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We propose and analyze volume-preserving parametric finite element methods for surface 
diffusion, conserved mean curvature flow and an intermediate evolution law in an 
axisymmetric setting. The weak formulations are presented in terms of the generating 
curves of the axisymmetric surfaces. The proposed numerical methods are based on 
piecewise linear parametric finite elements. The constructed fully practical schemes satisfy 
the conservation of the enclosed volume. In addition, we prove the unconditional stability 
and consider the distribution of vertices for the discretized schemes. The introduced 
methods are implicit and the resulting nonlinear systems of equations can be solved 
very efficiently and accurately via the Newton’s iterative method. Numerical results are 
presented to show the accuracy and efficiency of the introduced schemes for computing 
the considered axisymmetric geometric flows.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The motion of interfaces driven by a law for the normal velocity which involves curvature quantities plays an important 
role in applied mathematics and materials science. One of the most prominent examples is the surface diffusion flow, which 
was first proposed by Mullins to describe the evolution of microstructure in polycrystalline materials [38]. In this evolution 
law the normal velocity of the interface is given by the surface Laplacian of the mean curvature, and the resulting differential 
equations are parabolic and of fourth order [16,38]. Let {S(t)}t≥0 ⊂R3 be a family of smooth, oriented hypersurfaces, which 
for now we assume to be closed. The motion by surface diffusion flow is then given by

Vn = −�S H on S(t) , (1.1)

where Vn denotes the normal velocity of S(t) in the direction of the normal �nS , �S is the Laplace–Beltrami operator on 
S(t), and H is the mean curvature of S(t), given by [19]

�S
�id =H �nS on S(t) ,

with �id being the identity function in R3. A geometric flow which combines surface diffusion and surface attachment 
limited kinetics, which we call the intermediate evolution flow, is given by
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Vn = −�S Y ,

(
−1

ξ
�S + 1

α

)
Y=H on S(t) , (1.2)

where α, ξ ∈ R>0 are given positive parameters. In the limit of fast attachment kinetics ξ → ∞ and α = 1, formal argu-
ments suggest, see [16,39], that one recovers the surface diffusion flow (1.1). In the limit of fast surface diffusion α → ∞
and ξ = 1, one expects, see [16,39], to recover the conserved mean curvature flow,

Vn =H −
∫
S(t)H dA∫
S(t) 1 dA

on S(t) , (1.3)

where dA is the surface measure. We note that all three flows can be interpreted as volume conserving gradient flows for 
the surface area, since they satisfy

d

dt

∫
S(t)

1 dA = −
∫
S(t)

HVn dA ≤ 0 (1.4a)

and

d

dt
vol(�(t)) =

∫
S(t)

Vn dA = 0, (1.4b)

if �(t) denotes the interior of S(t) and �nS is the outer normal to �(t) on ∂�(t) = S(t). Existence results for the flows 
(1.1), (1.2) and (1.3) can be found in [22,25,27,29]. In [27,29] it is shown that convexity is conserved for conserved mean 
curvature flow. However, for surface diffusion and the intermediate evolution flow convexity in general is not conserved, see 
[24,28,30]. It is rigorously shown in [23] that for α → ∞ and ξ = 1 the intermediate flow (1.2) converges to the conserved 
mean curvature flow. So far it is an open problem to rigorously show that for ξ → ∞ and α = 1 the intermediate flow 
converges to motion by surface diffusion. For a more detailed discussion, we refer the reader to Refs. [7,11,16,22,39] and 
the references therein.

In this paper, we will investigate the numerical approximation of the three flows (1.1), (1.2) and (1.3), paying particular 
attention to the volume preserving aspect of these flows. Numerical approximations for curvature driven flows have been 
studied intensively during the last 30 years, e.g., [1,2,4–6,8,10,17,20,21,31,35–37,43], and we refer to the review articles 
[13,19] for detailed discussions. Earlier front tracking methods often require mesh regularization/smoothing algorithms to 
prevent mesh degenerations during the simulations [2,21,40]. Based on ideas of Dziuk [21], Barrett, Garcke, and Nürnberg 
(BGN) first presented variational approximations based on weak formulations that allow tangential degrees of freedom so 
that the mesh quality can be improved significantly for the introduced parametric finite element methods [5–7,13]. In 
particular, for the evolution of curves, a semi-discrete version of their discretization method leads to the equidistribution of 
mesh points [6], while in the case of surfaces their semi-discrete schemes lead to so-called conformal polyhedral surfaces 
[7]. In both cases the observed tangential motion of vertices in practice helps to avoid the complex and undesired re-
meshing steps. Moreover, the fully discrete BGN schemes usually enjoy unconditional stability, which mimics the surface 
area dissipation law in (1.4a) for the flows we consider in this paper. However, these fully discrete schemes in general fail 
to exactly conserve the volume enclosed by the discrete surfaces. The observed volume loss for these discretized schemes 
can be significant and non-negligible under certain circumstances. This could pose a great challenge on the accuracy of the 
numerical solutions, and thus numerical schemes that can conserve the enclosed volume are desirable and necessary.

In a separate development, very recently Bao and Zhao, based on the original ideas of BGN, have introduced a numerical 
method for surface diffusion flow that satisfies an exact volume conservation property on the fully discrete level [4]. Here 
the crucial idea is to use a suitably time-integrated discrete normal vector, an idea that was first explored in the context of 
surface diffusion for curves in the plane, and in the absence of any tangential motion, in [31]. It is the aim of this paper 
to transfer the novel approach in [4,31] to the approximation of the volume preserving flows (1.1), (1.2) and (1.3) in the 
axisymmetric setting.

In fact, in many situations the three-dimensional evolving surface may appear rotationally symmetric so that the studied 
geometric flows can be reduced to one-dimensional problems [11,12,14,15,18,34,42]. In addition, numerical schemes for the 
axisymmetric problem often avoid issues related to mesh distortions. Hence in this paper, we consider the flows (1.1), (1.2)
and (1.3) in the case that S(t) is an axisymmetric surface that is rotationally symmetric with respect to the x2–axis, as 
shown in Fig. 1. In particular, we aim to propose volume-preserving parametric finite element methods by combining the 
ideas from [4,31] with the recently introduced axisymmetric variational discretizations for the three flows from [11,12]. By 
using carefully weighted discrete normals, we are able to derive schemes that combine the volume preserving properties 
from [4] with the unconditional stability and good mesh properties from [11,12]. The obtained schemes are implicit, but 
the resulting systems of nonlinear equations can be accurately and efficiently solved via Newton’s method.

So far, for simplicity, we have assumed that the surfaces S(t) have no boundary. But for many physical applications it 
is of interest to also consider the case of surfaces with boundary, for example in the study of capillary surfaces [9,26] and 
in the study of the solid-state dewetting of thin films on a substrate [33,42]. Hence in this paper we allow S(t) to be with 
2
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Fig. 1. Sketch of � and S, as well as the unit vectors �e1, �e2 and �e3.

or without boundary. We assume that S(t) is made up of a single connected component, which due to the axisymmetric 
nature of S(t) implies that its boundary, unless it is empty, consists of either one or two circles that each lie within a 
hyperplane that is parallel to the x1-x3–plane. On writing the boundary as a disjoint union ∂S(t) = ∂C1S(t) ∪ ∂C2S(t), where 
the sets ∂CiS(t) are allowed to be empty, physically meaningful boundary conditions for the flows we consider can then be 
formulated as follows. In the simplest case, the boundary part ∂CiS(t) is fixed:

∂CiS(t) = ∂CiS(0) t ≥ 0 . (1.5a)

Alternatively, we allow the boundary part ∂CiS(t) to either move with a velocity that is perpendicular to the x1-x3–plane, 
or to expand or shrink in a hyperplane that is parallel to the x1-x3–plane:

∂CiS(t) ⊂ {�z ∈R3 : (�z · �e1)
2 + (�z · �e3)

2 = r2
i } , ri > 0 , t ≥ 0 , (1.5b)

∂CiS(t) ⊂ {�z ∈ R3 : �z · �e2 = hi} , hi ∈ R , t ≥ 0 . (1.5c)

The energy decay (1.4a) then still holds for the three evolution equations (1.1), (1.2) and (1.3), if in the case of the moving 
boundaries (1.5b), (1.5c) one postulates a 90◦ contact angle with the external walls/substrates. Moreover, the two flows 
(1.1) and (1.2) need additional conditions on ∂S(t) for closure, e.g. no-flux conditions for H or Y. Similarly, the volume 
conservation (1.4b) also still holds in the presence of the boundary conditions (1.5), on defining the “interior” �(t) of S(t)
as a suitable finite domain bounded by S(t) and parts of the external walls and substrates. Physically the 90◦ contact angle 
condition arises for a neutral external boundary. In situations where the interior and exterior of S(t) have different contact 
energy densities with the external boundary, their difference multiplied with the area of the contact patch of �(t) with 
the external boundary enters the free energy, and a generalized version of (1.4a) then still holds on prescribing the correct 
boundary contact angles. The precise conditions are described in e.g. [9], and we will present the details in the axisymmetric 
setting in the next section.

