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IMPROVED UNIFORM ERROR BOUNDS ON TIME-SPLITTING
METHODS FOR LONG-TIME DYNAMICS OF THE NONLINEAR
KLEIN--GORDON EQUATION WITH WEAK NONLINEARITY\ast 

WEIZHU BAO\dagger , YONGYONG CAI\ddagger , AND YUE FENG\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We establish improved uniform error bounds on a second-order Strang time-splitting
method which is equivalent to an exponential wave integrator for the long-time dynamics of the
nonlinear Klein--Gordon equation (NKGE) with weak cubic nonlinearity, whose strength is charac-
terized by \varepsilon 2 with 0 < \varepsilon \leq 1 a dimensionless parameter. Actually, when 0 < \varepsilon \ll 1, the NKGE
with O(\varepsilon 2) nonlinearity and O(1) initial data is equivalent to that with O(1) nonlinearity and small
initial data, the amplitude of which is at O(\varepsilon ). We begin with a semidiscretization of the NKGE
by the second-order time-splitting method and derive a full-discretization by the Fourier spectral
method in space. Employing the regularity compensation oscillation technique which controls the
high frequency modes by the regularity of the exact solution and analyzes the low frequency modes by
phase cancellation and energy method, we carry out the improved uniform error bounds at O(\varepsilon 2\tau 2)
and O(hm + \varepsilon 2\tau 2) for the second-order semidiscretization and full-discretization up to the long time
T\varepsilon = T/\varepsilon 2 with T fixed, respectively. Extensions to higher-order time-splitting methods and the
case of an oscillatory complex NKGE are also discussed. Finally, numerical results are provided to
confirm the improved error bounds and to demonstrate that they are sharp.
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improved uniform error bounds, regularity compensation oscillation
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1. Introduction. In this paper, we consider the following nonlinear Klein--
Gordon equation (NKGE) [13, 30, 31, 34, 46]:

(1.1)

\Biggl\{ 
\partial ttu(x, t) - \Delta u(x, t) + u(x, t) + \varepsilon 2u3(x, t) = 0, x \in \Omega , t > 0,

u(x, 0) = u0(x), \partial tu(x, 0) = u1(x), x \in \Omega .

Here, t is time, x is the spatial coordinate, \Delta is the Laplace operator, u := u(x, t) is a
real-valued scalar field, \varepsilon \in (0, 1] is a dimensionless parameter used to characterize the

nonlinearity strength, and \Omega =
\prod d

i=1(ai, bi) \subset \BbbR d (d = 1, 2, 3) is a bounded domain
equipped with periodic boundary conditions. The initial data u0(x) and u1(x) are
two given real-valued functions independent of \varepsilon .

When 0 < \varepsilon \ll 1, by introducing w(x, t) = \varepsilon u(x, t), the NKGE (1.1) with weak
nonlinearity and O(1) initial data can be reformulated into the following NKGE with
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IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1963

small initial data and O(1) nonlinearity:

(1.2)

\Biggl\{ 
\partial ttw(x, t) - \Delta w(x, t) + w(x, t) + w3(x, t) = 0, x \in \Omega , t > 0,

w(x, 0) = \varepsilon u0(x), \partial tw(x, 0) = \varepsilon u1(x), x \in \Omega .

In fact, the long-time dynamics of the NKGE (1.2) with small initial data and O(1)
nonlinearity is equivalent to that of the NKGE (1.1) with weak nonlinearity and O(1)
initial data.

The NKGE as a relativistic wave equation has a prominent place in quantum me-
chanics to describe spinless particles [42, 45]. Especially, the NKGE with cubic non-
linearity serves as a model for polymers, the relativistic Bose gas, and order-disorder
transitions in solids [21, 32]. From both analytical and numerical perspectives, the
NKGE has been extensively investigated [3, 6, 7, 11, 16, 20, 33, 41, 42, 45, 47]. Re-
cently, the long-time dynamics of the NKGE (1.1) in the weak nonlinearity regime
(or (1.2) with small initial data) has attracted much attention. According to the
analytical results, the life span of a smooth solution to the NKGE (1.1) (or (1.2)) is
at least up to the time at O(\varepsilon  - 2) [9, 17, 18, 19, 22, 34]. For the long-time dynamics,
near-conservation (or approximate preservation) of energy, momentum, and harmonic
actions have been established for the semidiscretization and full-discretization of the
NKGE (1.2) with small initial data via the technique of modulated Fourier expan-
sions [14, 15, 29]. In our recent work, long-time error bounds have been rigorously
established for the finite difference time domain methods [4, 24], the exponential
wave integrator Fourier pseudospectral method [26], and the time-splitting Fourier
pseudospectral (TSFP) method [5, 25]. In the numerical simulations, we surprisingly
found the improved uniform error bounds for the TSFP method which are better than
the analytical results [5]. For the long-time dynamics of the Schr\"odinger/nonlinear
Schr\"odinger equation, a new technique of the regularity compensation oscillation
(RCO) has been introduced to establish the improved uniform error bounds for the
TSFP method in the long-time regime [1]. Different from the nonlinear Schr\"odinger
equation case, the second-order time-splitting method for NKGE is equivalent to a
Deuflhard exponential wave integrator [8], and as far as we know, improved uniform
error bounds have not been proven on time-splitting methods or exponential integra-
tors for the long-time dynamics of the NKGE. The aim of this paper is to analyze the
errors of time-splitting methods carefully and to carry out improved uniform error
bounds on semidiscretization and full-discretization for the long-time dynamics of the
NKGE with the help of the RCO technique. For the refined analysis, we first reformu-
late the NKGE into a relativistic nonlinear Schr\"odinger equation (NLSE), where the
nonlinear term involving a pseudodifferential operator is more difficult to analyze than
the cubic nonlinearity. It is a consequence of the special structure of the relativistic
NLSE that the first-order and second-order time-splitting schemes are equivalent to
the corresponding exponential integrators, which is quite different from the classical
cubic NLSE. To overcome the difficulty caused by the nonlinearity, we divide it into
four parts and rigorously carry out the improved uniform error bounds. In addition,
the relativistic NLSE involves a pseudodifferential operator, of which the spectral
analysis is more complicated and is not periodic even in one dimension (1D). Based
on the RCO approach, we choose a frequency cutoff parameter \tau 0 and control the
high frequency modes (> 1/\tau 0) by the smoothness of the exact solution and analyze
the low frequency modes (\leq 1/\tau 0) by phase cancellation and energy method.

The rest of the paper is organized as follows: in section 2, we adopt the time-
splitting method to discretize the NKGE in time and establish the improved uniform
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1964 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

error bounds for the semidiscretization up to the time at O(1/\varepsilon 2). In particular, the
time-splitting methods are equivalent to the corresponding exponential integrators
for solving NKGE. In section 3, the full-discretization by the Fourier spectral method
in space is shown with the proof of improved uniform error bounds. Extensions to
the complex NKGE with a general power nonlinearity and an oscillatory complex
NKGE are presented in section 4. Numerical results for the long-time dynamics and
the oscillatory complex NKGE are shown in section 5. Finally, some conclusions are
drawn in section 6. Throughout this paper, the notation A \lesssim B is used to represent
that there exists a generic constant C > 0 independent of the mesh size h, time step
\tau , \varepsilon , and \tau 0 such that | A| \leq CB.

2. Semidiscretization and improved uniform error bounds. In this sec-
tion, we utilize the time-splitting method to discretize the NKGE (1.1) in time and
establish the improved uniform error bounds up to the time at O(1/\varepsilon 2), while we
notice that the time-splitting schemes can be also viewed as a class of exponential
integrators. For the simplicity of presentation, we only present the numerical schemes
and corresponding results in 1D. Generalization to higher dimensions is straightfor-
ward, and results remain valid without modifications. In 1D, the NKGE (1.1) with
periodic boundary conditions on the domain \Omega = (a, b) reduces to

(2.1)

\Biggl\{ 
\partial ttu(x, t) - \partial xxu(x, t) + u(x, t) + \varepsilon 2u3(x, t) = 0, a < x < b, t > 0,

u(x, 0) = u0(x), \partial tu(x, 0) = u1(x), x \in \Omega = [a, b],

with boundary conditions as u(a, t) = u(b, t), \partial xu(a, t) = \partial xu(b, t) for t > 0.
For an integer m \geq 0, we denote by Hm(\Omega ) the space of functions u(x) \in L2(\Omega )

with finite Hm-norm \| \cdot \| m given by

(2.2) \| u\| 2m =
\sum 
l\in \BbbZ 

(1 + \mu 2
l )

m| \widehat ul| 2 for u(x) =
\sum 
l\in \BbbZ 

\widehat ulei\mu l(x - a), \mu l =
2\pi l

b - a
,

where \widehat ul (l \in \BbbZ ) is the Fourier coefficients of the function u(x) [2, 5]. In fact, the
space Hm(\Omega ) is the subspace of classical Sobolev space Wm,2(\Omega ), which consists of
functions with derivatives of order up tom - 1 being (b - a)-periodic. Since we consider
periodic boundary conditions, the above space Hm(\Omega ) is suitable. In addition, the
space is L2(\Omega ) for m = 0, and the corresponding norm is denoted as \| \cdot \| . Here, the
space Hs(\Omega ) with s \in \BbbR is also well defined consisting of functions with finite norm
\| \cdot \| s [43].

