M vortex dipoles ( a dipole means a system of two single vortices with

opposite winding numbers). Without loss of generality, we may assume the M dipole

has initial profile Ψε
D,j = φε1(|x − x2j−1|)φε−1(|x − x2j|). Since every dipole satisfies

the Dirichlet boundary conditions, we can choose the segment with endpoints at

vortex centers as a branch cut of their phase.

5.2.3 Some setups with zero initial momentum limit

Another observation from our numerical simulation is that without applying

phase in-painting, when the vortex core size converges to zero, the limit of the

initial momentum relies on the weighted mass center [23, 121]

x̄ =
2M∑
j=1

djx
0
j . (5.2.8)

Theorem 5.1 (Initial momentum limit). For a set of initial data ψε0(x) with vortices

centered at x0
j ’s, O(ε) core sizes and Arg(ψε0(x)) continuous on ∂Ω, their initial

momentum satisfies

lim
ε→0

P(ψε0) = 2πJx̄, (5.2.9)

where J =

 0 1

−1 0

 .

Proof. At first, let us consider the limit momentum of a vortex dipole as ε ↓ 0. As

noted in [42], it is easy to verify that if initial value ψε0 is written in polar form

ψε0(x) = ρ(x)eiΘ(x)

with ρ and Θ real functions on Ω, then the current j defined in (5.1.8) has expression

j(ψε0(x)) = ρ2(x)∇Θ(x). (5.2.10)
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For the vortex dipole centered at x0
1 = (x0

1, y
0
1) and x0

2 = (x0
2, y

0
2) with winding

number d1 = 1 and d2 = −1, The module and phase of the initial data in polar form

can have expression

ρ(x) = f ε(
∣∣x− x0

1

∣∣)f ε(∣∣x− x0
2

∣∣), (5.2.11)

Θ(x) = q(x) + θ(x− x0
1)− θ(x− x0

2), (5.2.12)

where θ(x) = Arg(x + iy), lim
ε→0

inf
x∈Bcr0

|f ε(x)| = 1 for some fixed r0 > 0, where Bc
r0

=

Ω\Br0(0) with Br0(0) the ball centered at 0 with radius r0, and q(x) denotes a

continuous differentiable function inside Ω.

Then from (5.2.10) and (5.2.11), we have

lim
ε→0

P(ψε0) =

∫
Ω

∇Θdx, (5.2.13)

provided that the integrands on right hand are integrable.

Note that (5.2.10) is defined locally, we have

∇Θ(x) = ∇θ(x− x0
1)−∇θ(x− x0

2) +∇q(x) (5.2.14)

at place where θ(x − x0
1) − θ(x − x0

2) + q(x) is continuously differentiable. On the

other hand, from the periodic BCs (5.1.3) and small initial momentum condition we

know

q(a, y) + Arg(ψεDC(a, y)) = q(0, y) + Arg(ψεDC(0, y)), (5.2.15)

q(x, b) + Arg(ψεDC(x, b)) = q(x, 0) + Arg(ψεDC(x, 0)), (5.2.16)

for ψεDC(x) = f ε(|x− x0
1|)f ε(|x− x0

2|)ei(θ(x−x
0
1)−θ(x−x02)).

Denote I = {λx0
1 + (1− λ)x0

2 : λ ∈ (0, 1)}, then

lim
ε→0

P(ψε0) =

∫
Ω

∇θ(x− x0
1)−∇θ(x− x0

2) +∇q(x)dx

=

∫
Ω\I
∇θ(x− x0

1)−∇θ(x− x0
2) +∇q(x)dx

=

∫
Ω\I
∇θ(x− x0

1)−∇θ(x− x0
2)dx +

∫
Ω

∇q(x)dx.

(5.2.17)
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Due to a phase jump on the segment I, the second component of the last term in

(5.2.17) can be computed by following integration by part:∫ a

0

∫ b

0

∂yq(x)dydx

=

∫ a

0

q(x, y)|by=0dx

=

∫ a

0

Arg(ψεDC(x, y))|0y=bdx

=−
∫ a

0

(∫ l

0

d

dy
Arg(ψεDC(x, y))dy +

(
θ(x− x0

1)− θ(x− x0
2)
)
|l+y=l−

+

∫ a

l

d

dy
Arg(ψεDC(x, y))dy

)
dx

=−
∫

Ω\I
∂yθ(x− x0

1)− ∂yθ(x− x0
2)dx−

∫ a

0

(
θ(x− x0

1)− θ(x− x0
2)
)
|l+y=l−dx

=−
∫

Ω\I
∂yθ(x− x0

1)− ∂yθ(x− x0
2)dx + 2π(x0

1 − x0
2),

(5.2.18)

with l satisfying that (x, l) lies on the segment I, i.e.,

(x0
2 − x0

1)(l − y0
1) = (y0

2 − y0
1)(x− x0

1). (5.2.19)

With similar procedure, we can get∫ a

0

∫ b

0

∂xq(x)dydx = −
∫

Ω\I
∂xθ(x− x0

1)− ∂xθ(x− x0
2)dx− 2π(y0

1 − y0
2), (5.2.20)

Therefore,

lim
ε→0

P = 2πJx̄. (5.2.21)

It is easy to extend the calculation above to any general case of vortex configuration

by considering more vortex dipoles instead of one. And the momentum value comes

from the phase jump on all the segments, each of which links the two vortex centers

in a dipole like I inside Ω.
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5.3 The reduced dynamical laws under zero initial

momentum limit

5.3.1 The reduced dynamical laws (RDLs)

In [41, 42], Colliander and Jerrard gave the reduced dynamical laws (RDLs) for

vortex interactions of the NLSE under periodic BCs, which provides a set of ODEs

describing the motion of vortex centers for ε ↓ 0.

