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1. Introduction

After the first realization of the Bose-Einstein condensate (BEC) [1-3] for a trapped dilute Bosonic gas in 1995, the BEC has received
considerable attention from mathematics and physics communities. Below a sufficiently low temperature smaller than the critical
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temperature T, it is well known in [4,5] that the properties of the BEC are well described by the complex-valued wave function
Y = ¥(x, t) whose governing dynamics is the Gross-Pitaevskii equation (GPE):

iath—%A¢+vw+ﬁ|x/f|2w, xeRY t>0, (1.1)

where i = +/—1 denotes the imaginary unit, and V = V(x) and j represent a real-valued trapping potential determined by the system
and the short-time interaction rate, respectively. Several interesting properties of the BEC such as long-range dipole-dipole interaction,
rotating frame and spin-orbit coupling can be considered both physically and mathematically (see [6] for a nice introduction for the
BEC). From the numerics point of view, there are numerous developments to discretize GPE (1.1) via Crank-Nicolson finite difference
(CNFD) method [6-9] and time-splitting sine pseudospectral method (TSSP) [6,10-14]. We also refer the reader to [7] as a review of
numerical methods for nonlinear Schrédinger equations.

Recently, quantum synchronization attracts considerable interests from physics and engineering communities, especially in quantum
optics, due to its potential application in quantum computing, quantum information and optomechanical control [15-27]. Moreover,
there has been an attempt to link between classical synchronization and quantum entanglement [28]. See [29-31] for a brief introduc-
tion to classical synchronization. To date, several mathematical models were proposed to describe quantum synchronization, e.g., the
quantum Van der Pol oscillator [32,33], quantum Liouville-type equations [34] and matrix-valued quantum Kuramoto model [35-38],
etc. Among them, we are interested in synthesizing the M. Lohe’s idea in [39-43] together with the GPE as a principle of modeling.

To fix the idea, we consider a quantum system whose components are distributed on each node, and ¥; = ¥;(x, t) denotes the
wave-function of the jth quantum sub-systems on the spatial domain R?. We assume that the dynamics of Y; is governed by the
multi-component Gross-Pitaevskii-Lohe system:

1 - i < (Wi Yie)
00 = =2 AV + Vv + ) Bl + S ) i (wk - Mw]) :
k=1 k=1 ’

Yi(x, 0) = ¥)(x), (x.t)eR' xRy, j=1,....N.

For x = 0, system (1.2) has been introduced as a model for multi-component model BEC [44-46] and/or spinor BEC [10,14,47]. Here,
V; = Vj(x) is an external trapping potential acted on jth node, B = (Bj«) takes account for the particle interaction rate where all Sj
have positive values so that our system becomes defocusing, x represent a positive Lohe coupling strength and A = (aj) describes
the network structure between quantum sub-systems. Throughout the paper, we assume that the external potential V; has the form of
quadratic function:

(1.2)

d k\2
Vi)=Y )

k=1

,ox=K,....x)eR!, of >0 forallj k. (1.3)

Global well-posedness for system (1.2) with (1.3) can be obtained using standard Strichartz estimate and energy estimate (see
Theorem 3.1). In particular, global well-posedness theory yields that we have a uniform bound for v; in the [*-norm in any finite-time
interval. On the other hand, when Gross-Pitaevskii terms are zero, i.e.,, B = O, system (1.2) becomes the Schrédinger-Lohe system
whose emergent dynamics has been extensively studied in [34,40-43,48,49].

In this paper, we provide several sufficient frameworks leading to collective behaviors of the multi-component system (1.2). We
denote the collective behaviors to describe emergent phenomena exhibiting the vanishing of difference between wave functions in
some sense. More precisely, when the [?-distances between all wave functions tend to zero, we call it “complete synchronization” (see
Definition 3.1(i)). This is the case where external potentials are all identical. In contrast, when external potentials are distinct, it is most
unlikely that the L?-distances between wave functions tend to zero asymptotically (e.g., see Case 2 and Fig. 6.2(b)-(d) in Example 6.1).
Hence we cannot expect the complete synchronization. Thus, we need to introduce a weak concept of synchronization, namely “practical
synchronization” to denote the situation that we can make the L>-distances small by tuning the Lohe coupling strength « large enough
(see Definition 3.1(ii)).

The main results of this paper are two-fold. First, we deal with a two-component system with N = 2 and identical harmonic potential
as an external potential. When the interaction matrix B = () is a positive constant multiple of J, (where all entries are one), our
first result says that the complete synchronization occurs asymptotically and center-of-mass tends to harmonic motion asymptotically
(see Theorem 3.2). Second, we deal with a multi-component system with N > 3 under three types of coupling matrices (fully identical,
weakly identical and heterogeneous). More precisely, we consider the following three cases in terms of the interaction matrix B = (8;):

(i) (Fully identical interaction) : B = ]y,
where Jy denotes the N x N matrix whose components are all 1.

(ii) (Weakly identical interaction) : B = g)y + diag(eq, ..., &n).
B Bz - B
. . B B - P )
(iii) (heterogeneous interaction) : B = . . ) ) + diag(eq, ..., en)-
Bvi Bn2 - B

For the fully identical case, if the relative distances between initial data are small, the Lohe coupling strength is positive and the
network topology A =: (a;) is close to the identity matrix in L sense (see the condition (3.6)), the complete synchronization occurs
exponentially fast (see Theorem 3.3), i.e., there exists a positive constant o« depending only on the network structure .4 such that

max [19i(t) = Yi(O)llzee) < O™, t = 0.
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On the other hand, for the weakly identical and heterogeneous cases, we impose several initial conditions on the system parameters.
For instance, as in the identical case, the network topology is close to the identity matrix in L°°-norm. This is realized as A(A) > 0 in
Theorems 3.4 and 3.5. For the interaction matrix B, its perturbation from the identity matrix is sufficiently small and for the coupling
strength «, it should be sufficiently large and we provide its lower bound, which would not be optimal, in (3.7) and (3.10). To be
more specific, we control the maximal L?-distance between wavefunctions in terms of 1/« so that we are able to make the maximal
[2-distance small as we wish by controlling the coupling strength. On the other hand, due to the possible blow-up of the [*-norms of
a global solution at t — oo, we do not provide the uniform-in-time practical synchronization estimate. Note that since the L*-estimate
is not required in the identical case, we can present the uniform-in-time estimate which is valid on t — co. Hence, when we deal with
the weakly identical and heterogeneous cases, we alternatively consider the estimates valid on any finite time interval. To this end, we
derive practical synchronization estimates on any finite-time interval: for T > 0,

1
sup max i(t) — it <O(—),
Sup max Yi(t) — YOl < O(

under suitable assumptions on the network structure and large coupling strength (see Theorems 3.4 and 3.5).

The rest of the paper is organized as follows. In Section 2, we study a priori estimates for the multi-component GPL system and derive
the dynamics of the mass, energy and two-point correlation function. We also briefly discuss the relation with other synchronization
models. In Section 3, we present our two main results on the two-component system and multi-component system. In Section 4, we
provide the proof of the two-component system. More precisely, we show that for generic initial data, complete synchronization and
periodic harmonic motion can arise simultaneously. In Section 5, for the multi-component system, we present two frameworks leading
to the practical synchronization. In Section 6, we provide several numerical simulations and compare them with our analytical results.
Finally, Section 7 is devoted to a summary of our main results and some remaining issues for future works. In Appendix A, we present
a proof of Theorem 3.1, and in Appendix B, we provide a proof of Lemma 4.3.

Notation: Let f and g be complex-valued functions defined on R¢ and p € [1, oo]. Then, we set [’-norm of f as Iflp- In particular, we
denote the inner product and L>-norm as follows:

0.8 = [ fogeods 11 = VT,
R

where g denotes the complex conjugate of g. For given finite sequences (p;), (p;) in RN and RM*N, we set

Mmaxp; := mMax p;, minp; = min p;, MmMaxpy:= Max py, Minpy:= min py.
i 1<i<N i 1 k,1 1<k,I<N k,l 1<k,I<N

<i<N
2. Preliminaries

In this section, we study a priori estimates for the multi-component Gross-Pitaevskii-Lohe (GPL) system and relations with other
existing models for synchronization.

2.1. The Gross-Pitaevskii-Lohe system

Consider the Cauchy problem for the GPL system:

1 N iK N (i, ¥k
o v Z' 2, Z‘ _ Wi 4
10 = fWW%%+KJWW“%+2NM%4?k(%Jw%> (2.1

Yi(x,0) = yP(x), (. t)eR' xRy, j=1,...N.

Note that when we turn off the Lohe coupling with ¥ = 0, system (2.1) reduces to the multi-component Gross-Pitaevskii system [44-46]
for BEC:

N

. 1 )

005 = —S AV Vil + ) Bl £> 0, j=1..N.
k=1

In contrast, when we set Bj = 0 in system (2.1), system (2.1) reduces to the Schrodinger-Lohe model for quantum synchronization
which has been introduced in [50]:

1 i 5 (¥, i)
izwj=—2ij+vjwj+m2aj,<<wk—(lp’j’wjf)wj), >0, j=1....N.
k=1 ’

Hence, the GPL system contains two quantum mechanical phenomena: the Bose-Einstein condensation and the quantum synchroniza-
tion.
Now, we look for the relation with classical synchronization models. To see the relation, we need to set ansdtze for V; and v;:

Vi(x) = vj € R : constant, j(x,t) == e % (x,t) e RY x Ry.
We substitute the ansdtze above into (2.1); to get

N . N
9]_6719] — <§ ﬁjk + U]> e i0; + ﬁ ’E 1 ik (e O _ e i(6; Gk)e 191) . (22)
K=

k=1
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We multiply the relation (2.2) with €% and take real parts in both sides to find the Kuramoto model [51]:

O =vi+— Zsm@k 0;), Zﬁjk—i-vj

k 1
Thus, the GPL system incorporates the quantum and classical synchronous features.