Denote XN := \{ u = (u0, u1, . . . , uN )T \in \BbbC N+1 | u0 = uN\} , Cper(\Omega ) = \{ u \in 
C(\Omega ) | u(a) = u(b)\} , and

YN := span
\Bigl\{ 
ei\mu l(x - a), x \in \Omega , l \in \scrT N

\Bigr\} 
, \scrT N =

\biggl\{ 
l | l =  - N

2
, - N

2
+ 1, . . . ,

N

2
 - 1

\biggr\} 
.

For any u(x) \in Cper(\Omega ) and a vector u \in XN , let PN : L2(\Omega ) \rightarrow YN be the standard
L2-projection operator onto YN and IN : Cper(\Omega ) \rightarrow YN or IN : XN \rightarrow YN be the
trigonometric interpolation operator [43], i.e.,

(2.3) PNu(x) =
\sum 
l\in \scrT N

\widehat ulei\mu l(x - a), INu(x) =
\sum 
l\in \scrT N

\widetilde ulei\mu l(x - a), x \in \Omega ,

D
ow

nl
oa

de
d 

08
/0

4/
22

 to
 1

37
.1

32
.1

23
.6

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1965

where

(2.4) \widehat ul = 1

b - a

\int b

a

u(x)e - i\mu l(x - a)dx, \widetilde ul = 1

N

N - 1\sum 
j=0

uje
 - i\mu l(xj - a), l \in \scrT N ,

with uj interpreted as u(xj) when involved.
Define the operator \langle \nabla \rangle =

\surd 
1 - \Delta through its action in the Fourier space by

[5, 8, 23]

\langle \nabla \rangle u(x) =
\sum 
l\in \BbbZ 

\sqrt{} 
1 + \mu 2

l \widehat ulei\mu l(x - a) for u(x) =
\sum 
l\in \BbbZ 

\widehat ulei\mu l(x - a), x \in \Omega ,

and the inverse operator \langle \nabla \rangle  - 1 as \langle \nabla \rangle  - 1u(x) =
\sum 

l\in \BbbZ 
\widehat ul\surd 
1+\mu 2

l

ei\mu l(x - a), which leads to

\| \langle \nabla \rangle  - 1u\| s = \| u\| s - 1 \leq \| u\| s.
Introduce v(x, t) = \partial tu(x, t) and

(2.5) \psi (x, t) = u(x, t) - i\langle \nabla \rangle  - 1v(x, t), x \in \Omega , t \geq 0;

then the NKGE (2.1) can be reformulated into the following relativistic NLSE for
\psi := \psi (t) = \psi (x, t) (spatial variable x may be omitted for brevity):

(2.6)

\left\{         
i\partial t\psi (x, t) + \langle \nabla \rangle \psi (x, t) + \varepsilon 2

8
\langle \nabla \rangle  - 1

\bigl( 
\psi + \psi 

\bigr) 3
(x, t) = 0, x \in \Omega , t > 0,

\psi (a, t) = \psi (b, t), \partial x\psi (a, t) = \partial x\psi (b, t), t \geq 0,

\psi (x, 0) = \psi 0(x) := u0(x) - i\langle \nabla \rangle  - 1u1(x), x \in \Omega ,

where \psi denotes the complex conjugate of \psi . According to (2.5), the solution of the
NKGE (2.1) can be recovered by

(2.7) u(x, t) =
1

2

\bigl( 
\psi (x, t) + \psi (x, t)

\bigr) 
, v(x, t) =

i

2
\langle \nabla \rangle 

\bigl( 
\psi (x, t) - \psi (x, t)

\bigr) 
.

2.1. The time-splitting method. By the splitting technique [35, 36], the rela-
tivistic NLSE (2.6) is split into the linear part and the nonlinear part. The evolution
operator for the linear part \partial t\psi (x, t) = i\langle \nabla \rangle \psi (x, t) with initial data \psi (x, 0) = \psi 0(x)
is given by

(2.8) \psi (\cdot , t) = \varphi t
T (\psi 0) := eit\langle \nabla \rangle \psi 0, t \geq 0,

and the nonlinear part \partial t\psi (x, t) = F (\psi (x, t)) with initial data \psi (x, 0) = \psi 0(x) can be
integrated exactly in time as

(2.9) \psi (x, t) = \varphi t
V (\psi 0) := \psi 0 + \varepsilon 2tF (\psi 0), t \geq 0,

where the nonlinear operator F is given by

(2.10) F (\phi ) = i\langle \nabla \rangle  - 1G(\phi ), G(\phi ) =
1

8

\bigl( 
\phi + \phi 

\bigr) 3
.

Let \tau > 0 be the time step size and tn = n\tau (n = 0, 1, . . .) as the time steps. De-
note \psi [n] := \psi [n](x) as the approximation of \psi (x, tn); then the second-order discrete-
in-time--splitting method via the Strang splitting for the relativistic NLSE (2.6) can
be written as [44]

(2.11) \psi [n+1] = \scrS \tau (\psi 
[n]) = \varphi 

\tau 
2

T \circ \varphi \tau 
V \circ \varphi 

\tau 
2

T (\psi 
[n]) = ei\tau \langle \nabla \rangle \psi [n]+\varepsilon 2\tau ei

\tau \langle \nabla \rangle 
2 F (ei

\tau \langle \nabla \rangle 
2 \psi [n]),
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1966 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

with \psi [0] = \psi 0 = u0  - i\langle \nabla \rangle  - 1u1. Noticing (2.7), the semidiscretization of the NKGE
(2.1) is given by

(2.12) u[n] =
1

2

\Bigl( 
\psi [n] + \psi [n]

\Bigr) 
, v[n] =

i

2
\langle \nabla \rangle 

\Bigl( 
\psi [n]  - \psi [n]

\Bigr) 
, n = 0, 1, . . . ,

where u[n] := u[n](x) and v[n] := v[n](x) are the approximations of u(x, tn) and
\partial tu(x, tn), respectively.

Remark 2.1. The split-steps (2.8) and (2.9) are equivalent to the splitting of
NKGE (2.1) (in terms of u and v = \partial tu), respectively, as

(2.13) \partial t

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
0 1

\partial xx  - 1 0

\biggr] \biggl[ 
u
v

\biggr] 
, \partial t

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
0 0

 - \varepsilon 2u2 0

\biggr] \biggl[ 
u
v

\biggr] 
.

It is easy to check that the second-order time-splitting scheme (2.11) is also a sym-
metric second-order exponential integrator of Deuflhard type.

2.2. Improved uniform error bounds. According to discussions in [5, 18, 22]
and the references therein, we make the following assumptions on the exact solution
u := u(x, t) of the NKGE (2.1) up to the time at T\varepsilon = T/\varepsilon 2 with T > 0 fixed:

(A) \| u\| L\infty ([0,T\varepsilon ];Hm+1) \lesssim 1, \| \partial tu\| L\infty ([0,T\varepsilon ];Hm) \lesssim 1, m \geq 1.

Let u[n] and v[n] be the numerical approximations obtained from the Strang splitting
method (2.11) with (2.12). According to the analysis in [5], under the assumption
(A), for sufficiently small 0 < \tau \leq \tau c (\tau c is a constant), there exists a constant M > 0
depending on T , \| u0\| m+1, \| u1\| m, \| u\| L\infty ([0,T\varepsilon ];Hm), and \| \partial tu\| L\infty ([0,T\varepsilon ];Hm) such that

(2.14) \| u[n]\| 2m+1 + \| v[n]\| 2m \leq Mor equivalently \| \psi [n]\| 2m+1 \leq M, 0 \leq n \leq T/\varepsilon 2

\tau 
.

The main result of this work is to establish the following improved uniform error
bounds for the Strang splitting method up to the long time T\varepsilon .

Theorem 2.2. Under the assumption (A), for 0 < \tau 0 \leq 1 sufficiently small and

independent of \varepsilon such that, when 0 < \tau < \alpha \pi (b - a)\tau 0

2
\surd 

\tau 2
0 (b - a)2+4\pi 2(1+\tau 2

0 )
for a fixed constant

\alpha \in (0, 1), we have the following improved uniform error bounds:

(2.15) \| u(\cdot , tn) - u[n]\| 1 + \| \partial tu(\cdot , tn) - v[n]\| \lesssim \varepsilon 2\tau 2 + \tau m+1
0 , 0 \leq n \leq T/\varepsilon 2

\tau 
.

In particular, if the exact solution is sufficiently smooth, e.g., u, \partial tu \in H\infty , the last
term \tau m+1

0 decays exponentially fast (\sim e - c/\tau 0) and can be ignored practically for
small enough \tau 0, and the improved uniform error bounds for sufficiently small \tau are

(2.16) \| u(\cdot , tn) - u[n]\| 1 + \| \partial tu(\cdot , tn) - v[n]\| \lesssim \varepsilon 2\tau 2, 0 \leq n \leq T/\varepsilon 2

\tau 
.

Remark 2.3. \tau 0 \in (0, 1) is a cutoff parameter introduced in the analysis, and
the requirement on \tau (essentially \tau \lesssim \tau 0) enables the improved estimates on the low
Fourier modes | l| \leq 1/\tau 0, where the constant in front of \varepsilon 2\tau 2 depends on \alpha . The high
Fourier modes | l| > 1/\tau 0 are treated by Fourier projection. \tau 0 can be arbitrary as
long as the assumed relation between \tau and \tau 0 holds; i.e., \tau 0 can be fixed or depend

on \tau , e.g., \tau 0 =
2
\surd 

8\pi 2+(b - a)2

\alpha (b - a)\pi \tau .
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Remark 2.4. Compared to the previous uniform estimates \| u(\cdot , tn)  - u[n]\| 1 +
\| \partial tu(\cdot , tn)  - v[n]\| \lesssim \tau 2 established in [5], our estimates are improved in the sense
that the leading error term as \tau \rightarrow 0+ is now \varepsilon 2\tau 2, which was numerically observed
in [5]. The estimates in Theorem 2.2 hold for higher-order norms \| \cdot \| s (s \leq m),
and the proof remains the same. The results are valid in higher dimensions d = 2, 3,
independent of the aspect ratio of the rectangular domain \Omega .

