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We propose an energy-stable parametric finite element method for simulating solid-state dewetting
of thin films in two dimensions via a sharp-interface model, which is governed by surface diffusion
and contact line (point) migration together with proper boundary conditions. By reformulating the
relaxed contact angle condition into a Robin-type boundary condition and then treating it as a natural
boundary condition, we obtain a new variational formulation for the problem, in which the interface
curve and its contact points are evolved simultaneously. Then the variational problem is discretized in
space by using piecewise linear elements. A full discretization is presented by adopting the backward
Euler method in time, and the well-posedness and energy dissipation of the full discretization are
established. The numerical method is semi-implicit (i.e., a linear system to be solved at each time step
and thus efficient), unconditionally energy-stable with respect to the time step and second-order in space
measured by a manifold distance between two curves. In addition, it demonstrates equal mesh distribution
when the solution reaches its equilibrium, i.e., long-time dynamics. Numerical results are reported to
show accuracy and efficiency as well as some good properties of the proposed numerical method.

Keywords: solid-state dewetting; surface diffusion; contact line migration; variational formulation;
energy-stable parametric finite element method; manifold distance.

1. Introduction

Driven by capillarity effects, solid thin films deposited on substrate are often metastable or unstable
in the as-deposited state, and could exhibit complicated morphological evolution when heated to a
critical temperature even below the material’s melting point. This phenomenon, called as solid-state
dewetting (see Thompson, 2012), has been widely observed in various thin film/substrate systems (see,
e.g., Jiran & Thompson, 1990; Kim et al., 2013; Rabkin et al., 2014; Bollani et al., 2019). Recently,
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Fig. 1. A schematic illustration of an island film on a rigid, flat substrate (i.e., the x-axis) in two dimensions, where xl
c and xr

c
are the left and right contact points, γFV , γVS and γFS represent the film/vapor, vapor/substrate and film/substrate surface energy
densities, respectively.

solid-state dewetting has demonstrated wide applications in thin film technologies. For example, it may
be deleterious during fabricating thin film structures (e.g., microelectronic and optoelectronic devices)
because it can destroy the devices’ structure and reliability, on the other hand, it may be advantageous
and can be positively used to create patterns of nanoscale particles, e.g., used in sensors (see Armelao
et al., 2006) and as catalysts for carbon (see Randolph et al., 2007) and semiconductor nanowire
growth (see Schmidt et al., 2009). These important applications have inspired increasing interests in
understanding the underlying mechanism of solid-state dewetting phenomena (see, e.g., Wong et al.,
2000; Dornel et al., 2006; Jiang et al., 2012, 2016, 2019; Wang et al., 2015; Backofen et al., 2019; Jiang
& Zhao, 2019).

In general the solid-state dewetting problem can be regarded as a type of open curves/surfaces
evolution problems governed by surface diffusion and contact point/line migration (or moving contact
lines) in two dimensions (2D)/three dimensions (3D) (see, e.g., Wong et al., 2000; Jiang et al., 2012,
2020; Wang et al., 2015). As illustrated in Fig. 1, a contact point in 2D is a triple point where three
phases (i.e., solid film, vapor and substrate) meet. As time evolves the contact point moves along the
substrate, and it brings an additional kinetic feature to this problem. Recently, different mathematical
models and simulation methods have been proposed for simulating solid-state dewetting, such as sharp-
interface models (see Wong et al., 2000; Wang et al., 2015; Jiang et al., 2020), phase field models
(see Jiang et al., 2012; Dziwnik et al., 2017; Naffouti et al., 2017; Huang et al., 2019), crystalline
formulation method (see Carter et al., 1995; Zucker et al., 2013), discrete surface chemical potential
method (see Dornel et al., 2006) and kinetic Monte Carlo method (see Pierre-Louis et al., 2009). In this
paper we mainly focus on how to design an efficient and accurate numerical method about solving a
sharp-interface model for solid-state dewetting.

As shown in Fig. 1 the solid-state dewetting problem in 2D is described as the evolution of an open
curve Γ (t) = X(s, t) = (x(s, t), y(s, t))T , which is parameterized by arc length s ∈ [0, L(t)] with
L := L(t) = |Γ (t)| the total length of the curve at time t, and it intersects with the solid substrate (i.e.,
the x-axis) at the left and right moving contact points, i.e., xl

c(t) := x(0, t) and xr
c(t) := x(L, t). By

using thermodynamic variation of the total interfacial energy, a dimensionless sharp-interface model for
simulating solid-state dewetting of thin films with isotropic surface energy in 2D can be derived as (see
Wang et al., 2015; Bao et al., 2017a) ⎧⎨

⎩
∂tX = ∂ssκ n, 0 < s < L(t), t > 0, (1.1a)

κ = − (∂ssX
) · n, n = (−∂sy, ∂sx)

T , (1.1b)
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where n := n(s, t) is the unit outer normal vector of the curve, and κ := κ(s, t) represents the curvature
of the curve. The initial curve is given as

X(s, 0) := X0(s) = (x0(s), y0(s))
T , 0 � s � L0 := L(0), (1.2)

satisfying x0(0) < x0(L0). The boundary conditions are given as

(i) contact point condition

y(0, t) = 0, y(L, t) = 0, t � 0; (1.3)

(ii) relaxed contact angle condition

dxl
c(t)

dt
= η(cos θ l

d − σ),
dxr

c(t)

dt
= −η(cos θ r

d − σ), t � 0; (1.4)

(iii) zero-mass flux condition

∂sκ(0, t) = 0, ∂sκ(L, t) = 0, t � 0; (1.5)

where the material constant σ is defined as σ := γVS −γFS
γFV

with γ
FV

, γ
VS

and γ
FS

representing the

film/vapor, vapor/substrate and film/substrate surface energy densities, respectively, which determines
the equilibrium contact angle θi ∈ (0, π) (i.e., the well-known isotropic Young’s angle), satisfying
σ = cos θi ∈ (−1, 1); θ l

d := θ l
d(t) and θ r

d := θ r
d(t) are the (dynamic) contact angles at the left and right

moving contact points, respectively, and η > 0 is the contact line mobility that controls the relaxation
rate of the dynamical contact angles θ l

d and θ r
d to the equilibrium contact angle θi. In addition, we adopt

xl
c(t) = x(s = 0, t) and xr

c(t) = x(s = L(t), t), and assume that they satisfy xl
c(t) � xr

c(t).
In fact, condition (i) implies that the two contact points must move along the flat substrate. When

η → +∞, condition (ii) collapses to the well-known Young equation (see Young, 1805). Condition (iii)
is proposed to ensure that the total area/mass of the film is conserved during the evolution, i.e., no-mass
flux at the moving contact points. In addition, by defining the total area/mass of the film A(t) (i.e., the
enclosed area by the curve Γ (t) and the substrate) and the total interfacial free energy of the system
W(t) as

A(t) =
∫ L(t)

0
y(s, t)∂sx(s, t) ds, W(t) = |Γ (t)| + Wsub = L(t) − σ [xr

c(t) − xl
c(t)], t � 0,

(1.6)

one can prove that (see Wang et al., 2015; Bao et al., 2017a)

d

dt
A(t) = 0,

d

dt
W(t) = −

∫ L(t)

0
(∂sκ)2 ds − 1

η

[(
dxl

c

dt

)2

+
(

dxr
c

dt

)2
]
� 0, t � 0, (1.7)
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which immediately imply that the sharp-interface model (1.1) with the boundary conditions (1.3)–(1.5)
and the initial condition (1.2) satisfies mass conservation and energy dissipation, i.e.,

A(t) ≡ A(0), W(t) � W(t′) � W(0), t � t′ � 0. (1.8)

Different numerical methods have been proposed in the literature for simulating the evolution of
a closed or open curve under surface diffusion (1.1) including applications in solid-state dewetting.
When the curve can be represented by a graph with specific boundary conditions, the finite element
methods (see Coleman et al., 1996; Deckelnick et al., 2003; Bänsch et al., 2004; Deckelnick et al., 2005)
have been proposed. However, these methods cannot be directly adopted to simulating the evolution
of a closed curve or solid-state dewetting problems. On the other hand, an implicit finite difference
method was proposed by Mayer (2001) for surface diffusion flow in 3D with adaptive triangular mesh.
Meanwhile, the ‘marker-particle’ method, i.e., an explicit finite difference scheme, together with re-
meshing at each time step, was proposed for solving the sharp-interface model of solid-state dewetting
problems (see Wong et al., 2000; Du et al., 2010; Wang et al., 2015). However, this method suffers from
a very severe stability restriction and it is not easy to extend to 3D and/or anisotropic surface energies.

