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Abstract
We consider the evolution of curve networks in two dimen-

sions (2d) and surface clusters in three dimensions (3d). The

motion of the interfaces is described by surface diffusion,

with boundary conditions at the triple junction points lines,

where three interfaces meet, and at the boundary points

lines, where an interface meets a fixed planar boundary.

We propose a parametric finite element method based on a

suitable variational formulation. The constructed method is

semi-implicit and can be shown to satisfy the volume con-

servation of each enclosed bubble and the unconditional

energy-stability, thus preserving the two fundamental geo-

metric structures of the flow. Besides, the method has very

good properties with respect to the distribution of mesh

points, thus no mesh smoothing or regularization technique

is required. A generalization of the introduced scheme to

the case of anisotropic surface energies and non-neutral

external boundaries is also considered. Numerical results

are presented for the evolution of two-dimensional curve

networks and three-dimensional surface clusters in the

cases of both isotropic and anisotropic surface energies.
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1 INTRODUCTION

A droplet or soap bubble tends to form a spherical geometry in order to minimize the surface area with

a prescribed volume. The soap bubble cluster is a generalization to minimizing the surface area for a

number of enclosed regions with prescribed volumes. Such minimizing problems have received a lot

of attention in the literature, with many questions remaining open. For example, natural conjectures

are that the standard k-bubble is the unique global minimizer among all bubbles separating k different

volumes, where the surfaces making up these minimizers are spherical, that is, they are either flat or

part of a sphere. A definition of standard k-bubbles and a proof of the existence and uniqueness of

standard bubble clusters of given volumes can be found in [1]. However, in general it is not known

that they minimize surface area when the volumes are given and whether other minimizers exist. In

2d, this was proved for double bubbles (k = 2) [2] and triple bubbles (k = 3) [3], and recently Paolini

and Tortorelli proved it for the quadruple planar bubble (k = 4) enclosing equal areas [4]. In 3d, the

double bubble conjecture was proved in [5], but it is still unknown for triple and quadruple bubbles.

In addition, numerical approximations have shown that for bubbles with k ≥ 6 enclosed regions, parts

of the boundaries of locally stable clusters could be non-spherical [6]. The readers are referred to [1,

7–10] and the references therein for more details on this topic.

The surface diffusion flow has applications in materials science, and geometrically can be studied

as a way to obtain perimeter and surface area minimizers for given prescribed volumes, often called

soap bubble clusters. In this work, we will study the numerical approximation of the surface diffusion

of curve networks in 2d and surface clusters in 3d with the help of parametric finite elements, paying

particular attention to the volume-preserving aspect. The networks and clusters we consider will feature

both so-called triple junction points lines, where three interfaces meet, as well as boundary points lines,

where a boundary component of an interface is constrained to lie in a fixed external plane. Moreover,

in 3d four triple junction lines can meet at a quadruple junction point. For ease of presentation, from

now on we will often use the 3d naming convections for interfaces, triple junctions and boundaries,

referring to these as surfaces, triple junction lines and boundary lines also in the 2d situation.

For a single, closed evolving hypersurface (Γ(t))t≥0 in IR
𝑑
, the motion by surface diffusion is given

by

 = −Δs𝜘, (1.1)

where is the velocity of Γ(t) in the direction of the unit normal 𝜈,Δs = ∇s ⋅∇s is the Laplace-Beltrami

operator and 𝜘 = −∇s⋅𝜈 denotes the mean curvature ofΓ. The geometric evolution law in (1.1) was first

introduced by Mullins [11] to describe mass diffusion within interfaces in polycrystalline materials.

Later Davi and Gurtin [12] presented a derivation of the law using principles from rational thermody-

namics. In fact, motion by surface diffusion has wide applications in materials science and solid-state

physics, such as thermal grooving, void evolution in microelectronic circuits, epitaxial crystal growth,

and solid-state dewetting; see [11, 13–16]. Theoretical results on existence, uniqueness and stability

for surface diffusion of a single surface can be found in [17–19].

Geometrically the law (1.1) can be viewed as a volume preserving gradient flow for the surface

area functional. In materials science and other applications, anisotropic surface energies often play

an important role. These energies take into account that the surface energy density may depend on

the local orientation of the interface. The relevant evolution law is then anisotropic surface diffusion,

defined by (1.1) with 𝜘 replaced by the weighted mean curvature 𝜘𝛾 = −∇s ⋅𝛾 ′(𝜈), where 𝛾
′(𝜈) denotes

the so-called Cahn–Hoffmann vector [20]. Here 𝛾 ∶ IR
𝑑∖{0⃗}→ IR>0 is a one-homogeneous extension

of the map 𝜈 → 𝛾(𝜈), and 𝛾
′
denotes its gradient in R

𝑑
. For more details on anisotropic surface energies

we refer to [21, 22] and the references therein.
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BAO ET AL. 761

In practical applications, clusters of surfaces with triple junction lines may appear, see [23–26].

A model for surface diffusion of a network of curves has been introduced in [27] for 𝑑 = 2 and

generalized to arbitrary space dimensions in [28, 29]. Well-posedness was shown in [30] for 𝑑 = 2

and in [31] for higher space dimensions. We will present the precise mathematical formulation of this

evolution law in Section 2 below. In [32], it was proved that the standard planar double bubbles in IR
2

are stable under surface diffusion, and the result was then generalized to the high-dimensional double

bubbles in [29, 33].

We now give a short overview on existing work for the numerical approximation of surface diffu-

sion. In the absence of triple junctions, we focus on methods that employ parametric finite elements.

Here the isotropic case has been considered in [34–39], while the more general anisotropic situation

has been considered in [40–46]. We note that in [36] the second and third authors of this paper, together

with John W. Barrett, introduced a novel variational formulation of surface diffusion that upon dis-

cretization leads to a benevolent tangential motion that guarantees nice mesh properties in practice.

We refer to the recent review article [47] for more details on this idea, including its application to the

approximation of Willmore flow, (snow) crystal growth, two-phase flow and fluidic biomembranes.

However, the original motivation for the variational formulation pursued in [36] was the numerical

approximation of geometric evolution equations for curve networks. In fact, for a well-posed formu-

lation it is crucial to allow movement of the triple junction points, which in turn requires a freedom

in tangential direction for the parameterizations used to describe the individual curves. This novel

approximation of curve networks was first used in [36] for surface diffusion, and then extended to more

general geometric evolution equations in [48]. The anisotropic case for curve networks was studied in

[42, 49], while the method was extended to the evolution of surface clusters in [28, 50].

For the numerical approximation of geometric evolution laws for curve networks and surface

clusters, and more generally for numerical methods to obtain perimeter and surface area minimiz-

ing partitionings given prescribed volumes, several different approaches are possible. The parametric

finite element methods discussed so far fall into the category of sharp interface front tracking meth-

ods. Other examples of front tracking methods for curve networks and surface clusters with triple

junctions include the well-known Surface Evolver by Brakke [51–55], as well as the works [56–59].

An alternative sharp interface approach is the level set method, which has been used in [60–63]. On

the other hand, the phase field method, which is a diffuse interface approach, has been employed

in [23, 64–66].

Very recently, the first and fourth authors of this paper presented two novel ideas for the parametric

finite element approximation for the surface diffusion of a single surface. First, in [35], building upon

ideas developed in [67], they proposed a method with time-integrated discrete normals that enable an

exact volume conservation for the fully discrete solutions. Second, in [41] they introduced an uncon-

ditionally stable method for the situation where a surface with boundary is attached to a non-neutral

external substrate. It is the aim of this paper to combine the ideas on the numerical approximation of

surface clusters from [28, 36, 42, 50], from now on simply referred to as “BGN” or “the BGN scheme”,

with the two novel ideas from [35, 41], in order to obtain a structure-preserving parametric finite ele-

ment method (SP-PFEM) for the evolution under surface diffusion of surface clusters. In particular, by

using suitably weighted approximations of the surface normals, and similarly suitably weighted effec-

tive velocity vectors along the boundary lines, where surfaces are constrained to remain attached to

fixed external planes, we are able to devise a fully discrete numerical method that

(a) conserves the volume for each enclosed bubble in the cluster exactly,

(b) is unconditionally stable, including in the case of attachments to non-neutral planar external

boundaries.
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762 BAO ET AL.

Both of the above aspects are new in the literature. In addition, on utilizing the techniques from

[43], we extend our approximation to the anisotropic case, when the surface energy densities depend

on the local orientation of the surfaces.

The rest of the paper is organized as follows. In Section 2 we describe the mathematical problem in

detail and discuss the energy decaying and volume preserving aspect of the surface diffusion flow for

surface clusters. In Section 3 we review the weak formulation for the considered geometric equation

and then introduce a parametric finite element method. The properties of unconditional stability and

volume conservation are shown for the discretized scheme. In Section 4 we generalize the introduced

scheme to the case of anisotropic surface energies. We then discuss the extension of the introduced

scheme to the non-neutral external boundaries in Section 5. In Section 6 extensive numerical results

are presented to show the applicability of the scheme. Finally, the paper is concluded in Section 7.

2 MATHEMATICAL FORMULATION

We follow the notations in [28] and specify the geometric evolution equations as follows. The evolving

surface cluster is assumed to consist of IS hypersurfaces in IR
𝑑

(𝑑 = 2, 3) with IT triple junctions lines

and IB boundary lines, which are denoted by

Γ(t) ≔
(
Γ1(t), … ,ΓIS (t)

)
, IS ∈ N, IS ≥ 1,

 (t) ≔
(
1(t), … , IT (t)

)
, IT ∈ N, IT ≥ 0,

(t) ≔
(
1(t), … ,IB(t)

)
, IB ∈ N, IB ≥ 0.

We introduce parameterizations of Γ(t) using a collection of reference domains Ω ≔
(
Ω1, … , ΩIS

)
,

which in order to simplify the presentation we assume to be flat domains Ωi ⊂ IR
𝑑−1

, i = 1, … , IS.

The generalization to the case where theΩi themselves are allowed to be hypersurfaces in IR
𝑑

is easily

possible, and such a description is needed, for example, for the trivial cluster consisting of a single

closed surface. However, for ease of notation we assume that the parameterizations x⃗ of the cluster are

such that

x⃗ =
(
x⃗1, … , x⃗IS

)
, and x⃗i ∶ Ωi × [0,T]→ IR

𝑑
with Γi(t) = x⃗i (Ωi, t) , i = 1, … , IS. (2.1)

For simplicity, throughout this paper we denoteΓ(t) = x⃗(Ω, t). The velocity =
(
1, … ,IS

)
induced

by the parameterization x⃗ in (2.1) is defined by

i
(
x⃗i(q⃗, t), t

)
= 𝜕tx⃗i(q⃗, t) ∀q⃗ ∈ Ωi, i = 1, … , IS. (2.2)

The motion of the surface Γi(t) is given by surface diffusion

i = −Δs𝜘 i, i = 1, … , IS, (2.3a)

where i = i ⋅ 𝜈i denotes the velocity of Γi(t) in the direction of the unit normal 𝜈i. In addition, 𝜘 i is

proportional to the sum of the principal curvatures, which is given by [21]

𝜘 i 𝜈i = 𝜎iΔs i⃗d, i = 1, … , IS, (2.3b)

where 𝜎i is a positive constant representing the surface energy density of Γi(t) and i⃗d is the identity

function in IR
𝑑
.