Remark 2.5. The second-order Strang splitting method is adopted to discretize
the NKGE (2.1), and it is straightforward to design the first-order Lie--Trotter splitting
method [48] and fourth-order partitioned Runge--Kutta (PRK4) splitting method [10,
27]. Under appropriate assumptions on the exact solution, the improved uniform error
bounds can be extended to the first-order Lie--Trotter splitting and the PRK4 splitting
method with improved uniform error bounds at \varepsilon 2\tau and \varepsilon 2\tau 4, respectively. Using
the properties of the subproblems (2.8)--(2.9), the Lie--Trotter and PRK4 splitting
methods are equivalent to a certain type of exponential integrators, which implies the
improved uniform error bounds hold true for a class of exponential integrators (see
also Remark 2.7 for more discussion).

2.3. Proof for Theorem 2.2. The assumption (A) is equivalent to the regu-
larity of \psi (x, t) as \| \psi \| L\infty ([0,T\varepsilon ];Hm+1) \lesssim 1. Let

(2.17) Ft : \phi \mapsto \rightarrow e - it\langle \nabla \rangle F
\bigl( 
eit\langle \nabla \rangle \phi 

\bigr) 
, t \in \BbbR ;

we have the following estimates by the standard analysis for the local truncation
error [1, 5].

Lemma 2.6. For 0 < \varepsilon \leq 1, the local error of the Strang splitting (2.11) can be
written as

(2.18) \scrE n := \scrS \tau (\psi (tn)) - \psi (tn+1) = \scrF (\psi (tn)) +\scrR n, n = 0, 1, . . . ,

where

(2.19) \scrF (\psi (tn)) = \varepsilon 2ei\tau \langle \nabla \rangle 
\biggl( 
\tau F\tau /2(\psi (tn)) - 

\int \tau 

0

F\theta (\psi (tn))d\theta 

\biggr) 
,

and the following error bounds hold under the assumption (A) with m \geq 1:

(2.20) \| \scrF (\psi (tn))\| 1 \lesssim \varepsilon 2\tau 3, \| \scrR n\| 1 \lesssim \varepsilon 4\tau 3.

Under the assumption (A), for 0 < \tau \leq \tau c, we have the estimates (2.14) on the
numerical solution \psi [n], which provide control on the nonlinearity. Thus, we focus on
the refined estimates in Theorem 2.2.

Introduce the numerical error function e[n] := e[n](x) (n = 0, 1, . . .) by

(2.21) e[n] := \psi [n]  - \psi (tn);

then, from (2.11) and (2.18),we have the following error equation:

e[n+1] = \scrS \tau (\psi 
[n]) - \scrS \tau (\psi (tn)) + \scrE n = ei\tau \langle \nabla \rangle e[n] +Wn + \scrE n, n \geq 0,(2.22)

where Wn :=Wn(x) (n = 0, 1, . . .) is given by

Wn(x) = \varepsilon 2\tau ei
\tau 
2 \langle \nabla \rangle 

\Bigl( 
F
\Bigl( 
ei

\tau 
2 \langle \nabla \rangle \psi [n]

\Bigr) 
 - F

\Bigl( 
ei

\tau 
2 \langle \nabla \rangle \psi (tn)

\Bigr) \Bigr) 
.
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1968 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

Under the assumption (A), we have from (2.10) and the estimates on \psi [n] in (2.14)
that

(2.23) \| Wn(x)\| 1 \lesssim \varepsilon 2\tau 
\bigm\| \bigm\| \bigm\| F \Bigl( 

ei
\tau 
2 \langle \nabla \rangle \psi [n]

\Bigr) 
 - F

\Bigl( 
ei

\tau 
2 \langle \nabla \rangle \psi (tn)

\Bigr) \bigm\| \bigm\| \bigm\| 
1
\lesssim \varepsilon 2\tau 

\bigm\| \bigm\| \bigm\| e[n]\bigm\| \bigm\| \bigm\| 
1
.

Based on (2.22), we obtain

(2.24) e[n+1] = ei(n+1)\tau \langle \nabla \rangle e[0] +

n\sum 
k=0

ei(n - k)\tau \langle \nabla \rangle 
\Bigl( 
W k(x) + \scrE k

\Bigr) 
, 0 \leq n \leq T\varepsilon /\tau  - 1.

Noticing e[0] = 0, (2.18), (2.20), and (2.23), we have the estimates for 0 \leq n \leq T\varepsilon /\tau  - 1,

(2.25)
\bigm\| \bigm\| \bigm\| e[n+1]

\bigm\| \bigm\| \bigm\| 
1
\lesssim \varepsilon 2\tau 2 + \varepsilon 2\tau 

n\sum 
k=0

\bigm\| \bigm\| \bigm\| e[k]\bigm\| \bigm\| \bigm\| 
1
+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

k=0

ei(n - k)\tau \langle \nabla \rangle \scrF (\psi (tk))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

.

Direct applications of (2.20) and the Gronwall inequality lead to the uniform error
estimates \| e[n+1]\| 1 \lesssim \tau 2 (0 \leq n \leq T\varepsilon /\tau  - 1) as shown in [8]. To analyze the error
more carefully, we shall employ the RCO technique [1] to deal with the last term on
the right-hand side (RHS) of (2.25). The key idea is a summation-by-parts procedure
combined with spectrum cutoff and phase cancellation.

The first step is a spectral projection on \psi (tk) such that only finite Fourier modes
of \psi (tk) need to be considered and the projection error can be controlled by the
regularity of \psi (tk). The second step is to apply the summation-by-parts formula for
the low Fourier modes in a proper way such that the phase can be canceled for small
\tau (the terms of the type

\sum n
k=0 e

i(n - k)\tau \langle \nabla \rangle ) and an extra order of \varepsilon 2 can be gained
from the terms like \scrF (\psi (tk)) - \scrF (\psi (tk+1)).

Now, we demonstrate our strategy in detail. From the relativistic NLSE (2.6),
we find that \partial t\psi (x, t)  - i\langle \nabla \rangle \psi (x, t) = i\varepsilon 2F (\psi (x, t)) = O(\varepsilon 2). Thus, in order to gain
an extra order of \varepsilon 2, instead of \psi (x, t), it is natural to consider the ``twisted variable""
given by

(2.26) \phi (x, t) = e - it\langle \nabla \rangle \psi (x, t), t \geq 0,

which satisfies the equation \partial t\phi (x, t) = \varepsilon 2e - it\langle \nabla \rangle F (eit\langle \nabla \rangle \phi (x, t)). Under the assump-
tion (A), we have \| \phi \| L\infty ([0,T\varepsilon ];Hm+1) \lesssim 1 and \| \partial t\phi \| L\infty ([0,T\varepsilon ];Hm+1) \lesssim \varepsilon 2 with

(2.27) \| \phi (tn+1) - \phi (tn)\| m+1 \lesssim \varepsilon 2\tau , 0 \leq n \leq T\varepsilon /\tau  - 1.

The RCO technique will be used to force \partial t\phi (t) to appear with a gain of order O(\varepsilon 2)
for the summation-by-parts procedure in

\sum n
k=0 e

i(n - k)\tau \langle \nabla \rangle \scrF (\psi (tk)). Then, small \tau is
required to control the accumulation of the frequency of the type ei(n - k)\tau \langle \nabla \rangle .

Step 1. As introduced in [1], we start with the choice of the cutoff parameter on
the Fourier modes. Let \tau 0 \in (0, 1), and choose N0 = 2\lceil 1/\tau 0\rceil \in \BbbZ + (\lceil \cdot \rceil is the ceiling
function) with 1/\tau 0 \leq N0/2 < 1 + 1/\tau 0. Recalling Ft from (2.17) as

Ft(\phi ) = e - it\langle \nabla \rangle F
\bigl( 
eit\langle \nabla \rangle \phi 

\bigr) 
=
i

8
e - it\langle \nabla \rangle \langle \nabla \rangle  - 1

\Bigl( 
eit\langle \nabla \rangle \phi + e - it\langle \nabla \rangle \phi 

\Bigr) 3

,

under the assumption (A) and properties of operators e - it\langle \nabla \rangle and \langle \nabla \rangle  - 1, we have

(2.28) \| Ft(e
itk\langle \nabla \rangle \phi (tk))\| m+2 \lesssim \| \phi (tk)\| 3m+1 \lesssim 1, t \in \BbbR , 0 \leq k \leq T\varepsilon 

\tau 
,
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IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1969

and the following estimates hold by the standard Fourier projection properties for
s \in [0,m+ 1]:

(2.29) \| Ft(\phi (tk)) - PN0
Ft(\phi (tk))\| s + \tau 0\| \phi (x, tk) - PN0

\phi (x, tk)\| s \lesssim \tau m+2 - s
0 .

