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Summary

Anisotropic surface diffusion is an important geometric flow that is widely ap-

plied in mathematics, physics, computer science, and solid-state materials science

for studying interface evolution. It models the motion of atoms or molecules on a

solid interface driven by the capillary effect that minimizes anisotropic surface en-

ergy while preserving enclosed mass. Nevertheless, anisotropic surface energy γ(n)

determined by the outward normal vector n can induce various instabilities during

interface evolution. To comprehend and capture these instabilities, developing a

numerical scheme that preserves mass conservation and energy dissipation at the

discretized level is essential.

Among various numerical methods for anisotropic surface diffusion, the para-

metric finite element method (PFEM) achieves the best performance in terms of

accuracy, efficiency, and mesh quality, while it can also preserve the two geomet-

ric properties of isotropic surface diffusion. The high performance of PFEM has

enabled its application to an extensive range of geometric flows and free boundary

problems, making its structure-preserving extension to anisotropic surface diffusion

essential and highly demanded. However, the previously established state-of-the-art

structure-preserving PFEM (SP-PFEM) is specially designed for the Riemannian

metric anisotropy. Therefore, it is worthwhile to design a SP-PFEM for anisotropic

vii



viii Summary

surface diffusion with general anisotropies.

This thesis aims to develop a SP-PFEM for anisotropic surface diffusion of curves

in two dimensions (2D) with d = 2 and of surfaces in three dimensions (3D) with

d = 3, incorporating a more general anisotropic surface energy function. The key

concepts of the SP-PFEM developed here are the surface energy matrix Zk(n) or

Gk(n) and the minimal stabilizing function k0(n). The main contribution of this

work is the introduction of a novel analytical framework that plays a vital role in

establishing energy stability, which significantly contributes to the existing PFEMs.

The thesis is composed of three parts.

In the first part, for symmetric anisotropies γ(−n) = γ(n), we propose a sym-

metrized SP-PFEM for anisotropic surface diffusion of curves in 2D based on the

arclength parameterization. The new symmetrized SP-PFEM is proven to preserve

mass conservation and unconditional energy dissipation at the discretized level. The

energy stable condition only requires the regularity of the anisotropy to be at least

C2(R2 \ {0}), which drastically relaxed the previously established state-of-the-art

condition. Moreover, we introduce a new framework that reduces the proof of en-

ergy stability to the existence of the minimal stabilizing function k0(n). For several

commonly-used symmetric anisotropies in 2D, the explicit formulations of k0(n) are

also been analyzed. The symmetrized SP-PFEM is further extended to surfaces in

3D by replacing the arclength derivative with the surface gradient. The difference

and the essential difficulty between 2D and 3D is proof of energy stability. Al-

though our symmetrized SP-PFEMs are implicit methods, numerical experiments

show that only 2 to 3 iterations are required at each time step. Extensive numerical

results also show the second-order convergence rate in space, validate the structure-

preserving analysis, illustrate the good mesh distribution, and match perfectly with

the theoretical equilibrium.

In the second part, for the general anisotropies with γ(−n) ̸= γ(n) we design a

unified SP-PFEM for anisotropic surface diffusion of both curves in 2D and surfaces

in 3D with a unified energy stable condition. The unified condition is much more



Summary ix

mild and general, which is not only naturally true for the symmetric anisotropy but

also valid for almost arbitrary anisotropies. Therefore, the unified SP-PFEM can

work for almost all the anisotropic surface energies used in applications. Moreover,

we develop a unified framework for showing the existence of the minimal stabilizing

function, that allows us to adopt dimensional-independent techniques to show the

semi-positive definiteness of dimensional-dependent matrices instead of handling

the dimensional-dependent inequalities. Numerical results indicate the unified SP-

PFEM enjoys the same advantages compared to the symmetrized SP-PFEMs. It

also works well for anisotropies with a weaker regularity condition as predicted,

which is a significant achievement compared with other PFEMs.

In the last part, we apply the unified SP-PFEM for other geometric flows with

the anisotropic effect, including the anisotropic curvature flow and the anisotropic

mass-conserved curvature flow. The proposed SP-PFEM is proven to preserve un-

conditional energy dissipation for the two geometric flows. It can preserve volume

conservation for anisotropic mass-conserved curvature flow with delicately designed

parameters, and preserve volume decay rate for anisotropic curvature flow. Our

numerical experiments show most of the desired properties of the unified SP-PFEM

for anisotropic surface diffusion also hold when extended to other anisotropic geo-

metric flows. Therefore, it suggests the newly proposed unified SP-PFEM may have

broader applications to the interface/surface evolution problems.
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Chapter 1
Introduction

In this chapter, we begin by discussing the motivation for studying surface dif-

fusion. We then introduce the surface energy and the Cahn-Hoffman ξ-vector to

model the anisotropic effect. Subsequently, thermodynamic variation is employed

to formulate the anisotropic surface diffusion. By utilizing an appropriate global pa-

rameterization, we derive the partial differential equation formulation for anisotropic

surface diffusion. We then review the existing theoretical results and numerical

methods. Finally, we conclude the chapter with a discussion of the scope of this

thesis.

1.1 Surface diffusion

Surface diffusion is a fundamental phenomenon in various fields, especially in

materials science, where it plays a critical role in understanding and simulating the

evolution of interfaces in solid-state materials. In 1957, Mullins first introduced sur-

face diffusion as a mathematical model to describe the motion of atoms or molecules

on a solid interface driven by the capillary effect [43, 116, 127]. The capillary effect

arises from the surface energy, which tends to minimize the total area of the surface

but preserves the total mass enclosed by the surface [43, 55, 139]. These two geo-

metric properties make surface diffusion broadly applied in physics [20, 68, 85, 129],

1
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computer science [43, 55, 145], and materials science [93, 137, 142]; including fluid

dynamics, image processing [47,59,119], crystal growth [92,114,143,152], and solid-

state dewetting [10, 142]. For example, Figure 1.1 shows the surface diffusion of

solid thin film into isolated spherical islands. Here the sharp edges and facets are

smoothing out, which leads to a more uniform equilibrium shape.

Figure 1.1: Surface diffusion of a solid thin film dewetting into isolated spherical

islands. Image credit goes to [142].

Most of the solid-state materials have anisotropic properties, meaning that their

surfaces exhibit directional variations in energy. Anisotropic surface diffusion takes

into account the anisotropic properties of the surface, rendering the model more

accurate and realistic. In fact, anisotropic surface diffusion has been known as im-

portant kinetics and mechanism in surface phase formation [34, 45, 82], epitaxial

growth [68,81,85], heterogeneous catalysis [130], and many other areas in materials

science [122, 137]. It has proven significant and broader applications in materials

science, and computational geometry as well as solid-state physics, such as growth

of nanomaterials [40], morphology development in alloys [45, 79], evolution of voids

in microelectronic circuits [110], solid-state dewetting [93, 135, 142, 145, 150], defor-

mation of images [47], and other areas.

However, anisotropic surface energy can lead to various instabilities during the

evolution of the interfaces, such as the Rayleigh-Plateau instability [83, 123], fin-

gering instability [99,100,120], faceting instability [51,80,86,108,151], corner insta-

bility [150], and pinch-off process [136, 152], which can be observed in figure 1.2.



1.2 Surface energy and Cahn-Hoffman ξ-vector 3

Furthermore, these instabilities can occur simultaneously. For example, a combi-

nation of fingering instabilities and Rayleigh-Plateau instabilities can occur, where

the growth of perturbation on a retracting edge creates the fingering shapes, and

the cylindrical fingers break up to form small islands due to Rayleigh-Plateau insta-

bility, as illustrated in Figure 1.3. In order to accurately capture these instabilities

and understand the underlying mechanisms that drive them, a reliable and accurate

numerical scheme needs to preserve the geometric properties of anisotropic surface

diffusion. As a result, developing a numerical scheme that preserves mass conserva-

tion and energy dissipation for anisotropic surface diffusion is important and highly

necessary.

Figure 1.2: Illustration of various instabilities caused by anisotropic surface energy

during the evolution of interfaces: pinch-off (top left, adapted from [152]), corner

instability (bottom left, adapted from [150]), and faceting instability (right, adapted

from [108]).

1.2 Surface energy and Cahn-Hoffman ξ-vector

The anisotropic effect of solid interface is typically governed by the anisotropic

surface energy, which is conventionally denoted as γ. In fact, γ may depend on
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Figure 1.3: Illustration of the combination of fingering and Rayleigh-Plateau insta-

bilities observed in a 7-nm-thick SOI surface after anisotropic surface diffusion (left,

adapted from [120]). Schematic representation (right, adapted from [99]): (c)-(d)

Growth of perturbation on a retracting edge leading to fingering shapes, and (e)-(f)

cylindrical fingers breaking up to form small islands due to Rayleigh-Plateau insta-

bility.
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factors such as temporature, interface inclination, position, and other factors [88,

124,131]. For simplicity, we only consider the case where γ = γ(n) > 0, meaning γ is

a positive function determined by the outward unit normal vector n of the interface

Γ. If Γ is a curve in R2, the outward unit normal vector n ∈ S1 is determined by

the inclination angle θ between the y-axis, and we have the θ-formulation γ̄(θ) =

γ(− sin θ, cos θ); and if Γ is a surface in R3, n ∈ S2. To unify the notation, we denote

the dimension of the space as d, with the normal vector in Sd−1. Additionally, we

assume that γ(n) is a continuous function with respect to n, implying γ(n) ∈
C(Sd−1).