For the above geometric flows, we need to impose boundary conditions at the triple junction lines

and boundary lines. We denote by

𝜕iΩ =
Ii
P⋃

j=1

𝜕jΩi, Ii
p ∈ N, Ii

p ≥ 1, i = 1, … , IS
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BAO ET AL. 763

FIGURE 1 Sketch of the local orientation of

(
Γsk

1

,Γsk
2

,Γsk
3

)
at the triple junction line k (depicted in blue color). Depicted

above is a plane that is perpendicular to k. Left panel: ok ≔
(
ok

1
, ok

2
, ok

3

)
can be chosen as ok = (1,1,1). Right panel: we require

ok = ±(1, 1,−1)

a partition of the boundary of Ωi. For each triple junction line k, we set

k(t) ≔ x⃗sk
1

(
𝜕pk

1

Ωsk
1

, t
)
= x⃗sk

2

(
𝜕pk

2

Ωsk
2

, t
)
= x⃗sk

3

(
𝜕pk

3

Ωsk
3

, t
)
, k = 1, … , IT , (2.4a)

where 1 ≤ sk
1
< sk

2
< sk

3
≤ IS and 1 ≤ pk

j ≤ I
sk

j
P , j = 1, … , 3. As a result, we can define k via the

three pairs
((

sk
j , pk

j
))3

j=1
, k = 1, … , IT . Let 𝜇i denote the conormal of Γi(t), that is, it is the outward

unit normal to 𝜕Γi(t) that lies within the tangent plane of Γi(t). Then we have the following conditions

on k for k = 1, … , IT
3∑

j=1

𝜎sk
j
𝜇sk

j
= 0⃗, (2.4b)

ok
1
𝜇sk

1

⋅ ∇s𝜘sk
1

= ok
2
𝜇sk

2

⋅ ∇s𝜘sk
2

= ok
3
𝜇sk

3

⋅ ∇s𝜘sk
3

, (2.4c)

3∑

j=1

ok
j 𝜘sk

j
= 0, (2.4d)

where ok =
(
ok

1
, ok

2
, ok

3

)
with ok

j ∈ {1,−1} representing the orientation of a triple junction point at

k such that

(
ok

j 𝜈sk
j
, 𝜇sk

j

)
, 1 ≤ j ≤ 3, have the same orientation in the plane orthogonal to k at

that point (see Figure 1). The equations (2.4b) are force balance conditions at k, which lead to the

well-known 120
◦

angle condition at the triple junction lines when 𝜎i are equal for i = 1, … , IS.

Moreover, (2.4c) and (2.4d) can be interpreted as the flux balance condition and the chemical potential

continuity condition, respectively.

We assume that part of the surfaces Γi, i = 1, … , IS, are constrained to lie on the external planar

surfaces {k}
IB
k=1

. Denote by

k(t) ≔ x⃗sk

(
𝜕pkΩsk , t

)
⊂ k, k = 1, … , IB, 1 ≤ sk ≤ IS, 1 ≤ pk ≤ Isk

p , (2.5)

where k is a planar surface and its intersection with Γsk (t) produces the boundary line k(t). We

assume for simplicity that no triple junction line k(t) is constrained to lie on the boundary, that is,

IB⋃

k=1

{(sk, pk)} ∩
IT⋃

k=1

3⋃

j=1

{(
sk

j , pk
j
)}
= ∅.

For 1 ≤ k ≤ IB, let n⃗k be the unit normal to k, and pointing toward the clusters. Then we have the

following conditions on k for k = 1, … , IB

n⃗k ⋅ sk = 0, (2.6a)
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764 BAO ET AL.

n⃗k ⋅ 𝜈sk = 0, (2.6b)

𝜇sk
⋅ ∇s𝜘sk = 0. (2.6c)

We note (2.6a) together with the initial condition x⃗sk

(
𝜕pkΩsk , 0

)
⊂ k implies (2.5) directly. Condition

(2.6b) can be interpreted as a contact angle condition, which leads to a 90
◦

contact angle between Γsk

and k, while (2.6c) is a zero-flux condition in order that the volume conservation is satisfied.

The relevant energy of the cluster is given by the weighted sum of the surface areas

A(Γ(t)) ≔
IS∑

i=1

𝜎i |Γi(t)| =
IS∑

i=1

𝜎i
∫Γi(t)

1dℋ 𝑑−1
, (2.7)

whereℋ 𝑑−1
denotes the (d− 1)-dimensional Hausdorff measure in IR

𝑑
, and similarly forℋ 𝑑−2

. In the

cluster there are several bubbles, or volume regions, enclosed either by the surfaces or by the surfaces

together with the external planar boundariesk. For ease of presentation, we enumerate these regions

by1[Γ(t)], … ,IR[Γ(t)] with corresponding index sets and orientations


𝓁
Γ ⊂ {1, … , IS} , o𝓁 ∈ {−1, 1}IS , 

𝓁
 ⊂ {1, … , IB} , 𝓁 = 1, … , IR, IR ∈ IN, IR ≥ 1,

(2.8)

and denote by 𝓁[Γ(t)] the region enclosed by the surfaces {Γi(t)}i∈𝓁Γ
, {k}k∈𝓁



and possibly an

additional fixed hypersurface to create a finite volume. Here the orientations are chosen such that

o𝓁
i 𝜈i is the outer normal to 𝓁[Γ(t)] on Γi(t). The geometric evolution equations in (2.3) with the

boundary conditions in (2.4) and (2.6) can be interpreted as a volume-preserving gradient flow. In

other words, the dynamic system satisfies two geometric properties: (i) dissipation of the energy and

(ii) conservation of the volume of each enclosed bubble. In fact, it follows from a transport theorem,

(2.3b), (2.3a), (2.4a), (2.4b), (2.6a), (2.6b), (2.4c), (2.4d), and (2.6c) that

𝑑

dt
A(Γ(t)) = −

IS∑

i=1

𝜎i
∫Γi(t)

1

𝜎i
𝜘 ii𝑑ℋ 𝑑−1 +

IS∑

i=1

𝜎i
∫
𝜕Γi(t)

⃗ i ⋅ 𝜇i𝑑ℋ
𝑑−2 =

IS∑

i=1
∫Γi(t)

𝜘 iΔs𝜘 i𝑑ℋ 𝑑−1

= −
IS∑

i=1
∫Γi(t)

|∇s𝜘 i|2𝑑ℋ 𝑑−1 +
IS∑

i=1
∫
𝜕Γi(t)

𝜘 i∇s𝜘 i ⋅ 𝜇i𝑑ℋ
𝑑−2

= −
IS∑

i=1
∫Γi(t)

|∇s𝜘 i|2𝑑ℋ 𝑑−1
≤ 0. (2.9a)

Moreover, it follows from the Reynolds transport theorem for any 𝓁 = 1, … , IR that

𝑑

dt
vol (𝓁[Γ(t)]) =

∑

i∈𝓁Γ
∫Γi(t)

o𝓁
i i𝑑ℋ 𝑑−1 = −

∑

i∈𝓁Γ

o𝓁
i ∫Γi(t)

Δs𝜘 i𝑑ℋ 𝑑−1

= −
∑

i∈𝓁Γ

o𝓁
i ∫

𝜕Γi(t)
∇s𝜘 i ⋅ 𝜇idℋ

𝑑−2 = 0, (2.9b)

where in the last line we have noted (2.6c) for the boundary lines, and that all other boundary contri-

butions correspond to surfaces meeting pairwise at triple junction lines, with the chosen orientations

meaning that (2.4c) implies pairwise cancelation, see also Figure 1 and the end of the proof of

Theorem 3.4 below.

It is the main aim of this work to devise a fully discrete numerical method that mimics the two

fundamental structures of the flow in (2.9) on the discrete level.
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BAO ET AL. 765

3 FINITE ELEMENT APPROXIMATION

In this section, we first revisit the BGN weak formulation for the considered geometric flow and then

present a structure-preserving parametric finite element method for it.

3.1 The weak formulation

Let

V(Ω) ≔
{(

𝜒
1
, … , 𝜒 IS

)
∈

IS
×

i=1

[
H1 (Ωi)

]𝑑 ∶ 𝜒 sk
1

(
𝜕pk

1

Ωsk
1

)
= 𝜒 sk

2

(
𝜕pk

2

Ωsk
2

)

= 𝜒 sk
3

(
𝜕pk

3

Ωsk
3

)
, k = 1, … , IT

}
.

Now any x⃗ ∈ V(Ω) parameterizes a surface cluster Γ = x⃗(Ω). Given such a cluster, we introduce the

function spaces

W(Γ) ≔

{
(
𝜒1, … , 𝜒IS

)
∈

IS
×

i=1

H1 (Γi) ∶
3∑

j=1

ok
j 𝜒sk

j
= 0 on k, k = 1, … , IT

}

,

V(Γ) ≔
{(

𝜒
1
, … , 𝜒 IS

)
∈

IS
×

i=1

[
H1 (Γi)

]𝑑 ∶ 𝜒 sk
1

= 𝜒 sk
2

= 𝜒 sk
3

on k, k = 1, … , IT

}
,

V𝜕(Γ) ≔
{(

𝜒
1
, … , 𝜒 IS

)
∈ V(Γ) ∶ 𝜒 sk

⋅ n⃗k = 0 on k, k = 1, … , IB
}
,

and the L2
inner product over Γ as

⟨u, v⟩Γ ≔
IS∑

i=1
∫Γi

ui ⋅ vi𝑑ℋ 𝑑−1
, (3.1)

where we allow u, v to be scalar, vector or tensor valued functions.

We then introduce the weak formulation for the considered flow, that is, (2.3) with boundary con-

ditions (2.4) and (2.6), as follows. Let x⃗(⋅, 0) ∈ V(Ω), and x⃗sk

(
𝜕pkΩsk , 0

)
⊂ k, k = 1, … , IB. For

t > 0, we find x⃗(⋅, t) ∈ V(Ω) such that ((⋅t),𝜘(⋅t)) ∈ V𝜕(Γ(t)) ×W(Γ(t)), for Γ(t) = x⃗(Ω, t), with

⟨ ⋅ 𝜈, 𝜒⟩Γ(t) − ⟨∇s𝜘,∇s𝜒⟩Γ(t) = 0 ∀𝜒 ∈ W(Γ(t)), (3.2a)

⟨𝜘 𝜈, 𝜂⟩Γ(t) +
⟨
𝜎∇s i⃗d,∇s𝜂

⟩

Γ(t)
= 0 ∀𝜂 ∈ V𝜕(Γ(t)). (3.2b)

Here (3.2a) is obtained by multiplying (2.3a) with 𝜒i, integrating over Γi, summing up for i = 1, … , IS,

using integration by parts and the boundary conditions (2.4c), (2.6c). Similarly, using test functions

𝜂 ∈ V𝜕(Γ) to multiply (2.3b), we can obtain (3.2b) by noting the boundary conditions (2.4b) and (2.6b).