Based on the previous work (see the recent review paper by Barrett et al., 2020) and by reformulating
the surface diffusion equation (1.1) into

⎧⎨
⎩

n · ∂tX − ∂ssκ = 0, (1.9a)

κ n + ∂ssX = 0, 0 < s < L(t), t > 0, (1.9b)

Barrett et al. introduced a novel variational formulation of (1.9), and presented an elegant parametric
finite element method (PFEM) for the evolution of a closed curve under surface diffusion (see Barrett
et al., 2007b, 2008, 2019). The PFEM has a few good properties including unconditional stability,
energy dissipation and mesh equal distribution when the solution reaches its equilibrium. It has been
successfully extended for simulating the evolution of curves with grain boundary motions, thermal
grooving and sintering and triple junctions (see Barrett et al., 2007b, 2010). Recently, similar to the
‘marker-particle’ method for dealing with the relaxed contact angle condition (1.4) (see Wong et al.,
2000); Wang et al., 2015 , by adopting the forward Euler method to discretize the relaxed contact angle
condition (1.4) to first evolve the two contact points xl

c and, xr
c and then treating the new positions

of the two contact points as a Dirichlet-type boundary condition (or essential boundary condition) in
deriving the variational formulation, we successfully extended the PFEM for simulating solid-state
dewetting problems in 2D and 3D, as well as the evolution of curves with triple junctions (see Bao et al.,
2017b; Jiang & Zhao, 2019; Zhao, 2019; Zhao et al., 2020). Many interesting phenomena of solid-state
dewetting were observed by using the proposed PFEM method (see Bao et al., 2017a; Jiang et al., 2018,
2019; Zhao et al., 2020). However, the method suffers from a few drawbacks: (i) it separately deals with
the motions of the interface curve and its contact points, and does not make full use of the variational
structure of the solid-state dewetting problem; (ii) the energy dissipation cannot be proved in the full
discretization, and the stability condition depends on the mesh size and the contact line mobility; (iii)
the convergence rate in space reduces to first-order for the evolution of an open curve (i.e., solid-state
dewetting problem), instead of second-order for the evolution of a closed curve (see Tables 1 and 3 in
Bao et al., 2017b).

The main aim of this paper is to propose a new energy-stable parametric finite element method
(ES-PFEM) for the solid-state dewetting problem (1.1) with boundary conditions (1.3)–(1.5) and initial
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condition (1.2) by taking the following key ideas: (I) to reformulate the relaxed contact angle condition
(1.4) into a Robin-type boundary condition, (II) to obtain a new variational problem by adopting (1.9)
instead of (1.1), and treating (1.4) as a natural boundary condition instead of an essential boundary
condition, and (III) to discretize the variational problem in space by continuous piecewise linear
elements and in time by (semi-implicit) backward Euler method. We establish area/mass conservation
and energy dissipation of the new variational problem and its semi-discretization in space. We also
prove energy dissipation of the full discretization. The proposed ES-PFEM overcomes all drawbacks
of the previous PFEM for simulating solid-state dewetting. Extensive numerical results are reported to
demonstrate efficiency and accuracy as well as unconditional energy stability of the proposed ES-PFEM.

The rest of the paper is organized as follows. In Section 2 we present a new variational formulation
for the sharp-interface model, and prove mass conservation and energy dissipation of the variational
problem. In Section 3 we propose a semi-discretization in space by using the continuous piecewise
linear elements, and establish its mass conservation, energy dissipation, mesh equidistribution property
and long-time behavior. In Section 4 we present a full discretization by adopting the backward Euler
method in time, and show its well-posedness, energy dissipation and long-time behavior. In Section 5
extensive numerical results are reported to demonstrate the efficiency and accuracy of the proposed
ES-PFEM. Finally, we draw some conclusions in Section 6.

2. A new variational formulation

In this section we present a new variational formulation for the sharp-interface model (1.1) with
boundary conditions (1.3)–(1.5), and initial condition (1.2) by adopting (1.9) and reformulating (1.4)
into a Robin-type boundary condition. We also establish mass conservation and energy dissipation of
the new variational problem.

2.1 The formulation

As illustrated in Fig. 2 we label the unit tangential vector of the curve as τ := τ (s, t) = (∂sx, ∂xy)T and
the unit vector along the substrate line as tsub = (1, 0)T . Noticing

cos θ l
d(t) = τ (s, t)

∣∣∣
s=0

· tsub = ∂sx(s, t)
∣∣∣
s=0

, (2.1)

cos θ r
d(t) = τ (s, t)

∣∣∣
s=L(t)

· tsub = ∂sx(s, t)
∣∣∣
s=L(t)

, (2.2)

we can reformulate the relaxed contact angle condition (1.4) into a Robin-type boundary condition as

∂sx(s, t)
∣∣∣
s=0

= σ + 1

η

dxl
c(t)

dt
, ∂sx(s, t)

∣∣∣
s=L(t)

= σ − 1

η

dxr
c(t)

dt
. (2.3)

In fact, when η → +∞, the Robin-type boundary condition (2.3) collapses to the conventional
Neumann boundary condition (or the well-known isotropic Young equation) as

∂sx(s, t)
∣∣∣
s=0

= ∂sx(s, t)
∣∣∣
s=L(t)

= σ . (2.4)
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AN ENERGY-STABLE PFEM FOR SOLID-STATE DEWETTING 2031

Fig. 2. A schematic illustration of the interface profile near the left contact point, where τ := τ (s, t) = (∂sx, ∂sy)T is the unit
tangential vector, and tsub = (1, 0)T represents the unit vector along the x-coordinate (i.e., the substrate line).

In order to obtain a variational formulation of the sharp-interface model, for convenience, we
introduce a time independent variable ρ such that Γ (t) can be parameterized over the fixed domain
ρ ∈ I = [0, 1] (here ρ and s can be respectively regarded as the Lagrangian and Eulerian variables of
the curve Γ (t), and we do not distinguish X(ρ, t) and X(s, t) for representing Γ (t) when there is no
misunderstanding) as

Γ (t) := X(ρ, t) = (x(ρ, t), y(ρ, t))T : I × [0, T] → R
2. (2.5)

Based on this parameterization the arc length s can be given as s(ρ, t) = ∫ ρ

0 |∂qX| dq and we have
∂ρs = |∂ρX|. We also introduce the functional space with respect to the evolution curve Γ (t) as

L2(I) = {u : I → R, and
∫

Γ (t)
|u(s)|2ds =

∫
I
|u(s(ρ, t))|2∂ρs dρ < +∞}, (2.6)

equipped with the L2 inner product

(
u, v
)
Γ (t) :=

∫
Γ (t)

u(s)v(s) ds =
∫

I
u(s(ρ, t))v(s(ρ, t))∂ρs dρ, ∀ u, v ∈ L2(I), (2.7)

for any scalar (or vector) functions. Moreover, define the Sobolev spaces

H1(I) = {u : I → R, u ∈ L2(I), and ∂ρu ∈ L2(I)}, (2.8a)

H1
0(I) = {u : I → R, u ∈ H1(I), and u(0) = u(1) = 0}, (2.8b)

and denote X := H1(I) × H1
0(I).
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Multiplying a test function ψ ∈ H1(I) to (1.9a), integrating over Γ (t), integration by parts and
noting the zero-mass flux condition (1.5), we obtain

0 =
(

n · ∂tX − ∂ssκ , ψ
)

Γ (t)

=
(

n · ∂tX, ψ
)

Γ (t)
+
(
∂sκ , ∂sψ

)
Γ (t)

− (
ψ∂sκ

)∣∣ ρ=1
ρ=0

=
(

n · ∂tX, ψ
)

Γ (t)
+
(
∂sκ , ∂sψ

)
Γ (t)

. (2.9)

Similarly, using the dot-product with a test function ω = (ω1, ω2)
T ∈ X to (1.9b), integrating over Γ (t),

integration by parts and noting the relaxed contact angle condition (2.3), we obtain

0 =
(
κ n + ∂ssX, ω

)
Γ (t)

=
(
κ , n · ω

)
Γ (t)

−
(
∂sX, ∂sω

)
Γ (t)

+ (∂sX · ω)

∣∣∣ρ=1

ρ=0

=
(
κ , n · ω

)
Γ (t)

−
(
∂sX, ∂sω

)
Γ (t)

+ (∂sx ω1)

∣∣∣ρ=1

ρ=0
(2.10)

=
(
κ , n · ω

)
Γ (t)

−
(
∂sX, ∂sω

)
Γ (t)

− 1

η

[dxl
c(t)

dt
ω1(0) + dxr

c(t)

dt
ω1(1)

]
+ σ

[
ω1(1) − ω1(0)

]
.