To improve the understanding of the behavior of different instabilities driven by

the anisotropic effect, it is necessary to classify the anisotropic surface energy. When

γ(n) is uniform in all directions (e.g. γ(n) ≡ 1) for n ∈ Sd−1, then the anisotropic

surface energy collapses to the (isotropic) surface energy. In contrast, when γ(n)

is not a constant, i.e., with anisotropic surface energy: the classification for the

anisotropy in θ-formulation in two dimensions (2D) can be given by checking the

surface stiffness γ̃(θ) = γ̄(θ) + γ̄′′(θ) [84,117]. If the surface stiffness is greater than

zero for all θ, such anisotropic surface energy is referred to weakly anisotropic. On

the contrary, the strongly anisotropic surface energy gives a negative surface stiffness

for some directions. In fact, the classification of the weak and strong anisotropies is

rather important in the well-posedness of the anisotropic surface diffusion [3,46,134],

the stability of the equilibrium [42,83,96], and the numerical analysis [10,65,145].

For the general anisotropy γ(n), the classification can be visualized by the Frank

diagram F , which is given as [69]

F := {p ∈ Rd
∣∣∣γ(p) ≤ 1}. (1.1)

For each direction n ∈ Sd−1, the radius of F is 1
γ(n)

, thus the Frank diagram is also

called the 1
γ
-plot. Figure 1.4 & 1.5 show the Frank diagrams for different anisotropies

for curves in 2D and surfaces in three dimensions (3D), respectively. It can be seen

that the convexity of F depends on the anisotropic surface energy γ(n). In fact,

the weakly anisotropic surface energy gives a convex Frank diagram, and strongly
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anisotropic surface energy gives a non-convex Frank diagram [144].

Figure 1.4: Frank diagrams in 2D for various anisotropic surface energies. Left to

right, top to bottom: Riemannian metric anisotropy with G = diag(4, 1); piecewise

Riemannian metric anisotropy with a = 5
2
, b = 3

2
; l6-norm metric anisotropy; 3-fold

anisotropy with β = 1
9
; 3-fold anisotropy with β = 1

4
; regularized l1-norm metric

anisotropy with ε = 0.01.

For testing the convexity of the Frank diagram F and further discussion, it is

useful to examine the differentiability of the surface energy γ(n). To achieve this,

we consider its one-homogeneous extension γ(p) defined throughout the whole space

Rd, which is given as [55,97,139]

γ(p) :=

 |p| γ
(

p
|p|

)
, ∀p = (p1, . . . , pd)

T ∈ Rd
∗ := Rd \ {0},

0, p = 0,
(1.2)

where |p| =
√
p21 + . . .+ p2d.
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Figure 1.5: Frank diagrams in 3D for various anisotropic surface energies. Left

to right, top to bottom: Riemannian metric anisotropy with G = diag(2, 1, 1);

piecewise Riemannian metric anisotropy with a = 5
2
, b = 3

2
; 3-fold anisotropy with

β = 1
4
; l4-norm metric anisotropy; [001] orientation and the [011] orientation with

β = 1
3
.
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We observe that (1.2) establishes a one-to-one correspondence between γ(n) and

γ(p). Thus it suffices to discuss the differentiability of γ(p). Clearly, for 0 < γ(n),

we have γ(p) ≥ 0. And for p ∈ Rd
∗, the differentability of γ(p) is well defined. We

assume that γ(p) is at least C2 in Rd
∗. Therefore, when γ(p) ∈ C(Rd) ∩ C2(Rd

∗), we

can introduce the widely used Cahn-Hoffman ξ-vector and the Hessian matrix Hγ

as [42,89,97]

ξ = (ξ1, . . . , ξd)
T := ξ(n) = ∇γ(p)|p=n, Hγ(p) := ∇∇γ(p), ∀p ∈ Rd

∗. (1.3)

By one-homogeneity, it can be easily verified that the ξ vector as well as the Hessian

matrix Hγ satisfy the following properties [7, 55]

ξ · n = γ(n), (Hγ(p)p) · q = 0, Hγ(λp) =
1

λ
Hγ(p), ∀p, q ∈ Rd

∗, λ ̸= 0. (1.4)

From (1.4), we observe that Hγ(n)n = 0 for all n ∈ Sd−1. Therefore 0 is an

eigenvalue of Hγ(n) and n is a corresponding eigenvector. We denote the other d−1

eigenvalues of Hγ(n) as λ1(n) ≤ . . . ≤ λd−1(n) ∈ R. In fact, the classification of

anisotropic surface energies also relies on the Hessian matrixH. When τ THγ(n)τ ≥
0 for all n, τ ∈ Sd−1 satisfying τ · n := τ Tn = 0 (⇔ λ1(n) ≥ 0 for all n ∈ Sd−1), it

is referred to weakly anisotropic; and when τ THγ(n)τ changes sign for n, τ ∈ Sd−1

satisfying τ · n = 0 (⇔ λ1(n) < 0 for some n ∈ Sd−1), it is referred to strongly

anisotropic.

For the curve Γ in 2D, the ξ-vector can also be represented by the θ-formulation,

which provides an alternative perspective for understanding it. The equation for

the θ-formulation is as follows (c. f. Figure 1.6):

ξ = γ̄(θ)n− γ̄′(θ)τ . (1.5)

This equation can be regarded as the vector decomposition of ξ-vector into a fixed

value γ(θ) in the normal direction n and the derivative of the θ-formulation γ̄′(θ)

in the tangent direction τ . We can observe that for the isotropic surface energy

γ̄(θ) ≡ 1, the tangent component γ̄′(θ) = 0, thus the ξ-vector collapses to the

normal vector n.
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ξ n τ

γ(n)n

(ξ · τ )τ

θ

γ
VS

γ
FS

γ
VS

xlc
Ω

Γ

γ = γ(n)

Figure 1.6: An illustration of a closed curve Γ in R2 with an anisotropic surface

energy γ(n), where n is the outward unit normal vector, τ is the unit tangential

vector, ξ is the Cahn-Hoffman vector in (1.3), and θ is the angle between n and

y-axis such that n = (− sin θ, cos θ)T with θ ∈ [−π, π].
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1.3 Thermodynamic variation

Thermodynamic variation is an essential tool for deriving and understanding

anisotropic surface diffusion. Let the interface be Γ ⊂ Rd parameterized by the

function X(·), where X(ρ) = ρ,∀ρ ∈ Γ. For a given anisotropic surface energy

γ(n), the total surface energy function W is given as [35,75,141,145]

W (Γ) :=

∫
Γ

γ(n) dA. (1.6)

Here dA is the area element. Let V ∈ [C∞(Γ)]d be a test function on Γ, ε is a small

parameter. The small perturbation Γε of Γ is thus given as

Γε := {ρε ∈ Rd|ρε = X(ρ) + εV (ρ)}. (1.7)

For any test function V , the limit lim
ε→0

W (Γε)−W (Γ)
ε

is well defined. Thus we can define

the first variation of W with respect to the test function V as

δW (Γ)(V ) := lim
ε→0

W (Γε)−W (Γ)

ε
. (1.8)

From [4,35,55,97], we know that the first variation δW (Γ) has the following formu-

lation

δW (Γ)(V ) =

∫
Γ

µ(V · n) dA. (1.9)

where µ := µ(ρ) is the chemical potential.

(1.9) gives a variational formulation for the chemical potential µ. To get an

alternative local formulation, we need to introduce several surface calculus operators.

Let f be a C1 function defined in an open neighborhood of Γ, then the surface

gradient operator ∇Γf at ρ ∈ Γ is given as [58,74,77]

∇Γf(ρ) := ∇f(ρ)− (∇f(ρ) · n)n = (D1f,D2f, . . . , Ddf)
T , (1.10)

where ∇ stands for the usual gradient operator, see Figure 1.7 for the illustration.

Similarly, the surface divergence operator ∇Γ· for a vector-valued [C1]d function

f = (f1, . . . , fd)
T and the surface Laplace-Beltrami operator ∆Γ for a scalar-valued
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C2 function f are given as [107]

∇Γ · f :=
d∑
i=1

Difi , ∆Γf := ∇Γ · ∇Γf =
d∑
i=1

DiDif. (1.11)

Figure 1.7: Illustration of the surface gradient operator for a surface in 3D. The

surface is represented in a light blue color, while the tangent plane is depicted in

light green. The usual gradient is displayed in orange, and its surface gradient is

shown in purple, which is the projection of the usual gradient onto the tangent

plane.

By adopting the surface divergence operator ∇Γ·, the chemical potential can be

represented by the ξ vector as follows [55,89]

µ(ρ) = ∇Γ · ξ(n). (1.12)

If there is no anisotropic effect, the ξ vector collapses to the unit normal vector n,

and the chemical potential µ goes to the mean curvature H by the fact H = ∇Γ ·n
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in [16,116]. Thus the chemical potential µ is also called the weighted mean curvature

Hγ in some literature [52,62,139].

In 2D, the curve Γ = X(·) can be parametrized by the arc-length s, and the

arc-length parameter induces the arc-length derivative ∂s [10,109,145]. By adopting

the arc-length parameterization, the chemical potential µ can also be represented

as [42,97,116]

µ = −∂s(ξ⊥) · n, (1.13)

here ⊥ means the counterclockwise rotation by π
2
in R2, that is, if u = (u1, u2)

T ,

u⊥ = (u2,−u1)T . And for the θ-formulation, besides using the ξ-vector, we can

apply the stifness γ̃(θ) to formulate the chemical potential µ as:

µ = γ̃(θ)κ = (γ̄(θ) + γ̄′′(θ))κ, (1.14)

here κ is the curvature for curves.