2.2. A priori estimates

In this subsection, we study a priori estimates such as the L?>-conservation and dissipative energy estimate.
For ¥ = (Y1, ..., ¥n), we introduce an energy functional £[¥] and energy production terms as follows:

N
1 1 .
Sjl[lll] = /d |:2|V1/fj|2 + Vil + 2 Zlgjkllﬁklzldfjlz:| dx, j=1,...,N,
R k=1

N

1
v :=/ { IVl + o Z(w+vk)<|wj|2+|wk|2)
R4

1 N
+ oy k;wﬂ + Bl (1% + wm%] dx

L N (2.3)
)= ) Re(s v, W)= ) g1,
k=1

j=1

Eal¥] = o Z[ Vi — V2 dx+/ (V; + Vi)l — vl dx

J.k=

+ aN Z / /3][ + Bre) |¢] 1/f1<|2 dx.

]k( 1

Remark 2.1. 5 [W] is the energy of jth wavefunction, and it is well-known that the energy S [W] is conserved for x = 0 and each

j=1,...,N. On the other hand, Sz[lI/] measures how oscillators are far from the identical state More precisely, for the identical
extemal potentlals and interaction rates

Vi=V, B=§.
it follows from (A.4) that

N N
2wl =2 gl
j=1 j=1

Finally, £&;[¥] describes the total energy difference between wavefunctions.

In the following lemma, we show that L?-conservation of ¥; and energy estimates. However, we see that the total energy would not
be conserved along the GPL flow.

Lemma 2.1. Let v; be a global smooth solution to (2.1) with the following conditions:
Iyl =1, forallj=1,....N and A=]y.
Then, we have

N N
d ) d
GIWlP =0 j=1.. N —elWl=k) W]k W] —k&l¥l, t>0.

j=1 j=1
Proof. (i) The L?>-conservation is rather straightforward. Thus, we omit its details.

(ii) Since the energy in relation (2.3) is conserved for the case k = 0, we only need to focus on the term containing the Lohe coupling
strength «. Note that the following relation holds:

w2 = o (V305 ) = OBy + Vil = cdvs + iy = 2Re (90 - 05)- (24)

By integration by parts, we have
d N 1- : 1< :
el = le [ (—Ew,ﬂwj) + a0 (Vidvs ) + (2 ;ﬂmwzwj)
[N Q. -
=3 [ Re s (—3 a0+ v+ 5 Y- vl ) | ax
R =1

j=1
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K o 1 1w
=5 Z Re [(Z Vi — (W, Vi)V ) (—Zij +Vivi+ 5 Zﬂmw%ﬂ dx
R =1

N _l N .
= % Z Re |: VA + Vil + Zﬂj(hﬁﬂz\”klh} dx

jk=17R =1
K 1 18
- N 2R [wm/ (—zijwj+\o|w;|2+ZZﬁmWW)dx]
J.k=1 =1
=In + In.

Below, we present estimates of Z;; and Z,, respectively.
o (Estimate of Z;1): For the notational simplicity, we set

N
1 2 .
Glwl=2 Y Bulyel €R. j=1.....N.
=1
Then, we split the term Z;; into two terms:

1 A .
Thn=— Z/ Re|: 5 VAV + Vil + Zﬁmwﬁwm} dx
RY —

]k

L3 Z / Re [—%wkm/f] V; +C[tI/])1/fm/fj] dx

]k
= T111 + T112-

¢ (Estimate of Z;11): We use the following identity:
2Re(u - 9) = [ul* + [v|* — Ju —v|* foru,veCY,

to find

zm

T =

/ [ kA:pj]dx_ Z/ Re|: vwk.ij]
]R

f VY + V952 = |V — Vi) dx

W

Z\R

V)2 dx — o Z V= V[ dx.

]k

x L
2
2L

N\R

o (Estimate of Z11): We use the index change trick j <> k and the identity (2.8) to see

T =% fRe (¥ + G Jax
]k

[ 5
/
/

N

Vi + G Dt + (Vi + ck[wnw,-(uk]dx

Sl
=

[

=~
Il

—-

=

I
[

Re|(V; + G¥] + Vi + Ck[lI/])lﬂkl/_fj]d"

|-

J

=
Il
-
=
a

2|»
M=

=

(Vi Ve Gl + G NYl® + W17 — 19 — Ynel*dx

]

=~
Il
—_

(
(

|
M=

k

Il
-

J.k=1

-

N
- / (V) 4+ Ve & GLW1 + Gl DIy — vl dx.
jh=t R

[ vt + )dx+—2/ (GIW] + GO T YAl? + 15 dx
R

(2.5)

(2.6)

(2.7)

(2.8)

(2.10)
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In (2.7), it follows from (2.9) and (2.10) that

N
Zn=ngmd|wj| ax+—2f(v]+vk Wl + 1512 dx

jk=1

Z/ G+ GAW D + ) — 1 S /wwk V2 dx
]k

] k=

e Z / (Y + Vie+ GL¥ 1+ GAWDIY; — vl dx

] k=1
o (Estimate of Z;,) By straightforward calculation, one has
N

1 -
Inp = —:Ij; Re [(%’, Vi) /d (—zlﬁjﬂlﬂj +(V; + Q[W])Wﬂde)]
P N
—§ 2 Re [ USD / IV + (Y +cj[m)|wj|2dx]

J.k=1
1
= —« er/d SV + Vil + GLoTigg P dx
=1 7
In (2.5), we combine (2.11) and (2.12) to obtain the desired energy estimate:

N N
d
ZEWI =k Y Wl —k Y nglw]—k&alv], t>0.
j=1 j=1
Note that we do not have definite monotonicity of the energy functional. O

Next, we introduce our key quantity “two-point correlation functions” for synchronization estimates as follows:

hyj = (i, ¥),  d(A) = Za,, i.j=1....N.

Lemma 2.2. Let v; be a global smooth solution to (1.2) with ||1/fj0|| =1forj=1,...,N.Then, fort >0andi,j=1,...,

d _
L0~ hy) = i/d(vi V)

i [ (8= Bt + By = B + (B~ Bl i
k#i,j

N
— S+ AN —hy) + oo » (‘a1 = B0 = hy) + i1 = g1 — hy)

+ (aik — a)(1 = hyg — (1 — hy)) ) .
Proof. We use (1.2), to get

d
E(I/fzv Vi) = (0cti, ¥5) + (Wi, 0cy)

(%(Mfﬁ, i) — 5 (W ij)) + (=i, ) + i, Vi) )
N

- iZ((ﬂilelzlﬁh Vi) + i, ﬂjkllﬁklzlﬁj))
k=1

N
+ % ;aik(lﬁk — hii, W) + au{Wi, Y — i)

=151 + I + Io3 + Ioa.

In what follows, we present the estimates for 7, k = 1, 2, 3, 4, separately.
o (Estimate of Z,1): We use the self-adjoint property of the Laplacian to see

Ty = %mvn, ) — gwi, Ayy) = %um, Ay) — éwff, Ayy) =

(2.11)

(2.12)

(2.13)

N, one has

(2.14)
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o (Estimate of 7,,): Since V; is real-valued, one has
T = —i0Viti, V) + 005 Vi) =1 [ (9, = Vo d.
R

o (Estimate of Z,3): We split the term 7,3 into several terms to find
N

Tps = Y (—iBulval®vi. vi) + i (v, Biel vl *vs)

k=1
N
—iBil i, ¥5) — FBy P, v) — 1> (Bl vl ¥i, )
ki j

N
+ W, Bl vl v) + i Bl +1 ) (W Bilv )

ki j

— B — B) / Py dx + 1By — By) f Py dx
]Rd

+IZ ﬂjk_ﬂlk / |Wk| 1/11% dx.
k#i,j

o (Estimate of Z,4): We recall a definition of the two-point correlation function h;; to see

N
Toa = 0 |0 — b, ) + e v — )|

I
z|
-1

Ak hlg - hzkhu + a]k(hlk - hkjhl})]

=~
Il
_

I
z[=
Mz

=
Il
_

I:alk (1 — hu) + alk(hk] — hi) + a]khkj(l - hu) + ajk( ik — hkj)]

I
=[x
Mz

alk x— 1)+ ajk(hkj - 1))(1 - hij) + (agx + ajk)(l - hij)

=
Il

1
+ (ag — aj)(hij — hik)]-
Finally, we combine all estimates to find the desired dynamics. O

As a direct application of Lemma 2.2, we can derive cross-ratio like quantities which play a key role in the selection of possible
asymptotic states:

(1= hy)(1 = hyg) o
Rijke == ————, 1=1,j,k, € <N. (2.15)
T (1= hi)(1 = )
In fact, authors of [49] showed that the quantities above are conserved along the GPL system with B = O and A = Jy. Here, we also
show that this quantity is conserved along the flow (1.2) provided that A = Jy and B = §Jy.