Combining (2.9) and (2.10) we obtain a new variational formulation for the sharp-interface model
(1.1) with boundary conditions (1.3)–(1.5) and initial condition (1.2) as follows: given an initial open
curve Γ (0) = X(ρ, 0) ∈ X with X(ρ, 0) = X0(L0ρ) = X0(s) and set xl

c(0) = x0(s = 0) < xr
c(0) =

x0(s = L0), for t > 0, find its evolution curves Γ (t) := X(·, t) = (x(·, t), y(·, t))T ∈ X, and the curvature
κ(·, t) ∈ H1(I) such that

(
n · ∂tX, ψ

)
Γ (t)

+
(
∂sκ , ∂sψ

)
Γ (t)

= 0, ∀ψ ∈ H1(I), (2.11a)

(
κ , n · ω

)
Γ (t)

−
(
∂sX, ∂sω

)
Γ (t)

− 1

η

[dxl
c(t)

dt
ω1(0) + dxr

c(t)

dt
ω1(1)

]

+ σ
[
ω1(1) − ω1(0)

]
= 0, ∀ω = (ω1, ω2)

T ∈ X, (2.11b)

where we adopt xl
c(t) = x(ρ = 0, t) and xr

c(t) = x(ρ = 1, t) and assume that they satisfy xl
c(t) � xr

c(t).

2.2 Area/mass conservation and energy dissipation

For the variational problem (2.11), we have
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Proposition 2.1 (Mass conservation and energy dissipation). Let
(

X(·, t), κ(·, t)
)

be a solution of the

variational problem (2.11). Then the total area/mass of the film is conserved during the evolution, i.e.,

A(t) ≡ A(0) =
∫ L0

0
y0(s)∂sx0(s) ds, t � 0, (2.12)

and the total free energy of the system is decreasing during the evolution, i.e,

W(t) � W(t′) � W(0) = L0 − σ(xr
c(0) − xl

c(0)), t � t′ � 0. (2.13)

Proof. Differentiating the left equation in (1.6) with respect to t, integrating by parts and noting (1.3),
we have

d

dt
A(t) = d

dt

∫ L(t)

0
y(s, t)∂sx(s, t) ds

= d

dt

∫ 1

0
y(ρ, t)∂ρx(ρ, t) dρ =

∫ 1

0
(∂ty∂ρx + y∂t∂ρx) dρ

=
∫ 1

0
(∂ty∂ρx − ∂ρy∂tx) dρ + (y∂tx)

∣∣∣ρ=1

ρ=0
=
∫

Γ (t)
∂tX · n ds, t � 0. (2.14)

Taking the test function ψ = 1 in (2.11a) and then plugging it into (2.14), we obtain

d

dt
A(t) :=

∫
Γ (t)

∂tX · n ds = −
∫

Γ (t)
∂sκ∂sψ ds = 0, t � 0, (2.15)

which immediately implies the mass conservation (2.12).
Similarly, differentiating the right equation in (1.6) with respect to t, we get

d

dt
W(t) = d

dt
L(t) − σ

[dxr
c(t)

dt
− dxl

c(t)

dt

]

= d

dt

∫ 1

0
|∂ρX| dρ − σ

[dxr
c(t)

dt
− dxl

c(t)

dt

]

=
∫ 1

0

∂ρX · (∂ρ∂tX)

|∂ρX| dρ − σ
[dxr

c(t)

dt
− dxl

c(t)

dt

]

=
∫

Γ (t)
∂sX · (∂s∂tX) ds − σ

[dxr
c(t)

dt
− dxl

c(t)

dt

]
, t � 0. (2.16)
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Choosing the test functions ψ = κ and ω = ∂tX in (2.11a) and (2.11b), respectively, and then inserting

them into (2.16), and noticing that ω1(0) = dxl
c(t)
dt and ω1(1) = dxr

c(t)
dt , we obtain

d

dt
W(t) := − (∂sκ , ∂sκ

)
Γ (t) − 1

η

[(
dxl

c(t)

dt

)2

+
(

dxr
c(t)

dt

)2
]
� 0, t � 0, (2.17)

which immediately implies the energy dissipation (2.13). �

3. A semi-discretization in space

In this section we present a semi-discretization of the variational formulation (2.11) in space by using
the continuous piecewise linear elements, and show area/mass conservation and energy dissipation as
well as long-time behavior of the semi-discretization.

3.1 The discretization

Let N > 0 be a positive integer and denote the mesh size h = 1/N, grid points as ρj = jh for j =
0, 1, . . . , N and subintervals Ij = [ρj−1, ρj] for j = 1, 2, . . . , N. Then a uniform partition of the interval I

is given as I = [0, 1] = ⋃N
j=1 Ij. Define the finite element subspaces as

K
h := {u ∈ C(I) : u |Ij

∈ P1, ∀ j = 1, 2, . . . , N} ⊆ H1(I),

X
h := K

h × K
h
0 with K

h
0 = K

h ∩ H1
0(I),

where P1 denotes the space of the polynomials with degree at most 1.
Let Γ h(t) = Xh(·, t) ∈ X

h be the numerical approximation of the solution Γ (t) = X(·, t) of the
variational problem (2.11). Then {Γ h(t)}t�0 are polygonal curves consisting of ordered line segments,
and we always assume that they satisfy

min
1�j�N

|hj(t)| > 0, with hj(t) = Xh(ρj, t) − Xh(ρj−1, t), j = 1, 2, . . . , N, t � 0, (3.1)

where |hj(t)| denotes the length of the vector hj(t) for j = 1, 2, . . . , N. We note that the unit tangential

vector τ h and normal vector nh of the curve Γ h(t) are constant vectors on each interval Ij with possible
discontinuities or jumps at nodes ρj, and they can be easily computed as

τ h|Ij
= hj

|hj|
:= τ h

j , nh|Ij
= −(τ h

j )
⊥ = − (hj)

⊥

|hj|
:= nh

j , 1 � j � N, (3.2)

where (·)⊥ denotes the clockwise rotation by 90 degrees.
For two piecewise continuous scalar or vector functions u and v defined on the interval I with

possible jumps at the nodes {ρj}N−1
j=1 ,we can define the mass lumped inner product

(·, ·)h
Γ h(t) over Γ h(t)
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(which is an approximation of
(·, ·)

Γ h(t) by adopting the composite trapezoidal quadrature) as

(
u, v
)h
Γ h(t) := 1

2

N∑
j=1

∣∣∣hj

∣∣∣ [(u · v
)
(ρ−

j ) + (
u · v

)
(ρ+

j−1)
]
, (3.3)

where u(ρ±
j ) = lim

ρ→ρ±
j

u(ρ).

Take Γ h(0) = Xh(·, 0) ∈ X
h such that Xh(ρ = ρj, 0) = X0(s = s0

j ) with s0
j = jL0/N = L0ρj for

j = 0, 1, . . . , N. Then a semi-discretization of the variational formulation (2.11) by continuous piecewise
linear elements can be stated as follows: given the initial curve Γ h(0) = Xh(·, 0) and set xl

c(0) = x0(s =
0) < xr

c(0) = x0(s = L0), for t > 0, find the evolution curves Γ h(t) = Xh(·, t) = (xh(·, t), yh(·, t))T ∈
X

h and the curvature κh(·, t) ∈ K
h such that

(
nh · ∂tX

h, ψh
)h

Γ h(t)
+
(
∂sκ

h, ∂sψ
h
)

Γ h(t)
= 0, ∀ψh ∈ K

h, (3.4a)

(
κh, nh · ωh

)h

Γ h(t)
−
(
∂sX

h, ∂sω
h
)

Γ h(t)
− 1

η

[dxl
c(t)

dt
ωh

1(0) + dxr
c(t)

dt
ωh

1(1)
]

+ σ
[
ωh

1(1) − ωh
1(0)

]
= 0, ∀ωh = (ωh

1, ωh
2)

T ∈ X
h, (3.4b)

where again we adopt xl
c(t) = xh(ρ0 = 0, t) and xr

c(t) = xh(ρN = 1, t), and assume that they satisfy
xl

c(t) � xr
c(t).

We remark here that when η = +∞, Equation (3.4b) will reduce to the scheme for the boundary
condition with the isotropic Young’s angle (2.4). Similar schemes in the isotropic case for a single open
curve evolution can be found in the literature (see Barrett et al., 2007a, 2010).

3.2 Area/mass conservation and energy dissipation

For simplicity denote Xh(ρj, t) = (xj(t), yj(t))
T for j = 0, 1, . . . , N, then the total area/mass Ah(t) and

free energy Wh(t) of the discrete polygonal curve Xh(t) can be written as

Ah(t) := 1

2

N∑
j=1

(
xj − xj−1

)(
yj + yj−1

)
, Wh(t) :=

N∑
j=1

|hj(t)| − σ
[
xr

c(t) − xl
c(t)
]
, t � 0. (3.5)

Similar to the previous works (e.g., see Theorem 88 in Barrett et al., 2020), we can prove the area/mass
conservation and energy dissipation properties for the semi-discretization (3.4).