3.2 The discretization

For i = 1, … , IS, let Ωh
i = ∪Ji

j=1
𝜎

i
j be a triangulation approximating Ωi ⊂ IR

𝑑−1
, where

{
𝜎

i
j
}Ji

j=1

is a family of mutually disjoint open (d− 1)-simplices with vertices

{
q⃗i

k

}Ki

k=1

. Denote by 𝜕jΩh
i

an approximation of 𝜕jΩi, j = 1, … , Ii
P, i = 1, … , IS. Then we assume that the endpoints of

𝜕jΩh
i and 𝜕jΩi coincide and that the triangulations of Ωh

“match up” at their boundaries at triple
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766 BAO ET AL.

junction lines, that is,

Zk ≔ #
{{

q⃗sk
1

l

}Ksk
1

l=1

∩ 𝜕pk
1

Ωh
sk

1

}
= #

{{
q⃗sk

2

l

}Ksk
2

l=1

∩ 𝜕pk
2

Ωh
sk

2

}

= #
{{

q⃗sk
3

l

}Ksk
3

l=1

∩ 𝜕pk
3

Ωh
sk

3

}
, k = 1, … , IT .

In addition, for the discrete boundary parts 𝜕pk
j
Ωh

sk
j
, we let

𝜌
k
j ∶ {1, … ,Zk}→

{{
q⃗

sk
j

l

}Ksk
j

l=1

∩ 𝜕pk
j
Ωh

sk
j

}

, j = 1, … , 3, 1, … , IT , (3.3)

be a bijective map such that

(
𝜌

k
j (1), … , 𝜌

k
j (Zk)

)
is an ordered sequence of vertices. Then we define

the natural discrete analogue of V(Ω) by

Vh (Ωh) =

{
(
𝜒

1
, … , 𝜒 IS

)
∈ ×IS

i=1

[
C0

(
Ωh

i

)]𝑑
∶ 𝜒 i

||||𝜎i
j

is linear ∀ j = 1, … , Ji, i = 1, … , IS;

𝜒 sk
1

(
𝜌

k
1(l)

)
= 𝜒 sk

2

(
𝜌

k
2(l)

)
= 𝜒 sk

3

(
𝜌

k
3(l)

)
,= 1, … ,Zk, k = 1, … , IT

}

. (3.4)

Let M be a positive integer and ∪M−1

m=0
[tm, tm+1] be a partition of the time domain [0,T] such that 0 =

t0 < t1 < … < tM = T with possibly variable time steps Δtm ≔ tm+1 − tm. Denote by Γm = ⃗
m (
Ωh)

,

for ⃗
m
∈ Vh (Ωh)

, the discrete approximation of the cluster Γ (tm), with Γm
i = ⃗

m
i
(
Ωh

i
)
, i = 1, … , IS.

This introduces a sequence of polyhedral surfaces in IR
𝑑
. Let Γm

i = ∪Ji
i=1

𝜎
m,i
j = ∪Ji

j=1
⃗

m
i

(
𝜎

i
j

)
, where

{
𝜎

m,i
j
}Ji

j=1
are mutually disjoint open (𝑑−1)-simplices with vertices

{
q⃗m,i

k

}
defined by q⃗m,i

k ≔ ⃗
m
i

(
q⃗i

k

)
.

As a discrete analogue of k (tm), the triple junction 
m

k of the polyhedral surface cluster Γm
is defined

by the ordered sequence of vertices

(
⃗

m
sk

1

(
𝜌

k
1(1)

)
, … , ⃗

m
sk

1

(
𝜌

k
1 (Zk)

))
, k = 1, … , IT .

Similarly, the boundaries 
m
k are given by an appropriately defined ordering of the vertices{

⃗
m
(q⃗) ∶ q⃗ ∈

{
q⃗sk

l
}Ksk

k=1
∩ 𝜕pkΩ

h
sk

}
.

We define the function spaces Ŵh (Γm) ≔
{
𝜒 ∈ ×IS

i=1
C0

(
Γm

i
)
∶ 𝜒i

|||𝜎m,i
j

is linear ∀ j = 1, … ,

Ji, i = 1, … , IS
}

and V̂h (Γm) ≔
{
𝜒 ∈ ×IS

i=1

[
C0

(
Γm

i
)]𝑑 ∶ 𝜒 i

|||𝜎m,i
j

is linear ∀ j = 1, … , Ji, i =

1, … , IS
}
. Then the natural discrete analogues of V(Γ), W(Γ) and V𝜕(Γ) are given by

Wh (Γm) ≔

{

𝜒 ∈ Ŵh (Γm) ∶
3∑

j=1

ok
j 𝜒sk

j
= 0 on 

m
k , k = 1, … , IT

}

, (3.5a)

Vh (Γm) ≔
{
𝜒 ∈ V̂h (Γm) ∶ 𝜒 sk

1

= 𝜒 sk
2

= 𝜒 sk
3

on 
m

k , k = 1, … , IT

}
, (3.5b)

Vh
𝜕 (Γm) ≔

{
𝜒 ∈ Vh (Γm) ∶ n⃗k ⋅ 𝜒 sk

(q⃗) = 0 ∀q⃗ ∈ m
k , k = 1, … , IB

}
. (3.5c)
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BAO ET AL. 767

In addition, let

{
q⃗m,i

jk

}𝑑−1

k=0

be the vertices of 𝜎
m,i
j , and ordered with the same orientation for all 𝜎

m,i
j ,

j = 1, … , Ji. For simplicity, we denote 𝜎
m,i
j = Δ

{
q⃗m,i

jk

}𝑑−1

k=0

. Then we introduce the unit normal 𝜈
m
i to

Γm
i ; that is,

𝜈
m
i,j ≔ 𝜈

m
i ||𝜎m,i

j
≔

A⃗
{
𝜎

m,i
j
}

|A⃗
{
𝜎

m,i
j
}
|

with A⃗
{
𝜎

m,i
j
}
=
(

q⃗m,i
j
1

− q⃗m,i
j
0

)
∧ … ∧

(
q⃗m,i

j
𝑑−1

− q⃗m,i
j
0

)
, (3.6)

where ∧ is the wedge product and A⃗
{
𝜎

m,i
j
}

is the orientation vector of 𝜎
m,i
j . To approximate the inner

product ⟨⋅, ⋅⟩Γ(tm), we introduce the inner products ⟨⋅, ⋅⟩Γm and ⟨⋅, ⋅⟩h
Γm over the current polyhedral

surface cluster Γm
via

⟨u, v⟩Γm ≔

IS∑

i=1
∫Γm

i

ui ⋅ vi𝑑ℋ 𝑑−1
, (3.7a)

⟨u, v⟩h
Γm ≔

IS∑

i=1

1

𝑑

Ji∑

j=1

|𝜎m,i
j |

𝑑−1∑

k=0

lim

𝜎
m,i
j ∍p⃗→q⃗m,i

jk

(ui ⋅ vi) (p⃗), (3.7b)

where u, v are piecewise continuous, with possible jumps across the edges of
{
𝜎

m,i
j
}Ji

j=1
, i = 1, … , IS,

{
q⃗m,i

jk

}𝑑−1

k=0

are the vertices of 𝜎
m,i
j , and |𝜎m,i

j | = 1

(𝑑−1)!
|A⃗

{
𝜎

m,i
j
}
| is the measure of 𝜎

m,i
j .

In what follows, given the cluster Γm
we will devise a system of equations for X⃗

m+1

∈ Vh (Γm),
which then defines the new cluster Γm+1 = X⃗

m+1

(Γm). Based on the ideas in [35, 67], it is our aim

to propose a finite element approximation of the weak formulation in (3.2) in order that the energy

dissipation law (2.9a) and the volume conservation law (2.9b) are still satisfied on the discrete level. To

this end, we need to introduce appropriately weighted surface normals that approximate 𝜈i. Precisely,

we first introduce a family of polyhedral surfaces via a linear interpolation between Γm
and Γm+1

defined by

Γh
i (t) =

tm+1 − t
Δtm

Γm
i +

t − tm
Δtm

Γm+1

i , t ∈ [tm, tm+1] , i = 1, … , IS. (3.8)

Denote by Γh
i (t) = ∪Ji

j=1
𝜎

h,i
j (t) the polyhedral surfaces, where

{
𝜎

h,i
j (t)

}Ji

j=1
are the mutually disjoint

(d− 1)-simplices with vertices

{
q⃗h,i

k (t)
}Ki

k=1

, and

q⃗h,i
k (t) =

tm+1 − t
Δtm

q⃗m,i
k + t − tm

Δtm
q⃗m+1,i

k , t ∈ [tm, tm+1] , k = 1, … ,Ki. (3.9)

We then define the time-weighted approximation 𝜈
m+ 1

2 ∈ ×IS
i=1

[
L∞

(
Γm

i
)]𝑑

such that

𝜈
m+ 1

2

i
||||𝜎m,i

j

= 𝜈
m+ 1

2

i,j ≔
1

Δtm|A⃗
{
𝜎

m,i
j
}
|∫

tm+1

tm
A⃗
{
𝜎

h,i
j (t)

}
dt, j = 1, … , Ji, i = 1, … , IS. (3.10)

In a similar manner as in [35], we have the following lemma for the discrete quantities defined in (3.10).

Lemma 3.1 Let X⃗
m+1

∈ Vh (Γm) with X⃗
m+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm). Then it holds

vol
(
𝓁

[
Γm+1

])
− vol

(
𝓁

[
Γm]) =

⟨(
X⃗

m+1

− i⃗d

)
⋅ 𝜈m+ 1

2 , 𝜒

⟩h

Γm
, 𝓁 = 1, … , IR, (3.11)
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768 BAO ET AL.

where 𝜒 =
(
𝜒1, … , 𝜒IS

)
is given by

𝜒i =

{
o𝓁

i if i ∈ 𝓁Γ,
0 if i ∉ 𝓁Γ,

(3.12)

with o𝓁 defined as in (2.8).