The rest of the paper is organized as follows. In Section 2, we review the strong and weak formulations for the three 
geometric evolution equations that we consider in this paper, at first only for the case of a neutral external boundary. 
Based on the discretizations of these weak formulations, several volume-preserving parametric finite element methods are 
proposed in Section 3. For these schemes the properties of volume conservation, stability and vertex distribution are also 
analyzed in Section 3. At the end of the section, we briefly discuss the extension of the presented schemes to the case of 
a non-neutral external boundary. Subsequently, several numerical results are presented in Section 4. Finally the paper is 
concluded in Section 5.

2. Mathematical formulations

In this section we briefly review strong and weak formulations for the three evolution laws (1.1), (1.2) and (1.3) in the 
axisymmetric setting. We refer the reader to [11,12] for more details and the precise derivations.

Let R/Z be the periodic unit interval, and set

I = R/Z , with ∂I = ∅ , or I = (0,1) , with ∂I = {0,1} .

We consider the axisymmetric situation, where �x(·, t) = (r(·, t), z(·, t))T : I → R≥0 × R is a parameterization of �(t). 
Throughout �(t) represents the generating curve of a surface S(t) that is axisymmetric with respect to the x2–axis, as 
shown in Fig. 1. In particular, an induced parameterization of S(t) is given by

(ρ, θ, t) �→ (
r(ρ, t) cos θ, z(ρ, t), r(ρ, t) sin θ

)T
, ρ ∈ I, θ ∈ [0,2π ].
3
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We allow �(t) to be either a closed curve, parameterized over R/Z, which corresponds to S(t) being a genus-1 surface 
without boundary. Or �(t) may be an open curve, parameterized over [0, 1]. If both endpoints of �(t) lie on the x2–axis, 
then the surface S(t) is a genus-0 surface without boundary. In all other cases the boundary S(t) is made up of one or 
two circles that each lie in a hyperplane that is parallel to the x1-x3–plane R × {0} × R. Overall, we assume that the 
parameterization �x satisfies the following conditions, for all t ∈ [0, T ]:

�x(ρ, t) · �e1 > 0 ∀ ρ ∈ I \ ∂0I ,

as well as

�x(ρ, t) · �e1 = 0 ∀ ρ ∈ ∂0I , (2.1a)

�xt(ρ, t) · �ei = 0 ∀ ρ ∈ ∂iI , i = 1,2 , (2.1b)

�xt(ρ, t) = �0 ∀ ρ ∈ ∂D I , (2.1c)

where ∂D I ∪⋃2
i=0 ∂iI = ∂I is a disjoint partitioning of ∂I. Here ∂D I ∪⋃2

i=1 ∂iI denotes the subset of boundary points of I
that model components of the boundary of S(t), with ∂DI corresponding to fixed boundary circles as in (1.5a). Moreover, 
endpoints in ∂1I correspond to boundary circles that can move freely up and down along the boundary of an infinite 
cylinder that is aligned with the axis of rotation, (1.5b), while ∂2I corresponds to boundary circles that can freely expand 
and shrink within a hyperplane that is parallel to the x1-x3–plane, (1.5c). For a visualization of these different types of 
boundary nodes, the reader may refer to Table 1 in [11].

On assuming that |�xρ(·, t)| > 0 in I, we introduce the arc length s of the curve �(t), i.e. ∂s = |�xρ |−1 ∂ρ , and define the 
unit tangent and unit normal to the curve �(t) via �τ = �xs and �ν = −�τ⊥ , where (·)⊥ denotes a clockwise rotation by π

2 . We 
assume from now on that �ν(t) is such that the induced normal on S(t) is the outer normal to the “interior” �(t) enclosed 
by S(t) and possibly parts of the external boundary. We also introduce the curvature κ of the curve �(t) via κ �ν = �xss , as 
well as the mean curvature of S(t) via � =H ◦ (�x0). Then it holds that

� = κ − �ν · �e1

�x · �e1
. (2.2)

For the geometric flows we consider in this paper, the surface area and the enclosed volume play an important role. If 
we denote by A(�x(t)) and M(�x(t)) the surface area and the total enclosed volume of the axisymmetric hypersurface S(t), 
respectively, then we have

A(�x(t)) =
∫
S(t)

1 dA = 2π

∫
I

�x(ρ, t) · �e1 |�xρ(ρ, t)| dρ, (2.3a)

M(�x(t)) = vol(�(t)) . (2.3b)

Direct calculation, and recalling (1.4b), then yields that

d

dt
A(�x(t)) = 2π

∫
I

[
�xt · �e1 + �x · �e1

(�xt)ρ · �xρ

|�xρ |2
]

|�xρ | dρ , (2.4a)

d

dt
M(�x(t)) = 2π

∫
I

(�x · �e1) �xt · �ν |�xρ | dρ . (2.4b)

2.1. Surface diffusion flow

In the axisymmetric setting, the surface diffusion flow in (1.1) can be written in terms of an evolution equation for the 
generating curves �(t) = �x(·, t) as follows:

(�x · �e1) �xt · �ν = − [�x · �e1 �s
]

s in I × (0, T ] , (2.5)

together with the boundary conditions (2.1) for t ∈ (0, T ], as well as

�xρ · �e2 = 0 on ∂0I × (0, T ], (2.6a)

�xρ · �e3−i = 0 on ∂iI × (0, T ], i = 1,2 , (2.6b)

�ρ = 0 on ∂I × (0, T ]. (2.6c)
4
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In order to introduce the weak formulations, we define the function spaces

V ∂0
=
{
�η ∈ [H1(I)]2 : �η(ρ) · �e1 = 0 ∀ ρ ∈ ∂0I

}
,

V ∂ =
{
�η ∈ V ∂0

: �η(ρ) · �ei = 0 ∀ ρ ∈ ∂iI , i = 1,2; �η(ρ) = �0 ∀ ρ ∈ ∂D I
}
.

Then multiplying (2.5) by χ |�xρ | for a test function χ ∈ H1(I), integrating over I and integrating by parts, on noting the 
boundary condition (2.6c), yields∫

I

(�x · �e1) �xt · �ν χ |�xρ | dρ −
∫
I

�x · �e1 �ρ χρ |�xρ |−1 dρ = 0 ∀ χ ∈ H1(I).

Similarly, it was shown in [11] that multiplying (2.2) by (�x · �e1)�ν · �η |�xρ | for a test function �η ∈ V ∂ leads to∫
I

(�x · �e1)� �ν · �η |�xρ | dρ +
∫
I

[
�η · �e1 + �x · �e1

�xρ · �ηρ

|�xρ |2
]

|�xρ | dρ = 0 ∀ �η ∈ V ∂ . (2.7)

We mention that alternatively (2.7) can also be directly deduced from (1.4a) and (2.4a).
On defining 〈·, ·〉 as the L2-inner product over I, we hence consider the following weak formulation for (2.5).

Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] we find �x(t) ∈ [H1(I)]2, with �xt(t) ∈ V ∂ , and �(t) ∈ H1(I) such that〈

(�x · �e1) �xt · �ν, χ |�xρ |
〉
−
〈
�x · �e1 �ρ, χρ |�xρ |−1

〉
= 0 ∀ χ ∈ H1(I) , (2.8a)〈

(�x · �e1)� �ν, �η |�xρ |
〉
+
〈
�e1, �η |�xρ |

〉
+
〈
(�x · �e1) �xρ, �ηρ |�xρ |−1

〉
= 0 ∀ �η ∈ V ∂ . (2.8b)

Choosing χ = 1 in (2.8a) and recalling (2.4b) yields that (1.4b) is satisfied, while choosing χ = � in (2.8a) and �η = �xt in 
(2.8b), on noting (2.4a), yields that

d

dt
A(�x(t)) = −2π

〈
�x · �e1 |�ρ |2, |�xρ |−1

〉
≤ 0 , (2.9)

which shows that (1.4a) holds. This implies the volume conservation and energy dissipation within the weak formulation.
We now consider an alternative weak formulation, which treats the curvature κ of the curve �(t) as an unknown, and 

which will lead to an equidistribution property on the discrete level. To this end, we let λ = �ν·�e1�x·�e1
and recall that � = κ − λ.