The anisotropic surface diffusion can be regarded as the H−1 gradient flow of

the total surface energy function W (Γ) [43]. By utilizing the chemical potential µ

derived from the thermodynamic variation, the anisotropic surface diffusion is as

follows

Vn = ∆Γµ, (1.15)

where Vn represents the normal velocity. Specifically, for the isotropic case γ(n) ≡
1, the weighted mean curvature µ collapses to the mean curvature κ; and the

anisotropic surface diffusion (1.15) also collapses to the (isotropic) surface diffusion

Vn = ∆Γκ.

The equilibrium shape of the anisotropic surface diffusion (1.15) is called the

Wulff shape W , which was first described by Wulff using a geometric construction

[148]. The mathematical description for the Wulff shape W is given as [38,72,138]

W := {p ∈ Rd|p · n ≤ γ(n), ∀n ∈ Sd−1}. (1.16)

In Figure 1.8 we show the Wulff shape for several commonly used anisotropies for

surfaces.
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Figure 1.8: Wulff shapes in 3D for various anisotropic surface energies, corresponding

to the anisotropic surface energies in the Frank diagrams in 3D (Figure 1.5).

For a curve in 2D, we can adopt the θ-formulation to give its Wulff shape ana-

lytically by the so-called Wulff envelope as [41]

W := {(x(θ), y(θ))T |x(θ) = −γ̄(θ) sin θ − γ̄′(θ) cos θ, y(θ) = γ̄(θ) cos θ − γ̄′(θ) sin θ}.
(1.17)

The Wulff envelope given by the parametrized curve may have possible ”ears”,

and the Wulff shape is derived by removing these ”ears” from the Wulff envelope

[84, 117]. We illustrate the construction of the Wulff shape from the corresponding

Wulff envelopes for selected γ(n) in Figure 1.9. We remark here if γ̄(θ) is weakly

anisotropic (or the surface stiffness γ̃(θ) ≥ 0, ∀θ), then there is no such ”ears”;

otherwise there are ”ears” in the Wulff envelope.

1.4 Anisotropic surface diffusion (ASD)

We consider an initial curve or surface, denoted as Γ0. Its evolution is governed

by the anisotropic surface diffusion given by the geometric flow formulation (1.15)
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Figure 1.9: Obtaining the 2D Wulff shape from the Wulff envelope. On the left, the

Wulff envelope is shown with red ”ears”. By removing these ”ears”, we derive the

Wulff shape on the right.

resulting in an evolving interface represented by (Γ(t))t≥0, where Γ(0) = Γ0. An

important aspect of modeling and understanding the anisotropic surface diffusion is

the employment of global parameterization [33,70], which offers a rigorous approach

to analyze the evolving interface (Γ(t))t≥0 and its properties.

Definition 1.1 (Global parameterization). Let (Γ(t))t≥0 be an evolving interface

with the initial interface Γ(0) = Γ0 ⊂ Rd. A global parameterization of (Γ(t))t≥0 is

a diffeomorphism X(·, t) from Γ0 to Γ(t) with X(ρ, 0) = X0(ρ) := ρ, ∀ρ ∈ Γ0.

By establishing a one-to-one correspondence X(·, t) between points on the inter-

face Γ(t) and points in the initial interface Γ0, which is a fixed reference manifold,

the global parameterization X(·, t) enables the study of the functions and surface

operators defined on Γ(t) to be transformed to the initial interface Γ0. Let f(·) be a
function defined on Γ(t), the pullback of f(·) by X(·, t) gives a function X∗(t)f(·)
on Γ0 defined by X∗(t)f(ρ) := f(X(ρ, t)). Moreover, denote the Jacobian of X(·, t)
to be JX(t)(·). By change of variable, we have∫

Γ(t)

f dA =

∫
Γ0

X∗(t)f det(JX(t)) dA. (1.18)

The global parameterizationX(·, t) from Γ0 to Γ(t) also gives a pushforward dX(·, t)
from TρΓ0 the tangent space of Γ0 at ρ to TX(ρ,t)Γ(t) the tangent space of Γ(t) at

X(ρ, t). Thus suppose {e1, e2, . . . , ed−1} forms a orthonormal basis of TρΓ0 with
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n = e1 ∧ . . . ∧ ed−1, then the outward unit vector n at X(ρ, t) is

n(ρ, t) := n(X(ρ, t)) =
ê1 ∧ . . . ∧ êd−1

|ê1 ∧ . . . ∧ êd−1|
, (1.19)

which is determined by the global parameterizationX(ρ, t) with êj = dX(·, t)ej, j =
1, . . . , d − 1. Also, by the change of variable and the chain rule, we know that the

gradient operator

∇f |p=X(ρ,t) = J−1
X(t)(ρ)∇(X∗(t)f(ρ)) (1.20)

is also determined by X(ρ, t). Therefore, by (1.10) and (1.11), the surface gradient,

the surface divergence, and the surface Laplace-Beltrami operator on Γ(t) are also

determined by the global parameterization X(ρ, t). Thus global parameterization

provides a solid foundation for subsequent theoretical and numerical investigations.

In the following discussion, we do not discriminate the function with its pullback

and pushforward.

By adopting the global parameterization X, the normal velocity can be written

as Vn(ρ, t) = n(ρ, t) · ∂tX(ρ, t). Thus the geometric description of the anisotropic

surface diffusion can be represented as the following geometric partial differential

equations ∂tX = (∆Γ µ) n, ρ ∈ Γ0, t > 0, (1.21a)

µ = ∇Γ · ξ, ξ = ∇γ(p)
∣∣
p=n

. (1.21b)

Here the surface divergence and surface Laplace-Beltrami operator are varying with

respect to the evolving interface Γ(t) rather than Γ0.

For the 2D curve with arc-length parameter s, the surface Laplace-Beltrami oper-

ator collapses to the second-order arc-length derivative ∂ss. This, together with the

chemical potential µ given by (1.13), gives the following formulation for anisotropic

surface diffusion in 2D∂tX = (∂ss µ)n, ρ ∈ Γ0, t > 0, (1.22a)

µ = −∂s(ξ⊥) · n, ξ = ∇γ(p)
∣∣
p=n

. (1.22b)

Moreover, if we adopt the θ-formulation, the chemical potential µ is µ = γ̃(θ)κ =

(γ̄(θ) + γ̄′′(θ))κ, see (1.14). Thus the anisotropic surface diffusion in 2D can also be
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written as {
∂tX = (∂ss µ)n, ρ ∈ Γ0, t > 0, (1.23a)

µ = γ̃(θ)κ = (γ̄(θ) + γ̄′′(θ))κ. (1.23b)

We note that for the isotropic case γ̄(θ) ≡ 1, the surface stiffness γ̃(θ) ≡ 1 and the

anisotropic surface diffusion goes to the (isotropic) surface diffusion.

The partial differential equation formulation for anisotropic surface diffusion, as

presented in (1.21) or (1.22), also adheres to the two geometric properties: conser-

vation of the total mass M(t) and dissipation of the surface energy W (t).

In a 2D curve, the total mass corresponds to the area enclosed by Γ(t), which

is also referred to as the enclosed area and denoted by A(t). Conversely, in a 3D

surface, the total mass corresponds to the volume enclosed by Γ(t), also known as the

enclosed volume and denoted by V (t). From the Reynolds transport theorem [33],

it is easy to see that the two geometric laws are well preserved during the evolution.

1.5 Literature review

Surface diffusion has been extensively studied mathematically. For isotropic sur-

face diffusion of two-dimensional curves, the local existence and regularity were first

established by Elliott and Garcke [66] for C4-initial curves and then extended for

H4-initial curves by Giga and Ito [76]. If the initial curve is close to a circle, the so-

lution is globally existed and will converge exponentially fast [66]. These results are

later extended to higher dimensions by Escher, Mayer, and Simonett [67]. Moreover,

it is proved to have topological changes such as pinch-off [76]. For anisotropic sur-

face diffusion with crystalline formulation, the local existence is recently developed

in [73].

Different numerical methods have been developed for isotropic surface diffusion,

and each of the numerical methods requires different parameterizations and assump-

tions for the evolving surface. For the surfaces that can be represented as graphs

over a fixed domain, several methods are available, including the finite difference
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method [50], the finite element method [5, 55, 56], and the discontinuous Galerkin

method [149]. We refer to [5,54,56] for the error analysis of the finite element method

for the semi-discretization and full-discretization. However, the surface may lose its

graph property during evolution [76, 112]. The aforementioned methods can also

be applied to axisymmetric surfaces [32, 49, 118]. The level set method represents

the surface implicitly as the zero level set of a d dimensional function, making it

suitable for handling complex geometries and topological changes but increasing

computational cost [74, 121], we refer to [39, 48, 125]. The marker-particle method

represents the surface with discrete particles and tracks their motion [60, 147]. It

requires a severe restriction on numerical stability, and the particles need to be re-

distributed frequently. The θ-L formulation method employs the tangential angle θ

and total length L to represent 2D curves [90] and axisymmetric 3D surfaces [91].

The evolving surface finite element method [94, 105] is a specialized finite element

technique, which tracks the evolution of the normal vector n and the mean curvature

κ. It allows for convergence analysis in the case of continuous finite elements with a

polynomial degree of at least two [106]. Nevertheless, due to the high nonlinearity

of surface diffusion, the aforementioned numerical schemes must introduce artifi-

cial tangential velocity or implement mesh regularization to avoid mesh coalescence.

Additionally, most of these methods cannot preserve energy dissipation and mass

conservation in full discretization.