Combining the above estimates, (2.10), (2.19), and assumption (A), we derive, for
0 \leq k \leq T\varepsilon /\tau ,

\| PN0\scrF (eitk\langle \nabla \rangle (PN0\phi (tk))) - \scrF (eitk\langle \nabla \rangle \phi (tk))\| 1
\lesssim \varepsilon 2\tau \tau m+1

0 + \varepsilon 2\tau \| PN0
\phi (tk) - \phi (tk)\| \lesssim \varepsilon 2\tau \tau m+1

0 .(2.30)

Since ei\tau \langle \nabla \rangle preserves the H1-norm, multiplying the last term in (2.25) by ei(n - 1)\tau \langle \nabla \rangle ,
we obtain, for 0 \leq n \leq T\varepsilon /\tau  - 1,

(2.31)
\bigm\| \bigm\| \bigm\| e[n+1]

\bigm\| \bigm\| \bigm\| 
1
\lesssim \tau m+1

0 + \varepsilon 2\tau 2 + \varepsilon 2\tau 

n\sum 
k=0

\bigm\| \bigm\| \bigm\| e[k]\bigm\| \bigm\| \bigm\| 
1
+ \| \scrL n\| 1 ,

where

(2.32) \scrL n =

n\sum 
k=0

e - i(k+1)\tau \langle \nabla \rangle PN0
\scrF (eitk\langle \nabla \rangle (PN0

\phi (tk))).

Step 2. Now, we concentrate on the low Fourier modes term \scrL n. Recalling the
nonlinear function F (\cdot ), we have the decomposition

(2.33) F (\phi ) =

4\sum 
q=1

F q(\phi ), F q(\phi ) = i\langle \nabla \rangle  - 1Gq(\phi ), q = 1, 2, 3, 4,

with G1(\phi ) = 1
8\phi 

3, G2(\phi ) = 3
8
\=\phi \phi 2, G3(\phi ) = 3

8
\=\phi 2\phi , G4(\phi ) = 1

8
\=\phi 3. For \theta \in \BbbR and

q = 1, 2, 3, 4, introducing F q
\theta (\psi (tk)) = e - i\theta \langle \nabla \rangle F q(ei\theta \langle \nabla \rangle \psi (tk)) and

(2.34) \scrF q(\psi (tk)) = \varepsilon 2ei\tau \langle \nabla \rangle 
\biggl( 
\tau F q

\tau /2(\psi (tn)) - 
\int \tau 

0

F q
\theta (\psi (tn))d\theta 

\biggr) 
and recalling (2.17) and (2.19), we have

(2.35) \scrL n =

4\sum 
q=1

\scrL n
q , \scrL n

q =

n\sum 
k=0

e - i(k+1)\tau \langle \nabla \rangle PN0
\scrF q(eitk\langle \nabla \rangle (PN0

\phi (tk))), 1 \leq q \leq 4.

Since the estimates on \scrL n
q (q = 1, 2, 3, 4) are the same, we only present the case for

\scrL n
1 (0 \leq n \leq T\varepsilon /\tau  - 1). For l \in \scrT N0

, define the index set \scrI N0

l associated to l as

(2.36) \scrI N0

l = \{ (l1, l2, l3) | l1 + l2 + l3 = l, l1, l2, l3 \in \scrT N0\} ;

then, the following expansion holds in view of PN0
\phi (tk) =

\sum 
l\in \scrT N0

\widehat \phi l(tk)ei\mu l(x - a):

e - itk+1\langle \nabla \rangle PN0(e
i\tau \langle \nabla \rangle F 1

\theta (e
itk\langle \nabla \rangle PN0\phi (tk)))

=
\sum 

l\in \scrT N0

\sum 
(l1,l2,l3)\in \scrI N0

l

i

8\delta l
\scrG k
l,l1,l2,l3(\theta )e

i\mu l(x - a),D
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1970 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

where the coefficients \scrG k
l,l1,l2,l3

(\theta ) are functions of \theta \in \BbbR defined as

(2.37) \scrG k
l,l1,l2,l3(\theta ) = e - i(tk+\theta )\delta l,l1,l2,l3 \widehat \phi l1(tk)\widehat \phi l2(tk)\widehat \phi l3(tk)

with \delta l,l1,l2,l3 = \delta l  - \delta l1  - \delta l2  - \delta l3 and \delta l =
\sqrt{} 

1 + \mu 2
l for l \in \scrT N0

. Thus, we have

(2.38) \scrL n
1 =

i\varepsilon 2

8

n\sum 
k=0

\sum 
l\in \scrT N0

\sum 
(l1,l2,l3)\in \scrI N0

l

1

\delta l
\Lambda k
l,l1,l2,l3e

i\mu l(x - a),

where

\Lambda k
l,l1,l2,l3 =  - \tau \scrG k

l,l1,l2,l3(\tau /2) +

\int \tau 

0

\scrG k
l,l1,l2,l3(\theta ) d\theta = rl,l1,l2,l3e

 - itk\delta l,l1,l2,l3 ckl,l1,l2,l3 ,

(2.39)

with coefficients ckl,l1,l2,l3 and rl,l1,l2,l3 given by

ckl,l1,l2,l3 = \widehat \phi l1(tk)\widehat \phi l2(tk)\widehat \phi l3(tk),(2.40)

rl,l1,l2,l3 =  - \tau e - i\tau \delta l,l1,l2,l3
/2 +

\int \tau 

0

e - i\theta \delta l,l1,l2,l3 d\theta = O
\bigl( 
\tau 3(\delta l,l1,l2,l3)

2
\bigr) 
.(2.41)

We only need to consider the case \delta l,l1,l2,l3 \not = 0 as rl,l1,l2,l3 = 0 if \delta l,l1,l2,l3 = 0. For

l \in \scrT N0
and (l1, l2, l3) \in \scrI N0

l , we have

(2.42) | \delta l,l1,l2,l3 | \leq 4\delta N0/2 = 4
\sqrt{} 
1 + \mu 2

N0/2
< 4

\sqrt{} 
1 +

4\pi 2(1 + \tau 0)2

\tau 20 (b - a)2
,

which implies

(2.43)
\tau 

2
| \delta l,l1,l2,l3 | \leq \alpha \pi ,

if 0 < \tau \leq \alpha \pi (b - a)\tau 0

2
\surd 

\tau 2
0 (b - a)2+4\pi 2(1+\tau 0)2

:= \tau \alpha 0 (0 < \tau 0, \alpha < 1). Denoting Sn
l,l1,l2,l3

=\sum n
k=0 e

 - itk\delta l,l1,l2,l3 (n \geq 0), for 0 < \tau \leq \tau \alpha 0 , we then obtain

(2.44) | Sn
l,l1,l2,l3 | \leq 

1

| sin(\tau \delta l,l1,l2,l3/2)| 
\leq C

\tau | \delta l,l1,l2,l3 | 
, C =

2\alpha \pi 

sin(\alpha \pi )
\forall n \geq 0.

Using summation-by-parts, we find from (2.39) that
(2.45)

n\sum 
k=0

\Lambda k
l,l1,l2,l3 = rl,l1,l2,l3

\Biggl[ 
n - 1\sum 
k=0

Sk
l,l1,l2,l3(c

k
l,l1,l2,l3  - ck+1

l,l1,l2,l3
) + Sn

l,l1,l2,l3c
n
l,l1,l2,l3

\Biggr] 
,

with

ckl,l1,l2,l3  - ck+1
l,l1,l2,l3

= (\widehat \phi l1(tk) - \widehat \phi l1(tk+1))\widehat \phi l2(tk)\widehat \phi l3(tk) + \widehat \phi l1(tk+1)(\widehat \phi l2(tk) - \widehat \phi l2(tk+1))\widehat \phi l3(tk)
+ \widehat \phi l1(tk+1)\widehat \phi l2(tk+1)(\widehat \phi l3(tk) - \widehat \phi l3(tk+1)).(2.46)
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IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1971

Combining (2.41), (2.44), (2.45), and (2.46), we have\bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

k=0

\Lambda k
l,l1,l2,l3

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim \tau 2| \delta l,l1,l2,l3 | 
n - 1\sum 
k=0

\biggl( \bigm| \bigm| \bigm| \widehat \phi l1(tk) - \widehat \phi l1(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk)\bigm| \bigm| \bigm| 

+
\bigm| \bigm| \bigm| \widehat \phi l1(tk+1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk) - \widehat \phi l2(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk)\bigm| \bigm| \bigm| 

+
\bigm| \bigm| \bigm| \widehat \phi l1(tk+1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk) - \widehat \phi l3(tk+1)

\bigm| \bigm| \bigm| \biggr) 
+ \tau 2| \delta l,l1,l2,l3 | 

\bigm| \bigm| \bigm| \widehat \phi l1(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tn)\bigm| \bigm| \bigm| .(2.47)

For l \in \scrT N0
and (l1, l2, l3) \in \scrI N0

l , we see that there holds

(2.48) | \delta l,l1,l2,l3 | \leq 

\left(   1 +

\left(  3\sum 
j=1

\mu lj

\right)  2
\right)   

1/2

+
3\sum 

j=1

\sqrt{} 
1 + \mu 2

lj
\lesssim 

3\prod 
j=1

\sqrt{} 
1 + \mu 2

lj
.