Corollary 2.1. Suppose that the initial data, the interaction matrix B, network topology A and external potentials satisfy

A=]v, B=g, I¥Il=1, V=V, j=1,...,N, (2.16)
and let v; be a smooth global solution to (1.2). Then, Ry is invariant under the flow (2.1).
Proof. We substitute (2.16) into (2.14) to see

d K o
2 (V= hi) = =20 > ~(hie+ hy)(1 = hy)
k=1

—(1 = hy)((Y, &) + (€, ¥)), €= ZNZW

This yields

1— hyy
U= 0+ @y (2.17)
— Njj

On the other hand, it follows from (2.15) that
ll‘l'R,‘jkl =In(1— hl]) + In(1 — hy) — In(1 — hy) — In(1 — hkj).
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Finally, we differentiate the relation above and use (2.17) to obtain

d o (=hy)y  (A=he)  (—hg) (1= hg)

ap MR = 1=hy ~ T—he  1—he  1—hy

= —k((¥i, §) + (&, ¥5)) — (Y, €) + (C, o))
+x((Wi, &) + (¢ ) + (Y, §) + (8. ¥5))

=0. O

3. Description of main results

In this section, we briefly discuss our main results in the collective synchronous behaviors of the GPL system. First, we recall
definitions of complete and practical synchronizations as follows.

Definition 3.1. Let v; be a solution to (1.2) and T € (0, o0).

(1) System (1.2) exhibits complete synchronization, if L?>-distances between wave functions tend to zero asymptotically:
lim max [|y(t) — ¥;(¢)ll = 0.
t—>00 ij

(2) System (1.2) exhibits practical synchronization in finite time interval [0, T], if

lim sup max [|;(t) — ¥;(t)] = 0.

K—+00 o<t<T UJ

Remark 3.1. Note that for wave functions ; with [|//;]| = 1, one has
i — ¥;l> = 2Re(1 — hy) < 211 — hyl,  hy = (Y, ¥y).

Thus, defining relations can be paraphrased in terms of h;;:
Complete synchronization <= tILnOlO mif}x |1 — hy(t)] = 0.
Practical synchronization <= lim sup max |1 — hy(t)] = 0.

k—>+00g<r<T I.f

Before we present the synchronization estimates, we show that (1.2) admits a global unique solution. For global well-posedness, we
introduce the energy space associated with (1.2):

Xy ={ueH'RY) : x> |xlu(x) € *(RY)} .

Theorem 3.1. Suppose that
1<d<3, Bu>0, ¥ e€Xy, foralljk=1,..._N.
Then, (1.2) has a global unique solution: for any T > 0,

¥ € C([0, T1; Xy) N L([0, T]; H'(RY)) ALi([0, T]; I4RY), j=1,...,N.

Proof. We provide its proof in Appendix A. O

3.1. Two-component GPL system

In this section, we present synchronization estimate for the GPL system under the same harmonic external potential. For simplicity,
we set

d=1, N=2, V(x):%xz, XER, ®>0, A=J, h(t):= (1)), t=0.

Under this setting, system (1.2) becomes

: 1 155 2 2 ix
10y = —Eaxx% + Ph x“Yr + Bl " + Bl Y + y (Y2 — h(t)y),
1 1 i _
02 = 2 do + 50X V2 + Bl P2 + Vel v + ‘ZK (41 — R(EW) | (3.1)

(Y1, ¥2)(x, 0) = (Y7(x), ¥ (%), (X, ) e Rx Ry, Y7l = 93]l = 1.
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For a solution (v, ¥2) to (3.1), we define several dynamic quantities:
W(t) = / Xy Oy, x(t) = () + (0, j=1.2. t=0,
R
Pi(t) == / Im (Y5(x, £)V(x, £)) dx,  Pc(t) = P(t) + PX(¢),
R
Ya(x, t) = Yi(x, t) — ¥a(x, t), (x,t) € R x Ry,

xalt) = f XV, OPdx. Pu(t) = / IM(Fa(x, OV alx, £))dx.
R R

(3.2)

Next, we state our first main result of this section without the proof.

Theorem 3.2. Suppose that the system parameters and the initial data satisfy
B=ph, (), ¥3) # -1, (3.3)
and let (Y1, Y) be a global solution to (3.1). Then, the following assertions hold.

(1) The complete synchronization emerges:
lim [[y1(€) — 92(t)| = 0.
t—o00

(2) The center-of-mass x. approaches to the periodic harmonic motion asymptotically: there exist positive constants oy and o, such that

lim |x.(t) — (o1 cos wt + oz sinwt)| = 0.
t—o00

Proof. (i) Note that the relation (3.1); x Yy — (3.1); x yrq yields
h="%
2

Then, (3.4) can be solved as
(14 h%)e*" — (1 —hO)
(1 —hO) + (1 + hO)ext’

Hence, since the initial data satisfy h® % —1, it follows from the explicit formula (3.5) that

(1—h?), t>0. (3.4)

h(t) = t >0, h(0)=nHh°. (3.5)
lim h(t) = 1.
t—o00

(ii) The second assertion will be proved in the following two steps:

e (Step A): First, we derive the dynamics of (x., P.) and (x4, P4) introduced in (3.2).
e (Step B): We use preparatory lemmas and the assumption (3.3) to study the dynamics of (x., P, X4, Py).

We leave the rigorous justification of the steps above in Section 4. O
3.2. Multi-component GPL system

Below, we begin with several notation.

(1) For the network structure A = (aj), we define the minimum average and the maximal difference:
N
av 1
Allo = max o, d(A) = D g, 8A) = mﬁ"(“}azx |ap — alk|)~
' k=1 '

(2) For the interaction matrix B = (8;) which is a perturbation of a constant matrix BJy, we set
R(5) := max |y — Bl 8(5) := max(max B — Bl ).

(3) For the external one-body potential {V;}, we introduce a distance in L>°-norm:
D(V) = max IVi = Vjlloo-
In what follows, we present our main results according to the type of interaction matrix B = (). As mentioned in Remark 3.1, it

suffices to estimate the terms 1 — h;. Our second main result corresponds to

B=pBIn, B>0.

In this case, we expect that the complete synchronization can occur. For this, we define the synchronization functional as the maximum
of 1 — hijl

S(H(t)) = max |1 — hy(t)|, >0
L]
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Then, since S(H) is Lipschitz continuous, it is differentiable almost everywhere. For notational simplicity, we set

MA) = mind¥(A) — §(A).
J

Theorem 3.3 (Fully Identical Interactions). Suppose that system parameters, interaction matrix, network topology and the initial data satisfy

k>0, DV)=0, B=§8l, MA) >0, SH") < %, (3.6)

and let ; be a global smooth solution to (2.3) with ||w]°|| = 1. Then, we have the complete synchronization with exponential decay rate:

S(H(t)) < o(1)e™MAX ¢ > 0.
Proof. We postpone its detailed proof in Section 5.1. O

Remark 3.2. Note that we do not require all aj to be positive unlike the setting in [43] for the Schrédinger-Lohe system. In fact, some
of aj can take negative values. For instance, the following network topology is admissible:

1 1 1 -1
1 1 1 -1
A:
1 1 1 -1
Then, for A, we have
N -2 2
dv =—=1——, fori=1,...,N and ¢ =0.
T(A) N N (A)

One can check that this network structure fits in our setting (3.6),:
2
A(A) = min dj‘i“’(A) —§A)=1——>0.
j N

Next, we move on to the weakly interacting case:
B = BJy + diag(eq, ..., eny): which is a perturbation of a constant matrix SJy.
In this case, we derive the practical synchronization estimate. For notational simplicity, we set

X =(e1,....en), D(X):= H}?X|8i_8j|’ 1 &0 == max fe;].

Theorem 3.4 (Weakly Identical Interactions). Suppose that system parameters, interaction matrix, network topology and the initial data
satisfy

|A(A)?
lloo < :
16| Alloo(1 + M(T)?)

Te(0,00), k>0, AA)>0, DV)<DZX), ¥

K,

2 ; ; (37)
Kh(A) + [ (k) = 8K||A||oo||2||oo(2M(T) +M(TY + 1)
S(H®) < :
2 || All oo
and let +; be a global smooth solution to (2.3) satisfying a priori condition:
sup max [|[¥;(t)lls < M(T) < oo.
0<t<T J
Then, we have a practical synchronization on the finite interval [0, T):
|l (2M(TY + M(TP + 1)
sup S(H(t)) < o(1) (3.8)

0<t<T kA(A)

Proof. The detailed proof will be given in Section 5.2. O

Remark 3.3. Note that the result of Theorem 3.4 does not depend on the value of 8, and the estimate (3.8) yields practical
synchronization estimate in Definition 3.1:

lim sup S(H(t))=0, forany T € (0,00).

k=00 g<t<T
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Finally, we consider the heterogeneous case:

B Bz - B
B21 B B .
B= ) ) . ) + diag(eq, ..., en).
ﬂNl ﬂNZ e ﬂ
For notational simplicity, we set
G :=2M(T)*(R(B) + | Zllso + 8(8)) + D(V). (3.9)

Theorem 3.5 (Heterogeneous Interactions). Suppose that system parameters, interaction matrix, network topology and the initial data satisfy

AG1Z0e
MAY>0. > =5 e SHD < 2 Z s

and let ; be a global smooth solution to (2.3) satisfying a priori condition:

K A(A) + /(K A(A)? — 4G D (3.10)

3

sup max [|¥;(t)]l4 < M(T) < oo.
0<t<T J

Then, we have

sup S(H(t) < —28
outor = oA

Proof. We present its proof in Section 5.3. O

4. A two-component GPL system

In this section, we provide a proof of Theorem 3.2. For this, we provide dynamics of quantities introduced in (3.2).