In contrast to many other methods for surface diffusion, the parametric finite

element method (PFEM) [10,16,19,87,97,109] performs the best in terms of accuracy

and efficiency as well as mesh quality in practical computations. By adopting Dziuk’s

formulation κn = −∂ssX with the polygon curves in 2D [61], Barrett, Garcke and

Nürnberg first proposed the PFEM in [16] for simulating the surface diffusion of

curves in 2D based on the following weak formulation for the mean curvature κ∫
Γ

κn · ω dA =

∫
Γ

∂sX · ∂sω dA. (1.24)

The derived PFEM is semi-implicit, unconditionally energy-stable, and enjoys asymp-

totic equal mesh distribution [16] and thus there is no need to re-mesh during time
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evolution. It is then generalized to the surfaces in 3D [19] with the surface gradient

∇Γ, and most of its desired properties including the energy dissipation are also pre-

served in full discretization. Very recently, by introducing a smart approximation

of the normal vector n, a structure-preserving PFEM (SP-PFEM) was proposed for

the surface diffusion [6,13] that can further preserve the conservation of total mass.

As a result, the PFEM and its extension to the SP-PFEM, provide highly accurate,

efficient, and robust numerical schemes for surface diffusion.

Moreover, the high performance of the PFEM enables its application to a wide

range of geometric flows with isotropic surface energy other than surface diffusion, in-

cluding mean curvature flow [15–17,21,71], Willmore flow [16,18,27,53,63], Mullins-

Sekerka problem [22], Stefan problem [22, 25], and so on. In addition to geometric

flows, PFEM also has broad applications in two-phase fluid flow [24, 26, 28], solid-

state dewetting problems [10,14,95,96,98,145,154,155], biomembranes [28–31], and

other research areas. Due to the success of PFEM in surface diffusion and various

other applications, the extension of PFEM to anisotropic surface diffusion becomes

increasingly important and highly demanded.

However, due to the high nonlinearity of the weighted mean curvature µ, de-

signing a structure-preserving PFEM for anisotropic surface diffusion with arbitrary

surface energy γ(n) is a notoriously difficult task. For the curves in 2D, Zhao and

Jiang developed a PFEM that represents the weighted mean curvature, µ, with the

ξ-vector through the weak formulation [97]∫
Γ

µn · ω dA = −
∫
Γ

∂sξ
⊥ · ∂sω dA. (1.25)

In addition, Bao, Jiang, Wang and Zhao proposed a PFEM by utilizing the γ̄(θ)

formulation to represent the weighted mean curvature µ with κ as µ = (γ̄(θ)+γ̄(θ)′′)κ

[10]. While for the surfaces in 3D, Bao, Jiang and Zhao identified a weak formulation

of µ by coupling the ξ-vector with γ(n) [154]:∫
Γ

µn · ω dA =

∫
Γ

γ(n)∇ΓX : ∇Γω dA+
3∑

i,l=1

∫
Γ

ξinl∇Γxi · ∇Γωl dA. (1.26)
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This leads to a novel PFEM for arbitrary surface energy γ(n), which was further

extended to simulate the solid-state dewetting. Although it can be observed that the

energy is decreasing at the discretized level for all of the above-mentioned PFEMs,

their energy dissipation laws have not yet been established. For other numerical

schemes related to anisotropic surface diffusion, we refer to [44, 60, 64, 78, 103, 104,

128,133,146,147] and references therein.

Rather than dealing with the general anisotropic surface energies, it is possible

to design an energy-stable PFEM for specific anisotropies. Barrett, Garcke and

Nürnberg observed that for the Riemannian matric surface energy, there is a one-to-

one correspondence between an anisotropic surface diffusion of curves with a special

anisotropy and an isotropic surface diffusion of curves on a special manifold [57].

Consequently, they proposed an energy-stable PFEM for evolving curves driven by

the Riemannian metric surface energy [17]. Based on that idea, Zhao and Bao

then proposed an energy-stable PFEM for axis-symmetric surfaces in 3D [6, 153].

In [19], the energy-stable PFEM was extended for anisotropic surface diffusion on

3D surfaces, and the anisotropic surface energies were generalized to the regularized

Riemannian metric surface energy. On the other hand, by incorporating a surface

energy matrix G(θ) using the θ-formulation [109],∫
Γ

µn · ω dA =

∫
Γ

(G(θ)∂sX) · ∂sω dA, (1.27)

Li and Bao introduced an energy-stable PFEM for general surface energy with a

strong condition on γ̄(θ). Given that the energy-stable conditions on γ(n) in the

aforementioned ES-PFEMs are strict, they are not applicable for all commonly used

anisotropic surface energies. Therefore, it is important to develop ES-PFEMs with

milder energy-stable conditions for wider applicability.

1.6 Scope of this thesis

The goal of this work is to design a structure-preserving parametric finite element

method (SP-PFEM) for anisotropic surface diffusion of 2D curves and of 3D surfaces,
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with a more general anisotropic surface energy γ(n). Firstly, we start with the

symmetrized SP-PFEM of 2D curves with the symmetric anisotropy, i.e., γ(−n) =

γ(n). We establish the energy stability which only requires the regularity of γ(p) ∈
C2(Rd \ {0}). Then we extend the symmetrized SP-PFEM as well as the energy

stability condition to 3D surfaces. After that, we introduce a unified SP-PFEM for

both 2D curves and 3D surfaces. By proposing a novel analysis framework, we then

drastically extend the energy-stable condition from γ(−n) = γ(n) to γ(−n) > (5−
d)γ(n), and the regularity requirement on γ(p) is reduced to piecewise-C2(Rd\{0}).

In Chapter 2, we consider the anisotropic surface diffusion of 2D curves with

symmetric γ(−n) = γ(n). By introducing a novel symmetric positive definite sur-

face energy matrix Zk(n) depending on the Cahn-Hoffman ξ-vector and a stabi-

lizing function k(n), we first reformulate the anisotropic surface diffusion into a

conservative form and then derive a new symmetrized variational formulation for

the anisotropic surface diffusion with both weakly and strongly anisotropic surface

energies. A semi-discretization by PFEM in space for the symmetrized variational

formulation is proposed and its area (or mass) conservation and energy dissipation

are proved. It is further discretized in time by the implicit-explicit Euler method,

which preserves the mass conservation in the discretized level. After that, we prove

that the symmetrized SP-PFEM is energy dissipative and thus is unconditionally

energy-stable for almost all anisotropic surface energies γ(n) arising in practical

applications. Specifically, for several commonly-used anisotropic surface energies,

we construct Zk(n) explicitly. Finally, extensive numerical results are reported to

demonstrate the efficiency and accuracy as well as the unconditional energy-stability

of the proposed symmetrized parametric finite element method.

In Chapter 3, we extend the symmetrized SP-PFEM to 3D. By generalizing the

novel symmetric positive definite surface energy matrix Zk(n) to 3D, we present

a new symmetrized variational formulation for anisotropic surface diffusion in 3D.

Then we propose the symmetrized SP-PFEM to discretize the symmetrized varia-

tional problem in space via PFEM and in time via the implicit-explicit Euler method.
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We prove the unconditional energy stability of the proposed symmetrized SP-PFEM

for 3D surfaces under the same condition as 2D. Extensive numerical results are re-

ported to demonstrate the efficiency and accuracy as well as structure-preserving

properties of the proposed symmetrized SP-PFEM for solving anisotropic surface

diffusion in 3D.

In Chapter 4, for the arbitrary anisotropic surface energy γ(n), we propose a

unified SP-PFEM for anisotropic surface diffusion in both two and three dimensions.

The proposed unified SP-PFEM is based on a unified surface energy matrix Gk(n)

and a unified weak formulation of the chemical potential µ. The main challenge and

contribution are establishing a unified framework to prove energy stability under the

simple conditions γ(p) ∈ C2(Rd \ {0}) and γ(−n) < (5− d)γ(n) for n ∈ Sd−1. The

structure-preserving properties of the proposed method are also verified through

numerical experiments.

In Chapter 5, we apply the unified SP-PFEM to simulate the evolution of a close

2D curve under other anisotropic geometric flows including anisotropic curvature

flow and anisotropic mass-conserved curvature flow. Extensive numerical results are

reported to demonstrate the efficiency and unconditional energy stability as well as

the good mesh quality property of the proposed SP-PFEM for simulating anisotropic

geometric flows.

In Chapter 6, we conclude the results of this thesis and suggest some possible

future works.



Chapter 2
A SP-PFEM for curves with symmetric

surface energy

To develop a structure-preserving parametric FEM (SP-PFEM) for anisotropic

surface diffusion, we start with the symmetric anisotropic surface energy, i.e.,

γ(−n) = γ(n), ∀n = (n1, n2)
T ∈ S1. (2.1)

The first step and the most simple case is to consider the motion of a planar

curve Γ in 2D – that instead of applying the general global parameterization, we

can adapt the arc-length parameterization s. Let T = R/Z = [0, 1] be the periodic

unit interval and we parameterize the evolution curves Γ(t) as

Γ(t) := X(ρ, t) = (x(ρ, t), y(ρ, t))T : T× R+ → R2. (2.2)

The arc-length parameter s is given by s(ρ, t) =
∫ ρ
0
|∂qX| dq with its derivative

∂ρs = |∂ρX|. By the introduced time-independent variable ρ, the evolving curve

Γ(t) can then be parameterized over a fixed domain ρ ∈ T = [0, 1]. Based on the

arc-length parameterization, the unit tangent vector τ is ∂sX, and the outward

normal vector n = −τ⊥. Moreover, the weighted mean curvature µ has an elegant

formulation µ = −∂sξ⊥ ·n in 2D, see (1.13). Thus, the anisotropic surface diffusion

22
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(1.22) is given as n · ∂tX = ∂ss µ, ρ ∈ Γ0, t > 0, (2.3a)

µ = −∂s(ξ⊥) · n, ξ = ∇γ(p)
∣∣
p=n

. (2.3b)

In this Chapter, for the symmetric anisotropic surface energy, we introduce a

symmetrized SP-PFEM for anisotropic surface diffusion and prove its energy stabil-

ity. We first summarize the commonly-used symmetric anisotropic surface energies

and introduce the functional space. Then we introduce the symmetrized surface en-

ergy matrix Zk(n) to derive a symmetrized conservative weak formulation for (2.3).