Take Ω = (0, 1)2 to be the computational domain and T2 = S1 × S1 to be the

unitary flat torus. Under three assumptions on the initial conditions [42] including

the zero initial momentum limit condition, i.e.,

lim
ε→0+

∫
Ω

j(ψε0)dx = 0, (5.3.1)

the trajectories of vortex centers converge to solutions of the following ODEs as

ε ↓ 0 : 
dxj(t)

dt
= −2J

2M∑
k=1
k 6=j

dk∇F (xk − xj),

xj(0) = x0
j ,

(5.3.2)

where ∇F (x) =

 ∂xF (x)

∂yF (x)

 , and F (x) is the Green function on the unitary flat

torus that solves

∆F (x) = 2π(δ(x)− 1), x ∈ T2, (5.3.3)

with δ(x) the Dirac function. The Green function F (x) has an analytical expression

by theta function θ1(z) [71]:

F (x, y) = ln |θ1(x+ iy)| − πy2, (5.3.4)

where θ1(z) is an exponentially convergent series

θ1(z) = 2
∞∑
n=0

(−1)ne−π(n+1/2)2 sin((2n+ 1)πz), (5.3.5)
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which benefits the numerical computation a lot.

From (5.3.4) and Figure 5.2 we can see that the F (x) is singular at the origin.

Since ln(x) satisfies

∆ ln |x| = 2πδ(x), (5.3.6)

the difference between ln |x| and F (x) (left part of Figure 5.2) is a smooth func-

tion whose Laplacian equals to −2π in Ω . Therefore ∇F (x) has almost the same

direction as ∇ ln(x) = x/|x|2 where |x| is small. As in [121], we can have the fol-

lowing qualitative description on vortex dynamics from the interaction terms of two

vortices in (5.3.2): two vortices in a vortex dipole move parallelly and two vortices

in a vortex pair (two single vortices with same winding number) rotate about each

other.

Figure 5.2: Plot of F (x) (left); plot of F (x)− ln |x| (right).

5.3.2 Several analytical solutions under specific setups

The ODE system from RDLs is an autonomous system. From considering the

first integral of the system, we can find several analytical solutions. In this part,

we will discuss several periodical analytical solutions for the ODEs from RDLs. For

more general cases, we adopt the standard fourth order Runge-Kutta method (RK4)

to solve the ODEs, which can provide comparison with numerical simulation results
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from solving the NLSE.

Define the Case I initial vortex setup as x0
1 = CΩ + (−α0,−β0)T , x0

2 = CΩ +

(α0,−β0)T ,x0
3 = CΩ + (α0, β0)T , x0

4 = CΩ + (−α0, β0)T , d1 = d3 = 1, d2 = d4 = −1,

with CΩ = (1
2
, 1

2
)T the center of Ω. Note the initial vortex configurations are sym-

metric about CΩ with the considerations of vortex locations and winding numbers.

Lemma 5.1 (A vortex polygon type periodic solution of the RDLs). For initial

value chosen as the Case I setup on Ω = (0, 1)2, the solution of (5.3.2) is x1 =

(1
2
− α(t), 1

2
− β(t))T , x2 = (1

2
+ α(t), 1

2
− β(t))T , x3 = (1

2
+ α(t), 1

2
+ β(t))T , x4 =

(1
2
− α(t), 1

2
+ β(t))T , with (α(t), β(t)) satisfies

f1(α(t), β(t)) = f1(α0, β0), (5.3.7)

where

f1(x, y) = F (2x, 2y)− F (2x, 0)− F (0, 2y). (5.3.8)

Proof. Substituting the initial data into (5.3.2), we get an ODE system:

ẋ1 = −2J∇(−F (x2 − x1) + F (x3 − x1)− F (x4 − x1)),

ẋ2 = −2J∇(F (x1 − x2) + F (x3 − x2)− F (x4 − x2)),

ẋ3 = −2J∇(F (x1 − x3)− F (x2 − x3)− F (x4 − x3)),

ẋ4 = −2J∇(F (x1 − x4)− F (x2 − x4) + F (x3 − x4)),

x1(0) = x0
1, x2(0) = x0

2, x3(0) = x0
3, x4(0) = x0

4.

(5.3.9)

From the symmetry of the initial setting, we can see that the solution is of form

x1 = (1
2
− α(t), 1

2
− β(t))T , x2 = (1

2
+ α(t), 1

2
− β(t))T , x3 = (1

2
+ α(t), 1

2
+ β(t))T ,

x4 = (1
2
− α(t), 1

2
+ β(t))T , and the ODE system (5.3.9) can be reduced to a system

with two variables α(t), β(t).

As in [71], we know the Green function F (x, y) in (5.3.3) is unique up to a

constant, then we get F (±x,±y) = F (x, y) for the F in (5.3.4). Consequently, we
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have

∇F (−x,−y) = −∇F (x, y),

∂xF (−x, y) = −∂xF (x, y),

∂yF (−x, y) = ∂yF (x, y),

∂xF (x,−y) = ∂xF (x, y),

∂yF (x,−y) = −∂yF (x, y).