4.1. Preparatory lemmas
Below, we provide three lemmas to be used in the proof of Theorem 3.2. First, we set R(t) to be a real part of h(t) := (yr1(t), ¥2(t)):
R(t) :=Reh(t), t=>0.
Lemma 4.1. Let (1, ¥,) be a global smooth solution to (3.1). Then, (x., P.) defined in (3.2) satisfies the following dynamics:

. K K
X = 5(1 — R)x. + P, — Exd, t >0,

P = % + =(1—R)P. — =P .
c = —W X D) c D) d-
Proof. e Derivation of dynamics of x.: We use the identity (2.4) and defining relations (3.2) to see
. d _ _
o= g [ (kv iy e =2 [ a[Retadn ) + et v i
R R
i - i . .
= Z/XRE [—Zﬂl/fﬂ/ﬁ + szlelﬁllz +iBulynl* + lﬂ12|¢2|2|w1|2:| dx
R
i - iy . 2 4 (4.2)
+2 | xRe —EAl/leﬁz + 5@ X[al® + 1Bl 1¥2l” + iBanlvn|™ | dx
R
K v 7 2 - 2
t3 </ xRe (Y192 — h|y|*) + xRe(v1 2 — hiy| )dX>
R
=: I31 + I3 + 133.
Below, we consider 73, k = 1, 2, 3, separately.
o (Estimate of Z31): Since w, 811 and By, are real, we see
i - i . .
I31 = Z/XRE |:—2A1/f1‘ﬁ1 + szlew”z +iBulynl* + 1,312|1ﬁ2|2|1/fl|2:| dx
R
= [ Ret-ixapaunan = [ Reivixy) Ve = [ Retir¥in) (43)
R R R

= / Im(y1 V) dx = P
R
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¢ (Estimate of Z3,): Similarly, since 8,1 and B, are also real, we have

Ty = /R Im(, Virp) dx = P2. (4.4)
¢ (Estimate of Z33) Recall the identity (2.8) to see

2Re(Y12) = [¥1* + [W2l® — |91 — Y2l

Hence, we find

g (f XRe (Y192 — hlyn|®) + xRe(V1y — h|wz|2)dx>
R

7 KR 2 2
=k | XRe(Y1y2)dx — — X|Y1)* + x|2 | dx
y 2 Ve (4.5)

K 2 2 2 KR
== | (xlv1l® +xlv2l* — x|Y1 — ¥2?) dx — —xc

2 /. 2
K % ﬂx
- P c 2 d 2 c-

In (4.2), we combine the estimates (4.3)-(4.5) to obtain the desired equation (4.1);:
. K K
X = 5(1 —R)XC +PC — EXd

e Derivation of dynamics of P.: We again use the defining relations (3.2) to get

. d _ _
P =g [t vua= / (0 F Vs + 10,V dx
R

_ / Im [(%m + 0+ il P +iﬁ12|1/f2|21/_fl> wl} dx
R
. 2
+ / Im [(—;mw] +iv (“;xzw]) +iBu V(Y Py + iﬂlzvuwzwl)) fm]
R
+ % f Im(ﬂ’szl — hyn Vi + ¥ Vi, — hy Vi
R
+ U1V — BV, + 1oV — hlszVW2>dX
i i : T [ e? _
= / Im (—7A¢1V1p1 - ﬂwfﬂpl) dx—i—/lm <7w2x2W1V1ﬂ1 +iV (xzwl) wl) dx
R 2 2 R 2 2
+ [ 1m (3B 200701+ 18P )
R
+ [ im(iBualvaP BT + 6Ty P i)
R
+3 / tm (P2 V91 — B Vo + 91 Vs — i Vi ) de
R

=12y +Zay + Za3 + Taa + Is5.

Below, we provide the estimates of Zy,, k=1, ..., 5, respectively.
¢ (Estimate of Z41): By direct calculation,

Iy = / Im <—iAID1V¢1 - iVA%‘pl) dx = / Im (—iA%VWI + iA%V‘:h) dx
R 2 2 R 2 2
=0,

where we used the fact that the second term is the complex conjugate of the first term.
¢ (Estimate of Z4;): Note that one has

i 5 . w2 5 -
Ty = 2(1) 2x Y1V +iV 7)( Y1) ¥ ) dx
= (; 220,V + x|y + %wzxzvm&]) dx

wix!
x|1/r| = —0X.
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o (Estimate of Ty3 + Z4q): From straightforward calculation,
s Zas = [ (igls P+ i1 P i)

+ [ m(iBr vl iy + BV vl )i )
= [ im (B0 501+ 15 Piar) o

¢ (Estimate of Z,5): Note that the following identity holds:
Va2V + Y1V = Y1V + ¥ Vi — YaVia.

Then, we have

Tis =7 fR tm (V2 V91 — B Vo + 91 V2 — b Vi ) dx
K - kK - -
= —5(h+hPc + ZAM@N% + wlvwz) dx
= —%RPC] + %(PC —py).
Hence, we combine all estimates to find
B! = wix! = SRP! 4+ L(Pe = Pa). (4.6)
Similarly, we have
P2 = wix? — gRPE + %(PC — Pa). (4.7)

Finally, we add (4.6) and (4.7) to yield the desired equation (4.1),.
B, = —w’xc — SRP: + —(Pe — Pg) = —w**c + —(1—R)Pc — =Py, O
c = c 2 c 2 c d) = c 2 c 2 d-

Remark 4.1. 1. If « = 0, (4.1) reduces to the harmonic oscillator case:
X =P., P.=—w’x:; orequivalently X+ w’x. =0. (4.8)
Then, (4.8) can be explicitly solved as
x¢(0)

Xc(t) = x:(0)coswt + ——sinwt, t >0,
w

which is a periodic harmonic motion with a period w.
2. Note that system (4.1) does not depend on the choice of B; and is not closed, as it contains (X4, Pg). To close the hierarchy, we
consider the identical case:

Bri=PBr=Pn=Pn=p or B=pf), (4.9)
and derive the dynamics for (x4, P4) in the following lemma.
Lemma 4.2. Let (Y1, ¥,) be a global smooth solution to (3.1) with B = BJ,. Then, (x4, Py) satisfies the following dynamics:
kg = —g(l FRWa+ Py t>0,
Pd = —wzxd — %(1 + R)Py.

Proof. First, note that 4 satisfies

1 2 i -
1000 = —5 A%+ SYa + Bl + e+ 5 (LB = (1 + ). (4.10)

e Derivation of dynamics of x4: We use (2.4) and (4.10) to get

d -
Xg = " x| Wql?dx = 2/xRe(8t1/fa - Yrq)dx
t R R

= Pa 5 [ aRe(=(1-4 RIYaP = (1 Bl + (1 R + 1+ W) )
R
= Py = S(1 4+ Rixe + 5(1+ Rxe — %)

K
= Pd - 5(1 +R)Xd.
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e Derivation of dynamics of P;: Similar to the estimate of x4, we have
ﬁu=4n¢a%vw+&ﬁﬁwom
= o+ g [ (B = (4 )T - V)
+Im( = J2)((1+ RV — (1 + W)V )dx
=~ — S(1+ R + (14 R(Pe — Po)
— —wPxg— §(1 +RP;. O

Next, we provide an explicit solution formula for the following two-dimensional system:

x=f(t)x+py+gi(t), t>0,
¥ = —qx+ f(t)y + g(t), (4.11)
(x, ¥)(0) = (x°, y°).

To rewrite (4.11) in a compact form, we set

zm=(m§’M”:Cm P)’qszﬁv'
e —q f(©) &(t)

Then, (4.11) can be rewritten as a matrix form:

{z’(r) = A()Z(t) + G(t), t >0,

Z(0) = (x°, y°). (4.12)

Lemma 4.3. Suppose that p and q are positive constants and f : R, — R, is a continuous time-dependent function. Then, the solution
(x(t), y(t)) is given by the following explicit formula:

(x(t)) (efgf(s)as 0 ) cos(/pqt) \/gsin(J;th) <x°>

! f(s)d:
0 elofs)ds \/gsin(J;th) cos(/pdt) 30

t
+ eJo Aw)s / e~ A G5)ds, ¢ > 0.
0

Proof. Since the proof is lengthy, we postpone its proof in Appendix B. O
4.2. Proof of Theorem 3.2

Now, we are ready to provide the proof of Theorem 3.2 in two steps.
o Step A (Derivation of explicit formula for (x4, Py)): Consider the dynamical system for (x4, Py):

Xy = —g(l +R)xq+ Py, t>0,
Py = —w’xg — 2(1 +R)P.
We set
fO=-50+RO. p=1. g=o’ GO=0,

and apply Lemma 4.3 to derive a representation relation:

« 1
(xd(t)> (e—z JQ+R(s)ds 0 ) cos(wt)  — sin(wt)\ {8
= w

—£ [T(14+R(s))d .
Py(t) 0 e 5 Jo(HRNds [\ _ sin(wt) wcos(wt) ) \P?
413
© rt 1 © rt ( )
cos(wt)e™ 2 oIHROMs  _ sin(ep)e=5 Jo(1+RNs | - (40
®

t
RS ) cos(at )e™ 2 Jo1HRE)S P

- sin(a)t)e’% Jot
o Step B (Derivation of explicit formula for (x, P.)): Together with the representation formula for (x4, P4), we use Lemma 4.3 to derive
representation explicit formula for (4.1). To do this, we write (4.1) into compact form:

(4.14)

W(t) = E(t)W(t) — gY(t), t>0,
W(0) = (x), PY),
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where W, E and Z are defined as follows:

K
—(1 —R(t 1
W(t) = (XC(t)> , E(t)= 2( (*) K , Y() = (Xd(f)> .
Pe(t) —w’ 5(1 — R(t)) Py(t)

Since (4.14) has the same form of (4.12), it follows from Lemma 4.3 that

t
W(t) = W(0)elo EXs ge-for E(s)ds f elo Ty (5)ds.
0

Following the argument in Lemma 4.3, we calculate e/o &% as follows:

x rt
e e Jo(1=RsNds 0 cos(wt) sin(wt)
e = K [t :
0 e Jo—Rsnas [\ _ ) sin(wt) w cos(wt)

We again apply Lemma 4.3 to obtain

% (1)

0
Xq
(xc(t)> — els EMsyy | oo ES)s II)CO
d —Kt
A (1—e
41— o)

0
X
cos(wt e’ Jo(1-RENds sin(wt)e’ Jo(1—R)ds X+ ;dU —e™)
- 1—R(s))ds

—wsin(wt)e? fo  cos(et e Jo1=RENs i
P

PO+ 21—
K

On the other hand, it follows from the explicit formula (3.5) that 1 — R(t) converges to zero with exponential rate:

211 — KO +2(1 — [hO et
[1—hO12 4 2(1 — [RO|?)ext + |1 + hO|Pe2«t’
2 2
J2MRP o, 21— 107
T 1+ hop? 11+ hop?

1—R(t) =Re(1 —h(t)) =

e vt

Hence, if we set

J(t) == exp <; / (1- R(s))ds) , t>0.
0

then the limit of 7(t) exists:
Jso := lim J(t).

t—o00
Now, we write an explicit formula for x.(t):
X9 P9
xc(t) = (x? +241— e’“)) J(t) cos(wt) + (P? + 41— e*“)) J(t) sin(wt).
K K

(4.15)

Therefore, we can conclude that there exist positive constants @y and «, depending on initial data and system parameters such that

lim
t—o00

where o and «; are defined as

xe(t) — (ocl cos(wt) + sin(a)t))‘ —0,

XO PO
ar =X+ ;djoo, ap = P2 + ?djoo.

This completes the proof of the second assertion in Theorem 3.2.

Remark 4.2. 1. Suppose that h° = (9, y0) € R. Then, the explicit formula (3.5) yields
21— 1)

(1= h0)+ (1 + h)e<t”

From straightforward calculation, we have

o9} o] __ Ko
/(1—R(t))dt:/ ( 201 =) dt = 2 log —2
0 0

1)+ 1+ k C1+h
This yields

2
. 2\«
Too = tlglgoj(f) = <1+ho) .

1—R(t) =
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In this case, we can find explicit values of (a1, a3):

0/ 2 \¥ P
Xd
(X]:Xg‘f‘;(l_‘r_RO) s =r. P

2. Consider the symmetric initial data such that

(4.16)

=|
Q
N
|
g
o
+
<2
N
[N
+
=
o
N————"
ol

YY) = Mx —X0), Y3 = M(x +xp),

where M(z) is defined to be the Gaussian function with mean zero, i.e.,

Then, we can easily check that

RO :=Re(y?, v3), xX=x3=P2=P)=0.

c = c

Hence, it follows from our explicit formula (4.15) and (4.16) that

x(t)=0, t=>0.

As a direct application of the previous results, we have the following corollary.

Corollary 4.1. Let (1, ¥,) be a global smooth solution of (3.1) with initial data (w? , 1//3) and condition (4.9). Then, the following assertions
hold:

lim x4(t)=0 and lim ’/XW/](X, t)|2dx—/x|w2(x, t)?dx| = 0. (4.17)
t—00 t—o00 R R
Proof. (i) For the first assertion, the explicit formula (4.13) gives
0 —% [(1+R(s))ds Pt? ; — & [L(1+R(s))ds
Xq(t) = x4 cos(wt)e” 20 + — sin(wt)e” 2 Jo . (4.18)
w
Our claim is that
lim e~ 5 Jo(+RODEs — g (4.19)

t—00

Since we know that R(t) converges to 1, there exists a finite time Ty such that
3
1+ R(t) > 3 for t > Tp.

Hence, one has

't
e 2 Irg(1+RODds e 3T o To.

This shows our claim. In (4.18), we use (4.19) to establish the first assertion.
(ii) From the first assertion, we have

t—o00

lim x4(t) = 0 or equivalently tlim / x|y (x, t) — Yra(x, t)2dx = 0, (4.20)
— 00 R

and (4.20) can be written as

oo

tim [ x(1a( 0 = vale OF = Wn(=x 0 = ya(—x. O )dx = 0,
0

t—o0

where we used f_ozo = f0°° + f_ooo and the change of variable in the second integral. Then, it follows from the positivity of integrand
in the above relation that we have

/ X[y (x, t) — Yra(x, £)dx < x4(t), / X|Yi(=x, £) — Yo —x, t)]%dx < x4(t),
0

0

[ (e = 1t 02 )i (a21)
R

= [ x(10.OF = atx O0F) 4 x{at, 0F = nx, F i
0
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On the other hand, note that
” L) — , 0 )d
| (it 07 = et o
zf V(1Y (x, )] =[x, ON)Vx(1¥(x, O] + [Ya(x, £)])dx
0

< / VR ) — Y, DIV 0x 0]+ [ale, 0] |dx (422)
0

< ([ swatn 0wt o) ([ 2x(te 08 + st )
0 0
=V 2Xd(t)XC(t),

where we used the following triangle inequality in the first inequality: for u, v € C,
[lul = | < |u—wvl.
By the same argument, we also find
o0
f x(Iva(=x OF = [n(—x, OF )dx = V2xa(Ox(0). (423)
0
We collect (4.21)-(4.23) to conclude that
/X(le(x, OF — [¥a(x, t)lz)dx < 2/2x4(tx(1).
R
Since x4(t) tends to zero and x.(t) is uniformly bounded in time, we obtain the desired convergence (4.17). O

Remark 4.3. It follows from Theorem 3.2 and Corollary 4.1 that

lim

t—o00

=0, j=1,2.

x’;(t) - <%a1 cos(wt) + %az sin(wt))

5. The multi-component GPL system

In this section, we study emergent dynamics to the multi-component GPL system. In the following three subsections, we will provide
proofs for Theorems 3.3, 3.4 and 3.5. For this, we basically use the two-point correlation approach based on h; using the explicit
dynamics given in Lemma 2.2. Before we present our estimates, we introduce the following Grénwall-type lemma.

Lemma 5.1. Let y = y(t) be a nonnegative C'-function satisfying the following Riccati-type differential inequality:
y<-py+q’+r. p.gr>0, t>0. (5.1)

(1) Suppose that r = 0. Then, y satisfies the following estimate:

1
, t>0.

y(t) = —(i - g) o
y0) p p
(2) Suppose that
r>0, p*—4qr>0 and y(0)<y,.
Then, there exists a finite entrance time T, such that
yt)<y-, t>T,
where y.. are two distinct positive roots of the quadratic equation qy*> — py +r = 0:

_b—vP -4 y _btvp —4gr

y-: 2q + - 2q

Proof. (i) We set u = 1/y, derive the inequality for u and integrate the resulting relation to find the desired estimate.
(ii) For the proof of the second assertion, we split the proof into two cases:

Either y(0)<y_ or y_ <y(0)<y,.
¢ Case A: Suppose that y(0) € (0, y_]. For the time t = T such that y(T) = y_, it follows from (5.1) that

d
—y(t 0
dty( )t:T <
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This yields that y(t) is non-increasing at time t = T. Hence, y(t) is restricted in the interval [0, y_] for all time. Hence, one has
yt)y<y-, t=>0.

¢ Case B: Suppose that y(0) € (y—, y+). Since the initial datum belong to this region, we know that y(t) starts to decrease strictly. Then,
it follows from Proposition 3.1 in [52] that there exists a finite entrance time T, such that

y(t)<y-, t=T.

Finally, we combine Cases A and B to complete the proof. O

5.1. Complete synchronization

First, we recall the setting for the complete synchronization in Theorem 3.3.

A
k>0, DV)=0, B=§8, AMA) >0, SH’ < LA).
Al
Then, it follows from Lemma 2.2 that
d K av av
—(1—hy) = —=(d"(A) + d" (A1 — hy)
dt 2
N
K
+on ) (@1 = had(1 = ) + ax(1 = hg)(1 = hy) (5.2)

=1

+ (@i — ap)((1 — hyg) — (1 = hg)) ) .

We multiply (5.2) with 1 — f_‘lij and take real parts of both sides to obtain

1d

ol ™ hyl? = —=(d(A) + d (A1 — hyl?

K

2
« N

+oN > Re ( k(1 — hie) |1 — hyl* + au(1 = hyg)[1 — hy/?
k=1

+ (@i = @)((1 = hig) = (1= h))(1 = Fy) ) .
For each time t, we choose the indices (i¢, j;) such that
S(H(t)) = |1 — hy;.(t)], t=0.

Then, S(H(t)) satisfies the differential inequality:
L
dt

Finally, we use Lemma 5.1 to derive exponential decay of S(H(t)):

1

1 MA) Y ora(A)X AA)
(S(HO) ”-Aoo”)e T Tl

(H(£)) < =k A(A)S(H(t)) + k[l AlloSH(E)?, ¢ > 0.