After that, we employ the PFEM to derive the full discretization. We then prove the

energy stability and discuss the minimal value of the stabilizing term k(n). Finally,

extensive numerical results are shown to demonstrate the desired property of our

symmetrized SP-PFEM.

2.1 Mathematical formulation for ASD in two di-

mensions

2.1.1 Some anisotropic surface energies and their ξ-vectors

Here we list the commonly used symmetric γ(n) with their ξ-vector, eigenvalues

of the Hessian and Hessian as follows:

• the Riemannian metric anisotropic surface energy [17,33]

γ(n) =
√
nTGn, ∀n = (n1, n2)

T ∈ S1, (2.4)

where G ∈ R2×2 is a symmetric positive definite matrix. We have

γ(p) =
√
pTGp, ∀p ∈ R2

∗ := R2 \ {0}, (2.5)

ξ = ξ(n) = γ(n)−1Gn, λ(n) = γ(n)−3 det(G) > 0, (2.6)

which indicates the Riemannian metric anisotropy is always weakly anisotropic.
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• the lr-norm (r ≥ 2) metric anisotropic surface energy [36,55]

γ(n) = ∥n∥lr = (|n1|r + |n2|r)
1
r , ∀n = (n1, n2)

T ∈ S1, (2.7)

where 1 < r <∞. We have

γ(p) = ∥p∥lr = (|p1|r + |p2|r)
1
r , ∀p = (p1, p2)

T ∈ R2
∗, (2.8)

ξ = ξ(n) = γ(n)1−r

|n1|r−2n1

|n2|r−2n2

 , λ(n) = (r − 1)
|n1n2|r−2

γ(n)2r−1
, ∀n ∈ S1,

(2.9)

which indicates the lr-norm (r ≥ 2) metric anisotropy is always weakly anisotropic.

• the m-fold anisotropic surface energy [10,96,113,145]

γ(n) = 1 + β cos(m(θ − θ0)), ∀n = (− sin θ, cos θ)T ∈ S1, (2.10)

where m = 2, 4, 6, θ0 ∈ [−π, π] is a constant, and β ≥ 0 is a dimensionless

anisotropic strength constant. When θ0 = 0, we have

γ(p) =
(
p21 + p22

) 1
2 (1 + β cos(mθ)),∀p = |p|(− sin θ, cos θ)T ∈ R2

∗. (2.11)

Plugging (2.11) into (1.3), we get

ξ = ξ(n) = n+ β cos(mθ)n+ βm sin(mθ)n⊥, n = (− sin θ, cos θ), (2.12)

λ(n) = 1− β(m2 − 1) cos(mθ), (2.13)

which indicates that it is weakly anisotropic if 0 ≤ β ≤ 1
m2−1

; otherwise, it is

strongly anisotropic.

• the regularized l1-norm metric anisotropic surface energy which can be viewed

as a regularization for the non-smooth surface energy γ(n) = |n1|+ |n2| [17,23]

γ(n) =
√
n2
1 + ε2n2

2 +
√
ε2n2

1 + n2
2, ∀n = (n1, n2)

T ∈ S1, (2.14)

where 0 < ε ≪ 1 is a regularization parameter. This regularization is weakly

anisotropic from (2.4).
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For all the above γ(n), their Hessian matrices are of the form:

Hγ(n) = λ(n)

 n2
2 −n1n2

−n1n2 n2
1

 , ∀n = (n1, n2)
T ∈ S1. (2.15)

2.1.2 A symmetric surface energy matrix

In the following subsections, by defining the symmetrized surface energy ma-

trix Zk(n), we present a new conservative and self-adjoint weak formulation of the

weighted mean curvature µ as well as a new symmetrized conservative variational

formulation of (2.3). Finally, we prove the area conservation and energy dissipation

of the new symmetrized conservative weak formulation.

Introducing a symmetric surface energy matrix Zk(n) as

Zk(n) = γ(n)I2 − nξ(n)T − ξ(n)nT + k(n)nnT , ∀n ∈ S1, (2.16)

where k(n) : S1 → R+ is a stabilizing function to be determined later, then we have

Lemma 2.1 (symmetric and conservative form). With the symmetric surface energy

matrix Zk(n) in (2.16), the anisotropic surface diffusion (1.21) can be reformulated

as {
n · ∂tX = ∂ssµ, (2.17a)

µn = −∂s(Zk(n)∂sX). (2.17b)

Proof. From (1.3), noting (1.4) and the fact τ = ∂sX,n = τ⊥, we get

ξ⊥ = γ(n)n⊥ + (ξ · τ )τ⊥ = γ(n)τ − (ξ · τ )n. (2.18)

From (2.16), noticing (2.18) and n · τ = 0, we get

Zk(n)∂sX = Zk(n)τ = (γ(n)I2 − nξT − ξnT + k(n)nnT )τ

= γ(n)τ − (ξ · τ )n+ (n · τ ) (k(n)n− ξ) = ξ⊥. (2.19)

Plugging (2.19) into the identity µn = −∂sξ⊥ from [97], we obtain (2.17) immedi-

ately.
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Remark 2.1. When γ(n) ≡ 1 and by taking k(n) ≡ 2 in (2.16), we have µ = κ and

ξ = n, and thus Zk(n) ≡ I2. Then (2.17) collapses to the standard formulation by

PFEM for surface diffusion [16]. Similarly, when γ(n) is chosen as the Riemannian

metric anisotropic surface energy (2.4), by taking k(n) = γ(n)−1Tr(G) with Tr(G)

denoting the trace of G, then (2.17) collapses to the formulation used in [17]. A

similar formulation but without the symmetrizing term −ξ(n)nT and the stabilizing

term k(n) can also be found in [19, (1.18)].

2.1.3 A symmetrized conservative weak formulation

For the closed curve Γ(t), we also introduce the Sobolev space defined as

L2(T) =
{
u : T → R |

∫
Γ(t)

|u(s)|2ds =
∫
T
|u(s(ρ, t))|2∂ρs dρ < +∞

}
, (2.20)

equipped with the L2-inner product(
u, v
)
Γ(t)

:=

∫
Γ(t)

u(s)v(s) ds =

∫
T
u(s(ρ, t))v(s(ρ, t))∂ρs dρ, ∀ u, v ∈ L2(T),

(2.21)

which can be easily extended to [L2(T)]2.

Moreover, we define the Sobolev space

H1(T) :=
{
u : T → R, and u ∈ L2(T), ∂ρu ∈ L2(T)

}
. (2.22)

Multiplying a test function φ(ρ) ∈ H1(T) to (2.17a), and then integrating over

Γ(t) and taking integration by parts, we have(
n · ∂tX, φ

)
Γ(t)

=
(
∂ssµ, φ

)
Γ(t)

= −
(
∂sµ, ∂sφ

)
Γ(t)

. (2.23)

Similarly, by multiplying a test function ω = (ω1, ω2)
T ∈ [H1(T)]2 to (2.17b), we

obtain (
µn,ω

)
Γ(t)

=
(
−∂s(Zk(n)∂sX),ω

)
Γ(t)

=
(
Zk(n)∂sX, ∂sω

)
Γ(t)

. (2.24)

By combining the two weak formulations (2.23) and (2.24), we now get the novel

symmetrized variational formulation for the anisotropic surface diffusion (2.17) (or
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(1.21)) with the initial condition Γ(0) = Γ0. More precisely, for a given initial

curve Γ0 := Γ(0) = X(T, 0) with X(ρ, 0) = X0(L0ρ) ∈ [H1(T)]2, find the solution

Γ(t) := X(T, t), X(·, t) ∈ [H1(T)]2 and µ(·, t) ∈ H1(T) such that:(
n · ∂tX, φ

)
Γ(t)

+
(
∂sµ, ∂sφ

)
Γ(t)

= 0, ∀φ ∈ H1(T), (2.25a)(
µ,n · ω

)
Γ(t)

−
(
Zk(n)∂sX, ∂sω

)
Γ(t)

= 0, ∀ω ∈ [H1(T)]2. (2.25b)

2.1.4 Structure-preserving properties

Let A(t) denote the area (i.e., the region Ω(t) enclosed by the curve Γ(t)) and

W (t) denote the free energy (or weighted length), which are defined as

A(t) :=

∫
Ω(t)

1 dx =

∫ L(t)

0

y(s, t)∂sx(s, t) ds, W (t) :=

∫
Γ(t)

γ(n) ds, t ≥ 0. (2.26)

For the above variational problem (2.25), we have

Proposition 2.1 (area conservation and energy dissipation). The area A(t) of the

solution
(
X(·, t), µ(·, t)

)
∈ [H1(T)]2 × H1(T) defined by the variational problem

(2.25) is conserved, and the energy W (t) is dissipative, i.e.

A(t) ≡ A(0), W (t) ≤ W (t1) ≤ W (0), t ≥ t1 ≥ 0. (2.27)

Proof. The proof of area conservation is similar to the Proposition 2.1 in [109], thus

we omit the details for brevity.

