Downloaded 04/06/23 to 137.132.123.69 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM J. NUMER. ANAL. © 2023 Society for Industrial and Applied Mathematics
Vol. 61, No. 2, pp. 617-641

A SYMMETRIZED PARAMETRIC FINITE ELEMENT METHOD
FOR ANISOTROPIC SURFACE DIFFUSION OF CLOSED CURVES”
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Abstract. We deal with a long-standing problem about how to design an energy-stable numeri-
cal scheme for solving the motion of a closed curve under anisotropic surface diffusion with a general
anisotropic surface energy v(n) in two dimensions, where m is the outward unit normal vector. By
introducing a novel surface energy matrix Z(n) which depends on the Cahn—Hoffman &-vector and
a stabilizing function k(n), we first reformulate the equation into a conservative form and derive a
new symmetrized variational formulation for anisotropic surface diffusion with weakly or strongly
anisotropic surface energies. Then, a semidiscretization in space for the variational formulation is
proposed, and its area conservation and energy dissipation properties are proved. The semidiscretiza-
tion is further discretized in time by an implicit structural-preserving scheme (SP-PFEM) which can
rigorously preserve the enclosed area in the fully discrete level. Furthermore, we prove that the
SP-PFEM is unconditionally energy-stable for almost any anisotropic surface energy ~y(n) under a
simple and mild condition on v(n). For several commonly used anisotropic surface energies, we
construct Z(n) explicitly. Finally, extensive numerical results are reported to demonstrate the high
performance of the proposed scheme.
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1. Introduction. Anisotropic surface diffusion is an important and common
process at material surfaces/interfaces in solids due to different surface lattice orien-
tations. The lattice orientational difference leads to anisotropic surface energy in solid
materials. It thus generates an anisotropic evolution process for a solid material. Re-
cently, anisotropic surface diffusion has been regarded as an important kinetic process
in surface phase formation, epitaxial growth, heterogeneous catalysis, and many other
areas in surface/materials science [34]. It has seen significant and broader applica-
tions in materials science, computational geometry, and solid-state physics, such as
the evolution of voids in microelectronic circuits [30, 43], microstructure evolution in
solids [11, 17], the smoothing of discrete surfaces [13], and solid-state dewetting [37,
45, 22, 39].

As shown in Figure 1.1, for a closed curve I' in two dimensions associated with
a given anisotropic surface energy (m), where n = (ny,n2)7 € S! representing the
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v =7(n)

FIG. 1.1. An illustration of a closed curve I' in R? under anisotropic surface diffusion with an
anisotropic surface energy y(n), where n is the outward unit normal vector, T is the unit tangential
vector, € is the Cahn—Hoffman vector in (1.3), and 0 is the angle between n and the y-azis such
that n= (—sin6,cos0)T with 6 € [—, 7).

unit outward normal vector, the motion by anisotropic surface diffusion of the curve
is described by the geometric evolution equation [32, 12]

(1.1) V, = Oss i,

where V,, is the normal velocity, s is the arclength parameter of T', and p := u(s) is
the chemical potential (or weighted curvature denoted as £~ 1= k(s) in the literature
[35]) generated from the energy functional W (I') := [.~(n)ds via the thermodynamic
variation [12, 3]. Tt is well-known that the anisotropic surface diffusion has the follow-
ing two essential geometric properties: (i) the area of the region enclosed by the curve
is conserved, and (ii) the free energy (or weighted length) W (T") of the curve decreases
in time [39, 3, 27]. More precisely, the motion by anisotropic surface diffusion is the
H~1-gradient flow of the free energy (or weighted length) functional W (I') [36, 31].

Let v(p) : R? — R be a homogeneous extension of the anisotropic surface energy
y(n): S = RT satisfying (i) 7(p)|p=n =7(n) for n € S, and (ii) v(cp) = cy(p) for
¢ >0 and p € R?2. A typical homogeneous extension is widely used in the literature
as [25, 14]

iphy (ﬂ) Vo= (p1.p2)” € R2 =2\ {0},
v(p) = Ip|
0, p=0,

(1.2)

where |p| = \/p? +p3. Then the Cahn-Hoffman &-vector introduced by Cahn and
Hoffman is mathematically given by [20, 40]

(1.3) £:=€n)=Vy(p)|,_,=r1(n)n+ (€ T)7  Vnesh,

where 7 = n' is the unit tangential vector with the notation - denoting clockwise
rotation by 7 (cf. Figure 1.1). Furthermore, the chemical potential p (or weighted
curvature) and the Hessian matrix H,(n) are defined as [25]

(1.4) po=—n- 0", H,(n):=VV~(p)| vn e St

p=n’

We remark here that Hy(n)n = 0 and thus 0 is an eigenvalue of H,(n) and n is a
corresponding eigenvector. We denote the other eigenvalue of H,(n) as A(n) € R.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/23 to 137.132.123.69 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SYMMETRIZED PFEM FOR ANISOTROPIC SURFACE DIFFUSION 619

The Frank diagram F of y(n) is defined as F := {p € R?|v(p) <1}, i.e., 1/v plot (see
page 190 in [14]).

Let T := I'(t) be parameterized by X := X(s,t) = (2(s,t),y(s,t))T € R? with
t representing the time and s denoting the arclength parametrization of T (cf. Fig-
ure 1.1); then via the Cahn-Hoffman &-vector in (1.3), the anisotropic surface diffusion
equation (1.1) for I is described as follows [25]:

(1.5a) 0 X =0ssum, 0<s<L(t), t>0,
(1.5b) p=-n-9¢", €=Vy(p)
where L(t) = [1, ds is the length of I'(¢), and

p=n’

(1.6) T=0,X =n", n=-9,X+=—-r1.
The initial data for (1.5) is given as
(1.7) X(s,0) = Xo(s) = (z0(s),y0(s))7, 0<s< Ly,

where Lg represents the length of the initial curve I'y =T'(0).

When v(n) =1, it is called isotropic surface energy; in the isotropic case, y(p) =
Ip| in (1.2), £ =n in (1.3), and p =k and H,(n) = I, — nn’ in (1.4) with £ the
curvature and I the 2 x 2 identity matrix and A(n) =1, and thus (1.5) collapses to the
(isotropic) surface diffusion [6, 32, 26, 47]. In contrast, when «(n) is not a constant, it
is called anisotropic surface energy, and in the anisotropic case, when TTH,Y(TL)T >0
for all n € S* with 7 =n' (& A(n) >0 for n € S & () :=4(0) +4"(0) > 0 for
all § € [—m, ] with 4(0) := y(n) = y(—sinf, cosf) < the Frank diagram of y(n) is
convex), it is called weakly anisotropic; otherwise, when TTH,Y(TL)T changes sign for
n € S! (& A(n) changes sign for n € S! < 5(0) changes sign for 6 € [—m, 7] & the
Frank diagram of v(n) is not convex), it is called strongly anisotropic.