Proof. For t ∈ [tm, tm+1] and Γh(t) =
(
Γh

1
(t), … ,Γh

IS
(t)
)

defined in (3.8), denote

Γh(t) ≔ X⃗
h
(Γm

, t) with X⃗
h
(t) ∈ Vh (Γm). Then we have

X⃗
h
i (q⃗, t) =

tm+1 − t
Δtm

q⃗ + t − tm
Δtm

X⃗
m+1

i (q⃗), ∀q⃗ ∈ Γm
, t ∈ [tm, tm+1] , i = 1, … , IS. (3.13)

Denote by 𝜈
h(t) =

(
𝜈

h
1, … , 𝜈

h
IS

)
the unit normal to Γh(t). We now apply the Reynolds

transport theorem to the region 𝓁
[
Γh(t)

]
, for t ∈ [tm, tm+1]. Here the boundaries

{k}k∈𝓁


do not move, and so do not contribute to the change in volume. Hence, similarly

to [35, 68], we obtain that

𝑑

dt
vol

(
𝓁

[
Γh(t)

])
=

∑

i∈𝓁Γ
∫Γh

i (t)
o𝓁

i 𝜈
h
i ⋅

(
𝜕tX⃗

h
i

)
◦
(

X⃗
h
i

)−1

𝑑ℋ 𝑑−1

=
∑

i∈𝓁Γ

o𝓁
i

Ji∑

j=1
∫
𝜎

m,i
j

X⃗
m+1

i − i⃗d

Δtm
⋅

A⃗
{
𝜎

h,i
j (t)

}

|A⃗
{
𝜎

h,i
j (t)

}
|

|A⃗
{
𝜎

h,i
j (t)

}
|

|A⃗
{
𝜎

m,i
j
}
|
𝑑ℋ 𝑑−1

, (3.14)

where in the first equality we have dropped the integrals over subsets of {k}k∈𝓁


as they

are zero. Integrating (3.14) from tm to tm+1 with respect to t, we arrive at

vol
(
𝓁

[
Γm+1

])
− vol

(
𝓁

[
Γm])

=
∫

tm+1

tm

∑

i∈𝓁Γ

o𝓁
i

Ji∑

j=1
∫
𝜎

m,i
j

X⃗
m+1

i − i⃗d

Δtm
⋅

A⃗
{
𝜎

h,i
j (t)

}

|A⃗
{
𝜎

m,i
j
}
|
𝑑ℋ 𝑑−1 dt

=
∑

i∈𝓁Γ

o𝓁
i

Ji∑

j=1
∫
𝜎

m,i
j

(
X⃗

m+1

i − i⃗d

)
⋅

1

Δtm|A⃗
{
𝜎

m,i
j
}
|∫

tm+1

tm
A⃗
{
𝜎

h,i
j (t)

}
dtdℋ 𝑑−1

=
∑

i∈𝓁Γ

o𝓁
i ∫Γm

i

(
X⃗

m+1

i − i⃗d

)
⋅ 𝜈

m+ 1

2

i 𝑑ℋ 𝑑−1
, (3.15)

where we have invoked (3.10) for the last equality. This implies (3.11) on

recalling (3.7b). ▪

Remark 3.2 We note that in (3.10), A⃗
{
𝜎

h,i
j (t)

}
is a polynomial of degree 𝑑 − 1 for the

variable t, recall (3.6) and (3.8). Therefore, in the case of 𝑑 = 2, applying the trapezoidal

rule to (3.10) yields

𝜈
m+ 1

2

i,j =
A⃗
{
𝜎

m,i
j
}
+ A⃗

{
𝜎

m+1,i
j

}

2|A⃗
{
𝜎

m,i
j
}
|

, j = 1, … , Ji, i = 1, … , IS, m = 0, … ,M − 1,
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BAO ET AL. 769

which gives [35] and (2.10). While in the case of 𝑑 = 3, we can apply Simpson’s

quadrature rule and obtain

𝜈
m+ 1

2

i,j =
A⃗
{
𝜎

m,i
j
}
+ 4A⃗

{
𝜎

m+ 1

2
,i

j

}
+ A⃗

{
𝜎

m+1,i
j

}

6 |A⃗
{
𝜎

m,i
j
}
|

with 𝜎
m+ 1

2
,i

j = Δ

{
q⃗m,i

jk + q⃗m+1,i
jk

2

}2

k=0

.

This gives a form similar to [35], (3.12).

We now propose the following structure-preserving discretization for the weak formulation in (3.2).

Let X⃗
0

∈ Vh (Ωh)
, and X⃗

0

sk

(
𝜕pkΩ

h
sk

)
⊂ k, k = 1, … , IB. For m = 0, … ,M−1, find

(
X⃗

m+1

, 𝜅
m+1

)
∈

Vh (Γm) ×Wh (Γm), with X⃗
m+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm), such that

1

Δtm

⟨
X⃗

m+1

− i⃗d, 𝜈
m+ 1

2 𝜒

⟩h

Γm
−
⟨
∇s𝜅

m+1
,∇s𝜒

⟩
Γm = 0 ∀𝜒 ∈ Wh (Γm) , (3.16a)

⟨
𝜅

m+1
𝜈

m+ 1

2 , 𝜂

⟩h

Γm
+
⟨
𝜎∇sX⃗

m+1

,∇s𝜂
⟩

Γm
= 0 ∀𝜂 ∈ Vh

𝜕 (Γm) . (3.16b)

We note the method (3.16) is very similar to the BGN scheme, see [28] and (4.7). The difference

is that here in the first terms of (3.16a) and (3.16b) we employ the semi-implicit approximation of

the unit normal from (3.10) instead of the explicit approximation with 𝜈
m

, which results in a non-

linear set of equations, compared to the linear scheme from BGN. These treatments will lead to a

volume-preserving and unconditionally stable method. Furthermore, the method has very good prop-

erties with respect to the distribution of mesh points. In other words, for a semi-discrete approximation,

it generally leads to the equidistribution of mesh points in 2d and conformal polyhedral surfaces in 3d,

which has been studied in detail in [36, 37], see also [47]. The discretized method gives rise to a sys-

tem of nonlinear polynomial equations, recall Remark 3.2, and in practice can be solved, for example,

with a Picard-type iterative method, see Remark 4.4 below.

Remark 3.3 Formally the method (3.16) is first order in temporal discretization and sec-

ond order in spatial discretization, which was numerically confirmed in [35] for surface

diffusion of a single surface. However, the mathematical analysis of the error and conver-

gence for the type of BGN schemes is an open problem and still very challenging due to

the introduced tangential movements of the vertices and the complexity of the differential

equations.

3.3 Volume conservation and stability

We have the following theorem for the discretization (3.16), which mimics the energy dissipation and

volume conservation laws in (2.9) on the discrete level.

Theorem 3.4 (stability and volume conservation). Let
(

X⃗
m+1

, 𝜅
m+1

)
be a solution to

(3.16). Then it holds that

A
(
Γm+1

)
+ Δtm

⟨
∇s𝜅

m+1
,∇s𝜅

m+1
⟩
Γm ≤ A (Γm) . (3.17)

Moreover, it holds that

vol
(
𝓁

[
Γm+1

])
= vol

(
𝓁

[
Γm])

, 𝓁 = 1, … , IR. (3.18)

 10982426, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.22921, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



770 BAO ET AL.

Proof. Setting 𝜒 = Δtm𝜅m+1
in (3.16a) and 𝜂 = X⃗

m+1

− i⃗d
||||Γm

in (3.16b), and combing

the two equations, yields

⟨
𝜎∇sX⃗

m+1

,∇s

(
X⃗

m+1

− i⃗d

)⟩

Γm
+ Δtm

⟨
∇s𝜅

m+1
,∇s𝜅

m+1
⟩
Γm = 0. (3.19)

It follows directly from [47], (Lemma 57) that

𝜎i
∫Γm

i

∇sX⃗
m+1

i ∶ ∇s

(
X⃗

m+1

i − i⃗d

)
𝑑ℋ 𝑑−1

≥ 𝜎i
(
|Γm+1

i | − |Γm
i |
)

∀i = 1, … , IS, (3.20)

which immediately implies (3.17) by inserting (3.20) into (3.19).

Moreover, in (3.16a) we set 𝜒 =
(
𝜒1, … , 𝜒IS

)
with 𝜒i satisfying (3.12). This gives

⟨
X⃗

m+1

− i⃗d, 𝜈
m+ 1

2 𝜒

⟩h

Γm
= 0, (3.21)

which implies (3.18) by noting Lemma 3.1. What remains to be done is to show that

the chosen test function satisfies 𝜒 ∈ Wh (Γm). For an arbitrary triple junction line, if


m

k ∩𝓁 [Γm] = ∅, then 𝜒sk
1

= 𝜒sk
2

= 𝜒sk
3

= 0 and there is nothing to show. Otherwise,

we assume without loss of generality that 𝜒sk
1

= 0 and
{

sk
2
, sk

3

}
⊂ 

𝓁
Γ. As shown in

Figure 1, in order that o𝓁

sk
2

𝜈
m
sk

2

and o𝓁

sk
3

𝜈
m
sk

3

are the outer normal to the considered region

𝓁 [Γm], on the left panel we require o𝓁

sk
2

= −1 and o𝓁

sk
3

= 1, while on the right panel

o𝓁

sk
2

= −1 and o𝓁

sk
3

= −1. In both cases
∑3

j=1
ok

j 𝜒sk
j
= ok

2
o𝓁

sk
2

+ ok
3
o𝓁

sk
3

= 0 holds, and thus

𝜒 ∈ Wh (Γm). ▪

Remark 3.5 In the case of curved boundaries k, the attachment condition (2.5) will

only be approximately satisfied. Usually an orthogonal projection of X⃗
m+1

onto k can

be employed so that the attachment condition is exactly satisfied. But the price is that the

numerical solutions will lose the properties of volume conservation and unconditional

stability. Therefore, we restrict our attention to the case of planar external boundaries in

this work.

4 ANISOTROPIC SURFACE ENERGIES

4.1 Mathematical formulations

In materials science, the surface energy of a material often exhibits strong dependence on its crys-

tallographic orientations. This yields the anisotropy and could influence the kinetic evolution of

the material. To this end, we assume the anisotropic surface energy density for the cluster Γ(t) =(
Γ1(t), … ,ΓIS (t)

)
is given by 𝛾 . In particular, we restrict ourselves to the surface energy of the form

that was introduced in [43]:

𝛾(p⃗) =

( L∑

𝓁=1

[
𝛾𝓁(p⃗)

]r
) 1

r

with 𝛾𝓁(p⃗) ≔
√

p⃗ ⋅ G𝓁 p⃗, r ∈ [1,∞), ∀p⃗ ∈ IR
𝑑∖{0⃗},

where G𝓁 ∈ IR
𝑑×𝑑

, 𝓁 = 1, … ,L, are symmetric and positive definite. Building on the techniques in

[43], the restriction to this class of anisotropies will allow us to establish an analogue of Theorem 3.4
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BAO ET AL. 771

for the anisotropic generalization of the scheme (3.16). Direct calculation yields the gradient of 𝛾(p⃗) as

𝛾
′(p⃗) =

L∑

𝓁=1

[
𝛾𝓁(p⃗)
𝛾(p⃗)

]r−1

𝛾
′
𝓁(p⃗) with 𝛾

′
𝓁(p⃗) =

1

𝛾𝓁(p⃗)
G𝓁 p⃗. (4.1)

Some typical examples of 𝛾(p⃗) are the isotropic surface energy with L = 1, r = 1,G1 = Id ∈ R
𝑑×𝑑

,

which gives 𝛾(p⃗) = |p⃗|, as well as L = 𝑑 with

𝛾(p⃗) =

(
𝑑∑

𝓁=1

[(
1 − 𝜀

2
)

p2

𝓁 + 𝜀
2|p⃗|2

] r
2

) 1

r

, p⃗ = (p1, … , p𝑑)T . (4.2)

In the case of r = 1, (4.2) can be regarded as a smooth regularization of the l1-norm 𝛾(p⃗) =
∑𝑑

𝓁=1
|p𝓁|,

while for r ≫ 1 and 𝜀 ≪ 1 it approximates an octahedral anisotropy in the case 𝑑 = 3. For more

choices of L, r, G𝓁 and their corresponding Wulff shapes, readers can refer to [28, 42, 43] and the

references therein.