Let �x(0) ∈ V ∂0
. For t ∈ (0, T ] we find �x(t) ∈ [H1(I)]2, with �xt(t) ∈ V ∂ , and κ(t) ∈ H1(I) such that〈

(�x · �e1) �xt · �ν, χ |�xρ |
〉
− 〈�x · �e1 (κ − λ)ρ , χρ |�xρ |−1〉= 0 ∀ χ ∈ H1(I) , (2.10a)〈
κ �ν, �η |�xρ |

〉
+
〈
�xρ, �ηρ |�xρ |−1

〉
= 0 ∀ �η ∈ V ∂ , (2.10b)

where (2.10b) is derived based on the curvature formulation κ �ν = �xss . As before, choosing χ = 1 in (2.10a) and noting (2.4b)
yields that (1.4b) is satisfied. Moreover, on choosing χ = κ − λ in (2.10a) and �η = (�x · �e1) �xt in (2.10b), it is not difficult to 
prove that (2.9) holds with � replaced by κ − λ, which once again implies (1.4a).

2.2. The intermediate evolution flow

In the axisymmetric setting, the intermediate evolution flow in (1.2) can be written as:

(�x · �e1) �xt · �ν = − [�x · �e1Ys
]

s , − 1
ξ

[�x · �e1Ys]s + 1
α

�x · �e1Y= �x · �e1 � in I × (0, T ] , (2.11)

together with the boundary conditions (2.1) for t ∈ (0, T ], as well as (2.6) with �ρ replaced by Yρ in (2.6c). It is straightfor-
ward to adapt the weak formulations from §2.1 to (2.11). For example, generalizing (2.8) to (2.11) yields the following weak 
formulation.
Let �x(0) ∈ V ∂0

. For t ∈ (0, T ] find �x(t) ∈ [H1(I)]2, with �xt(t) ∈ V ∂ , and (Y(t), �(t)) ∈ [H1(I)]2 such that〈
(�x · �e1) �xt · �ν, χ |�xρ |

〉
−
〈
�x · �e1Yρ, χρ |�xρ |−1

〉
= 0 ∀ χ ∈ H1(I) , (2.12a)

1

ξ

〈
�x · �e1Yρ, ζρ |�xρ |−1

〉
+
〈
�x · �e1

[
α−1Y− �

]
, ζ |�xρ |

〉
= 0 ∀ ζ ∈ H1(I) , (2.12b)〈

�x · �e1 � �ν, �η |�xρ |
〉
+
〈
�e1, �η |�xρ |

〉
+
〈
(�x · �e1) �xρ, �ηρ |�xρ |−1

〉
= 0 ∀ �η ∈ V ∂ . (2.12c)
5
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By setting χ = 1 in (2.12a) and making use of (2.4b), we obtain (1.4b), as before. Choosing χ = Y in (2.12a), ζ = ξ(� −
α−1Y) in (2.12b) and �η = �xt in (2.12c), and using (2.4a) yields

1

2π

d

dt
A(�x(t)) = − 1

α

〈
�x · �e1 |Yρ |2, |�xρ |−1

〉
− ξ

〈
�x · �e1

∣∣� − α−1Y
∣∣2 , |�xρ |

〉
≤ 0,

which implies that (1.4a) holds.
For completeness we mention that the weak formulation of (2.11) corresponding to (2.10), i.e. with the curve’s curvature 

κ being a variable, rather than � , is given by (2.12a), (2.10b) and (2.12b) with � replaced by κ − λ.

2.3. Conserved mean curvature flow

The volume preserving mean curvature flow (1.3), in the axisymmetric setting, can be formulated as follows.

�xt · �ν = � − 〈�x · �e1, � |�xρ |〉
〈�x · �e1, |�xρ |〉 in I × (0, T ] , (2.13)

together with the boundary conditions (2.1) for t ∈ (0, T ], as well as (2.6a), (2.6b). The weak formulation in the spirit of 
(2.8) is then given as follows.
Let �x(0) ∈ V ∂0

. For t ∈ (0, T ] we find �x(t) ∈ [H1(I)]2, with �xt(t) ∈ V ∂ , and �(t) ∈ L2(I) such that〈
(�x · �e1) �xt · �ν, χ |�xρ |

〉
−
〈
�x · �e1 � − �x · �e1

〈�x · �e1, � |�xρ |〉
〈�x · �e1, |�xρ |〉 , χ |�xρ |

〉
= 0 ∀ χ ∈ H1(I) , (2.14a)〈

(�x · �e1)� �ν, �η |�xρ |
〉
+
〈
�e1, �η |�xρ |

〉
+
〈
(�x · �e1) �xρ, �ηρ |�xρ |−1

〉
= 0 ∀ �η ∈ V ∂ . (2.14b)

Choosing χ = 1 in (2.14a) and recalling (2.4b) yields that (1.4b) is satisfied, while choosing χ = � in (2.14a) and �η = �xt in 
(2.14b), on noting (2.4a), shows that

− 1

2π

d

dt
A(�x(t)) = 〈�x · �e1, |�|2 |�xρ |〉 −

(〈�x · �e1, � |�xρ |〉)2

〈�x · �e1, |�xρ |〉 ≥ 0 ,

where we have noted the Cauchy–Schwarz inequality. This proves that also (1.4a) holds.
Analogously to before, the weak formulation in the spirit of (2.10) is given by (2.14a), with � replaced by κ − λ, and 

(2.10b).

3. Finite element approximations

Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time steps �tm = tm+1 − tm , 
m = 0, . . . , M − 1. We set �t = maxm=0,...,M−1 �tm . Besides, let [0, 1] = ∪ J

j=1I j , J ≥ 3, be a uniform partition of [0, 1] into 
intervals given by the nodes q j , I j = [q j−1, q j], i.e. q j = j h with h = J−1, j = 0, . . . , J . We define the finite element spaces 
as

V h :=
{
χ ∈ C0(I) : χ |I j

is affine ∀ j = 1, . . . , J
}
, V h

∂0
:= [V h]2 ∩ V ∂0

, V h
∂ = [V h]2 ∩ V ∂ .

Let { �Xm}0≤m≤M , with �Xm ∈ V h
∂0

, be an approximation to {�x(t)}t∈[0,T ] and define �m = �Xm
(
I
)

. Throughout this section 
we assume that

�Xm · �e1 > 0 in I \ ∂0I and | �Xm
ρ | > 0 in I 0 ≤ m ≤ M,

so that we can set

�τm = �Xm
s =

�Xm
ρ

| �Xm
ρ | and �νm = −(�τm)⊥ .

The main novelty of this paper is the introduction of fully discrete finite element approximations that satisfy an exact 
volume preservation for the three flows (1.1), (1.2) and (1.3). Starting from the ideas in [4,31], it turns out that the crucial 
ingredient is the appropriate treatment of the quantity �f = �x · �e1 |�xρ | �ν in the weak formulations of the flow equations. Let 
us define �f m+ 1

2 ∈ [L∞(I)]2 via

�f m+ 1
2 = −1

6

(
2( �Xm · �e1) �Xm

ρ + 2( �Xm+1 · �e1) �Xm+1
ρ + ( �Xm · �e1) �Xm+1

ρ + ( �Xm+1 · �e1) �Xm
ρ

)⊥
. (3.1)

Then we can prove the following lemma.
6
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Lemma 3.1. Let �Xm ∈ V h
∂0

and �Xm+1 ∈ V h
∂0

. Then it holds that

M( �Xm+1) − M( �Xm) = 2π
〈 �Xm+1 − �Xm, �f m+ 1

2

〉
. (3.2)

Proof. For α ∈ [0, 1], we define the finite element functions �Xh(α) ∈ V h
∂0

via linear interpolation between �Xm and �Xm+1:

�Xh(ρ,α) := (1 − α) �Xm(ρ) + α �Xm+1(ρ), ρ ∈ I, 0 ≤ α ≤ 1. (3.3)

Therefore we have �Xh(·, 0) = �Xm , �Xh(·, 1) = �Xm+1 and �Xh
α(·, α) = �Xm+1 − �Xm . For the family of surfaces generated by 

{ �X(α)}α∈[0,1] it holds, similarly to (2.4b), that

d

dα
M( �Xh(α)) = 2π

〈 �Xh(α) · �e1, �Xh
α(α) · �νh(α) | �Xh

ρ(α)|
〉
, (3.4)

where �νh(·, α) = −|�Xh
ρ(·, α)|−1( �Xh

ρ(·, α))⊥ , compare also with Theorem 71 in [13]. Integrating (3.4) from 0 to 1 with respect 
to α yields

M( �Xm+1) − M( �Xm) = 2π

1∫
0

∫
I

( �Xh(α) · �e1)
( �Xm+1 − �Xm

)
· (−�Xh

ρ(α))⊥ dρ dα

= 2π

∫
I

( �Xm+1 − �Xm) ·
1∫

0

( �Xh(α) · �e1)(−�Xh
ρ(α))⊥ dα dρ.