Proposition 3.1 Let
(

Xh(·, t), κh(·, t)
)

be the solution of the semi-discretization (3.4), then the total

area/mass of the film is conserved, i.e.,

Ah(t) ≡ Ah(0) = 1

2

N∑
j=1

[
x0(sj) − x0(sj−1)

][
y0(sj) + y0(sj−1)

]
> 0, t � 0, (3.6)
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and the total free energy of the system is decreasing during the evolution, i.e.,

Wh(t) � Wh(t′) � Wh(0) =
N∑

j=1

|hj(0)| − σ(xr
c(0) − xl

c(0)), t � t′ � 0. (3.7)

Proof. Noting y0 = yN = 0 we can reformulate the left equation in (3.5) as

Ah(t) = 1

2

N∑
j=1

(
xj − xj−1

)(
yj + yj−1

)

= 1

2

N∑
j=1

(
xjyj − xj−1yj−1

)+ 1

2

N∑
j=1

(
xjyj−1 − xj−1yj

)

= 1

2

N−1∑
j=1

xjyj − 1

2

N∑
j=2

xj−1yj−1 + 1

2

N∑
j=1

(
xjyj−1 − xj−1yj

)

= 1

2

N∑
j=1

(
xjyj−1 − xj−1yj

)
. (3.8)

Differentiating (3.8) with respect to t, we have

d

dt
Ah(t) = 1

2

N∑
j=1

(
ẋjyj−1 − ẋj−1yj

)
+

N∑
j=1

(
xjẏj−1 − xj−1ẏj

)

= 1

2

N∑
j=1

(
ẋjyj−1 − ẋjyj + ẋj−1yj−1 − ẋj−1yj

)

+ 1

2

N∑
j=1

(
xjẏj − xj−1ẏj−1 + xjẏj−1 − xj−1ẏj

)

= −1

2

N∑
j=1

(
ẋj + ẋj−1

)(
yj−1 − yj

)+
N∑

j=1

(
ẏj + ẏj−1

)(
xj − xj−1

)
, (3.9)

where, for simplicity, here we denote the time derivative of f as ḟ . Combining (3.2), (3.3) and (3.9), we
obtain

d

dt
Ah(t) = 1

2

N∑
j=1

∣∣∣hj(t)
∣∣∣ [ d

dt
Xh

j + d

dt
Xh

j−1

]
· nh

j (t) =
(
∂tX

h, nh
)h

Γ h(t)
. (3.10)
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Choosing the test function ψh = 1 in (3.4a) and then plugging it into (3.10), we have

d

dt
Ah(t) = −(∂sκ

h, ∂s1
)
Γ h(t) = 0, t � 0, (3.11)

which immediately implies the area/mass conservation (3.6).
Similarly, differentiating the right equation in (3.5) with respect to t, we obtain

d

dt
Wh(t) =

N∑
j=1

1

|hj|
(dhj

dt
· hj

)
− σ

[
dxr

c(t)

dt
− dxl

c(t)

dt

]

=
N∑

j=1

[
Xh

j − Xh
j−1

|Xh
j − Xh

j−1|
· ∂tX

h
j − ∂tX

h
j−1

|Xh
j − Xh

j−1|
|Xh

j − Xh
j−1|

]
− σ

[
dxr

c(t)

dt
− dxl

c(t)

dt

]

=
(
∂sX

h, ∂s(∂tX
h)
)

Γ h(t)
− σ

[
dxr

c(t)

dt
− dxl

c(t)

dt

]
. (3.12)

Choosing the test functions ψh = κh and ωh = ∂tX
h in (3.4a) and (3.4b), respectively, and then plugging

them into (3.12), we obtain

d

dt
Wh(t) = −

(
∂sκ

h, ∂sκ
h
)

Γ h(t)
− 1

η

[(
dxr

c(t)

dt

)2

+
(

dxl
c(t)

dt

)2
]
� 0, t � 0, (3.13)

which immediately implies the energy dissipation (3.7). �

3.3 Equal mesh distribution

Define the mesh ratio indicator (MRI) Ψ (t) of the curve Γ h(t) as

Ψ (t) = max1�j�N |hj(t)|
min1�j�N |hj(t)|

=
max1�j�N

∣∣∣Xh(ρj, t) − Xh(ρj−1, t)
∣∣∣

min1�j�N

∣∣∣Xh(ρj, t) − Xh(ρj−1, t)
∣∣∣ , t � 0. (3.14)

Similar to the case of the PFEM for time evolution of a closed curve controlled by surface diffusion in
Barrett et al. (2007b, 2011), we can show that the semi-discrete scheme has the property of equal mesh
distribution of Γ h(t) provided that any three adjacent vertices on Γ h(t) are not co-linear.

Proposition 3.2 Let
(

Xh(·, t), κh(·, t)
)

be the solution of the semi-discretization (3.4) and under the

assumption (3.1), then we have

(
|hj+1| − |hj|

) (
|hj| |hj+1| − hj · hj+1

)
= 0, j = 1, 2, . . . , N − 1, t > 0. (3.15)
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Specifically, if any three adjacent vertices on Γ h(t) are not co-linear, then Γ h(t) satisfies equal mesh
distribution, i.e.,

|h1(t)| = |h2(t)| = . . . = |hN(t)| ⇔ Ψ (t) = 1, t > 0. (3.16)

Proof. This equidistribution property is a direct consequence of Equation (3.4b). We omit the proof
here, since the proof can be found from Remark 2.4 in Barrett et al. (2007b) or Theorem 62 in Barrett
et al. (2020). �

3.4 Long-time behavior and equilibrium state

Define the curvature variation indictor (CVI) D(t) of the curve Γ h(t) as

D(t) =
(
∂sκ

h, ∂sκ
h
)

Γ h(t)
, t � 0. (3.17)

Then we have

Proposition 3.3 Let
(
Xh(·, t), κh(·, t)

)
be the solution of the semi-discretization (3.4) and assume

that min1�j�N |hj(t)| > 0 for t ∈ [0, ∞), and when t → +∞, Xh(·, t) and κh(·, t) converge to

the equilibrium Γ e = Xe(ρ) = (xe(ρ), ye(ρ))T ∈ X
h and κe(ρ) ∈ K

h, respectively, satisfying
min1�j�N |he

j | > 0 with he
j := Xe(ρj) − Xe(ρj−1) for 1 � j � N. Then we have

lim
t→+∞ D(t) = De := (

∂sκ
e, ∂sκ

e)
Γ e = 0, ⇒ κe(ρ) ≡ κc, 0 � ρ � 1, (3.18)

lim
t→+∞ Ψ (t) = Ψ e := max1�j�N |he

j |
min1�j�N |he

j |
=

max1�j�N

∣∣∣Xe(ρj) − Xe(ρj−1)

∣∣∣
min1�j�N

∣∣∣Xe(ρj) − Xe(ρj−1)

∣∣∣ = 1, (3.19)

where κc �= 0 is a constant. Furthermore, denote θ l
e and θ r

e as the left and right contact angles,
respectively, of Γ e, then there exists h0 > 0 sufficiently small such that

|cos(θ l
e) − σ | � Ch, |cos(θ r

e ) − σ | � Ch, 0 < h � h0, (3.20)

where C > 0 is a constant.

Proof. Under the assumptions in this Proposition, letting t → +∞ in the semi-discretization (3.4),
we obtain that the equilibrium solution

(
Xe(ρ), κe(ρ)

) ∈ X
h × K

h satisfies the following variational
problem:

(
∂sκ

e, ∂sψ
h
)

Γ e
= 0, ∀ψh ∈ K

h, (3.21a)

(
κe, ne · ωh

)h

Γ e
−
(
∂sX

e, ∂sω
h
)

Γ e
+ σ

[
ωh

1(1) − ωh
1(0)

]
= 0, ∀ωh = (ωh

1, ωh
2)

T ∈ X
h, (3.21b)
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where

he
j = Xe(ρj) − Xe(ρj−1), τ e|Ij

= he
j

|he
j |

:= τ e
j , ne|Ij

= −(τ e
j )

⊥ := ne
j , j = 1, 2 . . . , N. (3.22)

Choosing ψh = κe(ρ) ∈ K
h in (3.21a) and noting D(t) being a continuous function for t > 0, we obtain

lim
t→∞ D(t) = De = (

∂sκ
e, ∂sκ

e)
Γ e = 0. (3.23)

Combining (3.23) and (3.3), and noticing κe ∈ K
h ⊂ C([0, 1]), we get

κe(ρ) ≡ κc, 0 � ρ � 1. (3.24)

From the mass conservation (3.6) and noticing (3.5), we get

Ae := 1

2

N∑
j=1

(
xe(ρj) − xe(ρj−1)

) (
ye(ρj) + ye(ρj−1)

)
= Ah(0) > 0 ⇒ ye(ρ) �≡ 0. (3.25)