We now generalize the gradient flow in (2.3), with boundary conditions (2.4) and (2.6), to the case

of anisotropic surface energies. The motion of Γi(t) is given by the anisotropic surface diffusion

i = −Δs𝜘𝛾,i, i = 1, … , IS, (4.3a)

where 𝜘𝛾,i for i = 1, … , IS are the weighted mean curvatures and are defined via the Cahn-Hoffman

vector 𝜈𝛾,i [20, 69]:

𝜘𝛾,i = −∇s ⋅ 𝜈𝛾,i with 𝜈𝛾,i = 𝛾
′ (
𝜈i
)
. (4.3b)

We next consider the boundary conditions for the anisotropic system. At the triple junction lines k,

k = 1, … , IT , we still have the attachment conditions (2.4a). The anisotropic variants of (2.4b)–(2.4d)

are then given by [27, 69–71]

3∑

j=1

[
𝛾

(
𝜈sk

j

)
𝜇sk

j
−
(
𝛾
′
(
𝜈sk

j

)
⋅ 𝜇sk

j

)
𝜈sk

j

]
= 0⃗, (4.4a)

ok
1
𝜇sk

1

∇s𝜘𝛾,sk
1

= ok
2
𝜇sk

2

∇s𝜘𝛾,sk
2

= ok
3
𝜇sk

3

∇s𝜘𝛾,sk
3

, (4.4b)

3∑

j=1

ok
j 𝜘𝛾,sk

j
= 0. (4.4c)

At the boundary lines k, k = 1, … , IB, we still require (2.6a) to hold so that the boundary lines

remain attached to the external planes. The generalizations of (2.6b), (2.6c) are given by

n⃗k ⋅ 𝛾 ′
(
𝜈sk

)
= 0, (4.5a)

𝜇sk
⋅ ∇s𝜘𝛾,sk = 0. (4.5b)

Here (4.5a) is the contact angle condition, which gives rise to a 90 angle between 𝛾
′ (
𝜈sk

)
and n⃗k, and

(4.5b) is the no-flux boundary condition.

Remark 4.1 For ease of presentation, we consider a single anisotropy 𝛾(p⃗) for all the

surfaces Γi(t), i = 1, … , IS. Extending the model and the finite element approximation to

individual anisotropies 𝛾
(i)(p⃗), i = 1, … , IS, is straightforward, see [28, 50]. We note that

in this case choosing 𝛾
(i)(p⃗) = 𝜎i |p⃗| collapses to the isotropic case discussed in Section 2,

since then 𝜈𝛾,i = 𝛾
′ (
𝜈i
)
= 𝜎i 𝜈i and 𝜘𝛾,i = 𝜘 i on recalling (2.3b).
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772 BAO ET AL.

The geometric evolution equations in (4.3), together with the boundary conditions (2.4a), (4.4),

(2.6a) and (4.5), form a complete model for the evolution of the cluster Γ(t) in the case of anisotropic

surface energies. The relevant energy is defined by

A𝛾 (Γ(t)) ≔
IS∑

i=1
∫Γi(t)

𝛾
(
𝜈i
)
𝑑ℋ 𝑑−1

. (4.6)

Analogously to the isotropic case (2.9), the dynamic system obeys the energy dissipation and volume

conservation laws

𝑑

dt
A𝛾 (Γ(t)) = −

IS∑

i=1
∫Γi(t)

||∇s𝜘𝛾,i||
2
𝑑ℋ 𝑑−1

≤ 0, (4.7a)

𝑑

dt
vol (𝓁[Γ(t)]) = 0, 𝓁 = 1, … , IR. (4.7b)

To formulate the weak BGN formulation, we introduce some necessary notations from [43] in the

following. For a symmetric positive matrix G𝓁 , we set G̃𝓁 = [det G𝓁]
1

𝑑−1 [G𝓁]−1
and define the

G̃𝓁-inner product

(𝜂, 𝜒)G̃𝓁
= 𝜂 ⋅ G̃𝓁𝜒, ∀𝜂, 𝜒 ∈ IR

𝑑
.

For a smooth scalar field g over Γi(t), we define the anisotropic surface gradient

∇G̃𝓁
s g =

𝑑−1∑

j=1

𝜕t⃗𝓁j
g t⃗𝓁j =

𝑑−1∑

j=1

(
∇sg ⋅ t⃗𝓁j

)
t⃗𝓁j , (4.8)

where 𝜕t⃗𝓁j
g = ∇sg ⋅ t⃗𝓁j is the directional derivative, ∇s is the usual surface gradient operator, and

{
t⃗𝓁j
}𝑑−1

j=1

forms an orthonormal basis with respect to the G̃𝓁-inner product for the tangent plane of Γi(t)
at the point of interest, that is,

t⃗𝓁j ⋅ 𝜈i = 0,

(
t⃗𝓁j , t⃗

𝓁
k

)

G̃𝓁

= 𝛿jk, 1 ≤ j, k ≤ 𝑑 − 1, 𝓁 = 1, … ,L.

Moreover, the anisotropic surface divergence and gradient of a smooth vector field g⃗ are given by

∇G̃𝓁
s ⋅ g⃗ =

𝑑−1∑

j=1

(
𝜕t⃗𝓁j

g⃗
)
⋅
(

G̃𝓁 t⃗𝓁j
)
, ∇G̃𝓁

s g⃗ =
𝑑−1∑

j=1

(
𝜕t⃗𝓁j

g⃗
)
⊗

(
G̃𝓁 t⃗𝓁j

)
, (4.9)

where ⊗ is the stand tensor product for two vectors in IR
𝑑
.

Now we present the generalization of (3.2) to the case of anisotropic surface energies in the form

of (4.1). Let x⃗(⋅, 0) ∈ V(Ω), and x⃗sk

(
𝜕pkΩsk , 0

)
⊂ k, k = 1, … , IB. For t > 0, we find x⃗(⋅, t) ∈ V(Ω)

such that
(
(⋅t),𝜘𝛾 (⋅t)

)
∈ V𝜕(Γ(t)) ×W(Γ(t)), for Γ(t) = x⃗(Ω, t), with

⟨ ⋅ 𝜈, 𝜒⟩Γ(t) −
⟨
∇s𝜘𝛾 ,∇s𝜒

⟩
Γ(t) = 0 ∀𝜒 ∈ W(Γ(t)), (4.10a)

⟨
𝜘𝛾𝜈, 𝜂

⟩
Γ(t) +

⟨
∇G̃

s i⃗d,∇G̃
s 𝜂

⟩

𝛾,Γ(t)
= 0 ∀𝜂 ∈ V𝜕(Γ(t)), (4.10b)

where we define

⟨
∇G̃

s 𝜂,∇G̃
s 𝜒

⟩

𝛾,Γ(t)
=

IS∑

i=1

L∑

𝓁=1
∫Γi(t)

[
𝛾𝓁

(
𝜈i
)

𝛾
(
𝜈i
)

]r−1 (
∇G̃𝓁

s 𝜂,∇G̃𝓁
s 𝜒

)

G̃𝓁

𝛾𝓁
(
𝜈i
)
𝑑ℋ 𝑑−1

.
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BAO ET AL. 773

4.2 The generalized SP-PFEM

Based on the weak formulation (4.10) and making use of the discretization in Section 3.2, we can

generalize the method (3.16) to the case of anisotropic surface energies as follows. Let X⃗
0

∈ Vh (Ωh)
,

and X⃗
0

sk

(
𝜕pkΩ

h
sk

)
⊂ k, k = 1, … , IB. For m = 0, … ,M−1, find

(
X⃗

m+1

, 𝜅
m+1
𝛾

)
∈ Vh (Γm)×Wh (Γm),

with X⃗
m+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm), such that

1

Δtm

⟨
X⃗

m+1

− i⃗d, 𝜒𝜈
m+ 1

2

⟩h

Γm
−
⟨
∇s𝜅

m+1
𝛾 ,∇s𝜒

⟩
Γm = 0 ∀𝜒 ∈ Wh (Γm) , (4.11a)

⟨
𝜅

m+1
𝛾 𝜈

m+ 1

2 , 𝜂

⟩h

Γm
+
⟨
∇G̃

s X⃗
m+1

,∇G̃
s 𝜂

⟩

𝛾,Γm
= 0 ∀ 𝜂 ∈ Vh

𝜕 (Γm) , (4.11b)

where we define the discrete inner product

⟨
∇G̃

s ⋅,∇G̃
s ⋅
⟩

𝛾,m
via

⟨
∇G̃

s 𝜂,∇G̃
s 𝜒

⟩

𝛾,Γm
≔

IS∑

i=1

L∑

𝓁=1
∫Γm

i

⎡
⎢
⎢
⎣

𝛾𝓁

(
𝜈

m+1

i

)

𝛾

(
𝜈

m+1

i

)
⎤
⎥
⎥
⎦

r−1

(
∇G̃𝓁

s 𝜂i,∇
G̃𝓁
s 𝜒 i

)

G̃𝓁
i

𝛾𝓁
(
𝜈

m
i
)
𝑑ℋ 𝑑−1

. (4.12)

The above scheme (4.11) is very similar to ([28], (4.9)) except that we apply a semi-implicit approx-

imation of the unit normal in the first terms of (4.11a) and (4.11b). That means in the case r = 1 the

scheme (4.11) introduces a nonlinearity compared to the linear scheme ([28], (4.9)). But for r�= 1 the

introduced nonlinearity is mild compared to the dependence of (4.12) on the unit normal 𝜈
m+1

on Γm+1
,

which is necessary in order to prove unconditional stability [43].

We first present a lemma which will be used to prove the unconditional stability for the discretized

scheme in (4.11), and its proof can be found in ([43], Lemma 3.1).

Lemma 4.2 Let X⃗
m+1

∈ Vh (Γm) with X⃗
m+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm). Then it holds

L∑

𝓁=1
∫Γm

i

⎡
⎢
⎢
⎣

𝛾𝓁

(
𝜈

m+1

i

)

𝛾

(
𝜈

m+1

i

)
⎤
⎥
⎥
⎦

r−1

(
∇G̃𝓁

s X⃗
m+1

i ,∇G̃𝓁
s

(
X⃗

m+1

i − i⃗d

))

G̃𝓁

𝛾𝓁
(
𝜈

m
i
)
𝑑ℋ 𝑑−1

≥
∫Γm+1

i

𝛾

(
𝜈

m+1

i

)
𝑑ℋ 𝑑−1 −

∫Γm
i

𝛾
(
𝜈

m
i
)
𝑑ℋ 𝑑−1

,

which yields the following inequality on recalling (4.12)

⟨
∇G̃

s X⃗
m+1

,∇G̃
s

(
X⃗

m+1

− i⃗d

)⟩

𝛾,Γm
≥

IS∑

i=1
∫Γm+1

i

𝛾

(
𝜈

m+1

i

)
𝑑ℋ 𝑑−1 −

IS∑

i=1
∫Γm

i

𝛾
(
𝜈

m
i
)
𝑑ℋ 𝑑−1

.