Some commonly used anisotropic surface energies y(n) are summarized below:

(i) the Riemannian-like metric (also called BGN) anisotropic surface energy [7, 10]

L L
(1.8) Yn)=> um)=> VnTGn  VneS'
=1 =1

where G, e R**?)1=1,...,L, are symmetric and positive definite matrices;
(ii) the {"-norm metric anisotropic surface energy [14]
1
(1.9) v(n) =l = ([na]” + [n2|")" Vn = (n1,nz)" €S,

where 1 <7 < o0;
(iii) the m-fold anisotropic surface energy [4]

(1.10) y(m)=1+4 Bcos(m(f — b)) Vn = (n1,n9)" = (—siné,cos )’ €S,

where m =2,3,4,6, 0y € [0,7] is a phase shift angle, and 8 > 0 controls the degree of
the anisotropy;

(iv) the regularized [*-norm metric anisotropic surface energy which can be viewed
as a regularization for the nonsmooth surface energy v(n) = |n1| + |nsa| 7, 9]

(1.11) v(n):\/n%+62n§+ e2n?+n3  VYn=(n,ny)’ €S,
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where 0 < € < 1 is a small “artificial” regularization parameter. This regularization
can be treated as a special case of (1.8).

For the convenience of readers, we list v(p), £&(n), A(n), and H,(n) of the above
surface energies in Appendix A.

Different numerical methods have been proposed for the isotropic/anisotropic sur-
face diffusion, such as the marker-particle method [41, 16], the finite element method
via graph representation [1, 14, 15], the #-L formulation method [21], the discontin-
uous Galerkin finite element method [44], and the parametric finite element method
(PFEM) [6, 8, 19, 4, 25, 29]. Among these methods, the PFEM performs the best in
terms of accuracy and efficiency as well as mesh quality in practical computations via
reformulating (1.5) as [25]

(1.12a) n -0, X = Osspt, 0<s<L(t), t>0,
(1.12b) pn=—0,", Esz(p)‘p:n.

When y(n) =1 (i.e., isotropic surface energy), noting y = x and n = —9,X*, then
(1.12b) collapses to kn = —J,5X . In this case, the PFEM is semi-implicit, is uncon-
ditionally energy-stable, and enjoys asymptotic equal mesh distribution [6], and thus
there is no need to remesh during time evolution. Very recently, a structure-preserving
PFEM (SP-PFEM) was proposed for the surface diffusion [5, 2]. However, when the
PFEM is extended directly to simulate anisotropic surface diffusion, many good prop-
erties are no longer preserved, especially for the unconditional energy stability, which
can be preserved only for a very special Riemannian-like metric anisotropic surface
energy in (1.8) with a modified variational formulation [7]. Recently, by reformulat-
ing (1.12b) into a conservative form, an energy-stable PFEM was designed for weakly
anisotropic surface diffusion under a very strong condition on 4(6) = y(—sin#, cos )
[29]. To our best knowledge, it is still an open question to design an unconditionally
energy-stable scheme for solving the anisotropic surface diffusion (1.12) with any form
of y(n).

The objective of this paper is to propose an unconditionally energy-stable SP-
PFEM for solving the anisotropic surface diffusion (1.12) with the surface energy
~v(n) satisfying a relatively mild condition as

(1.13) v(=n)=7(n) VneS!,  ~(p)eC*(R*\{0}).

We first reformulate (1.12b) into a conservative and self-adjoint form by introducing
a novel symmetric positive definite surface energy matrix Z(n) depending on the
Cahn—Hoffman &-vector and a stabilizing function k(n), and then we derive a new
symmetrized variational formulation for the anisotropic surface diffusion (1.12). The
symmetrized variational formulation is first discretized in space by PFEM and then
discretized in time by an implicit SP-PFEM which preserves the area in the fully
discrete level. Under the simple and mild condition (1.13) on y(n), we rigorously
prove that the SP-PFEM is energy dissipative and thus is unconditionally energy-
stable for almost all anisotropic surface energy ~(n) arising in practical applications,
including both weakly and strongly anisotropic surface energies.

The remainder of this paper is structured as follows. In section 2, we first in-
troduce the surface energy matrix Z(n), propose a new symmetrized variational
formulation, and show its area conservation and energy dissipation. In section 3, we
present a semidiscretization in space by PFEM and a full discretization by an implicit
SP-PFEM for the weak formulation. In section 4, we prove the unconditional energy-
stability of SP-PFEM under the condition (1.13) on 7y(n). In section 5, numerical
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results are given to demonstrate the high performance of the proposed SP-PFEM.
Finally, we draw some conclusions in section 6.

2. A new symmetrized variational formulation and its properties. In
this section, we present a new conservative and self-adjoint formulation of (1.12b) and
a new symmetrized variational formulation of (1.12) and prove the area conservation
and energy dissipation of the new formulation.

2.1. A symmetric positive definite surface energy matrix. Introducing a
symmetric surface energy matrix Z(n) as
(2.1) Zr(n)=v(n)I; —n&(n)" —&m)n” + k(n)nn” vneSt,
where k(n): S' — R" is a stabilizing function to be determined later, then we have
the following lemma.

LEMMA 2.1 (symmetric and conservative form). With the symmetric surface
energy matriz Z(n) in (2.1), the anisotropic surface diffusion (1.12b) can be refor-
mulated as

(2.2a) n -0 X = 0sspt,
(2.2b) un=—04Zr(n)0sX).

Proof. From (1.3), noting (1.6), we get
(23) ¢ =q(nnt +(&-T)T" =5(n)T — (£ T)n.
From (2.1), noticing (1.6) and (2.3), and using n - 7 =0, we get
Zi(n)0, X = Z(n)T = (v(n) Iz — n&" —&n” + k(n)nn")T
(24) =y(n)T - (§-T)n+(n-7) (k(n)n — €) =&
Plugging (2.4) into (1.12), we obtain (2.2) immediately. 0

Remark 2.1. When v(n) =1 and by taking k(n) =2 in (2.1), we have u = and
& = n, and thus Zg(n) = I,. Then (2.2) collapses to the standard formulation by
PFEM for surface diffusion [6]. Similarly, when y(n) is chosen as the Riemannian-like
metric anisotropic surface energy (1.8), by taking k(n) = Zlel Y (n) 1 Tr(G)) with
Tr(G;) denoting the trace of Gy, then (2.2) collapses to the formulation used in [7]. A
similar formulation but without the symmetrizing term —&(n)n’ and the stabilizing
term k(n) can also be found in [8, (1.18)].

2.2. The variational formulation. Let T = R/Z = [0,1] be the periodic unit
interval and we parameterize the evolution curves I'(t) as

(2.5) [(t):= X(T,t), X(p,t):=(z(p,t), y(p,t))T: T xRT — R

The arclength parameter s is computed by s(p,t) = [|9,X(q,t)|dg with its derivative
0,5 =10,X|. By the introduced time-independent variable p, the evolving curve I'(t)
can then be parameterized over a fixed domain p € T = [0,1]. We do not distinguish
the two parameterizations X(p,t) and X(s,t) for I'(¢) if there is no ambiguity. We
also introduce the usual Sobolev space as

(2.6) LQ(']I‘):{u:’]I‘—>R /T|u(p)|2dp<+00},
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equipped with the weighted L2-inner product with respect to the closed curve I'(¢)
7 ()= [ w6 reds= [uopo)us(ondp v 1D,
t

which can be easily extended to [L*(T)]?. Here, we always assume that d,s(p,t) is
bounded for all t. Moreover, the Sobolev space H'(T) is given as

(2.8) HY(T):={u:T—R, andu e L*(T), d,uc L*(T)}.