By (3.3), we note that ( �Xh(α) · �e1)(−�Xh
ρ(α))⊥ is a quadratic function of α. Applying Simpson’s rule and using (3.1) yields

1∫
0

( �Xh · �e1)(−�Xh
ρ)⊥ dα = −1

6

(
( �Xm · �e1) �Xm

ρ + 4( �Xm+ 1
2 · �e1) �Xm+ 1

2
ρ + ( �Xm+1 · �e1) �Xm+1

ρ

)⊥

= −1

6

(
2( �Xm · �e1) �Xm

ρ + 2( �Xm+1 · �e1) �Xm+1
ρ + ( �Xm · �e1) �Xm+1

ρ + ( �Xm+1 · �e1) �Xm
ρ

)⊥ = �f m+ 1
2 ,

(3.5)

where we have denoted �Xm+ 1
2 = 1

2 ( �Xm + �Xm+1). Therefore we have (3.2) as claimed. �
3.1. For the surface diffusion flow

For the weak formulation (2.8), we propose the following discretized scheme. Let �X0 ∈ V h
∂0

. For m = 0, . . . , M − 1, find 
(δ �Xm+1, �m+1) ∈ V h

∂ × V h , where �Xm+1 = �Xm + δ �Xm+1, such that

1

�tm

〈 �Xm+1 − �Xm, χ �f m+ 1
2

〉
−
〈 �Xm · �e1 �m+1

ρ , χρ | �Xm
ρ |−1

〉
= 0 ∀ χ ∈ V h , (3.6a)〈

�m+1 �f m+ 1
2 , �η

〉
+
〈
�η · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

〉
= 0 ∀ �η ∈ V h

∂ . (3.6b)

We note that the scheme (3.6) is very close to [11, (4.3)]. The main difference is that there the combined term �f =
�x · �e1 |�xρ | �ν is approximated fully explicitly. Here in (3.6a) we choose the semi-implicit treatment �f m+ 1

2 from (3.1) to obtain 
exact volume preservation. In addition, we also employ �f m+ 1

2 in (3.6b) to obtain an unconditionally stable method.
We have the following theorem for the discretization (3.6), which mimics the energy dissipation and the volume preser-

vation on the discrete level.

Theorem 3.2 (Stability and volume conservation). Let ( �Xm+1, κm+1) be a solution to (3.6). Then it holds that

A( �Xm+1) + 2π �tm

〈 �Xm · �e1 �m+1
ρ , �m+1

ρ | �Xm
ρ |−1

〉
≤ A( �Xm). (3.7)

Moreover, it holds that

M( �Xm+1) = M( �Xm). (3.8)
7
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Proof. Choosing χ = �m+1 in (3.6a) and �η = �Xm+1 − �Xm in (3.6b), and then combining the two equations, we obtain

�tm

〈 �Xm · �e1 �m+1
ρ , �m+1

ρ | �Xm
ρ |−1

〉
+
〈
( �Xm+1 − �Xm) · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , ( �Xm+1 − �Xm)ρ | �Xm
ρ |−1

〉
= 0.

(3.9)

Using the inequality �a · (�a − �b) ≥ |�b|(|�a| − |�b|) for �a, �b ∈R2, we have〈
( �Xm+1 − �Xm) · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , ( �Xm+1 − �Xm)ρ | �Xm
ρ |−1

〉
≥
〈
( �Xm+1 − �Xm) · �e1, | �Xm+1

ρ |
〉
+
〈 �Xm · �e1, | �Xm+1

ρ | − | �Xm
ρ |
〉

=
〈 �Xm+1 · �e1, | �Xm+1

ρ |
〉
−
〈 �Xm · �e1, | �Xm

ρ |
〉
= 1

2π

(
A( �Xm+1) − A( �Xm)

)
, (3.10)

on recalling (2.3a). Combining (3.9) and (3.10) yields the desired stability result (3.7).
Moreover, setting χ = 1 in (3.6a) yields〈 �Xm+1 − �Xm, �f m+ 1

2

〉
= 0,

which implies (3.8) thanks to Lemma 3.1. �
We next consider the discretization of the weak formulation in (2.10), leading to a scheme with an equidistribution 

property. Following the approach from [11, (3.8)], we first note from (2.6a) that

lim
ρ→ρ0

λ(ρ, t) = lim
ρ→ρ0

�ν(ρ, t) · �e1

�x(ρ, t) · �e1
= lim

ρ→ρ0

�νρ(ρ, t) · �e1

�xρ(ρ, t) · �e1
= �νs(ρ0 , t) · �τ (ρ0 , t) = −κ(ρ0 , t) ∀ ρ0 ∈ ∂0I , ∀ t ∈ [0, T ] .

Thus, for κm+1 ∈ V h , we introduce λm+ 1
2 (κm+1) ∈ V h to avoid the degeneracy in the discretization such that

[λm+ 1
2 (κm+1)](q j) =

⎧⎪⎪⎨
⎪⎪⎩

−κm+1(q j) q j ∈ ∂0I ,

�ωm(q j) · �e1

�Xm(q j) · �e1
otherwise ,

where �ωm ∈ [V h]2 is the mass-lumped L2–projection of �νm onto [V h]2, i.e.〈
�ωm, �ϕ | �Xm

ρ |
〉h =

〈
�νm, �ϕ | �Xm

ρ |
〉

∀ �ϕ ∈ [V h]2 .

Here 〈·, ·〉h denotes the usual mass lumped L2–inner product, which for two piecewise continuous functions �v, �w , with 
possible jumps at the nodes {q j} J

j=1, is defined via

〈
�v, �w

〉h = 1
2 h

J∑
j=1

[
(�v · �w)(q−

j ) + (�v · �w)(q+
j−1)

]
,

where g(q±
j ) = lim

δ↘0
g(q j ± δ).

Then for the weak formulation (2.10) we propose the following finite element approximation. Let �X0 ∈ V h
∂0

. For m =
0, . . . , M − 1, find (δ �Xm+1, κm+1) ∈ V h

∂ × V h , where �Xm+1 = �Xm + δ �Xm+1, such that

1

�tm

〈 �Xm+1 − �Xm, χ �f m+ 1
2

〉
−
〈
�Xm · �e1

[
κm+1 − λm+ 1

2 (κm+1)
]
ρ

, χρ | �Xm
ρ |−1

〉
= 0 ∀ χ ∈ V h , (3.11a)

〈
κm+1 �νm, �η | �Xm

ρ |
〉h +

〈 �Xm+1
ρ , �ηρ | �Xm

ρ |−1
〉
= 0 ∀ �η ∈ V h

∂ . (3.11b)

It does not appear possible to recover the energy stability for the discretized scheme (3.11). Nevertheless, in a similar 
manner to (2.8a), the approximation using �f m+ 1

2 in the first term of Eq. (3.11a) contributes to the property of volume 
conservation. Besides, the first term in (3.11b) is approximated by using the mass lumped inner product, which leads to 
the property of equidistribution, i.e., the mesh points on �m tend to be distributed at evenly spaced arc length. For a 
semidiscrete approximation this can be made rigorous, see Remark 3.1 in [11]. A detailed discussion of this equidistribution 
property can be found in [6,13].

It is straightforward to show that the discretized scheme (3.11) satisfies the exact volume conservation.
8
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Theorem 3.3 (Volume conservation). Let ( �Xm+1, κm+1) be a solution to (3.11). Then it holds that

M( �Xm+1) = M( �Xm).

Proof. Setting χ = 1 in (3.11a) and noting Lemma 3.1 yields the desired result. �
3.2. For the intermediate evolution flow

For the weak formulation (2.12), we propose the following fully discretized scheme: Let �X0 ∈ V h
∂0

. For m = 0, . . . , M − 1, 
find (δ �Xm+1, Ym+1, �m+1) ∈ V h

∂ × [V h]2, where �Xm+1 = �Xm + δ �Xm+1, such that

1

�tm

〈 �Xm+1 − �Xm, χ �f m+ 1
2

〉
−
〈 �Xm · �e1Ym+1

ρ , χρ | �Xm
ρ |−1

〉
= 0 ∀ χ ∈ V h , (3.12a)

1
ξ

〈 �Xm · �e1Ym+1
ρ , ζρ | �Xm

ρ |−1
〉
+
〈 �Xm · �e1

[
α−1Ym+1 − �m+1] , ζ | �Xm

ρ |
〉
= 0 ∀ ζ ∈ V h , (3.12b)〈

�m+1 �f m+ 1
2 , �η

〉
+
〈
�η · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

〉
= 0 ∀ �η ∈ V h

∂ . (3.12c)

For the discretization in (3.12) we can prove unconditional energy decay and exact volume conservation.