Based on (2.38), (2.47), (2.48), and noticing \delta l =
\sqrt{} 

1 + \mu 2
l , we have

\| \scrL n
1\| 

2
1

= \varepsilon 4
\sum 

l\in \scrT N0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

(l1,l2,l3)\in \scrI N0
l

n\sum 
k=0

\Lambda k
l,l1,l2,l3

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

\lesssim \varepsilon 4\tau 4

\left\{     
\sum 

l\in \scrT N0

\left(   \sum 
(l1,l2,l3)\in \scrI N0

l

\bigm| \bigm| \bigm| \widehat \phi l1(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tn)\bigm| \bigm| \bigm| 3\prod 
j=1

\sqrt{} 
1 + \mu 2

lj

\right)   
2

+ n

n - 1\sum 
k=0

\sum 
l\in \scrT N0

\left[   
\left(   \sum 

(l1,l2,l3)\in \scrI N0
l

\bigm| \bigm| \bigm| \widehat \phi l1(tk) - \widehat \phi l1(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk)\bigm| \bigm| \bigm| 3\prod 

j=1

\sqrt{} 
1 + \mu 2

lj

\right)   
2

+

\left(   \sum 
(l1,l2,l3)\in \scrI N0

l

\bigm| \bigm| \bigm| \widehat \phi l1(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk) - \widehat \phi l2(tk+1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk)\bigm| \bigm| \bigm| 3\prod 
j=1

\sqrt{} 
1 + \mu 2

lj

\right)   
2

+

\left(   \sum 
(l1,l2,l3)\in \scrI N0

l

\bigm| \bigm| \bigm| \widehat \phi l1(tk+1)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tk+1)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tk) - \widehat \phi l3(tk+1)
\bigm| \bigm| \bigm| 3\prod 
j=1

\sqrt{} 
1 + \mu 2

lj

\right)   
2\right]   

\right\}     .

(2.49)

In order to estimate the sum on the RHS of the above inequality, e.g. for the first term,

on the RHS, we use the auxiliary function \xi (x) =
\sum 

l\in \BbbZ 

\sqrt{} 
1 + \mu 2

lj
| \widehat \phi l(tn)| ei\mu l(x - a),

where \xi (x) \in Hm(\Omega ) is implied by assumption (A) and \| \xi \| Hs \lesssim \| \phi (tn)\| Hs+1 (s \leq 
m). Expanding (\xi (x))3 =

\sum 
l\in \BbbZ 

\sum 
l1+l2+l3=l,lj\in \BbbZ 

\prod 3
j=1(

\sqrt{} 
1 + \mu 2

lj
| \widehat \phi lj (tn)| )ei\mu l(x - a), we

obtain
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\sum 
l\in \scrT N0

\left(   \sum 
(l1,l2,l3)\in \scrI N0

l

\bigm| \bigm| \bigm| \widehat \phi l1(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l2(tn)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat \phi l3(tn)\bigm| \bigm| \bigm| 3\prod 
j=1

\sqrt{} 
1 + \mu 2

lj

\right)   
2

\leq 
\bigm\| \bigm\| \xi 3(x)\bigm\| \bigm\| 2 \lesssim \| \xi (x)\| 61 \lesssim \| \phi (tn)\| 62 \lesssim 1.(2.50)

Thus, in light of (2.27), we estimate each term in (2.49) similarly as

\| \scrL n
1\| 21 \lesssim \varepsilon 4\tau 4

\Biggl[ 
\| \phi (tn)\| 62 + n

n - 1\sum 
k=0

\| \phi (tk) - \phi (tk+1)\| 22 (\| \phi (tk)\| 2 + \| \phi (tk+1)\| 2)
4

\Biggr] 
\lesssim \varepsilon 4\tau 4 + n2\varepsilon 4\tau 4(\varepsilon 2\tau )2 \lesssim \varepsilon 4\tau 4, 0 \leq n \leq T\varepsilon /\tau  - 1.(2.51)

The same estimates can be established for \scrL n
q (q = 2, 3, 4), and (2.31) together with

(2.35) implies

(2.52)
\bigm\| \bigm\| \bigm\| e[n+1]

\bigm\| \bigm\| \bigm\| 
1
\lesssim \tau m+1

0 + \varepsilon 2\tau 2 + \varepsilon 2\tau 

n\sum 
k=0

\bigm\| \bigm\| \bigm\| e[k]\bigm\| \bigm\| \bigm\| 
1
, 0 \leq n \leq T\varepsilon /\tau  - 1.

The discrete Gronwall inequality yields

(2.53)
\bigm\| \bigm\| \bigm\| e[n+1]

\bigm\| \bigm\| \bigm\| 
1
\lesssim \varepsilon 2\tau 2 + \tau m+1

0 , 0 \leq n \leq T\varepsilon /\tau  - 1,

and the error bound (2.15) follows in view of (2.7) and (2.12).

Remark 2.7. Similar results to Theorem 2.2 have been previously obtained for
time-splitting methods applied to the long-time dynamics of the NLSE with weak
nonlinearity [12], where the periodicity of the free Schr\"odinger operator plays an im-
portant role and the time step size has to be an integer fraction of the period. Thus,
the results and analysis in [12] are difficult to extend to a higher dimensional rectan-
gular domain with irrational aspect ratio and/or general time step sizes. The pre-
sented RCO-based approach does not depend on the periodicity of the free relativistic
Schr\"odinger operator. It is easy to check that our analysis works for higher dimen-
sional cases and allows general time step sizes. Furthermore, recalling that (2.11)
is also an exponential integrator of Deuflhardtype, we could find that the improved
uniform error bounds hold for the second-order Deuflhard exponential integrator. Nu-
merical examples in section 5 show that the exponential integrators of Gautschi type
do not have improved error bounds. More precisely, recalling the Duhamel principle
for the relativistic NLSE (2.6),

\psi (tn + \tau ) = ei\tau \langle \nabla \rangle \psi (tn) + \varepsilon 2
\int \tau 

0

ei(\tau  - s)\langle \nabla \rangle F (\psi (tn + s)) ds,

if the integral term is treated by approximating e - is\langle \nabla \rangle F (\psi (tn+s)) as a whole (like the
second-order Deuflhard integrator, i.e., TSFP (2.11)), we have the improved uniform
error bounds. On the other hand, if the integral is treated by approximating F (\psi (tn+
s)) (e.g., by interpolation in time) and then integrating in time exactly (like the
Gautschi-type integrator), we do not observe improved uniform error bounds.

3. Full-discretization and improved uniform error bounds. In this sec-
tion, we present the practical full-discretization for the NKGE (2.1) by the Fourier
pseudospectral method in space and establish the improved uniform error bounds.
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IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1973

3.1. Full-discretization by Fourier pseudospectral method. Let N be an
even positive integer, and define the spatial mesh size h = (b  - a)/N ; then the grid
points are chosen as

(3.1) xj := a+ jh, j \in \scrT 0
N = \{ j | j = 0, 1, . . . , N\} .

Let \psi n
j be the numerical approximation of \psi (xj , tn) for j \in \scrT 0

N , and n \geq 0 and

denote \psi n = (\psi n
0 , \psi 

n
1 , . . . , \psi 

n
N )T \in \BbbC N+1 for n = 0, 1, . . .. Then, a TSFP method

for discretizing the relativistic NLSE (2.6) via (2.11) with a Fourier pseudospectral
discretization in space is given as

\psi 
(1)
j =

\sum 
l\in \scrT N

ei
\tau \delta l
2 \widetilde (\psi n)l e

i\mu l(xj - a),

\psi 
(2)
j = \psi 

(1)
j + \varepsilon 2\tau Fn

j , Fn
j = i

\sum 
l\in \scrT N

1

\delta l
\widetilde \bigl( 
G(\psi (1))

\bigr) 
l
ei\mu l(xj - a),

\psi n+1
j =

\sum 
l\in \scrT N

ei
\tau \delta l
2 \widetilde \bigl( \psi (2)

\bigr) 
l
ei\mu l(xj - a), j \in \scrT 0

N , n = 0, 1, . . . ,

(3.2)

where \delta l =
\sqrt{} 

1 + \mu 2
l for l \in \scrT N , \psi (k) = (\psi 

(k)
0 , \psi 

(k)
1 , . . ., \psi 

(k)
N )T \in \BbbC N+1 for k = 1, 2,

G(\psi (1)) := (G(\psi 
(1)
0 ), G(\psi 

(1)
2 ), . . . , G(\psi 

(1)
N ))T \in \BbbR N+1, and

\psi 0
j = u0(xj) - i

\sum 
l\in \scrT N

\widetilde (u1)l
\delta l

ei\mu l(xj - a), j \in \scrT 0
N .

Let unj and vnj be the approximations of u(xj , tn) and v(xj , tn), respectively,

for j \in \scrT 0
N and n \geq 0, and denote un = (un0 , u

n
1 , . . . , u

n
N )T \in \BbbR N+1 and vn =

(vn0 , v
n
1 , . . . , v

n
N )T \in \BbbR N+1 for n = 0, 1, . . .. Combining (2.12) and (3.2), we obtain the

full-discretization of the NKGE (2.1) by the TSFP method as

un+1
j =

1

2

\Bigl( 
\psi n+1
j + \psi n+1

j

\Bigr) 
,

vn+1
j =

i

2

\sum 
l\in \scrT N

\delta l

\Biggl[ 
\widetilde (\psi n+1)l  - 

\widetilde \Bigl( 
\psi n+1

\Bigr) 
l

\Biggr] 
ei\mu l(xj - a),

j \in \scrT 0
N , n \geq 0,(3.3)

with u0j = u0(xj) and v
0
j = u1(xj) for j \in \scrT 0

N .

3.2. Improved uniform error bounds. Let un and vn be the numerical ap-
proximations obtained from the TSFP (3.2)--(3.3). According to the analysis in [5],
under the assumption (A), for 0 < \tau \leq \tau c, 0 < h \leq hc (\tau c, hc are constants in-
dependent of \varepsilon ), there exists a constant M > 0 depending on T , \| u0\| m+1, \| u1\| m,
\| u\| L\infty ([0,T\varepsilon ];Hm), and \| \partial tu\| L\infty ([0,T\varepsilon ];Hm) such that the numerical solution satisfies

(3.4) \| INun\| 2m+1 + \| INvn\| 2m \leq M or equivalently \| IN\psi n\| 2m+1 \leq M, 0 \leq n \leq T\varepsilon 
\tau 
.