Choosing ωh = (0, ye)T ∈ X
h in (3.21b), noticing ωh(0) = ωh(1) = 0 and (3.24), we have

0 =
(
κe, ne · ωh

)h

Γ e
−
(
∂sX

e, ∂sω
h
)

Γ e
= κc

(
1, ne · ωh

)h

Γ e
− (

∂sy
e, ∂sy

e)
Γ e . (3.26)

Combining (3.26) and (3.25), noting ye ∈ K
h
0, we obtain

κc
(

1, ne · ωh
)h

Γ e
= (

∂sy
e, ∂sy

e)
Γ e > 0 ⇒ κc �= 0. (3.27)

From (3.21), similar to the proof in the Proposition 3.2, we can prove

(
|he

j+1| − |he
j |
) (

|he
j | |he

j+1| − he
j · he

j+1

)
= 0, j = 1, 2, . . . , N − 1. (3.28)

Now, we adopt the method of contradiction to show

τ e
j = he

j

|he
j |

�= τ e
j+1 = he

j+1

|he
j+1|

, 1 � j � N − 1. (3.29)

Assume that (3.29) is not true, i.e., there exists an integer j0 (1 � j0 � N − 1) such that

τ e
j0 = he

j0

|he
j0
| = τ e

j0+1 = he
j0+1

|he
j0+1|

⇒ ne
j0 = ne

j0+1. (3.30)
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Let ωh(ρ) ∈ X
h such that

ωh(ρ = ρk) =
{

ne
j0

, k = j0,
0, k �= j0,

k = 0, 1, . . . , N, (3.31)

noting (3.1), then we have

∂sω
h(ρ) = ne

j0

⎧⎨
⎩

1/|hj0 |, ρj0−1 � ρ < ρj0 ,
−1/|hj0+1|, ρj0 � ρ < ρj0+1,
0, otherwise.

(3.32)

Combining (3.32) and (3.22), noticing ∂sX
e
∣∣

Ik
= τ e

k for 1 � k � N − 1, we have

(
∂sX

e, ∂sω
h
)

Γ e
= 1

2

[
2|he

j0 |τ e
j0 · ne

j0/|he
j0 | − 2|he

j0+1|τ e
j0+1 · ne

j0+1/|he
j0+1|

]
= τ e

j0 · ne
j0 − τ e

j0+1 · ne
j0+1 = 0. (3.33)

Inserting ωh(ρ) in (3.31) into (3.21b), noticing (3.33), (3.24), (3.3) and (3.22), and noting ωh(0) =
ωh(1) = 0, we obtain

0 =
(
κe, ne · ωh

)h

Γ e
− (

∂sX
e, ∂sω

)
Γ e = κc

(
1, ne · ωh

)h

Γ e

= 1

2
κc
[
|he

j0 | ne
j0 · ne

j0 + |he
j0+1| ne

j0+1 · ne
j0+1

]

= 1

2
κc
[
|he

j0 | + |he
j0+1|

]
. (3.34)

Thus we get κc = 0, which contradicts with κc �= 0 in (3.27), and therefore (3.29) is valid. From (3.29)
we have

0 �= 1 − τ e
j · τ e

j+1 = 1 − he
j

|he
j |

· he
j+1

|he
j+1|

= 1

|he
j | |he

j+1|
(
|he

j | |he
j+1| − he

j · he
j+1

)
, 1 � j � N − 1.

(3.35)

Combining (3.28) and (3.35), we get

|he
1| = |he

2| = . . . = |he
N |, (3.36)

which immediately implies (3.19) by noting that Ψ (t) is a continuous function for t > 0.
Denoting Le := |Γ e| > 0 as the length of Γ e and noticing (3.36), we have

|he
j | = Le

N
= Leh, 1 � j � N. (3.37)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/3/2026/5919159 by N
ational U

niversity of Singapore user on 17 July 2021



AN ENERGY-STABLE PFEM FOR SOLID-STATE DEWETTING 2041

Choosing ωh(ρ) ∈ X
h that satisfies

ωh(ρ = ρk) =
{

e1 := (1, 0)T , k = 0,
0, 1 � k � N,

(3.38)

in (3.21b), carrying a similar computation as in (3.32), noting (3.24) and (3.3), (3.37), we obtain

0 =
(
κe, ne · ωh

)h

Γ e
−
(
∂sX

e, ∂sω
h
)

Γ e
− σ

= 1

2
κc |he

1| ne
1 · e1 + 1

2
|he

1|
[
τ e

1 · e1/|he
1| + τ e

1 · e1/|he
1|
]− σ

= 1

2
κcLe(ne

1 · e1)h + cos(θ l
e) − σ , (3.39)

where we use the relation cos(θ l
e) = τ e

1 · e1. Thus, there exists h0 > 0 sufficiently small such that, when
0 < h � h0, we have

∣∣∣cos(θ l
e) − σ

∣∣∣ =
∣∣∣∣−1

2
κcLe(ne

1 · e1)h

∣∣∣∣ = 1

2
Le |κc| |ne

1 · e1| h � Ch, (3.40)

where C > 0 is a constant. Similarly, we can prove the right inequality in (3.20). �
Remark 3.1 The above Proposition 3.3 shows that the equilibrium state obtained by the semi-
discretization (3.4) has the following properties: (i) it has constant curvature, (ii) it has equal mesh
distribution and the MRI Ψ (t) ≈ 1 when t � 1, and (iii) its contact angles converge to the Young’s
contact angle θi (i.e., theoretical equilibrium contact angle) linearly (or at first-order) with respect to the
mesh size h.

4. A full-discretization

In this section, based on the idea in Barrett et al. (2007a, 2010), we present an ES-PFEM to discretize
the semi-discretization (3.4) by adopting the (semi-implicit) backward Euler method in time, and show
the well-posedness and energy dissipation of the full discretization.

4.1 The discretization

Take τ > 0 as the uniform time step size and denote discrete time levels as tm = mτ for m = 0, 1, . . ..
Then, for m � 0, let Γ m := Xm = Xm(ρ) = (xm(ρ), ym(ρ))T ∈ X

h be the numerical approximation of
the solution Γ h(tm) = Xh(·, tm) ∈ X

h of the semi-discretization (3.4) at t = tm. Again, {Γ m}m�0 are
polygonal curves consisting of ordered line segments. For each curve Γ m we note that the unit tangential
vector τm and normal vector nm are constant vectors on each interval Ij with possible discontinuities or
jumps at nodes ρj, and they can be easily computed as

τm
∣∣∣
Ij

= hm
j

|hm
j | := τm

j = (
τm

j,1, τm
j,2

)T , nm
∣∣∣
Ij

= −(τm
j )⊥ := nm

j = (
nm

j,1, nm
j,2

)T , 1 � j � N, (4.1)

where hm
j = Xm(ρj) − Xm(ρj−1) for j = 1, 2, . . . , N.
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By adopting the (semi-implicit) backward Euler method to discretize the semi-discretizaiton (3.4)
in time we obtain an ES-PFEM as a full-discretization of the variational problem (2.11) (i.e., for the
sharp interface model (1.1) with boundary conditions (1.3)–(1.5) and initial condition (1.2)) as follows:
given the initial curve Γ 0 := X0 = (x0(ρ), y0(ρ))T ∈ X

h and set x0
l = x0(ρ = 0) < x0

r = x0(ρ = 1),
for m � 0, find the evolution curves Γ m+1 := Xm+1 = (xm+1(ρ), ym+1(ρ))T ∈ X

h and the curvature
κm+1 = κm+1(ρ) ∈ K

h such that

(Xm+1 − Xm

τ
· nm, ψh

)h

Γ m
+
(
∂sκ

m+1, ∂sψ
h
)

Γ m
= 0, ∀ψh ∈ K

h, (4.2a)

(
κm+1, nm · ωh

)h

Γ m
−
(
∂sX

m+1, ∂sω
h
)

Γ m
+ σ

[
ωh

1(1) − ωh
1(0)

]

− 1

η τ

[
ωh

1(0)(xm+1
l − xm

l ) + ωh
1(1)(xm+1

r − xm
r )
]

= 0, ∀ωh = (ωh
1, ωh

2)
T ∈ X

h, (4.2b)

where we adopt xm+1
l = xm+1(ρ = 0) and xm+1

r = xm+1(ρ = 1) and assume they satisfy xm+1
l � xm+1

r .
We remark here that, at each time step, only a linear system is to be solved in the above ES-PFEM (4.2),
which can be efficiently solved by either the GMRES method or the sparse LU decomposition in the
practical computation.

We remark that the proposed ES-PFEM is an extension of the works in Barrett et al. (2007a, 2010)
to the case with relaxed contact angles. When η = +∞ Equation (4.2b) will reduce to the scheme with
the isotropic Young’s angle (see Equation (2.34) for a single open curve in Barrett et al., 2007a and
Equation (3.11) in Barrett et al., 2010).