Substituting the above equalities into (5.3.2) and adding up the equations of ẋ1 and

ẋ2 yields

β̇ = 2Fx(2α, 0)− 2Fx(2α, 2β); (5.3.10)

and adding up the equations of ẋ2 and ẋ3 gives us

α̇ = 2Fy(2α, 2β)− 2Fy(0, 2β). (5.3.11)

Thus we have

d

dt
(F (2α, 2β)− F (2α, 0)− F (0, 2β))

=2(Fy(2α, 2β)− Fy(0, 2β))β̇ − 2(Fx(2α, 0)− Fx(2α, 2β))α̇

=α̇β̇ − β̇α̇ = 0.

(5.3.12)

The solution of (α(t), β(t)) falls on a level set of function f1 in (5.3.8), which is

called the first integral of the system composed by (5.3.11) and (5.3.10).

We solve (5.3.2) with Case I setup for α0 = β0 = 1/8 by RK4 method up to time

T = 0.2. The numerical trajectories with time step τ = 10−4 is showed in the left

part of Figure 5.3, where ‘+’ and ‘−’ sign indicate the position of initial vortex with

winding numbers +1 and −1 respectively. A contour plot of f1 in (5.3.8) is showed

on the middle graph. A orbit of a single vortex from the left picture is one of the

level sets of f1. The last picture shows the convergence of the numerical solution of

(5.3.2) through RK4 to a level set of f1 as τ decreases.
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Figure 5.3: Vortex trajectories of Case I with α0 = β0 = 1/8 (left); contour lines of

f1 (middle); value of f1(α(t), β(t)) with (α, β) solved form x1 in (5.3.9) for different

time step τ (right).

Define Case II initial vortex setup as two vortex dipoles located on the same

straight line: x0
1 = CΩ + (−L1 − L2, 0)T , x0

2 = CΩ + (−L1 + L2, 0)T , x0
3 = CΩ +

(L1 − L2, 0)T , x0
4 = CΩ + (L1 + L2, 0)T , for L1, L2 ∈ (0, 1

2
) satisfying L1 + L2 <

1
2
,

d1 = d4 = 1, and d2 = d3 = −1.

Lemma 5.2 (A periodic solution with collinear initial vortex centers). For the

Case II type setup with L1 = 1/4, L2 = α0, the periodic solution of (5.3.2) is of form

x1 = (1
4
− α(t), 1

2
− β(t))T , x2 = (1

4
+ α(t), 1

2
− β(t))T , x3 = (3

4
− α(t), 1

2
+ β(t))T ,

x4 = (3
4

+ α(t), 1
2

+ β(t))T with (α(t), β(t)) on the level set of

f2(x, y) = F (2x, 0) + F (
1

2
, 2y)− F (

1

2
− 2x, 2y). (5.3.13)

Remark: The proof is quite similar to Lemma 5.1 and we omit it here. Not like

Case I, the Figure 5.4 shows that the orbits in Lemma 5.2 have two types. One

crosses the boundaries and the other is closed cycle inside Ω. When considered on

T2, a loop for one period in the left chart of Figure 5.4 corresponds to the unitary

element of the fundamental group of T2 while a one-period loop from the middle

chart corresponds to the zero element. Based on numerical solution and binary

search algorithm, we can detect that the bifurcation point for these two kinds of

trajectories is α0 = α∗ ≈ 0.138621.
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Figure 5.4: Two different kinds of trajectories for RDLs and contour lines plots of

f2(x, y) in (5.3.13).

Define an initial setup (Case III) with vortices centered at a regular 2N-side

polygon:

x0
j = CΩ + L

(
cos(

(2j − 1)π

2N
), sin(

(2j − 1)π

2N
)

)
, dj = (−1)j−1, (5.3.14)

for j = 1, 2, · · · , 2N and L ∈ (0, 1/2).

Lemma 5.3 (A vortex octagon type periodic solution of the RDLs). For initial

value chosen as the Case III setup with N = 4, the solution of (5.3.2) is x1 =

CΩ + (−α(t),−β(t))T , x2 = CΩ + (−β(t),−α(t))T , x3 = CΩ + (β(t),−α(t))T , x4 =

CΩ + (α(t),−β(t))T , x5 = CΩ + (α(t), β(t))T , x6 = CΩ + (β(t), α(t))T , x7 = CΩ +

(−β(t), α(t))T , x8 = CΩ+(−α(t), β(t))T , and dj = (−1)j−1, with (α(t), β(t)) satisfies

f3(α(t), β(t)) = f3(α0, β0), (5.3.15)

where

f3(x, y) =F (2x, 2y)− F (2x, 0)− F (0, 2y)− F (x+ y, x+ y) (5.3.16)

− (F (x− y, x− y)− F (x+ y, x− y)− F (x− y, x+ y)).

For the general rectangular domain, there still exist periodic solutions as stated

in Lemma 5.1 and Lemma 5.2. Inspired by the periodic boundary conditions of

the PDE problem, there should be periodic solutions if we duplicate the initial
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vortex configuration several times. If the total vortex number equals to 4N for

some N ∈ N+, there exists some configuration of initial vortices to assure periodic

solutions for the RDLs. One example is stated in following theorem.