Multiplying a test function ¢(p) € H!(T) to (2.2a), and then integrating over I'(t)
and taking integration by parts, we have

(2.9) (n -0 X, @) o (8ssu, @) o= (85/1, 6S<P)F(t)-

Similarly, by multiplying a test function w = (wi,w2)? € [HY(T)]? to (2.2b), we
obtain

(2.10) (un,w)r(t) = (fas(Zk(n)asX),aOF(t) = (zk(n)asx,asw)m).
By combining the two weak formulations (2.9) and (2.10), we now get the novel
symmetrized variational formulation for the anisotropic surface diffusion (2.2) (or
(1.5)) with the initial condition (1.7). More precisely, for a given initial curve I'g :=
') = X(T,0) with X(p,0) = Xo(Lop) € [HY(T)]?, find the solution T'(t) :=
X (T,t), X(-,t) € [HY(T))? and pu(-,t) € H*(T) such that
2.11 -0, X O pt, O =0 VpeHYT),
(2.11a) (nax.e)  +(omoe) e HY(T)

. _ — 112
(2.11b) (p,n w)m) (zk(n)asx,asw) 0 Vwe [HY(T)>

I'(t)

2.3. Area conservation and energy dissipation. Let A(t) denote the area
(i.e., the region §(¢) enclosed by the curve I'(t)) and let W, (¢) denote the free energy
(or weighted length), which are defined as

L(t)
(2.12)  A(¢) ::/ 1dx:/ y(s,t)0sx(s,t)ds, W(t) ::/ v(n)ds, t>0.
Q1) 0 ()

For the above variational problem (2.11), we have the following proposition.

PROPOSITION 2.2 (area conservation and energy dissipation). The area A(t) of
the solution (X (-, t), u(-, t)) € [HY(T)]? x H*(T) defined by the variational problem
(2.11) is conserved, and the energy W.(t) is dissipative, i.e.,

Lo Lo
(2.13) A(t)E/o yo(s)xy(s)ds, Wc(t)SWC(tl)g/o v(n)ds, t>t;>0.

Proof. The proof of area conservation is similar to the Proposition 2.1 in [29];
thus we omit the details for brevity.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/23 to 137.132.123.69 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SYMMETRIZED PFEM FOR ANISOTROPIC SURFACE DIFFUSION 623

To prove the energy dissipation in (2.13), taking the derivative of W, (¢) with
respect to ¢, noting (1.3), (2.4), (2.11b) with w =9, X, and (2.11a) with ¢ = p, and
om=(1-0n)T=—(n-0,0,X)7, we have

. d L(t) d 1 1
We(t) = ﬁ/o y(n)ds = T /0 ~v(n)0,sdp :/0 (v(n)0:0p5 + Vy(n) - 0:nd,s)dp

1
- /0 (Y(n)T — (& - T)n) - 0,0, X 8,5 dp = (zk(n)asx,asatx)m)

=— (asu, 3su) ) <0,

which implies the energy dissipation in (2.13). d

3. PFEM discretizations and their properties. In this section, we first
discretize the variational problem (2.11) in space by PFEM and show its area con-
servation and energy dissipation. Then we further discretize the semidiscretization in
time by an SP-PFEM which conserves area in the fully discrete level.

3.1. A semidiscretization in space by PFEM and its properties. Let
N >0 be an integer, the mesh size h =1/N, the grid points p; = jh for j=0,1,..., N,
and the subintervals I; = [pj_1,p;] for j =1,2,...,N. Then we can give a uniform
partition of the torus T by T=[0,1] = Ujvzl I;. Moreover, the finite element subspace
of H(T) is given by

K"=K"(T):={u" € C(T) | u" |, P1 Vj=1,2,...,N},

where P; stands for the space of polynomials of degree at most 1.

Let the piecewise linear curve I'(t) := X"(T,t), X"(-,t) = (z"(-,t),y"(-,t)T €
[K"]2 be the numerical approximation of T'(t) := X (T,t), X (-,t) € [H'(T)]? and the
piecewise linear function p"(-,t) € K" be the numerical approximation of u(-,t) €
HY(T), where (X(-,t), u(-,t)) € [H*(T)]?> x H*(T) is given by the variational problem
(2.11). Then I'*(¢) is formed by ordered vectors {h; ()}, and we assume that for
t >0, these vectors h;(t) satisfy

(3.1) Bunin (£) = min [ ()] >0, hy(6) i= X" (p3,8) = X" (p1,1) ¥,
1<G<N
where |h;(t)| is the length of the vector h;(t) for j=1,2,...,N.
The outward unit normal vector n”, the unit tangential vector 7", and the Cahn—
Hoffman &-vector &€" of the curve I (t) are constant vectors in the interior of each
interval I; which can be computed by h;(t) as

(hy)" q h; h

(3.2) n'|;, =— LS T "1, =¢&(n}) =€}

Furthermore, for two scalar-/vector-valued functions u and v in K" or [K"]?,
respectively, the mass lumped inner product (-, ){ih over I'" is defined as

(33) () 5= 5 D sl [ (- 0) )+ () 0],

+u(p) for 0<j < N.

where u(pji) =lim, o
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Suppose I'"*(0) := X"(T,0), X"(-,0) € [K"]? is the piecewise linear interpolation
of Xo(s) in (1.7), where X"(p=p;,0) = X (s = s ) with s =Lop; for j=0,1,...,N.
Now we can state the following spatial semldlscretlzatlon of the symmetrized varia-
tional formulation (2.11): for a given initial curve I'"*(0) := X"(T,0), X"(-,0) € [K"]?,
find the solution T"(t) := X"(T,t), X"(-,t) = (" (-, t),y"(-,t))T € [K"]? and p"(-,t) €
K" such that

(3.4a) (nh SO XM gah) (85u ,0sp )h =0 Vol e K",
(3.4b) (Hh7”h .wh)};h _ ( L(nM8, X" 9w ) —0 Vo' e [KM2,
where

Zi(n") =1 (n") 1~ n"E(n")T — €n")(n")T + k(n")n' (0T
=(n") Iz —n"(€")T —&"(n")T +k(n")n" (n")T.
Let A"(t) denote the area of the enclosed region of the piecewise linear closed
curve I'(t) and let W/ (t) be its total free energy; these are defined as

N N
=2 [« Oy @)+ ()], W) = Z [ () (n])

Jj=1

(3.5)  AM(t)

l\D\H

Remark 3.1. Similar to the proof in [29, Proposition 3.1], for the solution of the
above semidiscretization (3.4), we can easily prove the area conservation and energy
dissipation during time evolution.