4.2 Well-posedness

For the well-posedness of the full-discretization (4.2), we have

Theorem 4.1 (Well-posedness). Assume that the following conditions are satisfied:

(i). (nm
1,1)

2 + (nm
N,1)

2 > 0; (ii). min
1�j�N

|hm
j | = min

1�j�N
|Xm(ρj) − Xm(ρj−1)| > 0. (4.3)

Then the full-discretization (4.2) is well-posedness, i.e., there exists a unique solution
(
Xm+1, κm+1

) ∈(
X

h,Kh
)
.

Proof. In order to show that the linear system (4.2) has a unique solution, we need only to prove that
the following homogeneous linear system only has the zero solution: find

(
Xm+1, κm+1

) ∈ (
X

h,Kh
)

such that

(
Xm+1 · nm, ψh

)h

Γ m
+ τ

(
∂sκ

m+1, ∂sψ
h
)

Γ m
= 0, ∀ψh ∈ K

h, (4.4a)

(
κm+1, nm · ωh

)h

Γ m
−
(
∂s

�Xm+1, ∂sω
h
)

Γ m
− xm+1

l ωh
1(0) + xm+1

r ωh
1(1)

τη
= 0, ∀ωh ∈ X

h. (4.4b)
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Choosing the test functions ψh = κm+1 and ωh = Xm+1 in (4.4a) and (4.4b), respectively, and then
subtracting the second one from the first one, we obtain

τ
(
∂sκ

m+1, ∂sκ
m+1

)
Γ m

+
(
∂sX

m+1, ∂sX
m+1

)
Γ m

+ 1

τη

[
(xm+1

l )2 + (xm+1
r )2

]
= 0. (4.5)

This, together with Xm+1 ∈ X
h, κm+1 ∈ K

h, xm+1
l = xm+1(ρ = 0) and xm+1

r = xm+1(ρ = 1), implies

xm+1
l = xm+1

r = 0, Xm+1(ρ) ≡ 0, κm+1(ρ) ≡ κc, 0 � ρ � 1, (4.6)

where κc is a constant to be determined. Substituting (4.6) into (4.4b), we have

0 =
(
κc, nm · ωh

)h

Γ m
= κc

(
nm, ωh

)h

Γ m
, ∀ωh ∈ X

h. (4.7)

Choosing the test vector-valued function ωh(ρ) ∈ X
h such that

ωh(ρ = ρj) =

⎧⎪⎪⎨
⎪⎪⎩

(
nm

1,1, 0
)T

, j = 0,

0, 1 � j � N − 1,(
nm

N,1, 0
)T

, j = N,

(4.8)

and noting (3.3), (4.8) and (4.3), we get

(
nm, ωh

)h

Γ m
= 1

2

N∑
j=1

∣∣hm
j

∣∣[ωh(ρj−1) · nm
j + ωh(ρj) · nm

j

]
= 1

2

∣∣hm
1

∣∣ωh(ρ0) · nm
1 + 1

2

∣∣hm
N

∣∣ωh(ρN) · nm
N

= 1

2

∣∣hm
1

∣∣ (nm
1,1)

2 + 1

2

∣∣hm
N

∣∣ (nm
N,1)

2 � C
(
(nm

1,1)
2 + (nm

N,1)
2
)

> 0, (4.9)

where C = 1
2 min

{∣∣hm
1

∣∣, ∣∣hm
N

∣∣}.
Combining (4.7) and (4.9) we get κc = 0 and thus κm+1(ρ) ≡ 0 for 0 � ρ � 1. Therefore, we prove

that the corresponding homogeneous linear system (4.4) only has the zero solution, and consequently,
the original inhomogeneous linear system (4.2) has a unique solution. �

We remark here that the condition (4.3) is in fact quite a natural assumption, which implies that:
(i) either the first or last line segment of the polygonal curve Γ m is not parallel to the x-axis, and (ii) any
two neighbouring mesh points along the polygonal curve Γ m are distinct.

4.3 Energy dissipation

Denote

Wm := W(Γ m) = |Γ m| − σ(xm
r − xm

l ), m = 0, 1. . . . (4.10)
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Similar to the previous works in the literature (see Theorem 2.3 in Barrett et al., 2007b and Theorem 87
in Barrett et al., 2020), we can prove

Theorem 4.2 (Unconditional energy stability). Let
(
Xm+1, κm+1

) ∈ (Xh,Kh
)

be the solution of (4.2),
then the energy is decreasing during the evolution, i.e.,

Wm+1 � Wm � W0 = W(Γ 0) = |Γ 0| − σ(x0
r − x0

l ), m � 0. (4.11)

Moreover, we have

m+1∑
l=1

⎡
⎣(∂sκ

l, ∂sκ
l
)

Γ l−1
+ 1

η

(
xl

l − xl−1
l

τ

)2

+ 1

η

(
xl

r − xl−1
r

τ

)2
⎤
⎦ � W0 − Wm+1

τ
, m � 0. (4.12)

Proof. Choosing the test functions ψh = κm+1 and ωh = Xm+1 −Xm in (4.2a) and (4.2b), respectively,
and then subtracting the second one from the first one, we obtain

τ
(
∂sκ

m+1, ∂sκ
m+1

)
Γ m

+
(
∂sX

m+1, ∂s(X
m+1 − Xm)

)
Γ m

− σ
[
xm+1

r − xm+1
l − (xm

r − xm
l )
]

+ 1

η τ

[
(xm+1

l − xm
l )2 + (xm+1

r − xm
r )2
]

= 0. (4.13)

Note that the following inequality holds (e.g., see Lemma 2.2 in Bänsch et al., 2005 or Lemma 57 in
Barrett et al., 2020)

|Γ m+1| − |Γ m| �
(
∂sX

m+1, ∂s(X
m+1 − Xm)

)
Γ m

. (4.14)

Plugging (4.14) into (4.13) and noticing (4.10), we get

Wm+1 = |Γ m+1| − σ(xm+1
r − xm+1

l )

� Wm+1 + τ
(
∂sκ

m+1, ∂sκ
m+1

)
Γ m

+ 1

ητ

[
(xm+1

l − xm
l )2 + (xm+1

r − xm
r )2
]

� |Γ m| − σ(xm
r − xm

l ) = Wm, (4.15)

which immediately implies the energy dissipation (4.11). Re-formulating (4.15) as

(
∂sκ

l, ∂sκ
l
)

Γ l−1
+ 1

η

(
xl

l − xl−1
l

τ

)2

+ 1

η

(
xl

r − xl−1
r

τ

)2

� Wl−1 − Wl

τ
, 1 � l � m + 1, (4.16)

and summing (4.16) for l = 1, 2, . . . , m + 1, we immediately obtain the inequality (4.12). �
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4.4 Long-time behavior and equilibrium state

Again, denote the MRI Ψ m and the CVI Dm of the curve Γ m as

Ψ m =
max1�j�N

∣∣∣Xm(ρj) − Xm(ρj−1)

∣∣∣
min1�j�N

∣∣∣Xm(ρj) − Xm(ρj−1)

∣∣∣ , Dm =
(
∂sκ

m, ∂sκ
m
)

Γ m−1
, m � 1. (4.17)

Similar to the proof in Section 3.4 (with the proof omitted here for brevity), we have

Proposition 4.3 Let
(

Xm(·), κm(·)
)

be the solution of the full-discretization by using the ES-PFEM

(4.2) and assume that min1�j�N |hm
j | > 0 for m = 1, 2, . . . ,and when m → +∞, Xm(·) and κm(·)

converge to the equilibrium Γ e = Xe(ρ) = (xe(ρ), ye(ρ))T ∈ X
h and κe(ρ) ∈ K

h, respectively,
satisfying min1�j�N |he

j | > 0 with he
j := Xe(ρj) − Xe(ρj−1) for 1 � j � N. Then we have

lim
m→+∞ Dm = De :=

(
∂sκ

e, ∂sκ
e
)

Γ e
= 0, ⇒ κe(ρ) ≡ κc, 0 � ρ � 1, (4.18)

lim
m→+∞ Ψ m = Ψ e := max1�j�N |he

j |
min1�j�N |he

j |
=

max1�j�N

∣∣∣Xe(ρj) − Xe(ρj−1)

∣∣∣
min1�j�N

∣∣∣Xe(ρj) − Xe(ρj−1)

∣∣∣ = 1, (4.19)

where κc �= 0 is a constant. Furthermore, denote θ l
e and θ r

e as the left and right contact angles,
respectively, of Γ e, then there exists h1 > 0 sufficiently small such that

|cos(θ l
e) − σ | � C1h, |cos(θ r

e ) − σ | � C1h, 0 < h � h1, (4.20)

where C1 > 0 is a constant.