Theorem 5.2 (A periodic solution of the RDLs with 4N initial vortices). If the

initial configuration of the 4N vortices are x0
4k−3 = Ck + (−α0,−β0), x0

4k−2 = Ck +

(α0,−β0), x0
4k−1 = Ck + (α0, β0), x0

4k = Ck + (−α0, β0), d4k−3 = d4k−1 = 1 and

d4k−2 = d4k = −1 with Ck = (1/2, 2k−1
2N

), for k = 1, 2, · · ·N, then the vortices

trajectories from the RDLs are of form x4k−3 = Ck + (−α(t),−β(t)),x4k−2 = Ck +

(α(t),−β(t)),x4k−1 = Ck + (α(t), β(t)), and x4k = Ck + (−α(t), β(t)), with α(t) and

β(t) on the level set of function

fp(α, β) =
N∑
k=1

(
F (0,

k − 1

N
− 2β)− F (2α,

k − 1

N
− 2β) + F (2α,

k − 1

N
)

)
. (5.3.17)

The proof is similar to 5.1. Figure 5.5 shows an example for N = 3. The vortex

orbits in the left figure are of the same shape as the level sets of fp in the middle pic-

ture, also the numerical value of fp(α(t), β(t)) corresponding to the orbits converges

to a constant when the time step decreasing.
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Figure 5.5: Vortex trajectories of duplicated initial data with N = 3 (left); contour

line plot of the fp (middle); values of fp(α(t), β(t)) corresponding to the numerical

solutions of the RDLs with different time step sizes (right).
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5.4 Numerical methods

5.4.1 A time splitting Fourier spectral method for NLSE

Since we have periodic boundary condition, Fourier pseudo-spectral method in

space is the first choice for its computational efficiency [13,15,102]. In time direction,

we adopt the standard Strang splitting method as in [4, 14,27,83] as follows.

Let τ > 0 be the time step for numerical simulations and for each (n+1)-th time

step evolution (n ∈ N), split the NLSE (5.1.1) into the following two equations:

i∂tψ
ε(x, t) =

1

ε2
(1− |ψε|2)ψε, x ∈ Ω, (5.4.1)

i∂tψ
ε(x, t) = ∆ψε, x ∈ Ω. (5.4.2)

In each time step evolution, we do following three steps:

1. solve (5.4.1) with initial data ψε(x, tn) = ψεn(x) to t = tn + τ
2
, and denote the

solution at time tn + τ
2

as ψε∗(x);

2. solve (5.4.2) with initial data ψε(x, tn) = ψε∗(x) to time t = tn+1 by Fourier

spectral method, and denote the solution at time tn+1 as ψε∗∗(x);

3. solve (5.4.1) from t = tn+ τ
2

to t = tn+1 with initial data ψε(x, tn+ τ
2
) = ψε∗∗(x)

and take the solution at time tn+1 as ψεn+1(x).

Remarks:

• For the first time evolution step, ψε0(x) is the initial data; for the subsequent

(n+ 1)-th step, the ψεn(x) is the result of n-th step.

• As the splitting operation in [21] pointed out, the special structure of the

nonlinear terms in (5.1.1) determine that the solution ψε of (5.4.1) satisfies

∂t|ψε(x, t)|2 = 0, (5.4.3)

and that there is an analytical solution of (5.4.1):

ψε(x, t) = ψε(x, tn) exp

(
−i(t− tn)

ε2
(1− |ψε(x, tn)|2)

)
, for t ≥ tn,x ∈ Ω.

(5.4.4)
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This unchanged density of (5.4.1) gives us a convenient to combine the last step in n-

th iteration together with the first step in the (n+1)-th to save some computational

resources.

5.4.2 A 4cFD method to prepare the initial data

In the numerical discretization of initial data, we use fourth-order compact finite

difference to approximate ∆q(x) = 0. After rearranging the numerical value of q(x)

on grid points into a vector q, combining the boundary condition in (5.2.7), we can

formulate a linear system of form

Aq = b. (5.4.5)

The matrix A is one rank lower than full rank. Combined with an additional re-

quirement
∑

l ql = 0, we can get a unique q. This is consistent with the continuous

case in (5.2.7) where q(x) is only unique up to a constant. In the following part of

this section, the detailed construction of A and q is presented.

Here we give the numerical scheme for calculating the q(x) on Ω = (0, a)× (0, b)

[22]. For two positive integers J and K, let space-steps be h1 = a/J and h2 = b/K.

Denote xj = jh1, for j ∈ T 0
J = {0, 1, · · · , J}, yk = kh2, for k ∈ T 0

K = {0, 1, · · · , K},

and the spatial grid points Ωh = {(xj, yk) : j ∈ T 0
J , k ∈ T 0

K}. For simplicity, denote

Φ(x, y) = Arg(ψεDC(x, y)), Φ1(x, y) = ∂xΦ(x, y) and Φ2(x, y) = ∂yΦ(x, y). Let qj,k

be the numerical approximation of q(xj, yk) and denote Φj,k = Φ(xj, yk), Φ1
j,k and

Φ2
j,k are defined similarly. We introduce the finite difference operator as in formal

sections

δ+
x uj,k =

uj+1,k − uj,k
h1

, δ−x uj,k =
uj,k − uj−1,k

h1

,

δ2
xuj,k = δ−x δ

+
x uj,k =

uj+1,k − 2uj,k + uj−1,k

h2
1

.