Then, we have the improved uniform error bounds for the full-discretization.

Theorem 3.1. Under the assumption (A), there exist h0 > 0 and 0 < \tau 0 < 1
sufficiently small and independent of \varepsilon such that, for any 0 < \varepsilon \leq 1, when 0 < h \leq h0
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1974 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

and 0 < \tau < \alpha \pi (b - a)\tau 0

2
\surd 

\tau 2
0 (b - a)2+4\pi 2(1+\tau 2

0 )
for a fixed constant \alpha \in (0, 1), we have the

following improved uniform error estimates:

(3.5) \| u(\cdot , tn) - INu
n\| 1 + \| \partial tu(\cdot , tn) - INv

n\| \lesssim hm + \varepsilon 2\tau 2 + \tau m+1
0 , 0 \leq n \leq T/\varepsilon 2

\tau 
.

In particular, if the exact solution is sufficiently smooth, e.g., u, \partial tu \in H\infty , the im-
proved uniform error bounds for sufficiently small \tau are

(3.6) \| u(\cdot , tn) - INu
n\| 1 + \| \partial tu(\cdot , tn) - INv

n\| \lesssim hm + \varepsilon 2\tau 2, 0 \leq n \leq T/\varepsilon 2

\tau 
.

Proof. It suffices to consider the numerical approximation \psi n to the solution of
the relativistic NLSE (2.6). Recalling the semidiscrete-in-time approximation \psi [n]

(0 \leq n \leq T/\varepsilon 2

\tau ) given by the scheme (2.11)--(2.12), under the assumptions of Theorem
3.1, we have the estimates in Theorem 2.2, (2.14), and (3.4), which directly yield

(3.7)
\bigm\| \bigm\| \bigm\| \psi [n]  - PN\psi 

[n]
\bigm\| \bigm\| \bigm\| 
1
\lesssim hm,

\bigm\| \bigm\| \bigm\| \psi (\cdot , tn) - \psi [n]
\bigm\| \bigm\| \bigm\| 
1
\lesssim \varepsilon 2\tau 2 + \tau m+1

0 , 0 \leq n \leq T/\varepsilon 2

\tau 
.

Since \psi (\cdot , tn)  - IN\psi 
n = \psi (\cdot , tn)  - \psi [n] + \psi [n]  - PN\psi 

[n] + PN\psi 
[n]  - IN\psi 

n, we derive
that

(3.8) \| \psi (\cdot , tn) - IN\psi 
n\| 1 \leq \| PN\psi 

[n]  - IN\psi 
n\| 1 + C1(\varepsilon 

2\tau 2 + \tau m+1
0 + hm).

As a result, it remains to establish the estimates on the error function en := en(x) \in 
YN given as

en := PN\psi 
[n]  - IN\psi 

n, 0 \leq n \leq T/\varepsilon 2

\tau 
.

From (2.11) and (3.2), we get

IN\psi 
n+1 = ei\tau \langle \nabla \rangle IN\psi 

n + i\varepsilon 2\tau \langle \nabla \rangle  - 1ei\tau \langle \nabla \rangle /2IN (G(ei\tau \langle \nabla \rangle /2IN\psi 
n)),

PN\psi 
[n+1] = ei\tau \langle \nabla \rangle PN\psi 

[n] + i\varepsilon 2\tau \langle \nabla \rangle  - 1ei\tau \langle \nabla \rangle /2PN (G(ei\tau \langle \nabla \rangle /2\psi [n])),

which lead to

en+1 = ei\tau \langle \nabla \rangle en + i\varepsilon 2\tau \langle \nabla \rangle  - 1ei\tau \langle \nabla \rangle /2
\Bigl( 
PNG(\psi 

\langle 1\rangle ) - ING(\psi 
(1))

\Bigr) 
,(3.9)

with \psi \langle 1\rangle = ei\tau \langle \nabla \rangle /2\psi [n] and \psi (1) = ei\tau \langle \nabla \rangle /2IN\psi 
n. Hence, combining the bounds

(2.14) and (3.4), we have \| G(\psi \langle 1\rangle )\| m+1 + \| G(\psi (1))\| m+1 \lesssim 1 and

(3.10) \| G(\psi \langle 1\rangle ) - G(\psi (1))\| \lesssim \| \psi \langle 1\rangle  - \psi (1)\| \lesssim \| \psi [n]  - IN\psi 
n\| \lesssim hm+1 + \| en\| .

To summarize, noticing \| PNG(\psi 
\langle 1\rangle ) - ING(\psi (1))\| \leq \| PN (G(\psi (1))) - IN (G(\psi (1)))\| +

\| PN (G(\psi \langle 1\rangle ))  - PN (G(\psi (1)))\| \lesssim hm+1 + \| G(\psi \langle 1\rangle )  - G(\psi (1))\| , we obtain from (3.9)
that

\| en+1\| 1 \leq \| en\| 1 + \varepsilon 2\tau \| PNG(\psi 
\langle 1\rangle ) - ING(\psi 

(1))\| 
\leq \| en\| 1 + C1\varepsilon 

2\tau hm+1 + C2\varepsilon 
2\tau \| en\| , 0 \leq n \leq T\varepsilon /\tau  - 1,

where C1, C2 are constants independent of \varepsilon , h, \tau , n, \tau 0. Since e0 = PNu0  - INu0  - 
i\langle \nabla \rangle  - 1(PNu1  - INu1), we have \| e0\| 1 \lesssim hm, and the discrete Gronwall inequality
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IMPROVED ESTIMATES ON TIME-SPLITTING FOR NKGE 1975

implies \| en+1\| 1 \lesssim hm (0 \leq n \leq T\varepsilon /\tau  - 1). Combining the above estimtates with
(3.8), we derive

\| \psi (\cdot , tn) - IN\psi 
n\| 1 \lesssim hm + \varepsilon 2\tau 2 + \tau m+1

0 , 0 \leq n \leq T\varepsilon /\tau .

Recalling (3.3), we obtain error bounds for un and vn (0 \leq n \leq T\varepsilon /\tau ) as

\| u(\cdot , tn) - INu
n\| 1 =

1

2

\bigm\| \bigm\| \bigm\| \psi (\cdot , tn) + \psi (\cdot , tn) - IN\psi 
n  - IN\psi n

\bigm\| \bigm\| \bigm\| 
1

\leq \| \psi (\cdot , tn) - IN\psi 
n\| 1 \lesssim hm + \varepsilon 2\tau 2 + \tau m+1

0 ,

\| v(\cdot , tn) - INv
n\| =

1

2

\bigm\| \bigm\| \bigm\| \langle \nabla \rangle (\psi (\cdot , tn) - \psi (\cdot , tn)) - \langle \nabla \rangle (IN\psi n  - IN\psi n)
\bigm\| \bigm\| \bigm\| 

\leq \| \psi (\cdot , tn) - IN\psi 
n\| 1 \lesssim hm + \varepsilon 2\tau 2 + \tau m+1

0 ,

which show (3.5), and the proof for Theorem 3.1 is completed. \square 

Remark 3.2. Through the proof of Theorem 3.1, it is not difficult to see that the
spatial error estimates of u(\cdot , tn) - INu

n in L2-norm can be improved to hm+1.

4. Extensions. In this section, we discuss the extensions of the time-splitting
method and corresponding error estimates to the complex NKGE with a general
power nonlinearity and an oscillatory complex NKGE which propagates waves with
wavelength at O(\varepsilon 2p) in time.

4.1. The complex NKGE with a general power nonlinearity. Consider
the following complex NKGE with a general power nonlinearity:

(4.1)

\Biggl\{ 
\partial ttu(x, t) - \Delta u(x, t) + u(x, t) + \varepsilon 2p| u(x, t)| 2pu(x, t) = 0, x \in \Omega , t > 0,

u(x, 0) = u0(x), \partial tu(x, 0) = u1(x), x \in \Omega .

Here, u := u(x, t) is a complex-valued scalar field, p \in \BbbN + is the power index, and
the initial data u0(x) and u1(x) are two given complex-valued functions which are
independent of \varepsilon . The domain \Omega and periodic boundary conditions are as in (1.1).
The local/global well-posedness and scattering properties of the Cauchy problem (4.1)
have been widely studied in the literature and the references therein [28, 31, 37, 38,
39, 40, 47]. From the analytical results, the life span of a smooth solution to the
complex NKGE (4.1) is at least O(\varepsilon  - 2p).

For simplicity of notations, we only show the numerical scheme in 1D under
periodic boundary conditions. Similarly, introducing v(x, t) = \partial tu(x, t) and

(4.2) \eta \pm (x, t) = u(x, t)\mp i \langle \nabla \rangle  - 1v(x, t), a \leq x \leq b, t \geq 0,

and denoting f(\varphi ) = | \varphi | 2p\varphi , then the complex NKGE (4.1) can be reformulated into
the following coupled relativistic NLSEs:

(4.3)

\left\{     i\partial t\eta \pm \pm \langle \nabla \rangle \eta \pm \pm \varepsilon 2p\langle \nabla \rangle  - 1f

\biggl( 
1

2
\eta + +

1

2
\eta  - 

\biggr) 
= 0,

\eta \pm (t = 0) = u0 \mp i \langle \nabla \rangle  - 1v0.