For the discretized scheme in (4.11), we can prove the unconditional energy decay and the

conservation of volume for each enclosed bubble.

Theorem 4.3 (stability and volume conservation). Let
(

X⃗
m+1

, 𝜅
m+1
𝛾

)
be a solution to

(4.11), then it holds that

A𝛾

(
Γm+1

)
+ Δtm

⟨
∇s𝜅

m+1
𝛾 ,∇s𝜅

m+1
𝛾

⟩
Γm ≤ A𝛾 (Γm) . (4.13)
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774 BAO ET AL.

Moreover, it holds that

vol
(
𝓁

[
Γm+1

])
= vol

(
𝓁

[
Γm])

, 𝓁 = 1, … , IR. (4.14)

Proof. Setting 𝜒 = Δtm𝜅m+1
𝛾 in (4.11a) and 𝜂 = X⃗

m+1

− i⃗d
||||Γm

in (4.11b) and combin-

ing the two equations yields

Δtm
⟨
∇s𝜅

m+1
𝛾 ,∇s𝜅

m+1
𝛾

⟩
Γm +

⟨
∇G̃

s X⃗
m+1

,∇G̃
s

(
X⃗

m+1

− i⃗d

)⟩

𝛾,Γm
= 0.

On recalling Lemma 4.2, we directly obtain the unconditional stability in (4.13) as

claimed.

Finally, in (4.11b), we choose 𝜒 with 𝜒i satisfying (3.12). This yields (4.14) by

Lemma 3.1. ▪

Remark 4.4 Like in the isotropic case, we can solve the nonlinear system result-

ing from (4.11) with a lagged Picard-type iteration as follows. For each p ≥ 0, find(
X⃗

m+1,p+1

, 𝜅
m+1,p+1

𝛾

)
∈ Vh (Γm) × Wh (Γm), with X⃗

m+1,p+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm), such that

for all (𝜒, 𝜂) ∈ Wh (Γm) × Vh
𝜕
(Γm) the following two equations hold

1

Δtm

⟨
X⃗

m+1,p+1

− i⃗d, 𝜒𝜈
m+ 1

2
,p
⟩h

Γm
−
⟨
∇s𝜅

m+1,p+1

𝛾 ,∇s𝜒
⟩

Γm
= 0, (4.15a)

⟨
𝜅

m+1,p+1

𝛾 𝜈
m+ 1

2
,p
, 𝜂

⟩h

Γm
+

IS∑

i=1

L∑

𝓁=1
∫Γm

i

⎡
⎢
⎢
⎣

𝛾𝓁

(
𝜈

m+1,p
i

)

𝛾

(
𝜈

m+1,p
i

)
⎤
⎥
⎥
⎦

r−1

(
∇G̃𝓁

s X⃗
m+1,p+1

i ,∇G̃𝓁
s 𝜂i

)

G̃𝓁

𝛾𝓁
(
𝜈

m
i
)
𝑑ℋ 𝑑−1 = 0,

(4.15b)

where we denote Γm+1,p = X⃗
m+1,p

(Γm), and 𝜈
m+1,p

and 𝜈
m+ 1

2
,p

are defined by using the

similar formulas in (3.6) and (3.10) except that Γm+1
is replaced by Γm+1,p

instead. In

particular, we choose X⃗
m+1,0

= i⃗d
||||Γm

. The resulting linear system from (4.15) can then be

solved efficiently with the Schur complement approaches in BGN.

5 EXTENSION TO NON-NEUTRAL EXTERNAL BOUNDARIES

So far, for ease of presentation, we have only considered the simplified case when the contact energy

densities, for the two phases separated by the interface at the external boundary, are the same, so that

they have no contribution to the total energy of the system. As suggested by (4.5a), this then leads to a

90
◦

angle between 𝛾
′ (
𝜈sk

)
and n⃗k. However, in practical physical applications, this is usually not the

case and the contact energies play a non-negligible role in the evolution of the surface cluster. To this

end, we consider the dynamic system in Section 4.1 but replace the contact angle condition (4.5a) with

the following anisotropic Young’s equation [50].

n⃗k ⋅ 𝛾 ′
(
𝜈sk

)
= 𝜌k, k = 1, … , IB, (5.1)

which gives rise to more general contact angles. Here 𝜌k are given constants and represent the change

of contact energy density in the direction of −𝜈sk , that the two phases separated by the surface Γsk have

with the external boundary k. A similar contact angle condition has also been derived in [15]. It is
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BAO ET AL. 775

FIGURE 2 Sketch of the structures at the boundary line k (depicted in green color) where Γsk
meets the external planar

boundary k. Depicted above is a plane that is perpendicular to k

easy to see that (5.1) yields an angle of arccos
𝜌k

|𝛾 ′
(
𝜈sk

)
|

between 𝛾
′ (
𝜈sk

)
and n⃗k when |𝜌k| ≤ |𝛾 ′

(
𝜈sk

)
|.

In particular, in the isotropic case we obtain a contact angle 𝜗k with cos 𝜗 = 𝜌k, for 𝜌k ∈ [−1, 1].
We now discuss the contact energy contributions to the system. At k, we define

𝜉k =
(
n⃗k ⋅ 𝜈sk

)
𝜇sk

−
(
n⃗k ⋅ 𝜇sk

)
𝜈sk , k = 1, … , IB, (5.2)

where we observe that 𝜉k is normal to k and lies in the tangent plane of the surfacek. In particular,

𝜉k is obtained through a 90
◦

rotation of n⃗k in the plane spanned by 𝜈sk and 𝜇sk
, and that

(
n⃗k, 𝜉k

)
have

the same orientation with
(
𝜈sk , 𝜇sk

)
, as shown in Figure 2. Let B𝑑

R be a ball in R
𝑑

with sufficiently

large radius R, and for k = 1, … , IB we set 𝒢k = k ∩ B𝑑

R. Then the boundary point/line k divides

the segment/disk 𝒢k into two parts by

𝒢 +
k ∩𝒢 −

k = k, 𝒢 +
k ∪𝒢 −

k = 𝒢k, (5.3)

where 𝒢 −
k is chosen such that 𝜉k in (5.2) is the outer normal to 𝒢 −

k on k. The relevant energy of the

considered system is then given by

E(Γ(t)) = A𝛾 (Γ(t)) + A𝜕(Γ(t)) =
IS∑

i=1
∫Γi(t)

𝛾
(
𝜈i
)
𝑑ℋ 𝑑−1 +

IB∑

k=1

(
𝜌
+
k |𝒢

+
k (t)| + 𝜌

−
k |𝒢

−
k (t)|

)
, (5.4)

where A𝜕(Γ(t)) represents the contact energies, 𝜌
±
k are the contact energy densities of the plane surfaces

𝒢 ±
k (t)which satisfy the relation 𝜌

+
k −𝜌−k = 𝜌k, and |𝒢 ±

k | represent the surface area of𝒢 ±
k , respectively.

Direct calculation yields the energy dissipation law (see proposition 2.1 in [50]):

𝑑

dt
E(Γ(t)) +

IS∑

i=1
∫Γi(t)

||∇s𝜘𝛾,i||
2
𝑑ℋ 𝑑−1 = 0. (5.5)

In addition, we still have the volume conservation law (4.7b).

We then generalize the weak formulation in (4.10) to the case of non-neutral external bound-

aries. In order that (5.1) can be weakly enforced, we add the following terms on the right hand side

of (4.10b)

IB∑

k=1

𝜌k
∫
k(t)

𝜉k ⋅ 𝜂sk
𝑑ℋ 𝑑−2

. (5.6)

Similarly, we generalize the discretized numerical method (4.11) as follows. On the right hand of

(4.11b), we add

IB∑

k=1

𝜌k
∫


m
k

𝜉
m+ 1

2

k ⋅ 𝜂sk
𝑑ℋ 𝑑−2

, (5.7)
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776 BAO ET AL.

where
m
k is the natural discrete analogue ofk (tm) and 𝜉

m+ 1

2

k is an appropriate approximation in order

to guarantee the unconditional stability for the generalized scheme.

Following [41], we next discuss the treatment of 𝜉
m+ 1

2

k in detail. In the case of 𝑑 = 2, 𝜉
m+ 1

2

k can

be simply determined from n⃗k via a 90
◦

rotation in R
2
. While in the case of 𝑑 = 3, we have 𝜉k =

n⃗k×
(
𝜇sk

× 𝜈sk

)
by (5.2). We assume that

{
𝜆

m,k
𝓁

}Yk

𝓁=0

is an ordered sequence of vertices of
m
k according

to the direction of 𝜇sk
× 𝜈sk and denote


m
k =

Yk⋃

𝓁=1

Lm
𝓁,k =

Yk⋃

𝓁=1

[
𝜆

m,k
𝓁−1, 𝜆

m,k
𝓁

]
, f⃗

{
Lm
𝓁,k
}
= 𝜆

m,k
𝓁 − 𝜆

m,k
𝓁−1,

where Lm
𝓁,k is the 𝓁th line segment of 

m
k and f⃗

{
Lm
𝓁,k
}

represents its orientation vector. Based on (3.8),

we can naturally set 
h
k(t) = ∪

Yk
𝓁=1

Lh
𝓁,k(t) = ∪

Yk
𝓁=1

[
𝜆

h,k
𝓁−1(t), 𝜆

h,k
𝓁 (t)

]
as a linear interpolation between 

m
k

and 
m+1

k , and

𝜆
h,k
𝓁 (t) =

tm+1 − t
Δtm

𝜆
m,k
𝓁 + t − tm

Δtm
𝜆

m+1,k
𝓁 , t ∈ [tm, tm+1] , 𝓁 = 0, … ,Yk. (5.8)

We then define 𝜉
m+ 1

2

k in an average sense via

𝜉
m+ 1

2

k
||||Lm

𝓁,k

= 𝜉
m+ 1

2

k,𝓁 = n⃗k ×

(
1

Δtm|f⃗
{

Lm
𝓁,k
}
|∫

tm+1

tm
f⃗
{

Lh
𝓁,k(t)

}
dt

)

= 1

2|f⃗
{

Lm
𝓁,k
}
|
n⃗k ×

(
f⃗
{

Lm
𝓁,k
}
+ f⃗

{
Lm+1

𝓁,k
})

, k = 1, … , IB, 𝓁 = 1, … ,Yk.

(5.9)

From [9, Lemma 3.1], we have the following lemma for 𝜉
m+ 1

2

k . For completeness, here we present a

new proof in a similar manner as we did in the proof of Lemma 3.1.