Theorem 3.4 (Stability and volume conservation). Let ( �Xm+1, Ym+1, κm+1) be a solution to (3.12). Then it holds that

A( �Xm+1) + 2π �tm

α

〈 �Xm · �e1

∣∣∣Ym+1
ρ

∣∣∣2 , | �Xm
ρ |−1

〉
+ 2π �tm ξ

〈 �Xm · �e1
∣∣�m+1 − 1

α Y
m+1

∣∣2 , | �Xm
ρ |
〉
≤ A( �Xm) . (3.13)

Moreover, it holds that

M( �Xm+1) = M( �Xm). (3.14)

Proof. Setting χ = �tm �m+1 in (3.12a), ζ = �tm ξ(�m+1 − 1
αY

m+1) in (3.12b) and �η = �Xm+1 − �Xm in (3.12c), and then 
combining these three equations yields

�tm

α

〈 �Xm · �e1

∣∣∣Ym+1
ρ

∣∣∣2 , | �Xm
ρ |−1

〉
+ �tm ξ

〈 �Xm · �e1
∣∣�m+1 − 1

α Y
m+1

∣∣2 , | �Xm
ρ |
〉
+
〈
( �Xm+1 − �Xm) · �e1, | �Xm+1

ρ |
〉

+
〈
( �Xm · �e1) �Xm+1

ρ , ( �Xm+1 − �Xm)ρ | �Xm
ρ |−1

〉
= 0. (3.15)

Using (3.10) we can recast (3.15) as

�tm

α

(
�Xm · �e1

∣∣∣Ym+1
ρ

∣∣∣2 , | �Xm
ρ |−1

)
+ �tm ξ

( �Xm · �e1
∣∣�m+1 − 1

α Y
m+1

∣∣2 , | �Xm
ρ |
)

≤ − 1

2π

(
A( �Xm+1) − A( �Xm)

)
,

which implies (3.13) immediately.
Finally, as before, setting χ = 1 in (3.12c) and noting Lemma 3.1 yields (3.14). �
It is not difficult to also introduce the natural finite element approximation of the intermediate evolution law (2.11) in 

the spirit of the scheme (3.11). In fact, that method would be given by (3.12a), (3.12b) with �m+1, replaced by κm+1 −
λm+ 1

2 (κm+1), and (3.11b). That new scheme would again satisfy the equidistribution property induced by (3.11b), together 
with the exact volume conservation as stated in Theorem 3.3.

3.3. For the conserved mean curvature flow

For the weak formulation (2.14), we propose the following fully discrete approximation. Let �X0 ∈ V h
∂0

. For m = 0, . . . , M −
1, find (δ �Xm+1, �m+1) ∈ V h

∂ × V h , where �Xm+1 = �Xm + δ �Xm+1, such that

1

�tm

〈 �Xm+1 − �Xm, χ �f m+ 1
2

〉
−
〈 �Xm · �e1 �m+1, χ | �Xm

ρ |
〉
+
〈 �Xm · �e1, �

m+1 | �Xm
ρ |
〉

〈 �Xm · �e1, | �Xm
ρ |
〉 〈 �Xm · �e1,χ | �Xm

ρ |
〉
= 0 ∀ χ ∈ V h ,

(3.16a)〈
�m+1 �f m+ 1

2 , �η
〉
+
〈
�η · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , �ηρ | �Xm
ρ |−1

〉
= 0 ∀ �η ∈ V h

∂ . (3.16b)

Similarly to before, we can prove unconditional energy decay and exact volume conservation for the scheme (3.16).
9



W. Bao, H. Garcke, R. Nürnberg et al. Journal of Computational Physics 460 (2022) 111180
Theorem 3.5 (Stability and volume conservation). Let ( �Xm+1, κm+1) be a solution to (3.16). Then it holds that

1

2π
A( �Xm) − 1

2π
A( �Xm+1) ≥ �tm

〈 �Xm · �e1 |�m+1|2, | �Xm
ρ |
〉
− �tm

(〈 �Xm · �e1, �
m+1 | �Xm

ρ |
〉)2

〈 �Xm · �e1, | �Xm
ρ |
〉 ≥ 0 . (3.17)

Moreover, it holds that

M( �Xm+1) = M( �Xm). (3.18)

Proof. Setting χ = �tm �m+1 in (3.16a) and �η = �Xm+1 − �Xm in (3.16b), combining and recalling (3.10) yields (3.17), where 
we also note a Cauchy–Schwarz inequality. In addition, as before, choosing χ = 1 in (3.16a) and noting Lemma 3.1 yields 
(3.18). �

We can also introduce the natural finite element approximation of (2.13) in the spirit of the scheme (3.11). The new 
method would be given by (3.16a), with �m+1 replaced by κm+1 − λm+ 1

2 (κm+1), and (3.11b). That new scheme would 
again satisfy the equidistribution property induced by (3.11b), together with the exact volume conservation as stated in 
Theorem 3.3.

3.4. The nonlinear solver

We note that all our introduced schemes lead to systems of nonlinear equations, which can be solved with the help 
of a Newton’s method. For example, for (3.6), given the initial guess 

( �Xm+1,0, �m+1,0
)

∈ V ∂0
× V h , for i ≥ 0 we seek the 

Newton’s direction 
( �Xδ, �δ

)
∈ V h

∂ × V h such that the following equations hold

1

�tm

〈 �Xδ, χ �f m+ 1
2 ,i
〉
+ 1

�tm

〈 �Xm+1,i − �Xm, χ �f m+ 1
2 ,i

δ

〉
−
〈 �Xm · �e1 �δ

ρ, χρ | �Xm
ρ |−1

〉
= − 1

�tm

〈 �Xm+1,i − �Xm, χ �f m+ 1
2 ,i
〉
+
〈 �Xm · �e1 �m+1,i

ρ , χρ | �Xm
ρ |−1

〉
∀ χ ∈ V h, (3.19a)〈

�δ �f m+ 1
2 ,i, �η

〉
+
〈
�m+1,i �f m+ 1

2
δ , �η

〉
+
〈
�η · �e1, | �Xm+1,i

ρ |−1 �Xm+1,i
ρ · �Xδ

ρ

〉
+
〈
( �Xm · �e1) �Xδ

ρ, �ηρ | �Xm
ρ |−1

〉
= −

〈
�m+1,i �f m+ 1

2 ,i, �η
〉
−
〈
�η · �e1, | �Xm+1,i

ρ |
〉
−
〈
( �Xm · �e1) �Xm+1,i

ρ , �ηρ | �Xm
ρ |−1

〉
∀ �η ∈ V h

∂ , (3.19b)

where �f m+ 1
2 ,i ∈ [L∞(I)]2 and �f m+ 1

2 ,i
δ ∈ [L∞(I)]2 are given by

�f m+ 1
2 ,i := −1

6

[
2( �Xm · �e1) �Xm

ρ + 2( �Xm+1,i · �e1) �Xm+1,i
ρ + ( �Xm · �e1) �Xm+1,i

ρ + ( �Xm+1,i · �e1) �Xm
ρ

]⊥
,

�f m+ 1
2 ,i

δ : = −1

6

[
( �Xδ · �e1) (2 �Xm+1,i

ρ + �Xm
ρ ) + (2 �Xm+1,i · �e1 + �Xm · �e1) �Xδ

ρ

]⊥
.

We then update

�Xm+1,i+1 = �Xm+1,i + �Xδ, �m+1,i+1 = �m+1,i + �δ. (3.20)

For each m ≥ 0, we can choose the initial guess �Xm+1,0 = �Xm , �m+1,0 = �m , and then repeat the iterations in (3.19), (3.20)
until the following conditions hold:∥∥∥�Xm+1,i+1 − �Xm+1,i

∥∥∥∞ = max
1≤ j≤ J

| �Xm+1,i+1(q j) − �Xm+1,i(q j)| ≤ tol,∥∥∥�m+1,i+1 − �m+1,i
∥∥∥∞ = max

1≤ j≤ J
|�m+1,i+1(q j) − �m+1,i(q j)| ≤ tol, (3.21)

where tol is the chosen tolerance.