The spatial 4th-order compact finite difference operator Ah1 is defined as

Ah1u
n
j = (I +

h2
1

12
δ2
x)uj,k =

1

12
(uj−1,k + 10uj,k + uj+1,k), j ∈ TJ . (5.4.6)
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Notations of δ+
y , δ−y , δ2

y and Ah2 are denoted similarly. Then, the compact finite

difference discretization of (5.2.7) is

Ah−1
1 δ2

xqj,k +Ah−1
2 δ2

yqj,k = 0, j ∈ TJ , k ∈ TK , (5.4.7)

with equations from the periodic boundary condition

q0,k + Φ0,k = qJ,k + ΦJ,k, k ∈ T 0
K , (5.4.8)

qj,0 + Φj,0 = qj,K + Φj,K , j ∈ T 0
J , (5.4.9)

q1
0,k + Φ1

0,k = q1
J,k + Φ1

J,k, k ∈ T 0
K , (5.4.10)

q2
j,0 + Φ2

j,0 = q2
j,K + Φ2

j,K , j ∈ T 0
J , (5.4.11)

where q1
0,k = 1

h1

(
−11

6
q0,k + 3q1,k − 3

2
q2,k + 1

3
q3,k

)
that comes from a one-side Taylor

expansion for q(x) at (0, yk) to approximate ∂xq(0, yk). Similarly, we have q1
J,k =

1
h1

(
11
6
qJ,k − 3qJ−1,k + 3

2
qJ−2,k − 1

3
qJ−3,k

)
, q2

j,0 = 1
h2

(
−11

6
qj,0 + 3qj,1 − 3

2
qj,2 + 1

3
qj,3
)
,

q2
j,K = 1

h2

(
11
6
qj,K + 3qj,K−1 − 3

2
qj,K−2 + 1

3
qj,K−3

)
. Note that we have (J+1)×(K+1)

unknowns of qj,k and we have (J−1)×(K−1) equations of form (5.4.7) and 2J+2K

equations from (5.4.8)-(5.4.11). Therefore, we can rearrange (5.4.7)-(5.4.11) into a

linear system of form (5.4.5) with A a squared matrix having (J + 1) × (K + 1)

rows. Since (1, 1, · · · , 1) is an eigenvector of A with corresponding eigenvalue 0, we

know rank(A) = (J + 1) × (K + 1) − 1. Form the construction of our ψεDC(x, y)

for periodic initials, we know
∫
∂Ω
∇Φdn = 0 and the summation of elements of b in

(5.4.5) converges to zero as h ↓ 0. Thus we can solve (5.4.5) by least square method

and get a periodic initial phase for vortex dynamics simulations.

5.5 Verification for the RDLs

In our numerical simulation of the NLSE with periodic BCs, we use phase transi-

tion along grid points combined with the convexity of module to detect the position

of vortex centers. Since we have second order accuracy in time and spectral accuracy

in space, our vortex centers position can achieve higher accuracy than the mesh-size
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in space h. We can apply linear interpolation to the numerical value of ψε on grid

points and then apply the detecting rules [20,21,127] to the interpolated numerical

values. In practice, we detect the vortex center to O(h2) accuracy. In following

context, we use xεj(t) and xj(t) to denote the j-th vortex center corresponding to

the NLSE and the RDLs respectively. Let δεj (t) = |xεj(t)− xj(t)| and define

δε(t) = max
j
δεj (t) (5.5.1)

as a measurement of the difference of trajectories between the RDLs and numerical

solutions of the NLSE.

5.5.1 Vortex interactions of 4 vortices

As in section 5.2.3, the simplest configuration of zero initial momentum of simple

vortices needs four vortices with zero weighted mass center (5.2.8). There is a list

of phase and density plot of ψε(x, t) for Case I setup in Figure 5.6. The mesh size

is chosen as h = 1
512

and τ = 5 × 10−7. From t = 0 to t = 0.12, each vortex moves

on a loop with the shape of a square with round corners. The four snapshots are

corresponding to the times when vortices are in corners of each loops.

Figure 5.6: Contour plots of the density (first row) and phase (second row) of ψε(x, t)

with Case I initials and (α0, β0) = (1
8
, 1

8
) at time t = 0, 0.04, 0.08, 0.12 for ε = 1

64
.
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We show the convergence test of Case I setups in Figure 5.7. The left picture

of the first row depicts the vortex center trajectories from the RDLs on Ω. Since

there are some overlaps after one period, we plot the coordinates of 2 representative

vortices w.r.t. time t in the right side picture. The points denoted by ◦, M and ♦ are

corresponding to the positions of vortex centers in Figure 5.6 for t = 0.04, 0.08, and

0.12 respectively. The last row shows the convergence of vortex trajectories from

numerical simulations to RDLs: as ε ↓ 0, δε in (5.5.1) decreases to zero.
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Figure 5.7: Convergence test for the Case I setup with (α0, β0) = (1
8
, 1

8
).

The three charts in Figure 5.8 are vortex trajectories form numerical simulation

with Case I setups with (α0, β0) = ( 1
16
, 1

16
), (1

8
, 1

8
) and ( 3

16
, 3

16
).

Although we have periodic orbits for solutions of the RDLs, the numerical simu-

lation will not preserve the periodic pattern for a long time simulation. The reason

is that the periodic orbits come from symmetry and they are not stable. We can

see this by solving (5.3.2) with initial values x0
j ’s perturbed a little bit. The corre-

sponding trajectories are showed in Figure 5.9.
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Figure 5.8: Vortex trajectories detected form numerical simulation for ε = 1
128

.
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Figure 5.9: Trajectories from the RDLs with O( 1
1000

), O( 1
500

), and O( 1
100

) perturba-

tions on the initial position of vortices in Case I setup with (α0, β0) = (1
8
, 1

8
).

Numerical simulations on Case II setups

We simulate vortex interactions with collinear initial data of Case II setups and

show the convergence test in Figure 5.12. The first row shows the periodicity solution

of RDLs and the trajectory plots coincide well with the level sets in Figure 5.7. The

second row shows the convergence of vortex trajectories from numerical simulations

to RDLs very well. In Figure 5.10 and 5.11, snapshots of density plots are listed to

show a period of vortex motions with Case II setups. Artificial lines of vortex center

trajectories are added to the density plots for a good understanding of vortex center

motions.