Let \eta n\pm ,j be the approximations of \eta \pm (xj , tn) for j \in \scrT 0
N and n \geq 0, and denote

\eta n\pm = (\eta n\pm ,0, \eta 
n
\pm ,1, . . . , \eta 

n
\pm ,N )T \in \BbbC n+1 as the solution at tn = n\tau . Similar to the NKGE
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1976 WEIZHU BAO, YONGYONG CAI, AND YUE FENG

with cubic nonlinearity, the second-order TSFP discretization for the relativistic NLSE
(4.3) is given by

\eta 
(1)
\pm ,j =

\sum 
l\in \scrT N

e\pm i
\tau \delta l
2 \widetilde (\eta n\pm )l ei\mu l(xj - a),

\eta 
(2)
\pm ,j = \eta 

(1)
\pm ,j \pm \varepsilon 2p\tau fnj ,

\eta n+1
\pm ,j =

\sum 
l\in \scrT N

e\pm i
\tau \delta l
2

\widetilde 
(\eta 

(2)
\pm )

l
ei\mu l(xj - a),

j \in \scrT 0
N , n \geq 0,(4.4)

with

\eta 0\pm ,j = u0(xj)\mp i
\sum 
l\in \scrT N

1

\delta l
\widetilde (v0)lei\mu l(xj - a), fnj = i

\sum 
l\in \scrT N

1

\delta l
\widetilde \bigl( 

f
\bigl( \bigl( 
\eta n+ + \eta n - 

\bigr) 
/2
\bigr) \bigr) 

l
ei\mu l(xj - a).

Then un+1
j and vn+1

j (j \in \scrT 0
N , n \geq 0) which are approximations of u(xj , tn+1) and

v(xj , tn+1), respectively, can be recovered by

(4.5) un+1
j =

1

2

\bigl( 
\eta n+1
+,j + \eta n+1

 - ,j

\bigr) 
, vn+1

j =
i

2

\sum 
l\in \scrT N

\delta l

\Bigl( 
\widetilde (\eta n+1
+ )

l
 - \widetilde (\eta n+1

 - )
l

\Bigr) 
ei\mu l(xj - a).

We assume existence of the exact solution u := u(x, t) of the NKGE (4.1) up to
the time T\varepsilon ,p = T/\varepsilon 2p (T > 0 fixed) and

(B) \| u\| L\infty ([0,T\varepsilon ,p];Hm+1) \lesssim 1, \| \partial tu\| L\infty ([0,T\varepsilon ,p];Hm) \lesssim 1, m \geq 1;

then the following improved uniform error bounds for the TSFP method (4.4)--(4.5)
can be established up to the time T\varepsilon ,p.

Theorem 4.1. Let un and vn be the numerical approximations obtained from the
TSFP (4.4)--(4.5). Under the assumption (B), there exist h0 > 0 and 0 < \tau 0 < 1
sufficiently small and independent of \varepsilon such that, for any 0 < \varepsilon \leq 1, when 0 < h \leq h0
and 0 < \tau \leq \alpha \tau 0 for some fixed constant \alpha > 0, we have the following improved
uniform error estimates:

(4.6) \| u(\cdot , tn) - INun\| 1+\| \partial tu(\cdot , tn) - INvn\| \lesssim hm+\varepsilon 2p\tau 2+ \tau m+1
0 , 0 \leq n \leq T/\varepsilon 2p

\tau 
.

In particular, if the exact solution is sufficiently smooth, e.g., u, \partial tu \in H\infty , the uni-
form improved error bounds for sufficiently small \tau are

(4.7) \| u(\cdot , tn) - INu
n\| 1 + \| \partial tu(\cdot , tn) - INv

n\| \lesssim hm + \varepsilon 2p\tau 2, 0 \leq n \leq T/\varepsilon 2p

\tau 
.

Remark 4.2. The above second-order time-splitting method is equivalent to the
Deuflhard-type exponential wave integrator (EWI) method for discretizing the NKGE
(4.1). For the Gautschi-type EWI method [26], we only have uniform error bounds
(see also numerical results in Figure 5.6)

(4.8) \| u(\cdot , tn) - INu
n\| 1 \lesssim hm + \tau 2, 0 \leq n \leq T/\varepsilon 2p

\tau 
.

As a result, the second-order time-splitting method/Deuflhard-type EWI performs
better than the Gautschi-type EWI discretization for the NKGE (4.1) up to the time
at O(1/\varepsilon 2p).
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Remark 4.3. The NKGE (4.1) conserves the energy as [4, 8]

E(t) :=

\int 
\Omega 

\biggl[ 
| \partial tu(x, t)| 2 + | \nabla u(x, t)| 2 + | u(x, t)| 2 + \varepsilon 2p

p+ 1
| u(x, t)| 2p+2

\biggr] 
dx

\equiv 
\int 
\Omega 

\biggl[ 
| u1(x)| 2 + | \nabla u0(x)| 2 + | u0(x)| 2 +

\varepsilon 2p

p+ 1
| u0(x)| 2p+2

\biggr] 
dx

= E(0), t \geq 0.

Introducing the discrete energy at t = tn with the mesh size h as

(4.9) En
h = h

N - 1\sum 
j=0

\biggl[ 
| vnj | 2 + | (\partial xu)nj | 2 + | unj | 2 +

\varepsilon 2p

p+ 1
| unj | 2p+2

\biggr] 
,

where

(4.10) (\partial xu)
n
j = i

\sum 
l\in \scrT N

\mu l
\widetilde (un)lei\mu l(xj - a), j = 0, 1, . . . , N  - 1,

we have the following estimates for the discrete energy:

(4.11) | En
h  - E0

h| \lesssim hm + \varepsilon 2p\tau 2 + \tau m+1
0 , 0 \leq n \leq T/\varepsilon 2p

\tau 
.

In addition, if the exact solution is sufficiently smooth, e.g., u, \partial tu \in H\infty , the estimate
for the discrete energy for sufficiently small \tau is

(4.12) | En
h  - E0

h| \lesssim hm + \varepsilon 2p\tau 2, 0 \leq n \leq T/\varepsilon 2p

\tau 
.

4.2. An oscillatory complex NKGE. Introducing a rescale in time

(4.13) t =
r

\varepsilon 2p
\leftrightarrow r = \varepsilon 2pt, \nu (x, r) = u(x, t),

the NKGE (4.1) can be reformulated into the following oscillatory complex NKGE:
(4.14)\left\{     

\varepsilon 2p\partial rr\nu (x, r) - 
1

\varepsilon 2p
\Delta \nu (x, r) +

1

\varepsilon 2p
\nu (x, r) + | \nu (x, r)| 2p\nu (x, r) = 0, x \in \Omega , r > 0,

\nu (x, 0) = u0(x), \partial r\nu (x, 0) =
1

\varepsilon 2p
u1(x), x \in \Omega .

The solution of the oscillatory NKGE (4.14) propagates waves with amplitude at O(1),
wavelength at O(1) and O(\varepsilon 2p) in space and time, respectively, and wave velocity at
O(\varepsilon  - 2p). Denote \mu (x, r) = \partial r\nu (x, r); by taking the time step \kappa = \varepsilon 2p\tau , the improved
error bounds on the time-splitting methods (see Remark 2.1) for the long-time problem
can be extended to the oscillatory complex NKGE (4.14) up to the fixed time T .

Theorem 4.4. Let \nu n and \mu n be the numerical approximations obtained from the
TSFP method. Assume the exact solution \nu of the oscillatory complex NKGE (4.14)
satisfies for some m \geq 1

\nu \in L\infty \bigl( 
[0, T ];Hm+1

\bigr) 
, \partial r\nu \in L\infty ([0, T ];Hm) ,

\| \nu \| L\infty ([0,T ];Hm+1) \lesssim 1, \| \partial r\nu \| L\infty ([0,T ];Hm) \lesssim 
1

\varepsilon 2p
;
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then, there exist h0 > 0 and 0 < \kappa 0 < 1 sufficiently small and independent of \varepsilon 
such that, for any 0 < \varepsilon \leq 1, when the mesh size 0 < h \leq h0 and the time step
0 < \kappa \leq \alpha \kappa 0\varepsilon 

2p for a fixed constant \alpha > 0, we have the following improved error
estimates:

(4.15) \| \nu (\cdot , rn) - IN\nu 
n\| 1 + \varepsilon 2p\| \partial r\nu (\cdot , rn) - IN\mu 

n\| \lesssim hm +
\kappa 2

\varepsilon 2p
+\kappa m+1

0 , 0 \leq n \leq T

\kappa 
.

In particular, if the exact solution is sufficiently smooth, e.g., \nu , \partial r\nu \in H\infty , the
improved error bounds for sufficiently small \kappa are

(4.16) \| \nu (\cdot , rn) - IN\nu 
n\| 1 + \varepsilon 2p\| \partial r\nu (\cdot , rn) - IN\mu 

n\| \lesssim hm + \kappa 2/\varepsilon 2p, 0 \leq n \leq T

\kappa 
.

Remark 4.5. Under the assumption of Theorem 4.4, direct error analysis for time-
splitting schemes [5, 35] would lead to the error estimates as \| \nu (\cdot , rn)  - IN\nu 

n\| 1 +

\varepsilon 2p\| \partial r\nu (\cdot , rn)  - IN\mu 
n\| \lesssim hm + \kappa 2

\varepsilon 4p . Our results are improved in the sense that the

error bound \kappa 2

\varepsilon 4p is now \kappa 2

\varepsilon 2p .

Remark 4.6. The proof of the improved error bounds for the oscillatory complex
NKGE in Theorem 4.4 is similar to the long-time problem, and we omit the details
for brevity. We will provide an example in section 5 to confirm the improved error
bounds for the oscillatory complex NKGE and to demonstrate that they are sharp.