3.2. A structure-preserving PFEM. Let 7 > 0 be the time step size and
tm = m7 be the discrete time levels for each m > 0. Let '™ £ T"™ = X™(T), X" (-) =
(™(-),y™(-)T € [K"? be the numerical approximation of I'*(t,,) = X"(T,t,,),
X", ty,) € [KM?, and p™(-) € K" be the numerical approximation of u/(-,t,,) € K"
for each m >0, where (X"(-,), u"(-,t)) is the solution of the semidiscretization (3.4).
Similarly, I'™ is formed by the ordered vectors {h]" } ", defined by

Again, for each m > 0, the outward unit normal vector n'™, the unit tangential vector
7™ and the Cahn—Hoffman &-vector £€™ of the curve I are constant vectors in the
interior of each interval I; which can be computed as

(3.7) ", =- |h CEn T |Ij:ﬁ::7-j7 ", =€} =¢7"

Following the idea in [5, 23] to design an SP-PFEM for surface diffusion, i.e., using
the backward Euler method in time and the information of the curve at the current
time step and the next time step to linearly interpolate the normal vector, a sym-
metrized SP-PFEM discretization of (3.4) is given as follows: for a given initial curve
= X%T), X°(-) € [K"?, for m >0, find the curve T"+1:= X" H(T), X" (.)€
[K"]? and the chemical potential /ﬂ”‘H( -) € K", such that

<Xm+1 -X"

h h
(3.8a) nmts goh) + <3Sum+1,8saph>r =0 Vo' e K",

-
h
- (zk(nm)asxm“,aswh) =0 Vw" € [K")2,

Tm

h
(3.8b) (umﬂ, n"ts ~wh)F

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/23 to 137.132.123.69 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SYMMETRIZED PFEM FOR ANISOTROPIC SURFACE DIFFUSION 625

where s is the arclength parameter of I', and n™t2 and Zj, (n™) are defined as

.1 11
(89) nmthi= s (0.X"+ 2, X))t = - X (0,X™ +9,X™ )",
Z(n™) =y(n™) L —n"Em™)T —&(n™)(n™)" + k(n™)n™ (n™)"
(3.10) =7(n"™)I; —n™(E™)" =" (™) + k(n™)n™ (n™)7,

and for any scalar-/vector-valued function f € K" or [K"]2, respectively, we compute
its derivative with respect to the arclength parameter on I'™ as 9, f = |0,X™| 710, f.
The above scheme is “weakly implicit” with only one nonlinear term introduced in
(3.8a) and (3.8b), respectively. In particular, the nonlinear term is a polynomial func-
tion of degree at most two with respect to the components of X™*! and p+!. Again,
similar to [5] for surface diffusion, the fully implicit SP-PFEM (3.8) can be efficiently
and accurately solved by the Newton’s iterative method in practical computations.

Remark 3.2. The choice of n™"2 in (3.8) plays an essential role in the proof of the
area conservation, but it makes the numerical scheme fully implicit, i.e., a nonlinear
system has to be solved at each time step. By replacing n”t'/2 with n™, we can
easily construct a semi-implicit PFEM, where only a linear system has to be solved at
each time step. Similar to the fully implicit SP-PFEM (3.8), the semi-implicit PFEM
can also be proved to be unconditionally energy-stable if v(n) satisfies the condition
(1.13). Of course, the semi-implicit PFEM does not conserve the area at the fully
discrete level.

3.3. Main results. Let A™ be the area of the interior region of the piecewise
linear closed curve I'™ and let W2 (m > 0) be its energy; these are defined as

N
1 m m
(3.11) A™:=— E (w}”—x;’il) (y;”—i—y;-’il), W =W,(I') = E [R5 [y (n]").
j=1

Denote

7(7)? = 7(n)* + 2y(n) (€ - A7) (n - A7)
y(n)(n-7+)?

and define the minimal stabilizing function ko(n): S' — R" as (the existence will be

given in the next section)

(3.13)  ko(n):= max F(n,n) with Sj,:={neS'|n-n>0}, necS'.
neSk,

(3.12) F(n,n)= Vn#+ncS',

Then for the SP-PFEM (3.8), we have the following theorem.

THEOREM 3.1 (structure-preserving). Assume y(n) satisfies (1.13) and take
k(n) in (2.1) satisfying k(n) > ko(n) for n € S'; then the SP-PFEM (3.8) is area
conservation and enerqy dissipation, i.e.,

N

m 1
(3.14) AM= A =2 (af —a) ) (v +uf ), om0
j=1
N
(3.15) Wt <wr < <WE=Y"|hIy(nd) VYm0
j=1

The proof of area conservation (3.14) is similar to the proof in [5, Theorem 2.1]
and it is omitted here for brevity, and we will establish the energy dissipation or
unconditional energy stability (3.15) in the next section.
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4. Energy dissipation. In this section, we first show, under the condition (1.13)
on v(n), that the minimal stabilizing function ko(n) (3.13) is well defined, and then
we prove the energy dissipation of the SP-PFEM (3.8).

4.1. Choice of the stabilizing function. The function F(n,n) is continuous
for n # +n. Thus to show that the maximum in (3.13) is finite, it suffices to extend
the definition of F(n,n) to n=+n.

THEOREM 4.1 (existence of limit). For v(p) € C?(R?\ {0}), we have

im F(n,n)=(n")TH,(n)n"
(41) élgg’%F( ,n)=(n7) Hy(n)n™ + )
Proof. Plugging the VectorLdecomposition An)=€&-n=(E -n )(n-n)+ (&
A)(n-n)and l=n-n=(n-n")?+ (n-n)? into (3.12), we get
iy — 1) =) +29(n)? —29(n)(§ - A)(n-R)
Fnn) A AP0 n—nl2/4)
_1()? +9(n)* —2y(n)(§-n)(1 - |n—n|?/2)
Y(n)ln—nP(1—|n—nl?/4)
_ 1 1(7)? —y(n)? —2y(n)(§-(A-n)) .
Ti-ln-aP/ Yl — af? renf

Here we use the following equality:

(4.2)

- |nP +]a)* = n—nf?
n-n= IO L N
2 2
Under the condition v(p) € C?(R?\{0}), using Taylor expansion and noting V~y(p)? =
27(p)V~(p) and & = V7(p)|p=n, We obtain

v(P)>—7(n)? —2y(n)¢-(p—n)=(p—n)" |y(n)H,(n)+ ££T} (p—n)+o(lp—nl?).

For any n € S*, noting that

lim p—n =nt, lim p—n =-—nt,
pont [P — 1 pon- [P — 7
pest pest

where p—n'/n~ means p - nt >0/ <0, respectively. We then get

(p—n)T [1(m)H, (n) + €| (p—n)

i OO0
pest

(p—n)" |v(n)H,(n) + ££7| (p—n)
i 2RO N0y ot
pest

= ()" [y, (n) + €7 | ',

and thus we have

iy 12~ v(n)Z_ 2nv|<2n>€ P21 ()T [ )L () + €67
pes’
(4.3) =7(n) (n")TH, (n)n' + (§-n")*
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Combining (4.2) and (4.3), noting (1.3) to get v(n) =& - n, we obtain

. 1 . 2 _ 2_9 A —
Jim Fin )= s o TP TS P
nest pes’
o ly2
= (nJ_)TH’Y(n)nJ_ + (578;)) + £ ‘n
2
(44) — (0 H (1
The proof is completed. 0

Under the condition (1.13), for any m € S, it is easy to see that F(n,n) is a
continuous function for 7o € S' with 7 # —n. Furthermore, if y(n) = v(—n), then
we know F(n,n) € C1(S! x S!). This, together with the above theorem, suggests
defining the following.