As mentioned in Section 5.3.2, the solution of the RDLs has two topological types

for L1 = 1
4
. One kind has orbits crossing the boundary y = 1, y = 0 and the other

kind does not. If we view the two kinds of orbits on T2, they belong to different
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Figure 5.10: Density plots of Case II type setups with (L1, L2) = (1
4
, 1

8
), ε = 1

64
.

Figure 5.11: Density plots of Case II type setups with (L1, L2) = (1
4
, 3

16
), ε = 1

128
.
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Figure 5.12: Convergence test on some Case II type setups with (L1, L2) =

(1
4
, 1

8
), (1

4
, 3

16
) and ( 3

16
, 1

8
) (from left to right).

homotopy classes of loops. A loop moves through an orbit in the first picture of

Figure 5.12 once is isomorphic to (1, 0) of the fundamental group of T2, and a loop

moves through an orbit in the second picture is isomorphic to 0. When L2 is small,

the vortex dipole interaction effect takes control and the trajectories are almost two

paralleling moving vortex dipoles; when L2 is large, the vortex pair interaction effect

dominates and the trajectories are almost two rotated vortex pairs. Since ODEs are

easier to solve rather than PDEs, we can study the critical L2 as a parameter for

bifurcation. We get the critical L2 = 18169/217 with accuracy O( 1
217

) using bisection

method and this result coincides well with the result from the saddle point of f2 in

(5.3.13) up to the fourth decimal place. Two kinds of orbits near the bifurcation

parameter is drawn in Figure 5.13. The left column of the figure plots the axes of

vortex centers w.r.t. time t. For the first case, L2 is less than the critical value and

x2(t) does not intersect with x3(t); the second case has L2 greater than the critical

value and vortices x2 and x3 rotate about each other.
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Figure 5.13: Trajectories from the RDLs of Case II setups with (L1, L2) = (1
4
, 4541

215
)

(first row) and (L1, L2) = (1
4
, 4543

215
) (second row).

We do one challenging simulation to see how the vortex moves if the L2 is near

the bifurcation point. Trajectories of vortex centers detected form the solution of

NLSE and relating convergence test are in Figure 5.14. The trajectories in Figure

5.14 are pretty different from solutions of the RDLs in Figure 5.13. δε(t)’s increase

rapidly This is also reflected from the plots of δε’s which increase a lot after t = 0.1.

This sharp change is due to the intrinsic bifurcation of (5.3.2) with intentionally

constructed initial data we discussed before.
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Figure 5.14: Trajectories from numerical simulations with the same initial setups as

Figure 5.13 for ε = 1
256

(left); corresponding convergence test (right).

5.5.2 Vortex interactions of 6 vortices and beyond

In this section, let us consider vortex interactions of polygonal distributed vor-

tices as the Case III mentioned in Section 5.3.2 with initial vortex profiles satisfying

(5.3.14). For the motion of vortex hexagon of Case III setups with N = 3 and

L = 1/3, we show a series of density plots for the vortex interactions with ε = 1
128

in Figure 5.15. The black dot lines in the density plots are artificial lines to indicate

the continuous motion of vortex centers, which provides better understanding of

the dynamics of vortices, especially for the cases with complex vortex interactions.

The convergence to RDLs as ε ↓ 0 is show in Figure 5.16: the trajectories of vortex

centers converges to the RDLs as ε ↓ 0. Note the discontinuity of δε(t) is due to the
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failure detection of vortex centers who are crossing the boundaries.

Figure 5.15: Density plots of ψε(x, t) for a vortex hexagon with ε = 1
128

at different

instants.
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0
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Figure 5.16: Convergence test on Case III initials of vortex hexagon with L = 1
3
.

To compare with periodic trajectories from RDLs of Case III setup with eight

vortices in Lemma 5.3, we carry a simulation on the interaction of vortex octagons.

Figure 5.17 shows eight snapshots of the density distribution for almost one period.
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Figure 5.17: Density plots of ψε(x, t) for a vortex octagon with ε = 1
64

at different

instants.
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Figure 5.18: Trajectories of the vortex octagon from RDLs up to T = 0.1.
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5.6 Numerical results for the nonzero initial mo-

mentum limit

5.6.1 Numerical results for 2 vortices

As mentioned in section 5.2, a vortex dipole is the most simple configuration of

vortices for periodic BCs. We fist start our simulation of vortex interactions of a

dipole with x0
1 = (1

2
− α0, 1

2
− β0),x0

2 = (1
2

+ α0, 1
2

+ β0), d1 = 1, d2 = −1 (Case IV)

on Ω = (0, 1)2. The ODE for the limiting case of vortex motion is simple due to

less vortex interaction. Based on our numerical simulations, we observed that the

vortex center for the limiting case (ε ↓ 0) is paralleling moving with a fixed speed:

ẋ1 = ẋ2 = −2
(
∇× F(2α0, 2β0) + P0

)
. (5.6.1)

We do the numerical simulation of the NLSE under Case IV setup with (α0, β0) =

(0, 1
8
) for ε = 1

64
, 1

128
and 1

256
up to T = 0.06. Here is a list of snapshots of a vortex

dipole with initial vortex center distance 1
4

on y-axis in Figure 5.19. The vortex

centers move parallelly to the direction of x-axis, and they can cross the boundary

near t=0.052 due to the periodic BCs. In another view, the dipole moves out through

the right boundary and then a new dipole generates from the opposite boundary.