Remark 4.4 Similar to the semi-discretization (3.4) the equilibrium solution of the full-discretization
(4.2) also has the following properties: (i) it has constant curvature, (ii) it has equal mesh distribution
and the MRI Ψ m ≈ 1 when m � 1, and (iii) its contact angles converge to the Young’s contact angle θi
(i.e., theoretical equilibrium contact angle) linearly (or at first-order) with respect to the mesh size h.

5. Numerical results

In this section we first introduce a new manifold distance between two curves and adopt it to
compare convergence rates of the proposed ES-PFEM (4.2), and the PFEM proposed in Bao et al.
(2017b) for solid-state dewetting problems. Then we report the temporal evolution of the area, contact
angles, total free energy and some other indicators by using the proposed ES-PFEM under different
computational parameters. Subsequently, we discuss some properties of the numerical equilibria, i.e.,
some convergence results about the total area loss and numerical contact angles. Finally, we show some
applications of the ES-PFEM to simulating island film evolution.

We remark that the contact line mobility η precisely controls the relaxation rate of the dynamic
contact angle θd to the Young’s contact angle θi = arccos σ ∈ (0, π), where σ is the material constant,
and the larger η will accelerate the relaxation process (for more details, see Wang et al., 2015). In the
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2046 Q. ZHAO ET AL.

Fig. 3. An illustration of the manifold distance M(Γ1, Γ2) between two curves Γ1 and Γ2 (colored in red and blue, respectively):
(a) two closed curves, (b) two open curves on a flat substrate Γsub, where M(Γ1, Γ2) is defined as the area of the symmetric
difference region between two enclosed domains, i.e., the regions shaded in sky-blue.

following numerical simulations we always choose η = 100 for simplicity. We take the following four
different types of initial shapes with C0, C1, C∞-smooth and non-convex curves, respectively:

• Shape 1 (C0-smooth): a 6 × 1 rectangle,

• Shape 2 (C1-smooth): a 4 × 1 rectangle together with two quarter of circles on its left and right
sides,

• Shape 3 (C∞-smooth): half an ellipse with semi-major axis ax = 4 and semi-minor axis ay = 1,

• Shape 4 (non-convex): a polar curve given as r(θ) = 2 + cos(6θ), with θ ∈ [0, π ].

5.1 A manifold distance between two curves

As we know it is a difficult and challenging problem on how to measure the difference between two
curves in 2D or two surfaces in 3D. Some measures were used in the literature (e.g., Bao et al., 2017b)
by using the distance between the points on one curve (or surface) to the other curve (or surface).
Inspired by the geometric quantity used for studying the quantitative stability for the Wulff shape of
a given surface tension energy (see Figalli et al., 2010; Figalli & Jerison, 2017), here we introduce
a manifold distance between two curves. As shown in Fig. 3 let Γ1 and Γ2 be two closed curves (cf.
Fig. 3(a)) or two open curves on a flat substrate Γsub (cf. Fig. 3(b)), and we denote Ω1 and Ω2 as the
inner regions enclosed by Γ1 and Γ2, respectively. Then we introduce the manifold distance to measure
the difference between the two curves Γ1 and Γ2 by the area of the symmetric difference region between
Ω1 and Ω2 (shown in the sky-blue region in Fig. 3)

M(Γ1, Γ2) := | (Ω1\Ω2

) ∪ (Ω2\Ω1

) | = |Ω1| + |Ω2| − 2|Ω1 ∩ Ω2|, (5.1)

where |Ω| denotes the area of the region Ω . We remark here that the definition in (5.1) can be very
easily extended to the case of two open curves on a curved substrate in 2D and the case of two closed
surfaces or two open surfaces on a flat/curved substrate in 3D.

For the manifold distance (5.1) it is straightforward to show that:

Proposition 5.1 Let Γ1, Γ2 and Γ3 be three closed curves or open curves on a flat substrate. Then the
manifold distance (5.1) has the following properties:

(i) (Symmetry). M(Γ1, Γ2) = M(Γ2, Γ1).
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(ii) (Positivity). M(Γ1, Γ2) � 0, and M(Γ1, Γ2) = 0 if and only if Γ1 = Γ2.

(iii) (Triangle inequality). M(Γ1, Γ2) � M(Γ1, Γ3) + M(Γ2, Γ3).

Proof. The properties (i)–(ii) are obvious by using the definition of the manifold distance. In order to
prove the property (iii) we first denote ΩA = (

Ω1\Ω2

) ∪ (Ω2\Ω1

)
, ΩB = (

Ω1\Ω3

) ∪ (Ω3\Ω1

)
and

ΩC = (
Ω2\Ω3

) ∪ (Ω3\Ω2

)
. Then we will show that ΩA ⊂ (

ΩB ∪ ΩC

)
. For any given point x ∈ ΩA

we have either x ∈ Ω1\Ω2 or x ∈ Ω2\Ω1. Furthermore, by introducing another set Ω3, we only have
the following four different cases:

• if x ∈ Ω1\Ω2 and x ∈ Ω3, we have x ∈ (Ω3\Ω2

)
;

• if x ∈ Ω1\Ω2 and x �∈ Ω3, we have x ∈ (Ω1\Ω3

)
;

• if x ∈ Ω2\Ω1 and x ∈ Ω3, we have x ∈ (Ω3\Ω1

)
;

• if x ∈ Ω2\Ω1 and x �∈ Ω3, we have x ∈ (Ω2\Ω3

)
.

Therefore, by noticing the definitions of the sets ΩB and ΩC, we immediately have proved that ΩA ⊂(
ΩB ∪ ΩC

)
and |ΩA| � |ΩB ∪ ΩC| � |ΩB| + |ΩC|. �

We remark that, to measure the convergence of numerical solutions in this paper, we only need to
compute the manifold distance between polygonal curves in practice, because we use the piecewise
linear curve to approximate the true curve solution. Since the polygonal curves consist of ordered line
segments we can easily determine the intersection points between two different polygonal curves, then
calculate the enclosed area as shown in Fig. 3.

5.2 Convergent rates

Let Γ m be the polygonal curve as an approximation of the exact solution of the curve Γ (t = tm), which
is obtained numerically at time t = tm under the mesh size h by a numerical method. In order to test the
spatial accuracy of the proposed ES-PFEM (4.2) we define the numerical error based on the manifold
distance as

eh(tm) := M(Γ m, Γ (t = tm)), m = 0, 1, · · · (5.2)

To compare the numerical convergence rates under the defined numerical errors eh(tm) by using
the ES-PFEM and the PFEM proposed in Bao et al. (2017b), we use the same computational set-ups
for the two methods. The initial shape of the island film is chosen as the Shape ‘2’ defined above and
σ = cos(5π/6). Here, since we only focus on the spatial accuracy of the schemes, we choose a very
small time step τ = 1 × 10−6 for all cases in order to make the temporal error negligible compared to
the spatial error. The ‘exact’ solution of the curve Γ (t) is obtained numerically under a very fine mesh
size (we choose here h = 2−13) with the same time step τ .

Figure 4 depicts the log–log plots of the numerical errors eh(tm) versus the mesh size h by using the
proposed ES-PFEM and the PFEM proposed by Bao et al. (2017b) at time t = 0.5 and t = 2.0. We can
clearly observe the numerical convergence rates under the manifold distance error for the two PFEMs.
From these numerical results we can draw the following conclusions: (i) the numerical errors for our
proposed ES-PFEM under the same computational parameters can be significantly reduced compared
to those obtained from the PFEM in Bao et al. (2017b); (ii) the convergence rate for the ES-PFEM
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2048 Q. ZHAO ET AL.

Fig. 4. Comparisons between the numerical convergence rates by using the proposed ES-PFEM and the PFEM proposed by Bao
et al. (2017b) at two different times: (a) t = 0.5, (b) t = 2.0, where the material constant σ = cos(5π/6).

Fig. 5. The numerical errors as a function of mesh size h by using the proposed ES-PFEM at time t = 0.5 (a) under four
different Young’s contact angles θi, where the initial shape is chosen as the Shape ‘2’; (b) under four different initial shapes,
where θi = 5π/6.

can reach the second-order with respect to mesh size h, while for the PFEM in Bao et al. (2017b), the
convergence rate is only first-order.

Furthermore, to demonstrate that the second-order convergence rate in the sense of the manifold
distance error is independent of the initial set-ups, we perform ample numerical simulations for different
Young’s contact angles θi and different types of initial shapes. The numerical errors of the ES-PFEM
under different Young’s contact angles θi and these different initial shapes at time t = 0.5 are displayed
in Fig. 5(a,b), respectively. From the figure we can clearly observe that the numerical errors as a function
of mesh size h behave almost the same for all the cases, regardless of different Young’s contact angels
θi and different initial shapes. The numerical convergence rates by using the proposed ES-PFEM are all
second-order, which demonstrates the numerical convergence rate under the manifold distance error is
very robust.
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AN ENERGY-STABLE PFEM FOR SOLID-STATE DEWETTING 2049

Fig. 6. (a) The temporal evolution of the relative area loss ΔAh(t) under four different mesh sizes; (b) the temporal evolution of
the left dynamic contact angle θ l

d(t) converging to the Young’s angle θi under four different mesh sizes. The initial shape is chosen

as the Shape ‘2’, and the Young’s angle is chosen as θi = 5π/6 and τ = 2048
25 h2.