S(H(1)) < < O(1)e™*HAX,

This shows the desired exponential decay of S(H) and completes the proof of Theorem 3.3.

5.2. Practical synchronization I

Let ¥ = v;(x, t) be a global smooth solution to (2.3) satisfying a priori condition,

oiltlgr max l¥()lla < M(T) < oo.
and framework:

KkA(A)
16]| Al oo(1 + M(T)?)’

T€(0,00), k>0, A(A)>0, DV)<DZX), [Zlew<

A+ \/ (<3(A)” = 8l Al Z oo (2M(T)* 4 1)

2 || All oo

S(H®) <



W. Bao, S.-Y. Ha, D. Kim et al. / Physica D 400 (2019) 132158 19

Under the setting above, we again use Lemma 2.2 to get
1d
——|1—hj;
24! v

K . — _
= _E(d?V(A) + d]‘?"’(A))ll - hij|2 + Re (1(1 - hﬁ)/d(Vi - Vj)z//ilpjdx)
R

|2

—
+Re (i(l ) /m (el - swilz)wnﬁjdx) (53)
-
P N
+on ke (a1 = Bl = By + (1 = hig)|1 =y ?

(@ = @1 = hg) = (1 = b1 = Fy) ) .
Note that the terms in the R.H.S. of (5.3) other than Zs; and Zs, are already treated in Section 5.1. Hence, we focus on the terms

Isi, i =1, 2 as follows. B
e (Estimate of Z51): We use |||l = 1 and |1 — h;| = |1 — h;| to see

Re <i(] — f_lij)/ (Vi — Vj)l//ilpjdx)
Rd

o (Estimate of Zs,): Note that

| Zs1| = < D(V)I1 — hyl. (5.4)

/}Rd(Sjllﬁjl2 — iyl Wivdx = g /Rd(llﬁjlz — [l Wiydx + (g — Si)/Rd il idx
=:I531 + Zs23.
¢ (Estimate of Zs31): Recall the simple inequality
21/ = || < |21 = 2l(lz1] + |221), 21,22 € C. (55)

Then, we use (5.5) to obtain an estimate of Zs,; as follows:

< <2 eM(T), (56)

|Zs21] =

& /Rduw — Wil riydx

where we used Hélder’s inequality:

/ I Plgl hldx s(/ Lfl“dX) (/ |g|“dx> (/ |h|4dx) — W12 gl (5.7)
R Rrd Rrd Rrd

¢ (Estimate of Zsy,): We use (5.7) to find an estimate of Zsy;:

|Zs22| < D(Z)M(T). (5.8)
Finally, we combine (5.6) and (5.8) to estimate the term Zs,:

|Z52| = < |1 = hi|(|Z521] + |Zs221)

Re (1(1 - Ey)/ (elyl* — e|1/ff|2>wf12r,~dx)
]Rd
< 2M(T)*|| Zloo|1 — hy| 4+ D(Z)M(T)*|1 — hy.

(5.9)

In (5.3), we combine (5.4) and (5.9) to derive a differential inequality of S(H):

d
7 SUH) = —A(ASH(E) + k|| AllsoS(H())? (5.10)

+2M(T)*| 2l + D(Z)M(T)* + D(V), t € (0,TI.
On the other hand, we note that

D(V) < D(X) < 2[| ¥l co- (5.11)
Finally, we combine (5.10) and (5.11) to obtain that for t € (0, T],
d
e S(H) = —iA(ASH©) + | AlloSHD) + 2||)_7||OO(ZM(T)4 + 1). (5.12)

We now apply Lemma 5.1 for (5.12) with

pi= kAl qi=kl Al Ti= 2] Dl (2M(T) + 1)
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to get that there exists a finite time T; > 0 such that for t > Ty,

kA(A) = / (k3(4)” = 8| Allocl| Bl (2M(T) 4 1)
20 Al
415 oo (2M(T)* + 1)

S(H(t)) <

KA(A) + \/(KA(A))Z - 8K||A||oo||2||oo(2M(T)4 + 1)

||2||00(2M(T)4 + 1)

= o KkA(A)

This completes the proof of Theorem 3.4.

5.3. Practical synchronization Il

Let y; be a global smooth solution to (2.3) satisfying a priori condition:

sup max [|¥;(t)ll4 < M(T) < oo,
o<t<T J

and recall the framework:

A+ () — 4Gl

4G| ¥
AA) > 0, ”7”;"’ S(H®) <
(A(A)) 2ic]| Xl oo
By the same calculation as in (5.3), we have
1d
—— 11— hy?
2dt! il

= _g(d;*V(A) + d™(A)I1 — hyl* + Re (i(l - BU)Ad(Vi - v]-)l/mzfjdx)

+Re [ i(1— Flij)/ ((ﬁji — BWil® + (B — BIWGI” + Y (Bu — ﬂjk)lllfk|2>1ﬁﬂ/_/jdx ]
RY k#i,j (513)

=Tg
N

K
+ 55 DRe ((au( = i)l = byl + a1 — bl T — hyl®
k=1

+ (@ = (1 = ) — (1 = b1 = Fy) ) .
Note that the only difference between (5.3) and (5.13) is the term Zg which can be estimated as follows:
o= [ (B = Bl + (B = B + (B = Bl v
R ki
=iy~ ) [ (i = s wdids =i [ | rPulidc g [ i
R4 R4 R4

+iy /
ketij o R
=:Zs1 + Zs2 + Zs3 + Zoa-

Below, we present the estimates of Zg,, k = 1, 2, 3, 4, respectively.
¢ (Estimate of Zg1): We use the inequality (5.5) and follow the same argument in (5.6) to find

By =) [ (i = oy
< 2M(T)*R(B).

¢ (Estimate of Zg, + Zg3): We use a priori estimate (5.12) to get

Z62 + Ze3| = ‘_Ei /Rd il?Yiddx + /]Rd | Yidx

o (Estimate of Zg4): Similar to the estimate of Zg, + Zg3, we have

=T

kij Y R

(B = Bie) [k > Yivjdx

|Ze1] =

12 (a2 ) )
SR(B)/RH"”" 12 |1l 1 dx (5.14)

< 2M(T)! | 2l oo

(B — Bl > x| < 28(B)M(T)*. (5.15)
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In (5.13), we combine (5.14)-(5.15) to obtain

d
7 SH) = —eA(ASH(E) + K[| All oo S(H(E))?

+ 2M(T) (R(B) + | 2|00 4+ 8(B)) + D(V), t €(0,T],

=G

where we used definition of G in (3.9).
Now we apply Lemma 2.2 with

p=ki(A), q=klAle, T:=G,

to derive that there exists a finite entrance time T, such that for t > T,

KA(A) = 1/ (~A(A))” = 4Gl Dl 26
S(H(t)) < \/(2 IIETI = :
= tleo K/\(A)Jr\/(KA(A)) — 4G 2o
2G
< .
~ kMA)

Therefore, we can obtain the desired estimate and this completes the proof.
6. Numerical simulations

In this section, we propose an efficient and accurate numerical method for discretizing the GPL system (1.2). Several numerical
examples will be carried out and compared with those analytical results shown in previous sections. Due to the external trapping
potential Vj(x) j = 1, ..., N), the wave functions ¥; (j = 1, ..., N) decay exponentially as |x| — oo. Therefore, it suffices to truncate
the problem (1.2) into a sufficiently large bounded domain D C RY with periodic boundary condition (BC). The bounded domain D is
chosen as a box [a, b] x [c, d] x [e, f] in 3D, a rectangle [a, b] x [c, d] in 2D, and an interval [a, b] in 1D.

6.1. A time splitting Crank-Nicolson spectral method

Choose At > 0 as the time step size and denote time steps t, := nAt for n > 0. From time t = t, to t = t,,;1, the GPL will be solved
in three splitting steps. One solves first

1
lat'(/fj:—EAl/f], XED, jzl,...,N, (61)
with periodic BC on the boundary 9D for the time step of length At, then solves
N
0095 = Vi + > Bulvalyy, j=1,....N, (62)
k=1

for the same time step, and then solves
N

oo e ‘ WY o
iy = o D G (wk 0 w]), i=1,....N, (6.3)

k=1
for the same time step. The linear subproblem (6.1) will be discretized in space by the Fourier pseudospectral method and integrated
in time analytically in the phase space [6,10,11,44]. For the nonlinear subproblem (6.2), it conserves |y|® point-wisely in time,
ie. |yx, )2 = |y(x, ty)]2 for t, <t < topq and k = 1,..., N [6,10,11,44]. Thus it collapses to a linear subproblem and can be
integrated in time analytically [6,10,11,44]. For the nonlinear subproblem (6.3), due to the presence of the Lohe term, it cannot be
integrated analytically (or explicitly) in the way for the standard GPE [6,44]. Therefore, we will apply a Crank-Nicolson scheme to
further discretize the temporal derivate of (6.3) [8].

To simplify the presentation, we will only present the scheme for 1D. Generation to d > 1 is straightforward for tensor grids. To
this end, we choose the spatial mesh size as Ax = bM;” with M a even positive integer, and let the grid points be

X, =a+ LAx, £=0,...,M.