For simplicity, we regard the disappeared vortex dipole and the newly generated as

a same one.

The mass, momentum and energy are showed in the first row of Figure 5.20,

which affirms that the three quantities were well preserved during our simulation.

Since the second component of the momentum is always 0, we only plot the first com-

ponent of it. The third chart shows the relative energy define by E(t) = E(t)/E(0)

for ε = 1
64

. Although the relative kinetic and potential energies (EK and Ep respec-

tively) vary a little bit, they are in a steady state during the motion which differs a

lot with the merging case. The second row of Figure 5.20 shows the trajectories of

limiting vortex centers from our observation in Ω (left) and w.r.t. time t (middle),

and the last chart shows the maximum distance between xεj(t)’s and xj(t)’s. The
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δε(t) decreases as ε decreases, which shows the converges to (5.6.1) clearly.

Figure 5.19: Contour plots of the density (first row) and phase (second row) of

ψε(x, t) at 4 moments with ε = 1
64

.

0 0.01 0.02 0.03 0.04 0.05 0.06
t

0.988

0.99

0.992

0.994

0.996

0.998

1

M

0 0.01 0.02 0.03 0.04 0.05 0.06
t

-1.57

-1.56

-1.55

-1.54

-1.53

-1.52

-1.51

P
1

0 0.01 0.02 0.03 0.04 0.05 0.06
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1
x

0

0.5

1

y

+

-
0 0.01 0.02 0.03 0.04 0.05 0.06

t

0

0.5

1

x

x
1

x
2

0 0.01 0.02 0.03 0.04 0.05 0.06
t

0

0.5

1

y

y
1

y
2

0 0.01 0.02 0.03 0.04 0.05 0.06
t

0

0.5

1

1.5

2

2.5

3

10-3

Figure 5.20: Mass, momentum and relative energy plots for Case IV initial setups

with initial vortices distance 1
4

(first row); limiting vortex center trajectories from

(5.6.1) and convergence test (second row).

RDLs describe the limiting case of vortex center motions as ε ↓ 0 only suitable for
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well separated initial vortices. There are notations about merger of vortices both in

physical experiment [25,29,101] and theoretical studies [67]. Figure 5.21 presents an

example of merging dipole snapshots for Case IV initials with ε = 1/16 and vortex

center distance 3ε. The two vortices are overlapped at the initial moment. As time

involved, the vortex dipole moves right as the well separated case in Figure 5.19 but

with vortex centers moving toward each other. Finally, the two vortices merged at

t = 0.0125, which can be see from the fourth phase plot. Vortex trajectories from

numerical detection are showed in Figure 5.22. The critical merger distance denoted

as δc, i.e. the maximum distance for vortices in a dipole that can merge, depends

on ε [21] and the shape of vortex [96]. We studied the critical distance numerically

and got a the relation between δc and ε: δc ≈ 3.55ε. From the plot of δc w.r.t. ε

showed in Figure 5.23, the linear dependency of δc on ε is clear.

Figure 5.21: Contour plots of the density (first row) and phase (second row) of a

merging dipole with ε = 1
16

at 4 moments.
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y coordinates w.r.t. t.
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Figure 5.23: Plot of δc in dipole configurations w.r.t. ε.

5.6.2 Numerical results for 4 vortices

If we put two vortex dipoles parallel to each other as an initial configuration,

they will do the famous leapfrogging type motion [47, 60, 94, 95]: the smaller dipole

(the dipole with smaller vortex center distance) has larger speed and it will pass
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through the larger dipole. Later, the larger dipole will shrink into a smaller one and

then move fast and experience the same motion pattern of smaller dipole again.

Let us define the Case V initial vortex configuration as x0
1 = (x0

1,
1
2
− L1/2)T ,

x0
2 = (x0

2,
1
2
− L2/2)T , x0

3 = (x0
1,

1
2

+ L1/2)T , x0
4 = (x0

2,
1
2

+ L2/2)T , with d1 = d2 = 1

and d3 = d4 = −1. Several snapshots for different moments are in Figure 5.24 and

the crossing happens at around t = 0.02. We plot the vortex trajectories detected

from the NLSE of Case V initials with (x0
1, x

0
2) = (1

8
, 3

8
), L1 = L2 = 1

2
in Figure 5.25.

Figure 5.24: Phase snapshots of Case V with (x0
1, x

0
2) = (1

8
, 3

8
), L1 = L2 = 1

2
and

ε = 1
128
.
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Figure 5.25: Detected vortex trajectories for Case V initials with different ε’s.

5.6.3 Numerical results for 6 vortices and beyond

We carry a numerical simulation of three parallel dipoles on Ω = (0, 2)× (0, 1).

Let the Case VI vortex configuration be x0
1 = (−L1,−L2) + Cx,x

0
2 = (−L1, L2) +

Cx,x
0
3 = (0,−L2) +Cx,x

0
4 = (0, L2) +Cx,x

0
5 = (L1,−L2) +Cx,x

0
6 = (L1, L2) +Cx,

with dj = (−1)j−1 and Cx = (1
2
, 1

2
) the mass center of all six vortices. In the first

5 snapshots of Figure 5.26, one period of leapfrogging type motion of three dipoles

are shown. The vortices with the same winding number rotate about each other and

the three dipoles are always parallel to y−axis. The ending configuration of next

period is shown in the sixth snapshot.
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Figure 5.26: Phase snapshots of Case VI with Cx = (1
2
, 1

2
), L1 = 1

3
, L2 = 1

4
and

ε = 1
64
.