3.5. Extension to non-neutral external boundaries

So far, to simplify the presentation, we have only considered the case of neutral external boundaries, when the axisym-
metric surfaces S(t) have a nonempty boundary. This then leads to the 90◦ contact angle conditions induced by (2.6b). In 
physical applications, however, it can be of interest to also consider scenarios, where a difference in contact energy densities 
10
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between the external boundary and the interior and exterior of S(t), respectively, leads to other contact angles. To this end, 
we consider contact energy contributions as discussed in [26], see also [9, (2.21)]. In the axisymmetric setting, the relevant 
energy is then given by

E(�x(t)) = A(�x(t)) + A∂1(�x(t)) + A∂2(�x(t))
= A(�x(t)) + 2π

∑
p∈∂1I

�̂(p)
∂S (�x(p, t) · �e1) �x(p, t) · �e2 + π

∑
p∈∂2I

�̂(p)
∂S (�x(p, t) · �e1)

2 , (3.22)

where we recall that A(�x) is the surface area of S(t), and A∂i (�x) represent contact energies of the boundary ∂S(t) with an 
external boundary. In particular, �̂(p)

∂S , for p ∈ ∂1I, denotes the change in contact energy density in the direction of −�e2, that 
the two phases separated by the interface S(t) have with the infinite cylinder at the boundary circle of S(t) represented by 
�x(p, t), compare with the simulation in Fig. 10. Similarly, �̂(p)

∂S , for p ∈ ∂2I, denotes the change in contact energy density in 
the direction of −�e1, that the two phases separated by the interface S(t) have with the hyperplane R ×{�x(p, 0) · �e2} ×R at 
the boundary circle of S(t) represented by �x(p, t), compare with the simulation in Fig. 7. The contact energy contributions 
in (3.22) lead to the natural contact angle conditions

(−1)p �τ (p, t) · �e2 = �̂(p)
∂S p ∈ ∂1I , (3.23a)

(−1)p �τ (p, t) · �e1 = �̂(p)
∂S p ∈ ∂2I , (3.23b)

for all t ∈ (0, T ]. In the case of a neutral external boundary we have �̂(0)
∂S = �̂(1)

∂S = 0, which leads to the 90◦ contact angle 
conditions in (2.6b), and means that (3.22) reduces to E(�x) = A(�x). We refer to [9,26,32] for more details on contact angles 
and contact energies. We note that in [3,32,44] there are discussions of the relaxed contact angle conditions, which give 
rise to dynamic contact angles that may be different from the equilibrium contact angles. The treatment of these relaxed 
conditions is not much different to that of (3.23). Thus we will simply focus on the natural contact angle conditions (3.23)
in this paper.

Taking the time derivative of E(�x), and noting the boundary conditions (2.1b), yields

d

dt
E(�x(t)) = 2π

∫
I

[
�xt · �e1 + �x · �e1

(�xt)ρ · �xρ

|�xρ |2
]

|�xρ | dρ + 2π
∑

p∈∂1I

�̂(p)
∂S (�x(p, t) · �e1) �xt(p, t) · �e2

+ 2π
∑

p∈∂2I

�̂(p)
∂S (�x(p, t) · �e1) �xt(p, t) · �e1 (3.24)

as the generalization of (2.4a). Adjusting the weak formulations in Section 2 is now straightforward. In particular, on the 
right hand sides of (2.8b), (2.12c) and (2.14b) we add the terms

−
2∑

i=1

∑
p∈∂iI

�̂(p)
∂S (�x(p, t) · �e1) �η(p) · �e3−i, (3.25)

while to the right hand side of (2.10b) we add the terms

−
2∑

i=1

∑
p∈∂iI

�̂(p)
∂S

�η(p) · �e3−i . (3.26)

In each case, the boundary conditions (3.23) will then be weakly enforced. Moreover, these new weak formulations still 
satisfy the volume conservation and energy dissipation properties. For example, using the same testing procedure as before, 
and noting (3.24), it is straightforward to show that solutions to the adapted (2.8) satisfy (2.9) with A(�x(t)) replaced by 
E(�x(t)).

Similarly, the adaptation of our numerical schemes to the more general contact angles is also straightforward. For the 
equidistributing schemes based on (3.11b), we simply add the terms (3.26) to the right hand side of (3.11b). For the schemes 
based on (3.6b), on the other hand, for (3.25) we use the semi-implicit approximation

−
∑

p∈∂1I

�̂(p)
∂S ( �Xm(p) · �e1) �η(p) · �e2 −

∑
p∈∂2I

{
[̂�(p)

∂S ]+ ( �Xm+1(p) · �e1) + [̂�(p)
∂S ]− ( �Xm(p) · �e1)

}
�η(p) · �e1, (3.27)

where [r]± = ± max{±r, 0} for r ∈ R, in order to still guarantee unconditional stability. In fact, all of the adapted schemes 
still satisfy the theoretical properties which we proved previously, where for the stability results the surface area A(·) now 
needs to be replaced by the relevant energy E(·). For example, we can prove the following theorem, which generalizes 
Theorem 3.2.
11
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Theorem 3.6 (Stability and volume conservation). Let ( �Xm+1, κm+1) be a solution to (3.6), with (3.27) added to the right hand side of 
(3.6b). Then it holds that

E( �Xm+1) + 2π �tm

〈 �Xm · �e1 �m+1
ρ , �m+1

ρ | �Xm
ρ |−1

〉
≤ E( �Xm). (3.28)

Moreover, it holds that M( �Xm+1) = M( �Xm).

Proof. Choosing χ = �m+1 in (3.6a) and �η = �Xm+1 − �Xm in the adapted (3.6b) yields

�tm

〈 �Xm · �e1, �m+1
ρ , �m+1

ρ | �Xm
ρ |−1

〉
+
〈
( �Xm+1 − �Xm) · �e1, | �Xm+1

ρ |
〉
+
〈
( �Xm · �e1) �Xm+1

ρ , ( �Xm+1 − �Xm)ρ | �Xm
ρ |−1

〉
+
∑

p∈∂1I

�̂(p)
∂S ( �Xm(p) · �e1) ( �Xm+1(p) − �Xm(p)) · �e2

+
∑

p∈∂2I

{(
[̂�(p)

∂S ]+ �Xm+1(p) + [̂�(p)
∂S ]− �Xm(p)

)
· �e1

}
( �Xm+1(p) − �Xm(p)) · �e1 = 0. (3.29)

Following the proof of Theorem 4.2 in [11], we observe that since δ �Xm+1 ∈ V h
∂ , we have ( �Xm+1(p) − �Xm(p)) · �e1 = 0 for 

p ∈ ∂1I, and thus∑
p∈∂1I

�̂(p)
∂S ( �Xm(p) · �e1) ( �Xm+1(p) − �Xm(p)) · �e2

=
∑

p∈∂1I

�̂(p)
∂S ( �Xm+1(p) · �e1)( �Xm+1(p) · �e2) −

∑
p∈∂1I

( �Xm(p) · �e1)( �Xm(p) · �e2)

= 1

2π

(
A∂1(

�Xm+1) − A∂1(
�Xm)

)
. (3.30)

In addition, by noting 2 β (β − α) ≥ β2 − α2, we get∑
p∈∂2I

{
[̂�(p)

∂S ]+ �Xm+1(p) · �e1 + [̂�(p)
∂S ]− �Xm(p) · �e1

}
( �Xm+1(p) − �Xm(p)) · �e1

≥ 1
2

∑
p∈∂2I

[̂�(p)
∂S ]+ ( �Xm+1(p) · �e1)

2 − 1
2

∑
p∈∂2I

[̂�(p)
∂S ]+ ( �Xm(p) · �e1)

2

+ 1
2

∑
p∈∂2I

[̂�(p)
∂S ]− ( �Xm+1(p) · �e1)

2 − 1
2

∑
p∈∂2I

[̂�(p)
∂S ]− ( �Xm(p) · �e1)

2

= 1

2π

(
A∂2(

�Xm+1) − A∂2(
�Xm)

)
. (3.31)

Combining (3.29), (3.10), (3.30) and (3.31) yields the desired stability result (3.28). Finally, the volume conservation property 
can be shown by choosing χ = 1 in (3.6a) as before. �
4. Numerical results

In this section we present several numerical experiments to test the fully discrete schemes that we introduced in Sec-
tion 3. We always employ uniform time steps, �tm = �t , m = 0, . . . , M − 1. To numerically verify the properties of the 
discretized schemes, we define the normalized energy function E(t)/E(0), the relative volume loss function �M(t) and the 
mesh ratio indicator function �(t) via

E(t)/E(0)|t=tm
= E( �Xm)

E( �X0)
, �M(t)|t=tm

= M̃( �Xm) − M̃( �X0)

M̃( �X0)
,

�(t)|t=tm
= max1≤ j≤ J | �Xm(q j) − �Xm(q j−1)|

min1≤ j≤ J | �Xm(q j) − �Xm(q j−1)|
, m ≥ 0,

where E( �Xm) is defined in (3.22) and

M̃( �Xm) = π
〈
( �Xm · �e1)

2 �νm, �e1 | �Xm
ρ |
〉
+ π

∑
(−1)p+1 ( �Xm(p) · �e1)

2 �Xm(p) · �e2 .
p∈∂1I
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Fig. 2. Evolution under surface diffusion for a rounded cylinder of dimension 1 × 7 × 1. The evolution of the generating curves is shown on the left. On the 
right are the visualizations of the axisymmetric surfaces Sm at times t = 0, 0.3, 0.5, 1, respectively. Here ∂0I = {0, 1}, �t = 10−4, J = 128.