THEOREM 4.2 (existence of stabilizing function). Under the condition (1.13) on
v(n) and assuming k(n) > ko(n) for n €S in (2.1), we have

(4.5) Yn)[(A) Zk(n)nT] > v(R)*  ¥n,AeS
In addition, we have an alternative definition of ko(n) in (3.13) as
(4.6)  ko(n)=int {k(n) | 3(n) (AT Z ()Rt > v (R)? Viae Sl} , nest

Proof. Assume k(n) > ko(n) for n € S'. For any n € S!, when n € S, ie.,
7 -m > 0, plugging (2.1) into the left-hand side of (4.5), noting (3.12) and (3.13), we
have

()W) Zu(m)At] = (n)? - 2y(n)(€ -t )(n - A") + 3 (n)k(n)(n - 7t)?
>5(n)? - 2y(n)(€- ") (n-At) + 1 (n)ko(n)(n - 242
>5(n)? — 2y(n)(€- b )(n-Ab) + 3 () F(n, ) (n )

(4.7) = ().

On the other hand, when nn-n <0, then —n-n > 0, from (4.7) by replacing n by —n
and noting v(—n) =~y(n), we have

48) (M)A Zr(n)aT )=y (n)[(—A) T Zi(n)(—A7)] 2 1(—n)* = (7).

Combining (4.7) and (4.8), we get (4.5) immediately.
From the above proof, it is easy to see that

V()[R Zy, (m)at] = y(R)*  Vn,AeS!
which implies
(4.9)  ko(n) > inf {k(n) | y(n)[(R)T Zi(n)nt] > 1 (R)? Ve Sl} VneS'
On the other hand, suppose Z(n) satisfies (4.5); then we have

(410)  5(m) (1(n) =2 ) (m-0") + k() (7)) 25(R)? VRES,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/06/23 to 137.132.123.69 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

628 WEIZHU BAO, WEI JIANG, AND YIFEI LI

which implies

(4.11) k(n) > =F(n,n) VYncSk.

By condition (1.13), this inequality holds for all n € S!. Thus we get k(n) > ko(n),
which implies
(412)  ko(n) <inf {k(n) | y(n)[(AM)T Zk(n)a'] > v(R)? Ve sl} VneS!

Combining (4.9) and (4.12), we obtain (4.6) immediately. |

Remark 4.1. Assume n = (—sin6,cos0)” (0 € [-m,7]) and = (—sind, cos0)7;
then the problem to find the minimal stabilizing function ko(n) defined in (3.13) can
be reformulated as an optimization problem in terms of the single variable 0, i.e.,

(4.13) ko(0) := ko(n) = ko(—sinf,cosf) = max  F%(h), —r<6<m,

where

(4.14) F°(0):= F(n,n)= ' +25(6),

with 4(0) := v(n) = y(—sinf,cosd) and 4(0) := v(n) = ~(—sinb,cosf) by noting
£ =¢&(n) =4(0)n — 4/ (0)nt. Thus for a given n (or 6), we can obtain ko(n) (or
ko(6)) by numerically solving the above single-variable optimization problem (4.13).

COROLLARY 4.3 (positivity of the minimal stabilizing function). Assume (4.5)
is satisfied; then Z(n) is a symmetric positive definite matriz and

(4.15) v(—n) =~(n), ko(m) >0, vneSh

Proof. Taking fi = —n in (4.5), noting the first equality in (4.7), we get v(n)? >
v(—n)?, which suggests v(—n)? > v(—(—n))? = y(n)?, and thus we obtain the first
equality in (4.15) since y(n) > 0. From (4.5), we get Z(n) is symmetric positive
definite, which implies k(n) = Tr(Zy(n)) > ko(n) = Tr(Z,(n)) > 0 for n € S'. 0

If we consider from the anisotropic surface energy y(n) to its corresponding min-
imal stabilizing function kg(n) defined in (4.6) (or (3.13)) as a mapping, then it is a
sublinear mapping, i.e., positively homogeneous and subadditive.

LEMMA 4.4 (positive homogeneity and subadditivity). Assume ko(n), ki(n),
and ko(n) be the minimal stabilizing functions for the anisotropic surface energies
v(n), v1(n), and y2(n), respectively; then we have

(i) if 1 (n) = cy(n) with ¢>0, then ki(n) =cko(n) forneS!, and

(i) if y(n) =v1(n) +12(n), then ko(n) < ki(n) + ka(n) for neSt.

Proof. From (1.3), we get
(4.16)  £=V(p)|
(i) If 1(n) =cy(n), we get & =c&. This, together with (3.12), implies

_n(@)?—7(n)?+ 20 (n)(& At (n-nt)
(n)(n- )2

p=n’ £1 :nyl(p)|p:n’ €2zvf}/2(p)|p:n'

(4.17) Fi(n,n) =cF(n,n).
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Combining (4.17) and (3.13), we obtain the positive homogeneity immediately.
(ii) If v(n) =y1(n) + v2(n), then € =&, + &,; thus we have

Zpy1rs(n) =7 (n) I — €nT — n€T + (k1 (n) + ka(n))nn”
=z (n)+ 22 (n),

where

By using the Cauchy inequality, we get

’V(TL) [(ﬁ’J_)TZkl +k2 (n)ﬁ’J—]

<\/71 (" TZ 1+ \/72 (22) (n)ﬁL])Q
(4.18) > (11.(1) +72(7))? =5(n)2.

Combining (4.18) and (4.6), we get ko(n) < ki(n) + ko(n) for n € S*. 0
4.2. Energy dissipation. For the SP-PFEM (3.8), we have the following.

THEOREM 4.5 (energy dissipation). Assume the surface energy matriz Zi(n)
satisfies (4.5); then the SP-PFEM (3.8) is unconditionally energy-stable, i.e., for any
T >0, we have

(4.19) Wt <wr < <W2=Y"|hly(nd)  Vm>0.

Proof. Under (4.5), we know that Zj(n) is symmetric positive definite. Thus we
have
1 2
(4.20) (Zk( Ju, u—v) 5 (Zk( )u,u) - i(Zk(n)'v,'u) Vu,v € R
Using (2.4) and & - n=vy(n), we get
(4.21) (0, X™)T Z(n™)0, X" =7™ - (£™)F =~(n™).
Combining (4.21) and (4.20), noting Z(n) satisfies (4.5), we obtain

h
(zk(nm)asxm“, aSXm“—aSXM)F +/ y(n™)ds

v

1 h 1
§(Zk:( m)83X7n+1, 88Xm+1)r +§/ 'y(nm)ds

(R Zy ()R 4y () R

Z JQ\hjm

N
N
N

I V

Z hm+1|\/ m+1 Zk(n;-") (,n;_n-ﬁ—l)L,y(n;_n)

m+1 N
(422 thﬂv V) =SB = [ s

J=1 'm+1
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Taking " = ™+ in (3.8a) and w” = X™*' — X™ in (3.8b) and combining with the
inequality (4.22), we get

W?*l—W?:A +1'y(nm+1)ds—/ ~y(n™)ds

< (Zu(nm)o,x ™1, 0, X - 85Xm)h

F’VVL
h
(4.23) = —T(@sumﬂ, agumH)F <0 VYm>0,
which implies the energy dissipation (4.19) for the SP-PFEM (3.8). |

Combining Theorems 4.2 and 4.6, finally we have the following corollary.