For 1 < j < N denote 1//}}2 as the approximation of ¥;(x,, t;) (0 < £ < M) and 1/;1’-1 as the solution vector with component Wj',ll'

Combining the time splitting (6.1)-(6.3) via the Strang splitting and the Crank-Nicolson scheme for (6.3), a second order Time Splitting
Crank-Nicolson Fourier Pseudospectral (TSCN-FP) method to solve GPL on D reads as:

M/2—1

1 _ —IAtp2/A TN ipp(xe—a)

v = ) ey et
p=—M/2

; N (1,2
) —'Af<Vj(Xi,)+Zk:1 Bkl ¥ o )/2 (1)
wj,( =e€ ) %g )
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O _y@ N . (,/;%) ,ﬁ(%)) 5
Vi je 1K ) (3) i Ve A (3) 6.4
A T ﬁza”‘ Vice = BINS Vi | (64)
k=1 (057 97 ) ax
2
—mt(V-(x N Bl )/2 )
yd = \TTEEIRE)T GO 0<e<M, 1<j<N,
M/2-1 o
n+1 _ —iAt u2/4 (g (DN ip(xe—a)
vt = D el () e,
p=—M/2
Here, pu, = b"%ﬂ, (1//1’7)p and (101(‘4))1, (p = —%, R %) are the discrete Fourier transform coefficients of the vectors 1//]’-1 and ¢j('4)
(j=1,...,N), respectively. Moreover,

)

M-1

1/ (3 @) 3 3 ) -3

Vi = 5('/’11@ + 1/’1‘1)’ (2 )ax = AXY WU
=0

Although the Crank-Nicolson step (6.4) is fully implicit, it can be either solved efficiently by Krylov subspace iteration method with
proper preconditioner [53] or the fixed-point iteration method with a stabilization parameter [54]. In addition, TSCN-FP is of spectral
accuracy in space and second-order accuracy in time. By following the standard procedure, it is straightforward to show that the
TSCN-FP conserve mass of each component in discrete level, ie., ¢} % = (. 9] )ax = ||¢j‘.’||122 forn>0andj=1,2,...,N. We omit
the details here for brevity.

6.2. Numerical results

In this section, we apply the TSCN-FP schemes proposed in the previous section to simulate some interesting dynamics. For our
simulation, we choose

B=1 At=2x10"% D=[-12,12]% d=1,2.

The potentials and initial data are chosen respectively as follows:

P2
2.2 0,2 0 —aj|x—x,
Vilx) = e XI5, ¥ = ai/m e Glx=xol

Here, «; and x’a are real constants that will be given later. In fact, complete and practical synchronization estimates do not depend
on the form of the initial data and the relative L?>-distances of the initial data play a crucial role. However, when we deal with the
center-of-mass x., we used the Gaussian initial data so that they have the symmetric form (see Remark 4.2).

Example 6.1. Here, we consider the two-component system in 1-d, i.e., we take N = 2 and d = 1 in (1.2). To this end, we take

(x?, x‘z’) = (2.5, —5) and consider the following two cases: for j = 1, 2

Case 1. fixj = By = 1 (£ = 1,2) and vary x =0, 2, 20.
Case 2. fix oj = j, B12 = B21 = 1, B11 = 4P = 2 and vary « = 0, 2, 10, 20.

Figs. 6.1 and 6.2 depict the time evolution of the quantity 1 — R(t) (where R(t) is the real part of the correlation function hy,(t)), the
center of mass x.(t), the component mass ||1//j||2 and the total energy £(t) for Case 1 and Case 2, respectively. From these figures and
other numerical experiments not shown here for brevity, we can see the following observations.

(i) For all cases, we observe that the mass is conserved along time.

(ii) If the Lohe coupling is off, i.e., k = 0, both the mass and energy are conserved well, and the center of mass (xg(t), x?(t)) is periodic
in time with the same period. In addition, for the identical case, i.e., B = J, and V;(x) = V,(x), R(t) is conserved for identical case.

(iii) If the Lohe coupling is on, i.e., k > 0, the phenomena become complicated. The energy is no longer conserved, indeed it decays to
some value for large « while oscillates for small «.

(iv) Moreover, for the identical case, R(t) converges exponentially to 1, which coincides with the theoretical results. Thus, the complete
synchronization occurs in this case. After the complete synchronization, ||y1(x, t) — ¥2(X, t)]l Will converge to zero and the center of
mass x!(t) and x2(t) will become the same and swing periodically along the line connecting —X% and X0 (here, 2 := (x1(0) + x2(0))/2).
(v) Furthermore, for the non-identical case, i.e., B # J, and V3(x) # V,(x), R(t) does not converge to 1, i.e., the complete synchronization
cannot occur. However, for large «, R(t) indeed converges to some definite constant R, < 1. The larger «, the smaller value 1 — R..
Meanwhile, |xg(t) - xg(t)| also converges to zero, which could be also justified in a similar process as shown in Corollary 4.1.

Example 6.2. Here, we consider the six-component system in 2-d, i.e., we take N = 6 and d = 2 in (1.2). To this end, we here only
consider the identical case, i.e, we choose o =1 =8y =1(,£ =1,...,6 ). Let « = 20, we consider four cases of initial setups:
Case 3. %, = (6 cos((j — 1)7/3),6 sin((j — 1)7/3)), j=1,....6.
Case 4. x, = (244 cos(jm /3 — /12),2 + 4 sin(jr /3 — 7 /12)), j=1,...,6.
Case 5. x, = (6 cos((j — 1)7/5), 6 sin((j — 1)z /5)), j=1,...,6.
Case 6. Random location:
xy = (3.4707, 2.7526), xé = (—0.8931, 1.9951), xg = (0.1809, —1.1538),
X3 = (0.0937, —5.8995), xy = (—2.9235, —2.4171), x5 =(—3.6423,4.3714).
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Fig. 6.1. Time evolution of the quantity 1 — R(t) (left), the center of mass x’;(t) (middle), and the component mass ”ij2 and the total energy £(t) (right) for Case
1 in Example 6.1 for ¥k = 0, 2, 20 (top to bottom).

L(t), x,(t)), Fig. 6.4 depicts the
time evolution of |R1256(t) — R1256(0)], [Raas6(t) — R2456(0)] & [R34s6(t) — R34s6(0)|, and Fig. 6.5 shows the contour plots of |y(x, t)[?
at different times for. From these figures and other numerical experiments not shown here for brevity, we can see the following
observations.

(i) The complete synchronization occurs for all cases.

(i) All the center of mass x.(t) (] =1, 6) will converge to the same periodic function x.(t), which swings exactly along the line
connecting the points (—x2;, —x%,) and ( Xc1s '62) which are defined as the average of the initial center of mass of the six oscillators:

1
(%21, %,) = Zmo EZ# (0)
j=1

Thus, when )'(21 = )_(?2 = 0, the center of mass will stay steady at the origin (cf. Fig. 6.3(a)), which also agrees with the conclusion in
Remark 4.2.

(iii) Before synchronization, all density profiles |y;(x, 2 (=1,...,6)will evolve similarly, i.e., the same dynamical pattern as those
shown in Fig. 6.5 for |y|? (only differ from the ‘color’, i.e., the more blurred humps imply the centers of the other five components,
while the lighter one shows the one of the current component). While after synchronization (around t = 0.4, which corresponds to the
moment the center of mass ¥. (j = 1, ..., 6) meet together in Fig. 6.3), all Vi(x, t) (hence also for all density profiles) will converge to
the same function, whose density changes periodically in time (as shown in columns 4-6 in Fig. 6.5, which also indicate the periodic
dynamics for the center of mass that illustrated in Fig. 6.3). In addition, before synchronization, although the numerical schemes cannot
conserve the cross-ratio like quantities Rj(t)(1 < 1i,j, k, I < 6) in discretized level, the difference of those quantities from their initial
ones is still small (cf. Fig. 6.4). It would be interesting problem to derive numerical schemes which preserve those quantities exactly
in discretized level, and we leave it here as a future work in [55].

For Cases 3-6, Fig. 6.3 illustrates the trajectory and time evolution of the center of mass x"c(t) = (xi

7. Conclusion

In this paper, we have proposed coupled nonlinear Schrédinger equations, namely the Gross-Pitaevskii-Lohe (GPL) system. This
model incorporates the nonlinear cubic interactions between quantum particles for BEC and nonlinear Lohe interactions for quantum
synchronization. We provided several sufficient frameworks for complete and practical synchronizations of the GPL system. For the
analytical treatment, we considered three types of interaction matrices for cubic interactions: fully identical, weakly identical and
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Fig. 6.2. Time evolution of the quantity 1 — R(t) (left), the center of mass x’;(t) (middle), and the component mass ijl\z and the total energy £(t) (right) for Case
2 in Example 6.1 for k = 0, 2, 10, 20 (top to bottom).

heterogeneous cases. For the fully identical case where interaction rates are the same constant, we presented a sufficient framework
leading to the complete synchronization in terms of the system parameters and initial data. We here assumed that the network
matrix is close to the identity matrix in L°°-topology. For the weakly and fully nonidentical cases, we have shown that practical
synchronization can emerge in any finite time interval when the perturbation of the interaction matrix around the common positive
constant is sufficiently small or the coupling strength between oscillators is sufficiently large. Since we do not know whether L*-norm
of a wavefunction is uniformly-in-time bounded or not, we provide the estimate which is valid on any finite time interval. On the
other hand, for the two-oscillator system, we provided explicit dynamic laws for the governing law of the motion of the center-of-
mass. In this case, we have observed that both periodic behavior and synchronous behavior can emerge under some well-prepared
initial data. On the numerical front, we fully discretize the GPL system by utilizing Fourier pseudo-spectral in space and time-splitting
scheme coupled with Crank-Nicolson scheme in time. Applying these methods, we presented several numerical examples supporting

our analytic results. There are many interesting issues which are not addressed in this paper, e.g., existence of stationary states and
their stability. We leave these issues as future works.