5. Numerical results. In this section, we present some numerical examples in
1D and two dimensions (2D) to validate our improved uniform error bounds on the
time-splitting methods for the long-time dynamics of the NKGE with weak nonlin-
earity and the improved error bounds for the oscillatory complex NKGE.

5.1. The long-time dynamics in 1D. First, we test the long-time errors of
the TSFP (4.4)--(4.5) for the NKGE (4.1) in 1D with p = 2 and real-valued initial
data as

(5.1) u0(x) =
3

2 + cos2(x)
, u1(x) =

3

4 + cos2(x)
, x \in \Omega = (0, 2\pi ).

The numerical ``exact"" solution is computed by the TSFP (4.4)--(4.5) with a very fine
mesh size he = \pi /60 and time step \tau e = 10 - 4. To quantify the error, we introduce
the following error functions:

(5.2) e1(tn) = \| u(x, tn) - INu
n\| 1 , e1,max(tn) = max

0\leq q\leq n
e1(tq).

In the rest of the paper, the spatial mesh size is always chosen sufficiently small such
that the spatial errors can be neglected when considering the long-time temporal
errors.

Figure 5.1 displays the long-time errors of the TSFP (4.4)--(4.5) for the NKGE
(4.1) with p = 2, the fixed time step \tau , and different \varepsilon , which confirms the improved
uniform error bounds in H1-norm at O(\varepsilon 4\tau 2) up to time at O(1/\varepsilon 4). Figure 5.2 and
Figure 5.3 depict the spatial and temporal errors of the TSFP (4.4)--(4.5) for the
NKGE (4.1) with p = 2 at t = 1/\varepsilon 4, respectively. Figure 5.2 indicates the spectral
accuracy of the TSFP (4.4)--(4.5) for the NKGE (4.1) in space, and the spatial errors
are independent of the small parameter \varepsilon . Each line in Figure 5.3(a) corresponds to a
fixed \varepsilon and shows the global errors in H1-norm versus the time step \tau , which confirms
the second-order convergence of the TSFP (4.4)--(4.5) for the NKGE (4.1) in time.
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Fig. 5.1. Long-time temporal errors of the TSFP (4.4)--(4.5) for the NKGE (4.1) with p = 2
and different \varepsilon in 1D.

Fig. 5.2. Long-time spatial errors of the TSFP (4.4)--(4.5) for the NKGE (4.1) with p = 2 in
1D at t = 1/\varepsilon 4.

Fig. 5.3. Long-time temporal errors of the TSFP (4.4)--(4.5) for the NKGE (4.1) with p = 2
in 1D at t = 1/\varepsilon 4.
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Fig. 5.4. Long-time errors for the discrete energy of the TSFP (4.4)--(4.5) for the NKGE (4.1)
with p = 2 in 1D at t = 1/\varepsilon 4.

Fig. 5.5. Comparisons of the first-, second-, and fourth-order splitting methods for the NKGE
(4.1) with p = 2 in 1D at t = 1/\varepsilon 4: (a) convergence in terms of \tau for fixed \varepsilon = 1/2 (left); (b)
convergence in terms of \varepsilon for fixed \tau = 0.1 (right).

Fig. 5.6. Comparisons of the finite difference, Gautschi-type EWI, and time-splitting methods
for the NKGE (1.1) in 1D at t = 1/\varepsilon 2: (a) convergence in terms of \tau for fixed \varepsilon = 1/2 (left); (b)
convergence in terms of \varepsilon for fixed \tau = 0.01 (right).
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Fig. 5.7. Long-time temporal errors of the TSFP method for the NKGE in 2D with different \varepsilon .

Fig. 5.8. Long-time temporal errors of the TSFP method for the NKGE in 2D at t = 1/\varepsilon 2.

Figure 5.3(b) again validates that the global errors in H1-norm behave like O(\varepsilon 4\tau 2)
up to the time at O(1/\varepsilon 4). Figure 5.4 shows the long-time errors for the discrete
energy of the TSFP (4.4)--(4.5) for the NKGE (4.1) with p = 2 at t = 1/\varepsilon 4, which
verifies the improved uniform error bounds for the discrete energy (4.11).

For comparisons, we present the temporal errors of the first-, Second-, and fourth-
order splitting methods. In space, we use the Fourier pseudospectral method with a
very fine mesh size such that the spatial errors are negligible.

Figure 5.5(a) depicts the temporal errors of three splitting methods with \varepsilon = 1/2,
which indicates that the higher-order splitting method not only has higher order
convergence rate but also achieves better accuracy under the same time step size.
Figure 5.5(b) shows the temporal errors of three splitting methods for the fixed time
step \tau = 0.1 and confirms the improved uniform error bounds for all the three splitting
methods up to the time at O(1/\varepsilon 4).

Figure 5.6 compares the second-order semiimplicit finite difference method [4],
second-order Gautschi-type EWI method [26], and time-splitting method (2.11) for
the long-time dynamics of the NKGE. Figure 5.6(a) depicts temporal errors of these
three methods with \varepsilon = 1/2, which indicates that they are all second-order methods
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Table 5.1
Temporal errors of the TSFP method for the oscillatory complex NKGE (4.14) in 1D.

e1(r = 1) \kappa 0 = 0.05 \kappa 0/4 \kappa 0/42 \kappa 0/43 \kappa 0/44

\varepsilon 0 = 1 \bfone .\bfone \bfone \bfE -\bftwo 6.90E-4 4.31E-5 2.69E-6 1.68E-7
order - 2.00 2.00 2.00 2.00
\varepsilon 0/2 6.25E-2 \bfthree .\bffour \bffive \bfE -\bfthree 2.14E-4 1.34E-5 8.35E-7
order - \bftwo .\bfzero \bfnine 2.01 2.00 2.00
\varepsilon 0/22 8.26E-1 1.89E-2 \bfone .\bfone \bfone \bfE -\bfthree 6.93E-5 4.33E-6
order - 2.72 \bftwo .\bfzero \bffour 2.00 2.00
\varepsilon 0/23 1.54 3.19E-1 1.62E-2 \bfone .\bfzero \bfone \bfE -\bfthree 6.29E-5
order - 1.14 2.15 \bftwo .\bfzero \bfzero 2.00
\varepsilon 0/24 2.09 3.82 7.90E-2 4.26E-3 \bftwo .\bfsix \bffour \bfE -\bffour 
order - -0.44 2.80 2.11 \bftwo .\bfzero \bfone 

for fixed \varepsilon . Figure 5.6(b) shows that just the time-splitting method has improved
uniform error bounds at O(\varepsilon 2) for fixed time step \tau = 0.01, while the Gautschi-type
EWI method is uniform and the finite difference method performs like O(1/\varepsilon 2) up to
the time at O(1/\varepsilon 2).

5.2. The long-time dynamics in 2D. In this subsection, we show an example
in 2D with the irrational aspect ratio of the domain (x, y) \in \Omega = (0, 1) \times (0, 2\pi ). In
the numerical experiment, we choose p = 1 and the initial data as

u0(x, y) =
2

1 + cos2(2\pi x+ y)
, u1(x) =

3

2 + 2 cos2(2\pi x+ y)
.

Figure 5.7 presents the long-time errors of the TSFP method for the NKGE in
2D with a fixed time step \tau and different \varepsilon , which confirms that the improved uniform
error bounds at O(\varepsilon 2\tau 2) up to the time at O(1/\varepsilon 2) are also suitable for the domain
with irrational aspect ratio. Figure 5.8 depicts the temporal errors for the TSFP
method for the NKGE in 2D at t = 1/\varepsilon 2, which again indicates that the TSFP
method is second-order in time and validates the improved uniform error bounds up
to the time at O(1/\varepsilon 2).

5.3. The oscillatory complex NKGE. In this subsection, we present the nu-
merical result for the oscillatory complex NKGE (4.15) in 1D to confirm the improved
error bound (4.14). We choose p = 1 and the complex-valued initial data as

u0(x) = x2(x - 1)2 + 3, u1(x) = x(x - 1)(2x - 1) + 3i cos(2\pi x), x \in \Omega = (0, 1).

The regularity is enough to ensure the improved error bound in H1-norm.
Table 5.1 lists the temporal errors of the TSFP method for the oscillatory NKGE

(4.14) in 1D, which indicates that the second-order convergence can only be observed
when \kappa \lesssim \varepsilon 2 (cf. the upper triangle above the diagonal with bold letters, and the
boldface text stands for \kappa /\varepsilon 2 = 0.05), and the temporal errors in H1-norm behave
like O(\kappa 2/\varepsilon 2) to confirm the improved error bound (4.15) and to demonstrate that
they are sharp.

6. Conclusions. Improved uniform error bounds on the time-splitting methods
for the long-time dynamics of the NKGE with weak cubic nonlinearity were rigor-
ously established. By employing the technique of RCO, the improved uniform error
bounds for the second-order semidiscretization and full-discretization up to the time
at O(1/\varepsilon 2) were carried out at O(\varepsilon 2\tau 2) and O(hm+\varepsilon 2\tau 2), respectively. The improved
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error bounds are extended to the complex NKGE with a general power nonlinearity
in the long-time regime and the oscillatory complex NKGE up to the fixed time
T . Numerical results in 1D and 2D were presented to confirm the improved error
bounds and to demonstrate that they are sharp. The equivalence between the time-
splitting methods and the Deuflhard-type EWIs for NKGE implies the improved error
bounds hold for a class of exponential integrators, which would be the object of future
study.
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