Fig. 3. The time history of the normalized energy E(t)/E(0) (left panel) and the relative volume loss (right panel) for the evolution under surface diffusion 
of a rounded cylinder of dimension 1 × 7 × 1 by using different time step sizes �t . Here ∂0I = {0, 1}, �t0 = 0.05 and J = 128.

A proof for M̃( �Xm) = M( �Xm), in the case ∂I = ∂0I, can be found in [11, (3.10)]. In the case of an axisymmetric surface with 
boundary, the quantity M̃( �Xm), up to an additive constant, represents the volume of a suitably defined “interior” that is 
bounded by the surface and parts of the external walls and planes.

Finally, for computing solutions to the nonlinear systems arising at each time level, we choose the tolerance tol = 10−10

in the Newton’s method, recall (3.21). Then in all our simulations we observe that at most 3 iterations are required in the 
Newton’s method.

4.1. Numerical results for surface diffusion flow

Example 1. We focus on the case of a genus-0 surface, so that the boundaries are set to ∂0I = ∂I = {0, 1}. We first consider 
the experiment for a rounded cylinder of total dimension 1 ×7 ×1. The numerical solutions are computed via the discretized 
scheme (3.6), and the discretization parameters are �t = 10−4, J = 128. As can be seen in Fig. 2, the cylinder finally reaches 
a sphere as the stationary solution. Besides, in Fig. 3 we show the time evolution of the normalized energy E(t)/E(0) and 
the relative volume loss �M(t) by using different time step sizes. We observe the numerical convergence in time for the 
scheme, and the enclosed volume for the numerical solution is conserved up to the machine precision, confirming our 
theoretical results.

In Fig. 4, we consider the experiment for a disc of total dimension 9 × 1 × 9 via the discretized scheme (3.11), and 
the discretization parameters are �t = 10−3, J = 128. The time history of some relevant quantities is plotted, and as a 
comparison, the plots for numerical solutions computed via scheme (3.6) are presented together. We observe the energy 
dissipation and exact volume conservation for both schemes. For the mesh quality, it can be seen that the mesh ratio 
indicator tends to 1 for the scheme (3.11), due to the equidistribution property. For the scheme (3.6), on the other hand, the 
mesh ratio indicator reaches larger values but overall does not exceed 4. This indicates that the mesh quality for scheme 
(3.6) is preserved well during the simulation although without the equidistribution property.
13
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Fig. 4. Evolution under surface diffusion for a disc of dimension 9 × 1 × 9 towards the stationary solution. On the left we plot the generating curves at 
t = 0, 0.2, 0.5, 0.8, 1, 1.5, 2, 3, 5 with the visualizations of the axisymmetric surfaces Sm at time t = 0.5. On the right are the plots of the normalized energy 
E(t)/E(0), the relative volume loss �M(t), and the mesh ratio indicator function �(t) by using (3.11) (solid blue line) and (3.6) (dashed red line). Here 
∂0I = {0, 1}, �t = 10−3, J = 100. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Evolution under surface diffusion for a rounded cylinder of dimension 1 × 8 × 1 until its pinch off. On the left the generating curves �m are shown 
at times t = 0, 0.05, 0.1, 0.15, 0.18, 0.22, 0.24, 0.2452. We also visualize the axisymmetric surface Sm generated by �m at time t = 0.2452. On the right are 
the plots of the normalized energy, the relative volume loss, and the mesh ratio indicator function. Here ∂0I = {0, 1}, J = 256, �t = 10−4.

As the numerical results for the schemes (3.6) and (3.11) are often graphically indistinguishable, we only visualize the 
numerical results for the former in the following. We next increase the aspect ratio of the rounded cylinder in Fig. 2, and as 
initial data we choose a rounded cylinder of total dimension 1 ×8 ×1. The discretization parameters are �t = 10−4, J = 256, 
and the numerical results are visualised in Fig. 5, where we observe that the pinch off event happens at time t = 0.2452. 
This is highly consistent with the previous results in [7,11]. During the simulations, we also observe the energy dissipation 
and exact volume conservation.
14



W. Bao, H. Garcke, R. Nürnberg et al. Journal of Computational Physics 460 (2022) 111180
Fig. 6. Evolution under surface diffusion for a torus with major radius R = 1 and minor radius r = 0.25. On the left we show the generating curves �m

at time t = 0, 0.004, 0.01, 0.013, 0.018, 0.021, 0.023, 0.02391 and the visualizations of the axisymmetric surfaces at t = 0.005, t = 0.02391. On the right 
are the plots of the normalized energy E(t)/E(0), the relative volume loss �M(t), and the mesh ratio indicator function �(t). Here ∂I = ∅, �t = 10−5, 
J = 256.

Example 2. In this example, we consider the evolution of a torus, so that I = R/Z, ∂I = ∅. As initial data we choose a 
torus with major radius R = 1 and minor radius r = 0.25, and the discretization parameters are �t = 10−5, J = 256. The 
simulation results are illustrated in Fig. 6, where we observe that the torus shrinks towards the centre and tries to form 
a genus-0 surface, see [7,11,34]. During the simulations, we observe that the energy dissipation and volume conservation 
are satisfied well for the numerical solutions. Besides, the mesh ratio indicator remains at small values and increases only 
slightly when the vertices on �m are approaching the x2–axis.

Example 3. In this example, we are focused on the case when the films are attached to the substrate R × {0} × R. We 
first test the evolution of a small droplet, so that the boundaries are set to ∂0I = {0}, ∂2I = {1}. As initial data we choose 
a disc of total dimension 2 × 1 × 2, and the discretization parameters are �t = 10−3, J = 128. The simulation results for 
�̂(1)

∂S = −0.5 and 0.5 are reported in Fig. 7. When �̂(1)
∂S = −0.5, we observe that the droplet eventually forms a spherical 

shape with an acute contact angle. On the other hand, when �̂(1)
∂S = 0.9, the droplet forms a spherical shape with an obtuse 

contact angle. During the simulations, the energy dissipation and the volume conservation are observed for the numerical 
solutions. The mesh ratio indicator remains at small values for both cases, as shown in Fig. 8.

We next study the evolution of a large disc with a relatively small hole. As initial data we choose a disc of dimension 
83.5 × 1 × 83.5 with a hole of dimension 2.5 × 1 × 2.5 in the centre. For the boundaries we set ∂2I = {0}, ∂D I = {1}
with �̂(0)

∂S = −0.5 to simulate the hole growth in solid-state dewetting [32,40,41]. The discretization parameters are J =
820, �t = 10−3, and the numerical results are shown in Fig. 9. In this experiment, we observe that the hole gets larger and 
the retracting edge forms a thickened ridge followed by a valley. During the evolution, it can be seen that the ridge gradually 
rises and the valley sinks. This is consistent to the results in [40,41]. Besides, we observe that the energy dissipation and 
the volume conservation are well satisfied for the numerical solutions, and the mesh quality is well preserved.

Example 4. For the next experiment, we consider a disc attached to an infinite cylinder of radius 1, with prescribed contact 
angle conditions. The boundaries are set to ∂0I = {0}, ∂1I = {1}. We start with a disc of total dimension 2 × 1 × 2, and 
the discretization parameters are J = 128, �t = 10−3. The generating curves of the stationary solutions are presented in 
Fig. 10 under four different parameters �̂(1)

∂S = −0.8, −0.4, 0.4, 0.8. We also plot the time history of the relative volume loss 
for the case �̂(1)

∂S = −0.8, and observe the exact volume conservation for the numerical solutions. For this experiment, the 
corresponding axisymmetric surfaces for �̂(1) = −0.8, ̂�(1) = 0.8 are visualized in Fig. 11.
∂S ∂S
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Fig. 7. Evolution under surface diffusion for a disc droplet of dimension 2 × 1 × 2 attached to R × {0} × R. The generating curves at several times 
are plotted with �̂(1)

∂S = −0.5 (left panel) and �̂(1)
∂S = 0.9 (right panel). We also visualize the axisymmetric surfaces at time t = 1 on the bottom. Here 

∂0I = {0}, ∂2I = {1}, �t = 10−3, J = 128.

Fig. 8. The time history of the normalized energy E(t)/E(0), the relative volume loss �M(t), and the mesh ratio indicator function �(t) for the experiment 
in Fig. 7.

Example 5. We end this subsection by testing the stability of a cylinder under small perturbations [17]. As initial data we 
choose

r(t) = 1 + 0.01 × | sin(2 z) + sin(13z/6) + sin(7z/3) + sin(5z/2) + sin(8z/3) + sin(17z/6)|, 0 ≤ z ≤ 12π,

which forces a small amplitude perturbation of the cylinder. The cylindrical shapes are attached to two parallel hyperplanes 
R × {0} × R and R × {12π} × R, so that we have ∂2I = {0, 1}. We set �̂(0)

∂S = �̂(1)
∂S = 0, and the discretization parameters 

are J = 512, �t = 10−4. The numerical results are reported in Fig. 12, where we observe the final breakup of the cylinder 
at time t = 17.1543 although the wavelengths of the initial perturbations are small. This is consistent to the results in [17]. 
During the simulation, the energy dissipation and volume conservation are observed to be well satisfied, and the mesh ratio 
indicator remains at small values during the evolution except when the vertices of �m are approaching the x2-axis.