To prove the energy dissipation in (2.27), taking the derivative of W (t) with

respect to t, noting (1.3), (2.19), (2.25b) with ω = ∂tX, and (2.25a) with φ = µ,

and ∂tn = (τ · ∂tn)τ = −(n · ∂s∂tX)τ , we have

Ẇ (t) =
d

dt

∫ L(t)

0

γ(n)ds =
d

dt

∫ 1

0

γ(n)∂ρsdρ =

∫ 1

0

(γ(n)∂t∂ρs+∇γ(n) · ∂tn∂ρs)dρ

=

∫ 1

0

(γ(n)τ − (ξ · τ )n) · ∂s∂tX∂ρs dρ =
(
Zk(n)∂sX, ∂s∂tX

)
Γ(t)

= −
(
∂sµ, ∂sµ

)
Γ(t)

≤ 0,

which implies the energy dissipation in (2.27).
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2.2 The SP-PFEM discretization

2.2.1 Semi-discretization and its properties

Let N > 0 be an integer, the mesh size h = 1/N , the grid points ρj = jh for

j = 0, 1, . . . , N , and the subintervals Ij = [ρj−1, ρj] for j = 1, 2, . . . , N . Then we can

give a uniform partition of the torus T by T = [0, 1] =
⋃N
j=1 Ij. Moreover, the finite

element subspace of H1(T) is given by

Kh = Kh(T) := {uh ∈ C(T) | uh |Ij∈ P1, ∀j = 1, 2, . . . , N},

where P1 stands for the space of polynomials of degree at most 1.

Let the piecewise linear curve Γh(t) := Xh(T, t), Xh(·, t) = (xh(·, t), yh(·, t))T ∈
[Kh]2 be the numerical approximation of Γ(t) := X(T, t), X(·, t) ∈ [H1(T)]2 and the

piecewise linear function µh(·, t) ∈ Kh be the numerical approximation of µ(·, t) ∈
H1(T), where (X(·, t), µ(·, t)) ∈ [H1(T)]2×H1(T) is given by the variational problem

(2.25). Then Γh(t) is formed by ordered vectors {hj(t)}Nj=1 and we assume that for

t ≥ 0, these vectors hj(t) satisfy

hmin(t) := min
1≤j≤N

|hj(t)| > 0, hj(t) := Xh(ρj, t)−Xh(ρj−1, t), ∀j, (2.28)

where |hj(t)| is the length of the vector hj(t) for j = 1, 2, . . . , N .

The outward unit normal vector nh, the unit tangential vector τ h, and the Cahn-

Hoffman ξ-vector ξh of the curve Γh(t) are constant vectors in the interior of each

interval Ij which can be computed by hj(t) as

nh|Ij = −(hj)
⊥

|hj|
:= nh

j , τ h|Ij =
hj
|hj|

:= τ hj , ξh|Ij = ξ(nh
j ) := ξhj . (2.29)

Furthermore, for two scalar-/vector-valued functions u and v in Kh or [Kh]2

respectively, the mass lumped inner product
(
·, ·
)h
Γh over Γh is defined as

(
u, v

)h
Γh :=

1

2

N∑
j=1

|hj|
[(
u · v

)
(ρ−j ) +

(
u · v

)
(ρ+j−1)

]
, (2.30)

where u(ρ±j ) = lim
ρ→ρ±j

u(ρ) for 0 ≤ j ≤ N .
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Suppose Γh(0) := Xh(T, 0), Xh(·, 0) ∈ [Kh]2 is the piecewise linear interpolation

of X0(s), where Xh(ρ = ρj, 0) = X0(s = s0j) with s0j = L0ρj for j = 0, 1, . . . , N .

Now we can state the following spatial semi-discretization of the symmetrized vari-

ational formulation (2.25): for a given initial curve Γh(0) := Xh(T, 0), Xh(·, 0) ∈
[Kh]2, find the solution Γh(t) := Xh(T, t),

Xh(·, t) = (xh(·, t), yh(·, t))T ∈ [Kh]2 and µh(·, t) ∈ Kh, such that(
nh · ∂tXh, φh

)h
Γh

+
(
∂sµ

h, ∂sφ
h
)h
Γh

= 0, ∀φh ∈ Kh, (2.31a)(
µh,nh · ωh

)h
Γh

−
(
Zk(n

h)∂sX
h, ∂sω

h
)h
Γh

= 0, ∀ωh ∈ [Kh]2, (2.31b)

where

Zk(n
h) = γ(nh)I2 − nhξ(nh)T − ξ(nh)(nh)T + k(nh)nh(nh)T

= γ(nh)I2 − nh(ξh)T − ξh(nh)T + k(nh)nh(nh)T .

Let Ah(t) be the area/mass of the interior region of the piecewise linear closed

curve Γh(t), and W h(t) be its energy, which are defined as

Ah(t) =
1

2

N∑
j=1

[xhj (t)− xhj−1(t)][y
h
j (t) + yhj−1(t)], W h(t) =

N∑
j=1

|hj(t)|γ(nh
j ). (2.32)

For the spatial semi-discretization (2.31), we also have

Proposition 2.2 (area/mass conservation and energy dissipation). Let
(
Xh(·, t),

µh(·, t)
)
∈ [Kh]2 × Kh be a solution of the spatial semi-dicsretization (2.31), then

the area/mass Ah(t) is conserved and the energy W h(t) is dissipative, i.e.

Ah(t) ≡ Ah(0) =
1

2

N∑
j=1

[x0(sj)− x0(sj−1)][y0(sj) + y0(sj−1)], t ≥ 0,(2.33)

W h(t) ≤ W h(t1) ≤ W h(0) =
N∑
j=1

|hj(0)| γ(nh
j ), t ≥ t1 ≥ 0. (2.34)

Proof. The proof of area/mass conservation is similar to the Proposition 3.1 in [109],

thus we omit the details for brevity.
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To prove the energy dissipation (2.34), noticing nh
j ·nh

j = 1 and nh
j · τ hj = 0, we

have

2ṅh
j · nh

j = 0, ṅh
j · τ hj + τ̇ hj · nh

j = 0; 1 ≤ j ≤ N, (2.35)

which immediately implies

ṅh
j = (ṅh

j ·nh
j )n

h
j + (ṅh

j · τ hj )τ hj = −(τ̇ hj ·nh
j )τ

h
j = −ḣj · nh

j

|hj|
τ hj , 1 ≤ j ≤ N. (2.36)

Differentiating W h(t) in (2.32) with respect to t, noticing (2.35) and (2.36), we

obtain

Ẇ h(t) =
d

dt

(
N∑
j=1

|hj(t)| γ(nh
j )

)
=

N∑
j=1

(
γ(nh

j )
d

dt
|hj(t)|+∇γ(nh

j ) · ṅh
j |hj(t)|

)

=
N∑
j=1

(
γ(nh

j )τ
h
j · ḣj(t)−∇γ(nh

j ) · τ hj nh
j · ḣj(t)

)
=

N∑
j=1

|hj(t)|
(
γ(nh

j )τ
h
j −∇γ(nh

j ) · τ hj nh
j

)
· ḣj(t)

|hj(t)|
. (2.37)

Noting

∂sX
h
∣∣
Ij
=

hj(t)

|hj(t)|
, ∂s∂tX

h
∣∣
Ij
=

1

|hj(t)|
∂tX

h
∣∣
Ij
=

ḣj(t)

|hj(t)|
, 1 ≤ j ≤ N, (2.38)

and using (2.31b) with ωh = ∂tX
h and (2.31a) with φh = µh, we get

Ẇ h(t) =
N∑
j=1

|hj(t)|
(
Zk(n

h
j )τ

h
j

)
· ḣj(t)

|hj(t)|

=
N∑
j=1

|hj(t)|
(
Zk(n

h
j ) ∂sX

h
∣∣
Ij

)
·
(
∂s∂tX

h
)∣∣
Ij

=
(
Zk(n

h
j )∂sX

h, ∂s∂tX
h
)h
Γh

=
(
µh,nh · ∂tXh

)h
Γh

= −
(
∂sµ

h, ∂sµ
h
)h
Γh

≤ 0, t ≥ 0, (2.39)

which implies the energy dissipation in (2.34).
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2.2.2 Full-discretization

Let τ > 0 be the time step size, and tm = mτ be the discrete time levels for each

m ≥ 0. Let Γm ≜ Γh,m = Xm(T), Xm(·) = (xm(·), ym(·))T ∈ [Kh]2 is the numerical

approximation of Γh(tm) = Xh(T, tm), Xh(·, tm) ∈ [Kh]2 and µm(·) ∈ Kh be the

numerical approximation of µh(·, tm) ∈ Kh for each m ≥ 0, where (Xh(·, t), µh(·, t))
is the solution of the semi-discretization (2.31). Similarly, Γm is formed by the

ordered vectors {hmj }Nj=1 defined by

hmj := Xm(ρj)−Xm(ρj−1), j = 1, 2, . . . , N. (2.40)

Again, for each m ≥ 0, the outward unit normal vector nm, the unit tangential

vector τm, and the Cahn-Hoffman ξ-vector ξm of the curve Γm are constant vectors

in the interior of each interval Ij which can be computed as

nm|Ij = −(hmj )
⊥

|hmj |
:= nm

j , τm|Ij =
hmj
|hmj |

:= τmj , ξm|Ij = ξ(nm
j ) := ξmj . (2.41)