COROLLARY 4.6 (energy dissipation). Assume y(n) satisfies (1.13), and taking
k(n) > ko(n) in (2.1), then the SP-PFEM (3.8) is unconditionally energy-stable.

4.3. Explicit formulas for the minimal stabilizing function. Here we give
explicit formulas of the minimal stabilizing function kq(n) for several popular aniso-
tropic surface energies v(n) in applications. Denote

(0 -1 _ 1 ning _ (™ 1
=) zm=(,l, ") ves(M)es.

LeEMMA 4.7 (Riemannian-like metric). When y(n) is taken as the Riemannian-
like metric anisotropic surface energy (1.8), we have ko(n) < ki(n), where

(4.24) ki(n Z% NG,  Zi(n ZW “JTG,J, vnes!,

and ko(n) =k1(n) if L=1.

The proof can be found in Appendix B.

Remark 4.2. By taking k(n) = k1(n) in (2.1) and using the semi-implicit dis-
cretization n™ instead of n™*z, the SP-PFEM (3.8) collapses to the BGN formula-
tion used in [7].

LEMMA 4.8 (I"-norm metric). When v(n) is taken as the I"-norm metric aniso-
tropic surface energy (1.9), we have

(i) when r =4, ko(n) =2v(n)~3 and Z,(n) =v(n)"3Zy(n), and

(ii) when r =6, ko(n) =2vy(n)~5(n} + nin3 + n3).

The proof can be found in Appendix C.

LEMMA 4.9 (m-fold). When y(n) is taken as the m-fold anisotropy (1.10), we
have
(i) when y(n) =1+ B cos26, then
2
;and

oy Y
(4:25) ko(m) =4~ 29(n) +

(ii) when y(n) =1+ Bcos40, then

163 +165°
v(n)

The proof can be found in Appendix D.

(4.26) ko(n) <2v(n) + =ki(m).
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5. Numerical results. In this section, we numerically implement the SP-PFEM
(3.8) for simulating the evolution of closed curves under anisotropic surface diffusion.
Numerical results demonstrate the high performance of the proposed scheme, e.g., the
spatial/temporal convergence rates, energy dissipation, area conservation, and asymp-
totic quasi-uniform mesh distribution. Here, the distance between two closed curves
I'; and T’y is measured by the manifold distance M (T';,T'2) which was introduced in
the reference [47].

Since formally the scheme is first-order accurate in time and second-order accurate
in space, the mesh size h and the time step 7 are chosen as 7 = O(h?), e.g., T = h?,
except where noted. Let I'™ be the numerical approximation of I'*(¢t = t,,, = m7) with
mesh size h and time step 7; the numerical error is then measured as

(5.1) M (ty) =MIT™ T(t=ty)), m>0.

Because the exact solution cannot be obtained analytically, we choose fine meshes
h = h., T =T, to obtain I'(t =t,,) numerically, e.g., h, =278 and 7, =216,
The normalized area loss and the mesh ratio R"(t,,), which indicates the mesh
quality during evolution, are defined as
AAM(t) At () — AM(0) _ maxigi<n |h)|

(5.2) 0 A0) . RMty):=

m>0

min;<j<n R}’ ’

where A”(t,,) is the area of the inner region enclosed by I'™.

In the following simulations, the initial shape in (1.7) is always chosen as an
ellipse with length 4 and width 1 except where noted, and the tolerance of the Newton
iteration in the SP-PFEM (3.8) is chosen as 1072,

5.1. Convergence rates and energy dissipation. In order to test conver-
gence rates of the SP-PFEM (3.8), without loss of generality, we choose the following
two kinds of anisotropic surface energies:

e Case I: The Riemannian-like metric anisotropic surface energy (1.8) with
L =1 and G; = diag(1,2) := G and the corresponding minimal stabilizing
function ko(n) are given explicitly in (4.24).

e Case II: The {"-norm metric anisotropic surface energy (1.9) with » =4 and
the corresponding minimal stabilizing function ko(n) are given explicitly in
Lemma 4.8.

Figure 5.1 plots spatial convergence rates of the SP-PFEM at different times
under a fixed value k(n) in (2.1) or different values of k(n) under a fixed time ¢ = 0.5.
Figure 5.2 depicts time evolution of the normalized area loss and the normalized
energy under different parameters. Figure 5.3 depicts time evolution of the mesh
ratio R"(¢) under different mesh sizes h, time steps 7, and k(n) for the above two
cases.

From Figures 5.1-5.3, we can obtain the following results for the SP-PFEM (3.8)
for simulating anisotropic surface diffusion of closed curves:

(i) The SP-PFEM is second-order accurate in space (cf. Figure 5.1).

(ii) The area is conserved numerically up to the round-off error around 10716 (cf.
Figure 5.2(a) and (d)).

(iii) The number of Newton iterations at each time step is around 2 to 4; thus it
is very efficient (cf. Figure 5.2(a) and (d)).

(iv) The SP-PFEM is unconditionally energy-stable when k(n) satisfies the energy
dissipation condition in Theorem 4.5 (cf. Figure 5.2(b)—(c) and (e)—(f)).
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104 ' 1074
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10 : ‘
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Fic. 5.1. Spatial convergence rates of the SP-PFEM (3.8) for Case 1 at different times with
k(n) =ko(n) in (4.24) (a), and at time t = 0.5 for different k(n) (b), and for Case Il at different
times with k(n) =ko(n) in Lemma 4.8 (c), and at time t =0.5 for different k(n) (d).

(v) The mesh ratio R"(t =t,,) approaches a constant C' when ¢ > 1 for each case,
which indicates asymptotic quasi-uniform mesh distribution, no matter what kind of
anisotropic surface energy is used as long as it is weakly anisotropic.

5.2. Application for morphological evolutions. Here, we use the SP-PFEM
(3.8) to simulate the morphological evolution under different anisotropic surface ener-
gies, i.e., morphological evolutions of closed curves from a 4 x 1 rectangle toward their
corresponding equilibrium shapes. Figure 5.4 depicts morphological evolutions for the
four different weakly anisotropic surface energies including (a) the regularized [*-norm

metric (1.11) with € = 0.1 by taking k(n) = k1(n) := 7 21:2)101 = + NG 011'012+ =, (b)
’I'Ll . n2 . ’I'Ll n2

the [*-norm metric (1.9) with r =4 and k(n) = ko(n) given in Lemma 4.10, (c) 2-fold
anisotropic energy (1.10) with m =2, §p =%, and 8 =1 and k(n) = ko(n) given in
(4.25), and (d) the Riemannian-like metric (1.8) with L =1 and G; =diag(1,2) :=G
and k(n) =ko(n) given in (4.24). Figures 5.5 and 5.6 show morphological evolutions

and the normalized energy II//VVS,}L (((t))) under the 2-fold y(n) =1+ 2 cos(26) and the 4-fold
v(n) =1+ 2 cos(46), with k(n) given in (4.25), (4.26), respectively, which are both
strongly anisotropic surface energies. The Frank diagrams of the above anisotropic
energies are all shown in Figure 5.7.