4.2. Numerical results for the conserved mean curvature flow

Example 6. For the conserved mean curvature flow, we consider two numerical experiments that have been investigated for 
surface diffusion flow in §4.1. We start by testing the evolution of a cylinder with the same numerical setup as in Fig. 5, 
except that we choose �t = 10−3. The numerical results are reported in Fig. 13, where we observe that the cylinder tries to 
form a sphere as the stationary solution, while in Fig. 5, the formation of a singularity is observed for surface diffusion. In 
particular, we find that the generating curves remain convex during the simulation, and thus do the axisymmetric surfaces. 
This is in line with the theoretical result from [29], where it is shown that convexity is preserved for conserved mean 
16



Fig. 9. Evolution under surface diffusion for a large disc of dimension 83.5 × 1 × 83.5 with a hole of dimension 2.5 × 1 × 2.5. On the top are plots of the 
generating curves �m at times t = 0, 10, 50, 100, 200, 350, 500, 650, 800. On the bottom are plots of the normalized energy, the relative volume loss and 
the mesh ratio indicator function. Here ∂2I = {0}, ∂D I = {1}, �̂(0)

∂S = −0.5, J = 820, �t = 10−3.

Fig. 10. Evolution under surface diffusion for a disc attached to an infinite cylinder of radius 1. On the left are the generating curves of the stationary 
solutions for different ̂�(1)

∂S and on the right we plot the time history of the relative volume loss for ̂�(1)
∂S = −0.8. Here ∂0I = {0}, ∂1I = {1}, J = 128, �t =

10−3.

Fig. 11. Visualisations of the axisymmetric surfaces for �̂(1)
∂S = −0.8 (left panel) and �̂(1)

∂S = 0.8 (right panel) for the experiment in Fig. 10.

curvature flow. This is in contrast to surface diffusion and the intermediate evolution law, for which convexity in general is 
not preserved, see [24,28,30], as well as Figs. 2, 15 and 16. The exact volume conservation and good mesh quality are also 
observed for the numerical solutions in Fig. 13.

Moreover, we consider the evolution of a disc with the same numerical setup as in Fig. 4, and the simulation results are 
illustrated in Fig. 14. In this experiment, the disc remains convex during the simulation and finally forms a sphere as the 
W. Bao, H. Garcke, R. Nürnberg et al. Journal of Computational Physics 460 (2022) 111180
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Fig. 12. Evolution under surface diffusion for a cylindrical shape attached to two hyperplanes under small perturbations. On the top are the plots of the 
generating curves at times t = 0, 2, 4, 10, 15, 17.1543. On the bottom are the plots of the normalized energy, the relative volume loss and the mesh ratio 
indicator during the simulations. Here ∂I = ∂2I = {0, 1}, �̂(0)

∂S = �̂(1)
∂S = 0, J = 512, �t = 10−4.

Fig. 13. Evolution under conserved mean curvature flow for a rounded cylinder of dimension 1 × 8 × 1 towards the stationary solution. On the left are the 
plots of the generating curves �m at times t = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 4. We also visualize the axisymmetric surface Sm generated by �m at time t = 0.6. 
On the right are the plots of the normalized energy, the relative volume loss, and the mesh ratio indicator function. Here ∂I= ∂0I = {0, 1}, J = 256, �t =
10−3.
18



Fig. 14. Evolution under conserved mean curvature flow for a disc of dimension 9 × 1 × 9 towards the stationary solution. On the left are the plots of the 
generating curves �m at t = 0, 0.2, 0.5, 0.8, 1, 1.5, 2, 3, 20 together with a visualization of the axisymmetric surface Sm generated by �m at time t = 0.5. 
On the right are the plots of the normalized energy, the relative volume loss, and the mesh ratio indicator versus time. Here ∂I = ∂0I = {0, 1}, �t = 10−3, 
J = 100.

stationary solution. Besides, we observe that the energy dissipation and volume conservation are satisfied for the numerical 
solutions, and the mesh quality is generally well preserved.

4.3. Numerical results for the intermediate evolution flow

Example 7. For the intermediate evolution flow, we can repeat all the examples in §4.1. For simplicity, here we only show 
an example with the same numerical setup as in Fig. 5. We first fix α = 1 and choose ξ = 1, so that the flow interpolates 
between surface diffusion and conserved mean curvature flow. As shown in Fig. 15, we observe that the cylinder finally 
forms a sphere as the stationary solution. We then set ξ = 6 so that surface diffusion gains more weight in the evolution 
flow. In this experiment, as shown in Fig. 16, we observe the occurrence of pinch off at t = 0.544 although the evolution is 
much slower compared to that in Fig. 5. During the simulations, we observe the energy dissipation and the exact volume 
conservation, and the mesh quality is generally well preserved except when the cylinder is about to break up.

To further investigate the intermediate evolution flow, we use the same numerical setup as above but consider the 
evolution when ξ or α approaches infinity. Precisely, we fix α = 1 and visualize the axisymmetric surfaces at t = 0.2452
under different values of ξ , as illustrated in Fig. 17 (top panel). Similarly, the axisymmetric surfaces at t = 1.0 under 
different values of α are visualised in Fig. 17 (bottom panel). As a comparison, we also include results for the experiments 
in Fig. 5 and Fig. 13, which correspond to surface diffusion flow (α = 1, ξ = +∞) and conserved mean curvature flow (α =
+∞, ξ = 1), respectively. As ξ increases, we observe that the axisymmetric surfaces tend to break up more easily. Besides, 
with higher values of α, the axisymmetric surfaces at time t = 1.0 tend to become convex and mimic the property of 
convexity preservation that the conserved mean curvature flow satisfies. This confirms the theoretical results from [23]. The 
corresponding time history of the normalized energy for the experiments is shown in Fig. 18, where similar convergences 
are observed as well.

5. Conclusion

In this work, we proposed several volume-preserving parametric finite element schemes for discretizing surface diffu-
sion flow, conserved mean curvature flow and the intermediate evolution flow in an axisymmetric setting. The proposed 
schemes are based on variational discretizations of weak formulations that allow for tangential degrees of freedoms. A 
suitable weighting between old and new time level of a discrete normal allowed us to prove exact volume conservation 
of the numerical solutions. Some of the numerical methods enjoy the desirable property of unconditional stability, while 
others exhibit an asymptotic equidistribution property. Numerical results were presented to demonstrate the accuracy and 
efficiency of the proposed schemes, and to numerically verify these good properties.
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Fig. 15. Evolution under the intermediate evolution flow for a rounded cylinder of dimension 1 × 8 × 1 towards the stationary solution. On the left are plots 
of the generating curves �m at t = 0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.8, 3.5. We also visualize the axisymmetric surface Sm generated by �m at t = 0.6. On the right 
are plots of the normalized energy, the relative volume loss, and the mesh ratio indicator function. Here ∂I= ∂0I = {0, 1}, J = 256, �t = 10−4, α = 1 and 
ξ = 1.

Fig. 16. Evolution under the intermediate evolution flow for a rounded cylinder of dimension 1 × 8 × 1 until its breakup. On the left the generating curves 
�m are shown at t = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.544. We also visualize the axisymmetric surface Sm generated by �m at t = 0.544. On the right are the 
plots of the normalized energy, the relative volume loss, and the mesh ratio indicator function versus time. Here ∂I = ∂0I = {0, 1}, J = 256, �t = 10−4, 
α = 1 and ξ = 6.
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Fig. 17. Evolution under the intermediate evolution flow for a rounded cylinder of dimension 1 × 8 × 1 with different pairs of (ξ, α). Top panel: we fix 
α = 1 and visualize the axisymmetric surfaces at t = 0.2452 for different values of ξ . Bottom panel: we fix ξ = 1 and visualize the axisymmetric surfaces 
at t = 1.0 for different values of α. Here ∂I = ∂0I = {0, 1}, J = 256, �t = 10−4. Note that α = 1, ξ = +∞ represents the evolution under surface diffusion 
in Fig. 5, and α = +∞, ξ = 1 represents the evolution under conserved mean curvature flow in Fig. 13.

Fig. 18. The time history of the normalized energy under different pairs of (ξ, α) for the experiments in Fig. 17. Left panel: we fix α = 1 and choose 
different values of ξ . The pinch-off occurs for ξ = 6, 20, 100, +∞ at tc = 0.5440, 0.3044, 0.2559, 0.2452, respectively. Right panel: we fix ξ = 1 and choose 
different values of α.
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