Following the idea in [13, 94] to design a symmetrized SP-PFEM for surface

diffusion, i.e., using the backward Euler method in time and the information of the

curve at current time step and next time step to linearly interpolate the normal

vector, a symmetrized SP-PFEM discretization of (2.31) is given as: for a given

initial curve Γ0 := X0(T), X0(·) ∈ [Kh]2, for m ≥ 0, find the curve Γm+1 :=

Xm+1(T), Xm+1(·) ∈ [Kh]2 and the chemical potential µm+1(·) ∈ Kh, such that(Xm+1 −Xm

τ
· nm+ 1

2 , φh
)h
Γm

+
(
∂sµ

m+1, ∂sφ
h
)h
Γm

= 0, ∀φh ∈ Kh, (2.42a)(
µm+1,nm+ 1

2 · ωh
)h
Γm

−
(
Zk(n

m)∂sX
m+1, ∂sω

h
)h
Γm

= 0, ∀ωh ∈ [Kh]2, (2.42b)

where s is the arclength parameter of Γm, and nm+ 1
2 and Zk(n

m) are defined as

nm+ 1
2 := −1

2

(
∂sX

m + ∂sX
m+1
)⊥

= −1

2

1

|∂ρXm|
(
∂ρX

m + ∂ρX
m+1
)⊥
,(2.43)

Zk(n
m) = γ(nm)I2 − nmξ(nm)T − ξ(nm)(nm)T + k(nm)nm(nm)T

= γ(nm)I2 − nm(ξm)T − ξm(nm)T + k(nm)nm(nm)T , (2.44)
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and for any scalar-/vector-valued function f ∈ Kh or [Kh]2 respectively, we compute

its derivative with respect to the arclength parameter on Γm as ∂sf = |∂ρXm|−1∂ρf .

The above scheme is “weakly implicit” with only one nonlinear term introduced

in (2.42a) and (2.42b), respectively. In particular, the nonlinear term is a polynomial

function of degree at most two with respect to the components of Xm+1 and µm+1.

Again, similar to [13] for surface diffusion, the symmetrized fully-implicit SP-PFEM

(2.42) can be efficiently and accurately solved by the Newton’s iterative method in

practical computations.

Remark 2.2. The choice of nm+ 1
2 in (2.42) plays an essential role in the proof of the

area conservation, but it makes the numerical scheme fully-implicit, i.e. a nonlinear

system has to be solved at each time step. By replacing nm+ 1
2 with nm, we can

easily construct a semi-implicit PFEM, where only a linear system has to be solved

at each time step. Similar to the symmetrized fully-implicit SP-PFEM (2.42), the

symmetrized semi-implicit PFEM can also be proved to be unconditionally energy-

stable if γ(n) satisfies the condition (2.48). Of course, the symmetrized semi-implicit

PFEM does not conserve the area at the fully-discrete level.

2.2.3 Structure-preserving properties

Let Am be the area of the interior region of the piecewise linear closed curve Γm,

and Wm (m ≥ 0) be its energy, which are defined as

Am :=
1

2

N∑
j=1

(
xmj − xmj−1

) (
ymj + ymj−1

)
, Wm := W (Γm) =

N∑
j=1

|hmj |γ(nm
j ). (2.45)

Denote

F (n, n̂) =
γ(n̂)2 − γ(n)2 + 2γ(n)(ξ · n̂⊥)(n · n̂⊥)

γ(n)(n · n̂⊥)2
, ∀n ̸= ±n̂ ∈ S1. (2.46)

The minimal stabilizing function k0(n) : S1 → R+ is given as

k0(n) := max
n̂∈S1n

F (n, n̂), with S1
n :=

{
n̂ ∈ S1 | n̂ · n ≥ 0

}
, n ∈ S1. (2.47)
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And our main result is the area conservation and unconditional energy stability

in the fully-discrete level, which is stated as follows

Theorem 2.1 (area conservation and energy stablility). Suppose γ(n) is an even

function that satisfies the following energy-stable condition:

γ(−n) = γ(n), ∀n ∈ S1, γ(p) ∈ C2(R2
∗). (2.48)

Then we can choose k(n) ≥ k0(n) in (2.42). Let (Xm(·), µm(·)) ∈ [Kh]2 × Kh

be a solution of the symmetrized SP-PFEM (2.42), then the area Am in (2.45) is

conserved and the surface energy Wm is decreasing, i.e.

Am ≡ A0 =
1

2

N∑
j=1

(
x0j − x0j−1

) (
y0j + y0j−1

)
, m ≥ 0. (2.49)

Wm+1 ≤ Wm ≤ . . . ≤ W 0 =
N∑
j=1

|h0
j | γ(n0

j), ∀m ≥ 0. (2.50)

Proof of area conservation

Define Γh(α) = Xh(·, α) as the linear conbination of Xm and Xm+1 as

Xh(·, α) := (1− α)Xm(·) + αXm+1(·),

when α = 0, Γh(α) goes to Γm; and Γh(α) goes to Γm+1 if α = 1.

Denote the enclosed area by Γh(α) as A(α). By applying the Reynolds transport

theorem to A(α) ( [13, Theorem 2.1]), we obtain that

dA(α)

dα
=

∫
Γh(α)

∂αX
h · nh ds

=

∫
Γm

(Xm+1 −Xm) · (−[(1− α)∂sX
m + α∂sX

m+1]⊥) ds

Integrate dA(α)
dα

from α = 0 to α = 1, we obtain

A(1)− A(0) =
(
(Xm+1 −Xm) · nm+ 1

2 , 1
)h
Γm

By taking φh = 1 in (2.42a), we obtain Am+1 = Am, which leads to the area

conservation.

We leave the proof of the existence of k0(n) as well as the energy stability to the

next section.
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Remark 2.3. In practical computations, if one does not want to solve a nonlinear

coupled system at every time step, we also propose the following semi-implicit sym-

metrized energy-stable PFEM (ES-PFEM) discretization of (2.31) : for a given

Γ0 := Γh(0) ∈ [Kh]2, for m ≥ 0, find the closed curve Γm+1 := Xm+1(·) =

(xm+1(·), ym+1(·))T ∈ [Kh]2 and a chemical potential µm+1(·) ∈ Kh, such that(Xm+1 −Xm

τ
· nm, φh

)h
Γm

+
(
∂sµ

m+1, ∂sφ
h
)h
Γm

= 0, ∀φh ∈ Kh, (2.51a)(
µm+1,nm · ωh

)h
Γm

−
(
Zk(n

m)∂sX
m+1, ∂sω

h
)h
Γm

= 0, ∀ωh ∈ [Kh]2. (2.51b)

Similar to the Theorem 4.1 in [109], we can prove the well-posedness result of

the symmetrized ES-PFEM (2.51) under the same assumptions in [109, Theorem

4.1]. The only difference is here we use the positive definiteness of Zk(n) instead

of the G(θ) in [109].

2.3 Proof of energy dissipation

In this section, we show first show under the condition (2.48) on γ(n) is satisfied,

the minimal stabilizing function k0(n) (2.47) is well defined, then prove the energy

dissipation of the symmetrized SP-PFEM (2.42).

2.3.1 The stabilizing function

The function F (n, n̂) is continuous for n ̸= ±n̂. Thus to show the maximum in

(2.47) is finite, it suffices to extent the definition of F (n, n̂) to n = ±n̂.

Theorem 2.2 (existence of limit). For γ(p) ∈ C2(R2
∗), we have

lim
n̂→n
n̂∈S1

F (n, n̂) = (n⊥)THγ(n)n
⊥ +

|ξ|2
γ(n)

, ∀n ∈ S1. (2.52)

Proof. Plugging the vector decomposition γ(n) = ξ·n = (ξ·n̂⊥)(n·n̂⊥)+(ξ·n̂)(n·n̂)
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and 1 = n · n = (n · n̂⊥)2 + (n · n̂)2 into (2.46), we get

F (n, n̂) =
γ(n̂)2 − γ(n)2 + 2γ(n)2 − 2γ(n)(ξ · n̂)(n · n̂)

γ(n)|n− n̂|2(1− |n− n̂|2/4)

=
γ(n̂)2 + γ(n)2 − 2γ(n)(ξ · n̂)(1− |n− n̂|2/2)

γ(n)|n− n̂|2(1− |n− n̂|2/4)

=
1

1− |n− n̂|2/4

[
γ(n̂)2 − γ(n)2 − 2γ(n)(ξ · (n̂− n))

γ(n)|n− n̂|2 + ξ · n̂
]
. (2.53)

Here we use the following equality

n · n̂ =
|n|2 + |n̂|2 − |n− n̂|2

2
= 1− |n− n̂|2

2
.

Under the condition γ(p) ∈ C2(R2
∗), using Taylor expansion and noting ∇γ(p)2 =

2γ(p)∇γ(p) and ξ = ∇γ(p)|p=n, we obtain

γ(p)2−γ(n)2−2γ(n)ξ ·(p−n) = (p−n)T
[
γ(n)Hγ(n) + ξξT

]
(p−n)+o(|p−n|2).