5.3 Time evolution of area, contact angles, energy and indicators

In the following we present some numerical results about the temporal evolution of the total area of the
film and the dynamical contact angle by using the proposed ES-PFEM. As we know the exact solution
of the sharp-interface model satisfies the area/mass conservation and that the dynamical contact angle
θd will converge to the Young’s contact angle θi. Here we would like to investigate how these quantities
numerically converge to their theoretical values as we refine the mesh size h. First, we define the relative
area loss as

ΔAh(t) := Ah(t) − Ah(0)

Ah(0)
, t � 0, (5.3)

where Ah(0) is the total area of the initial shape. As shown in Fig. 6(a) the area loss mainly happens at
the beginning of the evolution, then almost keeps a value until approaching its equilibrium state. This
value of the area loss can be significantly decreased when we refine the mesh size. Moreover, from
Fig. 6(b), we also observe the numerical convergence between the dynamic contact angle and Young’s
angle θi in the long time when we refine the mesh size from h = 1/64 to h = 1/512.

Then we numerically investigate the temporal evolution of the total free energy produced by the
ES-PFEM. As shown in Fig. 7 we clearly observe that the normalized total free energy W(t)/W(0) is
always decreasing during the evolution, no matter how the time step and Young’s angles are chosen.
We note that, although we choose a very large time step (e.g., τ0 = 1), the numerical solution still
satisfies the energy dissipation very well. This adequately reflects that the ES-PFEM is unconditionally
energy-stable from the practical simulations.

Furthermore, we investigate the temporal evolution of the CVI function D(t) by using ES-PFEM
under different computational parameters and initial shapes. As shown in Fig. 8 we observe that the
indicator function D(t) will eventually decrease as close to zero as possible up to the machine precision,
no matter how the time steps, mesh sizes and initial shapes are chosen. When the indicator function D(t)
decreases to zero it implies that the evolution curve attains the equilibrium shape.
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Fig. 7. The temporal evolution of the normalized total free energy (a) under different time steps τ , where τ0 = 1, and h = 1/128
and θi = 5π/6; (b) under different Young’s angles θi, where h = 1/128 and τ = 0.01. The initial shape is chosen as the
Shape ‘2’.

Fig. 8. The temporal evolution of the CVI function D(t): (a) under different time steps, where τ0 = 0.2, h = 1/128 and θi = 5π/6;
(b) under different mesh sizes, where τ = 0.01 and θi = 5π/6; (c) under initial shapes of half an ellipse with different semi-major
axes ax, where the semi-minor axis is fixed as ay = 1, τ = 0.1, h = 1/128 and θi = 5π/6; (d) under the Shapes ‘1–4’, where
τ = 0.1, h = 1/128 and θi = 5π/6. For (a)–(b) the initial shapes are both chosen as the Shape ‘2’.

Next we perform ample numerical simulations to investigate the temporal evolution of the MRI
function Ψ (t) by choosing different time steps, mesh sizes, Young’s angles and initial shapes. As
clearly shown in Fig. 9, no matter how the computational parameters are chosen, we can observe that
at the beginning the function Ψ (t) quickly increases to a critical value (which is no more than 6), then
gradually decreases in a long time, finally converges to 1, which implies that the proposed ES-PFEM
could make mesh points equally distribute along the curve in the long time limit. Numerical results also
indicate that the value of the upper bound for Ψ (t) could be decreased by choosing smaller time steps
and larger mesh sizes (shown in Fig. 9(a,b)).
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Fig. 9. The temporal evolution of the MRI function Ψ (t): (a) under different time steps with τ0 = 2 × 10−2, h = 1/128 and
θi = 5π/6; (b) under different mesh sizes with τ = 5 × 10−3 and θi = 5π/6; (c) under different Young’s angles θi, where
τ = 5 × 10−3, h = 1/128; (d) under the Shapes ‘1–4’ with τ = 5 × 10−3, h = 1/128 and θi = 5π/6. For (a)–(c) the initial
shapes are all chosen as the Shape ‘1’.

5.4 Some properties in computing equilibria

We report some convergence results about the proposed ES-PFEM when applying it to computing
the equilibria of solid-state dewetting problems. First, we define that equilibrium state has reached,

if Wm−Wm+1

τ
� ε satisfies, where ε is a small parameter and we choose ε = 10−8 here. The numerical

convergence rate of the total area and the contact angle for the equilibrium state as a function of mesh
size h are depicted in Fig. 10. From the figure we can clearly observe that: (i) the convergence rate of
the area loss in the equilibrium state is second-order; (ii) the convergence rate of the error between the
numerical equilibrium contact angle and theoretical equilibrium contact angle (i.e., Young’s angle) is
first-order.

We have numerically demonstrated that the convergence rate of the ES-PFEM under the manifold
distance error is second-order. The manifold distance error is defined as the area of symmetric difference
region, and it has some natural relations with the area loss between the numerical solution and exact
solution. So, it is expected that the convergence rate of the area loss in the equilibrium state is
also second-order, and the above numerical results have verified this expectation. Meanwhile, in the
equilibrium state, as stated in Proposition 3.3, our numerical results also have demonstrated that the
convergence rate of the error as a function of mesh size h between the numerical equilibrium contact
angle and Young’s angle is first-order, i.e., |θe − θi| = O(h), where θe represents the numerical
equilibrium contact angle.

5.5 Applications to island evolution

Finally, we present some numerical simulations about morphology evolution of an island film towards
its equilibrium shape during solid-state dewetting. As shown in Fig. 11 we choose four different initial
shapes (red solid line) and depict several evolution snapshots (black dashed lines) until they arrive at the
equilibrium shapes (blue solid line). From the figure we can clearly observe that these curves eventually
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Fig. 10. (a) The area loss between the numerical equilibrium shapes and the theoretical equilibrium shape as a function of mesh
size; (b) the numerical errors between the numerical equilibrium contact angle θ l

d(te) and the Young’s angle θi as a function of

mesh size, where te represents the arriving time when the equilibrium state first reaches, and the time step is chosen as τ = 2048
25 h2.

Fig. 11. Several steps in the evolution of small islands (shown in red line) towards the equilibrium shape (shown in blue) under
different initial shapes, where the initial shapes are respectively chosen as: (a) Shape ‘1’; (b) Shape ‘2’; (c) Shape ‘3’; (d) Shape
‘4’. The computational parameters are chosen as: θi = 5π/6, h = 1/560, τ = 3.125 × 10−4.

evolve into a perfect circular arc that intersects with the substrate at the same contact angle θi = 5π/6,
no matter how the initial shapes are chosen. Then by choosing different Young’s angle θi, as shown in
Fig. 12, we clearly observe that the equilibrium shape is still a circular arc, but its equilibrium contact
angle changes according to different θi.

6. Conclusions

We proposed an ES-PFEM for solving the sharp-interface model about simulating solid-state dewetting
of thin films with isotropic surface energies in 2D. The sharp-interface model describes the evolution of
an open curve controlled by surface diffusion and contact line (point) migration. By reformulating the
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Fig. 12. Several steps in the evolution of small islands (shown in red line) towards the equilibrium shape (shown in blue) under
four different Young’s angles: (a) θi = π/4, (b) θi = π/3, (c) θi = π/2, (d) θi = 2π/3, where the initial shape is chosen as the
Shape ‘2’, and the computational parameters are chosen as h = 1/140, τ = 5 × 10−3.

relaxed contact angle condition of the sharp-interface model into a Robin-type boundary condition,
a new variational formulation was proposed such that the relaxed contact angle condition can be
naturally imposed on the variational formulation. Then we discretized the variational formulation by
using piecewise linear elements. Furthermore, we proved that the solution of the proposed PFEM is
well-posed and satisfies the energy dissipation. Compared to the PFEM presented in Bao et al. (2017b)
we showed that the proposed ES-PFEM can attain the second-order convergence rate, rather than the
first-order under the manifold distance error for this type of open curve evolution problems arising in
solid-state dewetting. Besides, the newly proposed scheme has very good energy stability, area/mass
conservation and long-time equal mesh distribution properties. Our future works will consider to extend
the ES-PFEM to simulating solid-state dewetting of thin films with anisotropic surface energies as well
as 3D problems (see Jiang & Zhao, 2019; Zhao et al., 2020).
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