Appendix A. Proof of Theorem 3.1

In this appendix, we present global well-posedness of system (1.2):

1 - i
i0,y; = —EAw;JrVﬂ/fﬁZﬁﬂc“/fklz‘/’f Z“Jk (1/”‘ (12 11/2;1/[)
k=1 '

¥i(x,0) = ¥P(x), (x.t) €R? x Ry, 1_1,...,1\1.

(A1)
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Fig. 6.3. First two columns: trajectory of center of mass x"c(p) intel0,t]and t € [t., 10] (tf_: 1.5 for first row while 0.5 for the others). The third column: time
evolution of x.,(t) and x.,(t) (right). o denotes location of x.(0), while ¢ denotes the one of x;(t.).

7 2
1 1
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1079 - [Raaso (1) — Raass (0)]

10-11

/7 | —Razs6(t) — Rizse(0)] 7 [— Rz

10-13 ol ol t) — Rizs(0)| 0 1l —|Ru2s6(t) — Rizs6(0)|
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Fig. 6.4. Time evolution of |R1256(t) — R1256(0)|, |R2456(t) — R2456(0)| and |R3456(t) — R3456(0)| for Case 3-6 (Left to right).

A.1. Strichartz estimates

We first recall the classical Strichartz estimates (see for instance Theorem 2.3.3 in [56]). Let U(t) = e%m be a Schrodinger group
generated by the Laplacian, and we say that a pair (q, r) is admissible if

2<r<oo, d=1,

— 2 1 1
2§r<002,d d_z’ and *=d<§—;>
—Q, d=>3, d

d—2’

2=<r=

Proposition A.1 (Strichartz Estimates). The following assertions hold:
(i) For every ¢ e L*(R%), the function t — U(t)¢ belongs to

YR, ["(RY)) N C(R, [2(RY))
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0.6

Fig. 6.5. Contour plots of |y (x, t)*> at different time t for Cases 3-5 in Example 6.2 (the top 4 rows) and color bars of the contour plots at t = 0.5 (bottom left)
and other time t (bottom right).

for every admissible pair (q, r). Furthermore, there exists a constant C such that

U@l < Cllellzge, for every ¢ € L*(R?).

(ii) Let I be an interval of R and to € 1. If (v, p) is an admissible pair and f € LV/(I, L"/(]Rd)), then for every admissible pair (q, r), the function
t
t— @f(t) = / ut —s)f(syds, tel
to

belongs to L(I, L"(R%)) N C(I, LA(R?)). Furthermore, there exists a constant C independent of I such that

1®f a1y < CIlf g oy for every f € 1(1, L7 (RY)).

Below, we introduce the energy space for an external harmonic potential:
Xy = {ueH'R") : x> |x[u(x) e AR},
where the norm || - ||, associated to Xy is defined as follows:
llullx, = ||U||L2(1Rd) + ”VUHLZ(Rd) + ||XU||L2(Rd)-
We first show the local existence for (A.1).
Lemma A.1 (Local Existence). Suppose that the initial data belongs to Xy:
Y} €Xy forallj=1,....N.
Then, there exist T, and a unique solution to (A.1) such that

Wi, Vg, xyj € C([0, T1; L(RY) N La([0, T]; L(RY)).
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Proof. We use Duhamel’s formula for (A.1) to find

t t N
o) =utew + [ ute = sxwnas+ [ ute - (Zﬁjkwuzw,-) ds
k=1

. - ‘ j (A.2)
+ o Zajk/o u(t —s) (lﬁk - 21127 :Z{; %) ds, tel0,T].

=1

The first three terms in the right-hand side of (A.2) can be estimated using standard Strichartz theory. For the term Z, it follows from
Proposition A.1(i) that for admissible pair (q, r),

~ () )
Hll(t S) (ka <Ukh ¢ﬁ> ¢O

where we used |(v;, ¥)| < 1. Hence,

(¥, Y
W, ¥5)

<2C,

_.C H¢k-—

i
LA(R,LT) 12(R)

17 < 2CT.

We denote the right-hand side of (A.2) as S[;](t). Then, we choose T sufficiently small so that the map S becomes a strict contraction
and finally use the standard fixed point theory to show the local existence for (A.1). O

We are now ready to present a proof of Theorem 3.1
Proof of Theorem 3.1. To extend the local solution to the global solution, we refine the energy estimate in Lemma 2.1. For the energy

estimate, we assume that the solution {% —, is sufficiently regular so that the following estimates can be performed. We recall the
simplified notation in (2.6):

1 N
Gl =23 Bulvel.
=1

We observe
2 N N
Zs [w] = Z Vit GUDII = 5 | D03+ GIUDII + 3 (Vie+ GLwDlvnd® |
j=1 j=1 k=1
(A3)
Ze [¥] = Z(vj + Vi + GL T+ GLE DY + 19l
]k
Then, (A.3)2—(A.3)1 yields
Zs [¥] - Zs [¥] = Z(vj = Vi+ GI¥1 = GLE DY 2 = [val?)
= (A4)
1 N , 1 N
< ijZ:le + Gy + ijz_](vk + LDyl = Ze [¥].
We substitute the estimate (A.4) into (2.13) in Lemma 2.1 to obtain
N
N
—5[4/] =« ]21:5 (W] —« ;:r,g (W] — kW] < & (1 + > ; )=« <1 + 5) glw). (A5)
By integrating (A.5), we find
g0 < ew i) (M) cepo T (A6)

Hence, the energy does not blow up in any finite time interval. This completes the proof.

Remark A.1. In Sections 5.2 and 5.3, we impose a priori condition:

sup max ()l < M(T) < oo.

0<t<T

From the refined energy estimate (A.6), one has

/ (. £)|*dx < lg[llf] < E[W](O)ex(wg)[
* Bi Bij

, j=1,...,N, tel0,TI.
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Appendix B. Proof of Lemma 4.3

Consider the first-order system with variable coefficients:

Z(t) = A(H)Z(t) + G(t), t >0,
2(0) = (x°,y°).

where

2(t) = (x(t)>’ AE) (f(t) P ) o) (gl(t)>.
e —q f(0) &(t)

Then, our purpose is to derive a representation formula for the solution Z(t) = (x(t), y(t)):

(xm> (eféf(s)ds 0 ) costypar) 2 sintpa) ()
y(t) 0 eloS(s)ds _\/gSi“(‘/‘th) cos(/pqt) y
+ efot"‘(s)ds/r e_-ng(r)dTG(s)dS, t>0.
0

The derivation of (B.1) will be performed in two steps.
e Step A (Derivation of integral representation of Z): We set

t
F(t) :=/ f(s)ds, t=>0.
0
and claim:

A(t) (/ A(S)d5> = (/ A($)d$) Alt), t=>0.
0 0

For the proof of claim (B.2), note that

A(t)/ A(s)ds
0
:Cm p)Cm m>:<ﬂmm—mt wm+wm)
—q f(t)) \—qt F(t) —qF(t) — qtf(t) —pqt + f(L)F(t)
:<HU pt>CU) p>=(/3mm§Au>
—qt F(t)) \—q f(t) 0
This verifies our claim (B.2). Hence, we can use a variation of parameters to get

t
Z(t) = Z(0)e~ Jo A o= o A)s / elo AT Go\ds, ¢ > 0.
0

o Step B (Explicit calculation of e/oA¢)): First note that

t
fAm$:Cm ”):Cm °)+(° ”):&m+wu
0 —qt  F(t) 0 F(t) —qt O

By straightforward calculation, it is easy to see the commutativity of B; and Bs:

Bi(£)By(t) = (F(” 0 ) ( 0 Pt) _ ( 0 F(t)pt>,
0 F(t)) \—qt O —F(t)gt O

&mm0=<0 ”)Cm 0)=< 0 Hmj'
—qt 0/ \ 0 F(t) —F(t)gt 0

Thus, we can see that By(t) and B,(t) commute:
B1(t)By(t) = By(t)By(t), t=>0.
Hence, we can write

eloAs)ls _ oBi(0)Ba(t)

t
To calculate e/o A4 we present the estimate of e81) and eB2(0), respectively.

(B.1)

(B.2)
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o (Estimate of e81(): Since B;(t) is a diagonal matrix, its matrix exponential is given by

F(t)

e 0

Bl — . t>o0. (B4)
0 ef®

o (Estimate of e%2()): It follows from definition of matrix exponential and the identity

(B©)’ = (~pat®)ls, t=0

that one has

1 1 1
b2 = I, + By(t) + —Bz(t)2 + ng(tf + ZBz(t)“ +

2 2 2 2
=<1_pqr +<pqt) +,_,),2+<1_I£+<qu> +...)Bz(t)

2! 4! 3! 51
n(,/pq f)
«/_

P
_ (costy/pat) 0 . 0 \/g sin(/pqt) (B5)
0 cos(/pat) _\/@ sin(/pqt) 0
p

cos(/pqt) \/gsin(\/pqt)
q , t>0.
—\/g sin(+/pqt)  cos(/pqt)

cos(+/pqt)l; +

In (B.3), we combine (B.4) and (B.5) to find

SO cos(/pqt) \/g sin(/pqt)
0 )| _ \/gsin(\/p_qt) cos(/pat)

eloAs)ds _

This completes the proof.
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