As shown in Figure 5.4(a)—(b), if we choose the anisotropy as the regularized
I'-norm metric or the I*-norm metric, the equilibrium shapes are almost “faceting”
squares; for 2-fold anisotropy (cf. Figure 5.4(c)), the number of edges in its equilib-

rium shape is exactly two; and for the Riemannian-like metric anisotropic energy (cf.
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Fic. 5.2. Time evolution of the normalized area loss A{ﬁlih((();) (first row, blue dashed line) and
wl(t)
wk(o)
for Case 1 with k(n) = ko(n) in (4.24) for h =273 (a), with h =273 for different 7 (b), and with
h =273 for different k(n) (c), and for Case I1 with k(n) = ko(n) in Lemma 4.8 for h =273 (d),
with h =273 for different T (e), and with h =273 for different k(n) (f).

iteration number (first row, black line) and the normalized energy (second and third rows)

Figure 5.4(d)), the equilibrium shape is an ellipse. The numerical results are perfectly
consistent with the theoretical predictions by the well-known Wulff construction [42,
7, 3]. Because the anisotropic surface diffusion is area preserving during the evolu-
tion, we can easily obtain its theoretical equilibrium shape (or Wulff shape) by using
the expression in [3, 24]. As shown in Figures 5.5(h) and 5.6(h), the numerical equi-
librium shapes are again perfectly consistent with the theoretical predictions by the
Wulff construction in the strongly anisotropic cases. Meanwhile, we can clearly see
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Fic. 5.3. Time evolution of the mesh ratio R (t) for Case I with k(n) = ko(n) in (4.24) for
different h (a) and with h =272 for different k(n) (b), and for Case IT with k(n) = ko(n) in Lemma
4.8 for different h (c) and with h =275 for different k(n) (d).

that the normalized energy is monotonically decreasing during the evolution for the
strongly anisotropic cases. Furthermore, we observe that the numerical equilibrium
has several “cusps,” which result from the self-intersection of the Wulff envelope [3].

6. Conclusions. By utilizing a symmetric positive definite surface energy ma-
trix Zx(n) and a stabilizing function k(n), we reformulated the anisotropic surface
diffusion equation with any arbitrary anisotropic surface energy y(n) into a novel
symmetrized form and derived a new variational formulation. We discretized the
variational problem in space by the PFEM. For temporal discretization, we proposed
a fully implicit SP-PFEM, which can rigorously preserve the total area up to machine
precision. Then we rigorously proved that the proposed SP-PFEM is unconditionally
energy-stable under a simple and mild condition (1.13) on the anisotropic surface
energy v(n). Finally, numerical results demonstrated that the SP-PFEM is second-
order accurate in space, is first-order in time, is unconditionally energy-stable, and
enjoys very good mesh quality during the evolution, and no mesh redistribution pro-
cedure is needed even for strongly anisotropic cases. Another important contribution
is that the new scheme can also work well for the strongly anisotropic cases (shown in
Figures 5.5-5.6). In the existing literature, a Willmore regularization energy term is
often added into the model to deal with the strongly anisotropic cases [33, 28, 18, 38,
24], but here we use only one unified scheme to tackle the two cases. In the future, we
will further explore the high performance of the schemes, especially for the strongly
anisotropic cases, and extend the new variational formulation to anisotropic surface
diffusion of open/closed surfaces in three dimensions [26, 46].
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Fic. 5.4. Morphological evolutions of a close rectangular curve under anisotropic surface
diffusion with different anisotropic surface energies: (a) regularized I'-norm metric y(n) =

\/n%—i-0.0ln% + \/0.0171%4—71%; (b) *-norm metric y(n) = {/nf+nd; (c) 2-fold v(n) = 1 +

%COS(Q(Q — 3)); and (d) Riemannian-like metric y(n) = \/nT( )n where the parameters

h =276 7 = h2, and the red line, black dashed line, and blue line represent the initial shape,
intermediate shape, and equilibrium shape, respectively.

Appendix A. The Cahn—-Hoffman £-vector for several anisotropic sur-
face energies. For the Riemannian-like metric surface energy (1.8), we have

L
(A1) ¥p)=>_Vp"Gip  VpeR2:=R*\{0},
=1

L

(A.2) ézé(n):Zm(n)_lGln

=1

-3 det(Gy) >

I\Mh

which indicates the Riemannian-like metric anisotropy is always weakly anisotropic.
For the ["-norm (r > 2) metric anisotropic surface energy (1.9), we have

. L
(A3) () =lpll, =(pa|" +[p2l")"  Yp=(p1,p2)" €RZ,

1 |n1|7‘—2n1 |n1n2|r72 1
() g=egm = ([1I50), A=) e,

|n2|r 2n2

which indicates the {"-norm (r > 2) metric anisotropy is always weakly anisotropic.
For the m-fold anisotropic surface energy (1.10) with 6y =0, we have

(A5)  ~(p) = (pi +p2) (1+ Bcos(mB))Vp = (p1,p2)T = |p|(—sind,cos )T € R2.
Plugging (A.5) into (1.3), we get
(A6)  €=£&(n)=n+ Bcos(mh)n + fmsin(mb)n  Vn = (—sinb,cosh) € S,
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Fic. 5.5. Morphological evolutions and the normalized energy of a close rectangular curve
under anisotropic surface diffusion with the strongly 2-fold anisotropic surface energy y(n) =1+
%005(29) toward its equilibrium at different times: (a) t=0, (b) t =107, (c¢) t =207, (d) t= 1007,
(e) t =2507, (f) t =5007, (g) t =7007, and (h) t = 50007, where the other parameters are chosen
the same as in Figure 5.4.

(A7) An)=1-B(m?*—1)cos(mb),

1.

——7; otherwise, it is strongly

which indicates that it is weakly anisotropic if 0 < § <
anisotropic.

For all the above y(n), their Hessian matrices are of the form

n% —nNni1ng

T _ gl
= S*.
Cnam n2 ) Vn=(ni,ng)" €

(a8 Hm =) (

Appendix B. Proof of Lemma 4.7 for the Riemannian-like metric
anisotropy.

Proof. First we consider the case L =1 and assume Gy = (¢ %) := G with a >0
and ac — b? > 0; then the minimal stabilizing function ko(n) becomes

(B.1) ko(n) =7(n) "Tx(@) =1(n) " (a+ ) i= ky (n).

By using £ in (A.1), the corresponding surface energy matrix with respect to ki(n)
can be given as

Zip, (n)=vy(n)l, — &nT —ng’ 4+ ki(n)nnT

=v(n)L —y(n)'GnnT —y(n)'nn” G +y(n) " (a + c)nnT
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Fic. 5.6.