Lemma 5.1 Let X⃗
m+1

∈ Vh (Γm) with X⃗
m+1

− i⃗d
||||Γm

∈ Vh
𝜕
(Γm). Then it holds that

|𝒢m+1,±
k | − |𝒢m,±

k | = ∓
∫


m
k

𝜉
m+ 1

2

k ⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 𝑑−2

, k = 1, … , IB, (5.10)

where 𝒢m,±
k are the natural discrete analogues of 𝒢 ±

k (tm).

Proof. In the case of 𝑑 = 2 we have that 
m
k and X⃗

m+1

sk

(


m
k
)

are points on the linek,

while 𝒢m,±
k are line segments on k, meaning the result (5.10) is elementary.

In the case of 𝑑 = 3, we recall that the vertices of the polygonal curve 
h
k(t) are given

by (5.8). It is natural to define

𝜉
h
k(t)

||||Lh
𝓁,k(t)

= n⃗k ×
f⃗
{

Lh
𝓁,k(t)

}

|f⃗
{

Lh
𝓁,k(t)

}
|
, 𝒢 h,−

k (t) ∩𝒢 h,+
k (t) = h

k(t), 𝒢 h,−
k (t) ∪𝒢 h,+

k (t) = k ∩ B3

R,

such that 𝜉
h
k(t) is the outer normal to 𝒢 h,−

k (t). Applying the Reynolds transport theorem

to the two-dimensional domain 𝒢 h,−
k (t) gives

𝑑

dt
|𝒢 h,−

k (t)| =
∫


h
k (t)

𝜉
h
k(t) ⋅

(
𝜕tX⃗

h
sk

)
◦
(

X⃗
h
sk

)−1

dℋ 1
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BAO ET AL. 777

=
Yk∑

𝓁=1
∫Lm

𝓁,k

(

n⃗k ×
f⃗
{

Lh
𝓁,k(t)

}

|f⃗
{

Lh
𝓁,k(t)

}
|

)

⋅
X⃗

m+1

sk − i⃗d

Δtm
|f⃗
{

Lh
𝓁,k(t)

}
|

|f⃗
{

Lm
𝓁,k
}
|

𝑑ℋ 1

=
Yk∑

𝓁=1
∫Lm

𝓁,k

(

n⃗k ×
f⃗
{

Lh
𝓁,k(t)

}

Δtm|f⃗
{

Lm
𝓁,k
}
|

)

⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 1

, (5.11)

where X⃗
h
sk is defined in (3.13). Integrating (5.11) from tm to tm+1 with respect to t yields

|𝒢m+1,−
k | − |𝒢m,−

k | =
Yk∑

𝓁=1
∫Lm

𝓁,k

𝜉
m+ 1

2

k,𝓁 ⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 1 =

∫


m
k

𝜉
m+ 1

2

k ⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 1

(5.12)

on recalling (5.9). Using a similar approach to 𝒢 h,+
k (t) yields that

|𝒢m+1,+
k | − |𝒢m,+

k | = −
∫


m
k

𝜉
m+ 1

2

k ⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 1

. (5.13)

Thus we obtain (5.10). ▪

We then have the following theorem which generalizes Theorem 4.3.

Theorem 5.2 Let
(

X⃗
m+1

, 𝜅
m+1
𝛾

)
be a solution to (4.11) with (5.6) added to the right

hand side of (4.11b). Then it holds that

E
(
Γm+1

)
+ Δtm

⟨
∇s𝜅

m+1
𝛾 ,∇s𝜅

m+1
𝛾

⟩
Γm ≤ E (Γm) . (5.14)

Moreover, it holds that

vol
(
𝓁

[
Γm+1

])
= vol

(
𝓁

[
Γm])

, 𝓁 = 1, … , IR. (5.15)

Proof. Setting 𝜒 = Δtm𝜅m+1
𝛾 in (4.11a) and 𝜂 = X⃗

m+1

− i⃗d
||||Γm

in the adapted (4.11b)

and combining the two equations yields

Δtm
⟨
∇s𝜅

m+1
𝛾 ,∇s𝜅

m+1
𝛾

⟩
Γm +

⟨
∇G̃

s X⃗
m+1

,∇G̃
s

(
X⃗

m+1

− i⃗d

)⟩

𝛾,Γm
=

IB∑

k=1

𝜌k
∫


m
k

𝜉
m+ 1

2

k ⋅
(

X⃗
m+1

sk − i⃗d

)
dℋ 𝑑−2

.

By Lemma 5.1, and on noting 𝜌
+
k − 𝜌

−
k = 𝜌k, we have

𝜌
+
k

(
|𝒢m+1,+

k | − |𝒢m,+
k |

)
+ 𝜌

−
k

(
|𝒢m+1,−

k | − |𝒢m,−
k |

)
= −

IB∑

k=1

𝜌k
∫


m
k

𝜉
m+ 1

2

k ⋅
(

X⃗
m+1

sk − i⃗d

)
𝑑ℋ 𝑑−2

,

which yields (5.14) on recalling Lemma 4.2. Finally, (5.15) follows directly by choosing

𝜒 in (4.11a) with 𝜒i satisfying (3.12). ▪

6 NUMERICAL RESULTS

We implemented our fully discrete finite element approximations within the finite element toolbox

ALBERTA, see [72]. The systems of linear equations arising from the Picard-iteration are solved with

the help of the Schur complement approach from BGN, employing a preconditioned conjugate gradient

solver with preconditioners based on the sparse factorization package UMFPACK, see [73].
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778 BAO ET AL.

FIGURE 3 Evolution toward the 2d standard double bubble. Plots of Γm
at times t = 0,0.1,2. We also show plots of the

discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where 𝜎 = (1,1,1), K = 129, and Δt = 10
−2

FIGURE 4 Evolution toward a 2d double bubble, with weightings 𝜎 = (1,1,1.5). Plots of Γm
at times t = 0,0.1,2. We also

show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 129

and Δt = 10
−2

Throughout this section we use uniform time steps Δtm = Δt. We let J =
∑IS

i=1
Ji denote the total

number of elements, and K =
∑IS

i=1
Ki the total number of vertices. Unless otherwise stated, we use

𝜌k = 𝜌 for k = 1, … , IB, with 𝜌 = 0 by default. For many of the presented simulations we will put

particular emphasis on the volume preserving aspect. Hence, for later use we define the relative volume

error at time t = tm as

vm
Δ = max

𝓁=1,… ,IR

|||||

vol (𝓁 [Γm]) − vol
(
𝓁

[
Γ0
])

vol
(
𝓁

[
Γ0
])

|||||
.

 10982426, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.22921, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BAO ET AL. 779

FIGURE 5 Evolution toward a degenerate 2d double bubble, with weightings 𝜎 = (1,1,2). Plots of Γm
at times t = 0,0.1,2.

We also show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 129 and

Δt = 10
−2

FIGURE 6 Evolution toward a 2d double bubble, with weightings 𝜎 = (1,1.5,1). Plots of Γm
at times t = 0,0.1,2.

We also show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 129 and

Δt = 10
−2

We also define the mesh ratio

rm = max
i=1,… ,IS

maxj=1,… ,Ji |𝜎
m,i
j |

minj=1,… ,Ji |𝜎
m,i
j |

. (6.1)

Throughout we use solid red lines for the introduced structure-preserving schemes, and dashed blue

lines for the standard BGN scheme. We stress that all the presented numerical simulations were

performed without any mesh smoothings or remeshings.
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780 BAO ET AL.

FIGURE 7 Evolution toward a degenerate 2d double bubble, with weightings 𝜎 = (1,2,1). Plots of Γm
at times t = 0,0.1,2.

We also show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 129 and

Δt = 10
−2

FIGURE 8 Evolution toward the 2d standard triple bubble. Plots of Γm
at times t = 0,0.1,2. We also show plots of the discrete

energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 1029 and Δt = 10
−2

6.1 Numerical results in 2d

We start with the evolution of a curve network toward the well-known double bubble minimizer. The

initial network is given by two 2 ∶ 1 semi-ellipses and a straight line, meeting at two triple junction

points. The discretization parameters are chosen as K = 129 and Δt = 10
−2

. In the first simulation,

we consider the standard double bubble with equal surface energy densities 𝜎 = (1,1,1). The numer-

ical results are shown in Figure 3, where we observe that triple junction angles approach 120
◦

in the

steady state. Based on the observation, we also find that (i) the volume preservation for the introduced

SP-PFEM is well satisfied, as expected, while for the BGN scheme more than 0.15% volume loss is
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BAO ET AL. 781

FIGURE 9 Evolution toward the 2d standard quadruple bubble. Plots of Γm
at times t = 0,0.1,2. We also show plots of the

discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 1029 and Δt = 10
−2

FIGURE 10 Evolution toward a possible 2d length minimizing quintuple bubble. Plots of Γm
at times t = 0,0.1,2. We also

show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 1032 and Δt = 10
−2

observed; (ii) the mesh ratios for both schemes remain at small values, which implies the good mesh

qualities; and (iii) the energy dissipation shows a good agreement.

We then conduct experiments for the double bubble with different weightings of the surface ener-

gies, and the results are presented in Figures 4–7. We observe that different weightings generally lead

to different shapes of networks with different triple junction angles. For example, when 𝜎 = (1, 1, 2),
as time evolves, the triple junction angle between Γ1 and Γ2 approaches 0

◦
while the angles between

Γ1, Γ3 and between Γ2, Γ3 tend to 180
◦
, as shown in Figure 5. In fact, the third curve will finally shrink

to a point, leading to a steady state of only two circular curves, as discussed in [36]. Despite the differ-

ent weightings being used, the energy dissipation and the volume conservation are satisfied, and the

mesh quality is well preserved for the discrete numerical solutions in these experiments.
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782 BAO ET AL.

FIGURE 11 Evolution toward a possible 2d length minimizing sextuple bubble. Plots of Γm
at times t = 0,0.1,2. We also

show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 1025 and

Δt = 10
−2

FIGURE 12 Evolution toward a possible 2d length minimizing septuple bubble. Plots of Γm
at times t = 0,0.1,2. We also

show plots of the discrete energy A (Γm), the ratio rm
and the relative volume error vm

Δ over time, where K = 1032 and

Δt = 10
−2

We next perform simulations for the standard triple, quadruple, quintuple, sextuple and septuple

bubbles with equal surface energy densities, as shown in Figures 8–12, respectively. We observe the

energy is decreasing and the mesh ratio remains at small values for the numerical solutions during

the simulation. In particular, in all these simulations the volume of the enclosed bubbles is preserved

exactly for the introduced SP-PFEM. However, for the BGN scheme the observed relative volume loss

can be up to 6.5% during the evolution, as can be seen from the last subfigure in Figure 11. These

results demonstrate the reliability of our method.
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BAO ET AL. 783

FIGURE 13 Evolution toward an anisotropic 2d sextuple bubble, for the anisotropy (6.2) with L = 2 and 𝜀 = 0.01. Plots of

Γm
at times t = 0,0.1,2. We also show plots of the discrete energy A𝛾 (Γm) and the relative volume error vm

Δ over time, where

K = 1025 and Δt = 10
−2

FIGURE 14 Evolution toward an anisotropic 2d sextuple bubble, for the anisotropy (6.2) with L = 3 and 𝜀 = 0.01. Plots of

Γm
at times t = 0,0.1,2. We also show plots of the discrete energy A𝛾 (Γm) and the relative volume error vm

Δ over time, where

K = 1025 and Δt = 10
−2

6.2 Anisotropic numerical results in 2d

We simulate the evolution of curve networks with the anisotropy given by

𝛾(p⃗) =
L∑

𝓁=1

√

p⃗ ⋅ R
(
−(𝓁 − 1)𝜋

L

)
D(𝜀)R

(
(𝓁 − 1)𝜋

L

)
p⃗ with R(𝜃) =

(
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)

, (6.2)
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784 BAO ET AL.