5.7 A conjecture on the RDLs for NLSE under

periodic BCs

The sufficient conditions for periodical initial data in section 5.2.2 indicate that

there are many initial setups with non-zero initial momentum limits. Therefore, we
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proposed our generalized reduced laws based on our numerical observations. For

generality, we consider the NLSE on a rectangle domain Ω = (0, a)× (0, b).

Conjecture 1 (Generalized reduced dynamical laws (GRDLs)). For initial data

ψε0 satisfies the conditions of the RDLs without vanishing initial momentum limit

assumption on Ω = (0, a)×(0, b), the governing ODEs for the limit vortex trajectories

are 
dxj(t)

dt
= −2J

M∑
k=1
k 6=j

dk∇Fab(xk − xj)−
2

a2b2

 b2 0

0 a2

P0,

xj(0) = x0
j ,

(5.7.1)

with P0 the limiting initial momentum and Fab the periodic Green function on T2
ab =

(R/aZ)× (R/bZ) that solves

∆Fab(x) = 2π(δ(x)− 1

ab
), for x ∈ T2

ab. (5.7.2)

Note that for initial data ψε0 of the form in section 5.1, we have P0 = 2πJx̄. The

corresponding numerical test is in section 4 and 5.

Figure 5.27 presents a verification on the convergence of the GRDLs. The tra-

jectories from GRDLs are in first row of Figure 5.27 and the plot of δε in the second

row shows the convergence of vortex trajectories clearly. In the trajectories plots

w.r.t t, we can also see that the crossing time (when x1 = x2) of two vortex dipoles

is approximate t = 0.02, this coincides well with the simulation in Figure 5.24. The

plots of δε(t) show the convergence of vortex center trajectories to GRDLs as ε ↓ 0.

Figure 5.28 gives a verification for GRDLs on general rectangle domain. Comparing

the trajectories from GRDLs (first chart of Figure 5.28) with vortex center detected

from simulation of Case VI setups (the artificial dot line in Figure 5.26), we can see

they have the same shape quantitatively. The second chart in Figure 5.28 shows

that the trajectories of vortex centers converge to the GRDLs in (5.7.1) as ε ↓ 0.
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Figure 5.27: Vortex trajectories of a leapfrogging motion (Case V) from GRDLs

(first row); corresponding convergence test (second row).
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Figure 5.28: Vortex trajectories of a leapfrogging motion (Case VI) from GRDLs

(first row); corresponding convergence test (second row).



Chapter 6
Conclusions and Perspectives

This thesis proposed several fourth-order compact finite difference schemes (4cFD-

s) for some highly oscillatory dispersive PDEs, including the nonlinear Klein-Gordon

equitation (NKGE), Zakharov system (ZS), and nonlinear Schrödinger equation

(NLSE). Both conservative and efficient 4cFDs were considered, and rigorous er-

ror bounds of these schemes were established.

For NKGE in the nonrelativistic regime, two 4cFDs including a Crank-Nicolson

one and a semi-implicit one were derived. The optimal error estimates for the two

4cFDs were rigorously analysed through energy methods and cut-off techniques.

The conservation of discrete energy of CN-4cFD was also proved. Under proper

boundedness and smoothness assumptions on the analytical solutions, the error

bounds of the two schemes are both at O(h4 + τ 2/ε6).

For ZS in the subsonic regime, with a dimensionless parameter ε inversely pro-

portional to the acoustic speed, the solutions oscillate with O(ε) wavelength in

time, O(1/ε) speed in space, and O(ε2) and O(1) amplitudes for well-prepared

and ill-prepared initial data respectively. For CSI-4cFD, a uniform error bound at

O(h4 + τ 2α†/3) for the well- and less-ill-prepared initial data and an error bound at

O(h4/ε1−α∗+τ 2/ε3−α∗) for the ill-prepared initial data were proved, where α† ∈ [1, 2]

and α∗ ∈ [0, 1) are parameters independent of ε that describe the illness of initial

data. For UA-4cFD, the uniform error bound independent of ε for the well- and

133
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less-ill-prepared initial data is at O(h4 + τ 4/3); and the uniform error bound for

the ill-prepared initial data is at O(h4 + τ (1+α∗)/(2+α∗)). The uniform error bounds

were achieved by taking a minimum of two errors depending on ε, an error from

standard energy method and an error between ZS and its limiting equation. The

compact schemes provide much better spatial resolution than general second order

methods and reduce the computational cost a lot, and these techniques can easily

be generalized. Therefore, we can extend this asymptotic consistent formulation of

ZS to other coupled Zakharov system such as Klein-Gordon-Zakharov system and

get some uniform error bounds in the future.

Last but not least, we studied systematically the quantized vortex interactions

in two dimensional NLSE with periodic boundary conditions (BCs). Here, we adopt

the 4cFD method to discretize the Laplace’s equation with non-standard BCs in

order to prepare accurate initial data satisfying the periodic BCs. We verified the

convergence to the reduced dynamical laws under the zero initial momentum limit

assumption, which confirmed the analytical results in the literature. In addition,

based on our numerical results for nonzero initial momentum limit cases, we formal-

ized a conjecture on generalized reduced dynamical laws. Further simulations on

general cases of vortex dynamics such as vortex dynamics of NLSE with non-local

interaction and quantum turbulence simulations are worth considering for future

works.
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