0.2 0.4

Morphological evolutions and the mormalized energy of a close rectangular curve

under anisotropic surface diffusion with the strongly 4-fold anisotropic surface energy y(n) =1+

10

3 cos(40) toward its equilibrium at different times: (a) t =0, (b) t =57, (¢) t =107, (d) t = 207,

(e) t = 1607, (f) t = 3007, (g) t = 5007, and (h) t = 50007, where the parameters are chosen as
h=27% 1="h2, and the red dashed line in (h) is the Wulff envelope.

15 1.5 15
(@) 1) o
05 05 05
0 0 0
0.5 -05 -0.5
-1 -1 -1
15 15 15
4 -05 0 05 1 1 05 0 05 1
15 3 1.5
(@) Ll (@ 1
05 1 05
0 0 0
05 - -0.5
-1 -2 -
-15 -3 1.5
4 05 0 05 1 -2 0 2 0
F1G. 5.7. The Frank diagrams of the weakly anisotropic energies: (a)—(d) used in Figure 5.4,

respectively; and the strongly anisotropic energies: (e) v(n) =1+ %cos(29) in Figure 5.5, and (f)
y(n)=1+ % cos(40) in Figure 5.6.
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—(n)! y(n)? —2(an? + bning) + (a+ c)n?
—(aning +bn3) — (bn? +cning) + (a +c)ning  *

I I S B R

where the x means the entry can be deduced in the same way. By direct computations,
we obtain

Y(n) (2)" Zy, ()i —(R)? = (1)1 TGRS —5()°
=n' Gn —~y(n)?=0.
From the alternative definition of ko(n) in (4.6), we obtain ko(n) < ki(n).

On the other hand, we take i — n in F(n,n). By applying (4.1) and the Hessian
matrix derived in (A.1) and (A.8), we then have

(nL)THwnL + ﬁ
v(n)
=v(n)"? ((ac — b*)(nj + 2nin3 + ni) + (ani + bna)? + (bny + cno)?)
=~(n)"*(ac + a®*n? + 2abning + 2acning + ¢*n3)
=(n)"3(an? 4 2bniny + cn3)(a +c)
=7(n)"!(a+c) =ko(n),

which means ko(n) >~(n)~1(a+ ¢) by (3.13), hence ko(n) =~v(n) "' Tr(G) = k1 (n).
For L > 1, Lemma 4.4 yields k1(n) = Zle Y(n)"ITr(G)) > ko(n), and Zy, (n)
can be derived by the same argument in (B.2). 0

Appendix C. Proof of Lemma 4.8 for the I"™-norm metric anisotropy.
Proof. (i) When r =4, a direct computation shows

y(n) ()" Zy, (n)Rt —y(n)?
1-2 11
(ni +n3)* + (i +13)* — dningiuia — 2/ + Az \/nd +nj
2v/nf +n3
S (n? 4+ n3)% + (73 +n3)% — dnynafyfie — nt — nj — A — 13
’ NaET:

o N2
nino — NN
_mne i) g st

1 1 =
Vg +ny

By Theorem 4.2, we get ko(n) < 2y(n)~3. On the other hand, by taking fn =
(n2,n1)T €S in (3.12) and the & vector given in (A.4), we obtain

27(n)(v(n)"*(nf,n3) - (—n1,n2))(—nF +nj)
y(n)(—ni +nj)?

s (=ni +n3)*(n +ni)
(=ni +n3)?

F(n,n)=

=2y(n) =2y(n)">.

By (3.13), we know that ko(n) > 2v(n) =3, hence ko(n)=2y(n)=3.
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(ii) When r =6, a direct computation shows
(1) ()T Zigy ()7 — (1)
=7(n)™"
=(n)™* (1 —nin3 — 2ninafgfip — \S/(n(f +n$)2(ns + ﬁg))

_a (20 +n2)2 + (A2 +n3)3 o
7(”) 4< ( 1 2) 3 ( 1 2) —ﬂ%ng—inTLin’l’Lg—

_4 Gn%ng + 6n%n§ + 371‘117%% + 3ﬁ%ﬁ§ 9 9 .
—ning — 2ninaning

(1 — n%n% — 2n1n2ﬁ1ﬁ2) -7 TAL? + TALS

v

2(n$ +n) + (nf + ﬁé))
3

=7(n) 3
=v(n)~* (2nin3(n} 4+ n3) + ATn3(AT + A3) — ninj — 2ningfifo)
=7(n)"*(nin2 —n2)> >0  VYn,neS.

By Theorem 4.2, we get ko(n) < 2v(n)~5(n3 + n3n? + n}). On the other hand, by
taking 7o = (n2,n1)” € S* in (3.12) and the & vector given in (A.4), we obtain

- 2v(n)(y(n)~°(n3,n3) - (—n1,n2))(—n3 +n3)
y(n)(=nf 4 n3)?
_5 (=n? +n3)*(n3 +n3ni +nj)
(—ni +n3)?

F(n,n

=2v(n)"°(n3 + n3ni +n}).

=2v(n)

By (3.13), we know that ko(n) > 2v(n)~%(ni + n3n? + nf), hence ko(n) =
27(n)~5(n3 + n3ni + ni). 0

Appendix D. Proof of Lemma 4.9 for the 2/4-fold anisotropy.
Proof. For the m-fold anisotropy 4(f) = v(n) = 1 + Bcosmf, we know that
4'(0) = —mBsinm@. The F?(0) given in (4.14) is
F°(6) =2(1 4 Bcosmd)
(14 Bcosmb)? — (14 Scosmb)? n mBsinmd sin(2(0 — 6))
(1+ Bcosmd)sin?(6 — 0) sin?(0 — 0) '

(D.1)

(i) For the 2-fold anisotropy, i.e., m = 2, by applying Mathematica to (D.1), we
get

262(1 — cos2(0 + 0))

D.2 F(f)=4-2(1 2
(D2) (6) =4~ 201 + foos20) + U2
Thus by (4.13) in Remark 4.1, we obtain
50 4
(D.3) ko(n)= max  F°(0)<4—2y(n)+ .
belo—%,0+3] v(n)

On the other hand, by taking 8 = % —0in (D.2), we obtain

2

(D.4) fad (% —9) —4—2n) + P k().

B
(1)
By combining (D.3) and (D.4), we know ko(n) =4 — 2y(n) + =

%:), which validates
(4.25).
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(ii) For the 4-fold anisotropy, i.e., m =4, by applying Mathematica to (D.1), we

get

PN 1643 cos(6 — ) cos(6 + 30)

FP(0) =27(n) —

(6)=2+(n) —
(D.5) B 4/3% cos(0 — 6)(2cos(f + 70) + cos(36 + 56) + cos(50 + 360))
' 7(n) '
Thus by (4.13) in Remark 4.1, we obtain
o 1 1642
(D.6) ko(n)= max F?(0) <2y(n)+ 166 +165° _ ki(n),
belo—=.0+7) v(n)
which validates (4.26). d
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