FIGURE 15 Evolution toward an anisotropic 2d septuple bubble, for the anisotropy (6.2) with L = 2 and 𝜀 = 0.01. Plots of

Γm
at times t = 0,0.1,2. We also show plots of the discrete energy A𝛾 (Γm) and the relative volume error vm

Δ over time, where

K = 1032 and Δt = 10
−2

FIGURE 16 Evolution toward an anisotropic 2d septuple bubble, for the anisotropy (6.2) with L = 3 and 𝜀 = 0.01. Plots of

Γm
at times t = 0,0.1,2. We also show plots of the discrete energy A𝛾 (Γm) and the relative volume error vm

Δ over time, where

K = 1032 and Δt = 10
−2

where D(𝜀) = diag
(
1, 𝜀

2
)

and R(𝜃) is a clockwise rotation matrix through the given angle 𝜃. Note that

for L = 2 the anisotropy (6.2) is the same as (4.2) for 𝑑 = 2 and r = 1. In the first simulation, we

repeat the experiment from Figure 11 for the anisotropy (6.2) with L = 2 and 𝜀 = 0.01. The results are

shown in Figure 13. Similarly, we show in Figure 14 the corresponding evolution for the anisotropy

(6.2) with L = 3 and 𝜀 = 0.01. In both cases it can be observed that the circular segments of the
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BAO ET AL. 785

FIGURE 17 Evolution toward the 3d standard double bubble. Plots of Γm
at times t = 0,0.1,1. We also show plots of the

discrete energy A (Γm) and the relative volume error vm
Δ over time, where K = 3267 and Δt = 10

−3

FIGURE 18 Evolution toward a 3d double bubble, with weightings 𝜎 = (1.5,1,1). Plots of Γm
at times t = 0,0.1,1. We also

show plots of the discrete energy A (Γm) and the relative volume error vm
Δ over time, where K = 3267 and Δt = 10

−3

cluster in the isotropic case now become facetted, with the orientations of the facets aligned with the

Wulff shape of the anisotropy. We also repeat the experiment from Figure 12 with the two considered

anisotropies, and the numerical results are presented in Figures 15 and 16, respectively. Once again,

the previously smooth parts of the steady state clusters now become facetted. It is clearly observed that

in all of these experiments the volume conservation and energy dissipation are well satisfied for the

numerical solutions.
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786 BAO ET AL.

FIGURE 19 Evolution toward a 3d double bubble, with weightings 𝜎 = (1,1.5,1). Plots of Γm
at times t = 0,0.1,1. We also

show plots of the discrete energy A (Γm) and the relative volume error vm
Δ over time, where K = 3267 and Δt = 10

−3

FIGURE 20 Evolution toward the standard 3d triple bubble. Plots of Γm
at times t = 0,0.1,1. We also show plots of the

discrete energy A (Γm) and the relative volume error vm
Δ over time, where K = 6534 and Δt = 10

−3

6.3 Numerical results in 3d

We start with an initial surface cluster that is given by two halfspheres and a disk, meeting at a triple

junction line. As shown in Figure 17, in the case of equal surface energy densities, we observe that the

cluster evolves toward the symmetric standard double bubble, and the energy dissipation and volume

conservation are well satisfied for the numerical solutions. We then use different weightings of surface

energies, and the numerical results are reported in Figures 18 and 19, respectively. We observe that

the interface with higher weightings tends to shrink relative to the other two, thus leading to different

triple junction angles. For example, in Figure 19, the disk shrinks to form relatively large triple junction
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BAO ET AL. 787

FIGURE 21 Evolution toward the standard 3d quadruple bubble. Plots of Γm
at times t = 0,0.1,1. We also show plots of the

discrete energy A (Γm) and the relative volume error vm
Δ over time, where K = 8378 and Δt = 10

−3

FIGURE 22 Evolution toward a drop on a substrate, with 𝜌 = 0.5 so that 𝜗 = 60
◦
. Plots of Γm

at times t = 0, 1. We also show

plots of the discrete energy E (Γm) and the relative volume error vm
Δ over time, where K = 4225 and Δt = 10

−3

angles with the other two surfaces so that the contact angle conditions (2.4b) are satisfied. Simulation

results for the standard triple and quadruple bubbles are presented in Figures 20 and 21, respectively.

Regardless of the different setups, we can always observe the dissipation of the total surface area and

the exact volume conservation for each enclosed bubble in these experiments.

We then simulate the evolution of a single drop which is attached to a non-neutral substrate 1 ={
(q1, q2, q3) ∈ IR

3 ∶ q3 = 0
}

, and initially the drop is chosen as a semisphere. The numerical results

for 𝜌 = 0.5 and 𝜌 = −0.5 are shown in Figures 22 and 23, respectively. We can observe that the drop

finally maintains the steady state with a contact angle of about 60
◦

when 𝜌 = 0.5, and a contact angle

of about 120
◦

when 𝜌 = −0.5.
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788 BAO ET AL.

FIGURE 23 Evolution toward a drop on a substrate, with 𝜌 = −0.5 so that 𝜗 = 120
◦
. Plots of Γm

at times t = 0, 1. We also

show plots of the discrete energy E (Γm) and the relative volume error vm
Δ over time, where K = 4225 and Δt = 10

−3

FIGURE 24 Plots of Γm
at times t = 0,0.5, with 𝜌 = 0 so that 𝜗 = 90

◦
. We also show plots of the discrete energy A (Γm) and

the relative volume error vm
Δ over time, where K = 4802 and Δt = 10

−3

We next test the evolution of a surface cluster contained in a cylinder of square cross-section. As

shown in Figure 24, the cluster is made up of three surfaces, meeting at a triple junction line, and with

one of the surfaces (colored in green) attached to the external boundary of the cylinder

[
− 3

2
,

3

2

]2

× IR.

This gives rise to four boundary lines on the four planar boundaries. In the case when 𝜌 = 0, we observe

that the two surfaces of the initial cuboid remain symmetric and become spherical, and the third sur-

face remains flat and attached orthogonally to the external boundaries. We then start from the steady

state in Figure 24 and consider different boundary energy contributions. When 𝜌 = 0.5, as shown in
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BAO ET AL. 789

FIGURE 25 Plots of Γm
at times t = 0,0.5, with 𝜌 = 0.5 so that 𝜗 = 60

◦
. We also have K = 4802 and Δt = 10

−3

FIGURE 26 Plots of Γm
at times t = 0,0.01,0.05,0.1, with 𝜌 = 0.75, so that 𝜗 = 41.4

◦
< 45

◦
. We also have K = 4802 and

Δt = 10
−3

Figure 25, the cluster forms a steady state with a contact angle of about 60
◦

at the external bound-

ary. Observe that the central bubble is now no longer symmetric. Increasing the value of the boundary

energy contribution to 𝜌 = 0.75 yields the results in Figure 26. Here we observe an unbounded growth

of the initially flat surface toward infinity, reminiscent of the NASA experiments in zero gravity dis-

cussed in [74] and chapter 6 in [75]. In fact, for the chosen value of 𝜌 = 0.75, the preferred contact

angle is 41.4
◦
, which is outside the range [45

◦
, 135

◦
] for which it is known that a finite minimizer

exists.

6.4 Anisotropic numerical results in 3d

To observe the anisotropic effects, we repeat the experiment in Figure 21 for the 3d quadruple bubble

and use the smoothed l1-norm anisotropy in (4.2) with L = 3, r = 1 and 𝜀 = 0.1. The numerical

results are shown in Figure 27, where we find that the surfaces evolve into near cuboid shapes instead

of spherical shapes as the steady state. During the simulations, the energy dissipation and volume

conservation for the numerical solutions are observed as well.

Finally, we repeat the experiments in Figures 22 and 23 but use the anisotropy in (4.2) with L = 3,

r = 30, and 𝜀 = 0.1. The simulation results are shown in Figures 28 and 29, where we observe

the evolution of the drop is highly influenced by the chosen anisotropy 𝛾(p⃗) and the contact energy
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790 BAO ET AL.

FIGURE 27 Evolution toward an anisotropic 3d quadruple bubble, for the anisotropy (4.2) with L = 3, r = 1, and 𝜀 = 0.1.

Plots of Γm
at times t = 0,0.1,1. We also show plots of the discrete energy A𝛾 (Γm) and the relative volume error vm

Δ over time,

where K = 8378 and Δt = 10
−3

FIGURE 28 Evolution toward a drop on a substrate, with 𝜌 = 0.5, for the anisotropy (4.2) with L = 3, r = 30 and 𝜀 = 0.1.

Plots of Γm
at times t = 0, 1. We also show plots of the discrete energy E (Γm) and the relative volume error vm

Δ over time,

where K = 4225 and Δt = 10
−3

contribution parameter 𝜌. We note that the numerical steady state for 𝜌 = 0.5, which is visually nearly

indistinguishable from the corresponding result for 𝜌 = 0, resembles the shapes of certain quantum

dots, see [76]. Once again, we note that our numerical approximations exhibit the energy dissipation

and volume conservation properties.
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BAO ET AL. 791

FIGURE 29 Evolution toward a drop on a substrate, with 𝜌 = −0.5, for the anisotropy (4.2) with L = 3, r = 30 and 𝜀 = 0.1.

Plots of Γm
at times t = 0, 1. We also show plots of the discrete energy E (Γm) and the relative volume error vm

Δ over time,

where K = 4225 and Δt = 10
−3

7 CONCLUSION

In this work, we proposed a structure-preserving parametric finite element method for discretizing

the surface diffusion of two-dimensional curve networks and three-dimensional surface clusters. The

proposed method is based on an adaption of the BGN scheme from [28, 36, 42, 50] by using suit-

ably time-weighted discrete normals, and similarly appropriately weighted effective boundary velocity

vectors, instead of the conventional explicit treatment. As a consequence, the new method not only

inherits the good mesh quality and the unconditional stability that the standard scheme enjoys, at least

in the case of neutral external boundaries, but also satisfies the exact volume conservation for each

enclosed bubble in the system. In addition, the new scheme is also unconditionally stable in the case

of non-neutral external boundaries. These good properties were illustrated by numerical examples for

the evolution of curve networks in 2d and surface clusters in 3d in the case of isotropic and anisotropic

surface energies. Moreover, the reliability and applicability of the proposed scheme was demonstrated

by comparing the numerical results with those of the standard BGN scheme.
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