For any n ∈ S1, noting that

lim
p→n+

p∈S1

p− n

|p− n| = n⊥, lim
p→n−

p∈S1

p− n

|p− n| = −n⊥,

where p → n+/n− means p · n⊥ ≥ 0/ ≤ 0, respectively. We then get

lim
p→n+

p∈S1

(p− n)T
[
γ(n)Hγ(n) + ξξT

]
(p− n)

|p− n|2 = (n⊥)T
[
γ(n)Hγ(n) + ξξT

]
n⊥,

lim
p→n−

p∈S1

(p− n)T
[
γ(n)Hγ(n) + ξξT

]
(p− n)

|p− n|2 = −(n⊥)T
[
γ(n)Hγ(n) + ξξT

]
(−n⊥)

= (n⊥)T
[
γ(n)Hγ(n) + ξξT

]
n⊥,

thus we have

lim
p→n
p∈S1

γ(p)2 − γ(n)2 − 2γ(n)ξ · (p− n)

|p− n|2 = (n⊥)T
[
γ(n)Hγ(n) + ξξT

]
n⊥

= γ(n) (n⊥)THγ(n)n
⊥ + (ξ · n⊥)2. (2.54)
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Combining (2.53) and (2.54), noting (1.3) to get γ(n) = ξ · n, we obtain

lim
n̂→n
n̂∈S1

F (n, n̂) =
1

γ(n)
lim
p→n
p∈S1

γ(p)2 − γ(n)2 − 2γ(n)ξ · (p− n)

|p− n|2 + ξ · n

= (n⊥)THγ(n)n
⊥ +

(ξ · n⊥)2

γ(n)
+ ξ · n

= (n⊥)THγ(n)n
⊥ +

|ξ|2
γ(n)

. (2.55)

The proof is completed.

Under the condition (2.48), for any n ∈ S1, it is easy to see that F (n, n̂) is a

continuous function for n̂ ∈ S1 with n̂ ̸= −n. Furthermore, if γ(n) = γ(−n), then

we know F (n, n̂) ∈ C1(S1 × S1). This, together with the above Theorem, suggests

us to define the following

Theorem 2.3 (existence of stabilizing function). Under the condition (2.48) on

γ(n) and assume k(n) ≥ k0(n) for n ∈ S1 in (2.16), we have

γ(n)[(n̂⊥)TZk(n)n̂
⊥] ≥ γ(n̂)2, ∀n, n̂ ∈ S1. (2.56)

In addition, we have an alternative definition of k0(n) in (2.47) as

k0(n) = inf
{
k(n) | γ(n)[(n̂⊥)TZk(n)n̂

⊥] ≥ γ(n̂)2, ∀n̂ ∈ S1
}
, n ∈ S1. (2.57)

Proof. Assume k(n) ≥ k0(n) for n ∈ S1. For any n ∈ S1, when n̂ ∈ S1
n, i.e.

n̂ · n ≥ 0, plugging (2.16) into the left hand of (2.56), noting (2.46) and (2.47), we

have

γ(n)[(n̂⊥)TZk(n)n̂
⊥] = γ(n)2 − 2γ(n)(ξ · n̂⊥)(n · n̂⊥) + γ(n)k(n)(n · n̂⊥)2

≥ γ(n)2 − 2γ(n)(ξ · n̂⊥)(n · n̂⊥) + γ(n)k0(n)(n · n̂⊥)2

≥ γ(n)2 − 2γ(n)(ξ · n̂⊥)(n · n̂⊥) + γ(n)F (n, n̂)(n · n̂⊥)2

= γ(n̂)2. (2.58)

On the other hand, when n̂ ·n < 0, then −n̂ ·n > 0, from (2.58) by replacing n̂ by

−n̂ and noting γ(−n̂) = γ(n̂), we have

γ(n)[(n̂⊥)TZk(n)n̂
⊥] = γ(n)[(−n̂⊥)TZk(n)(−n̂⊥)] ≥ γ(−n̂)2 = γ(n̂)2. (2.59)
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Combining (2.58) and (2.59), we get (2.56) immediately.

From the above proof, it is easy to see that

γ(n)[(n̂⊥)TZk0(n)n̂
⊥] ≥ γ(n̂)2, ∀n, n̂ ∈ S1,

which implies

k0(n) ≥ inf
{
k(n) | γ(n)[(n̂⊥)TZk(n)n̂

⊥] ≥ γ(n̂)2, ∀n̂ ∈ S1
}
, ∀n ∈ S1.

(2.60)

On the other hand, suppose Zk(n) satisfies (2.56), then we have

γ(n)
(
γ(n)− 2(ξ · n̂⊥)(n · n̂⊥) + k(n)(n · n̂⊥)2

)
≥ γ(n̂)2, ∀n̂ ∈ S1

n, (2.61)

which implies

k(n) ≥ γ(n̂)2 − γ(n)2 + 2γ(n)(ξ · n̂⊥)(n · n̂⊥)

γ(n)(n · n̂⊥)2
= F (n, n̂), ∀n̂ ∈ S1

n. (2.62)

By condition (2.48), this inequality holds for all n̂ ∈ S1. Thus we get k(n) ≥ k0(n),

which implies

k0(n) ≤ inf
{
k(n) | γ(n)[(n̂⊥)TZk(n)n̂

⊥] ≥ γ(n̂)2, ∀n̂ ∈ S1
}
, ∀n ∈ S1.

(2.63)

Combining (2.60) and (2.63), we obtain (2.57) immediately.

Remark 2.4. Assume n = (− sin θ, cos θ)T (θ ∈ [−π, π]) and n̂ = (− sin θ̂, cos θ̂)T ,

then the problem to find the minimal stabilizing function k0(n) defined in (2.47) can

be reformulated as an optimization problem in term of the single variable θ̂, i.e.,

k̃0(θ) := k0(n) = k0(− sin θ, cos θ) = max
θ̂∈[θ−π

2
,θ+π

2
]
F̃ θ(θ̂), −π ≤ θ ≤ π, (2.64)

where

F̃ θ(θ̂) := F (n, n̂) =
γ̄(θ̂)2 − γ̄(θ)2 − 2γ̄(θ)γ̄′(θ) cos(θ̂ − θ) sin(θ̂ − θ)

γ̄(θ) sin2(θ̂ − θ)
+ 2γ̄(θ),

(2.65)

with γ̄(θ) := γ(n) = γ(− sin θ, cos θ) and γ̄(θ̂) := γ(n̂) = γ(− sin θ̂, cos θ̂) by noting

ξ = ξ(n) = γ̄(θ)n − γ̄′(θ)n⊥. Thus for a given n (or θ), we can obtain k0(n) (or

k̃0(θ)) by numerically solving the above single-variable optimization problem (2.64).
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Corollary 2.1 (positivity of the minimal stabilizing function). Assume (2.56) is

satisfied, then Zk(n) is a symmetric positive definite matrix and

γ(−n) = γ(n), k0(n) > 0, ∀n ∈ S1. (2.66)

Proof. Taking n̂ = −n in (2.56), noting the first equality in (2.58), we get γ(n)2 ≥
γ(−n)2 which suggests γ(−n)2 ≥ γ(−(−n))2 = γ(n)2, and thus we obtain the

first equality in (2.66) since γ(n) > 0. From (2.56), we get Zk(n) is symmetric

positive definite, which implies k(n) = Tr(Zk(n)) ≥ k0(n) = Tr(Zk0(n)) > 0 for

n ∈ S1.

If we consider from the anisotropic surface energy γ(n) to its corresponding

minimal stabilizing function k0(n) defined in (2.57) (or (2.47)) as a mapping, then

it is a sub-linear mapping, i.e., positively homogeneous and subadditive.

Lemma 2.2 (positive homogeneity and subadditivity). Assume k0(n), k1(n) and

k2(n) be the minimal stabilizing functions for the anisotropic surface energies γ(n),

γ1(n) and γ2(n), respectively, then we have

(i) if γ1(n) = c γ(n) with c > 0, then k1(n) = c k0(n) for n ∈ S1, and

(ii) if γ(n) = γ1(n) + γ2(n), then k0(n) ≤ k1(n) + k2(n) for n ∈ S1.

Proof. From (1.3), we get

ξ = ∇γ(p)
∣∣
p=n

, ξ1 = ∇γ1(p)
∣∣
p=n

, ξ2 = ∇γ2(p)
∣∣
p=n

. (2.67)

(i) If γ1(n) = c γ(n), we get ξ1 = c ξ. This, together with (2.46), implies

F1(n, n̂) =
γ1(n̂)

2 − γ1(n)
2 + 2γ1(n)(ξ1 · n̂⊥)(n · n̂⊥)

γ1(n)(n · n̂⊥)2
= c F (n, n̂). (2.68)

Combining (2.68) and (2.47), we obtain the positive homogeneity immediately.

(ii) If γ(n) = γ1(n) + γ2(n), then ξ = ξ1 + ξ2, thus we have

Zk1+k2(n) = γ(n)I2 − ξnT − nξT + (k1(n) + k2(n))nn
T

= Z
(1)
k1
(n) +Z

(2)
k2
(n),
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where

Z
(1)
k1
(n) = γ1(n)I2 − ξ1n

T − n(ξ1)
T + k1(n)nn

T ,

Z
(2)
k2
(n) = γ2(n)I2 − ξ2n

T − n(ξ2)
T + k2(n)nn

T .

By using Cauchy inequality, we get

γ(n)[(n̂⊥)TZk1+k2(n)n̂
⊥]

≥
(√

γ1(n)[(n̂
⊥)TZ

(1)
k1
(n)n̂⊥] +

√
γ2(n)[(n̂

⊥)TZ
(2)
k2
(n)n̂⊥]

)2

≥ (γ1(n̂) + γ2(n̂))
2 = γ(n̂)2. (2.69)

Combining (2.69) and (2.57), we get k0(n) ≤ k1(n) + k2(n) for n ∈ S1.

2.3.2 The proof

For the symmetrized SP-PFEM (2.42) , we have:

Theorem 2.4 (energy dissipation). Assume the surface energy matrix Zk(n) satis-

fies (2.56), then the symmetrized SP-PFEM (2.42) is unconditionally energy stable,

i.e. for any τ > 0, we have

Wm+1 ≤ Wm ≤ . . . ≤ W 0 =
N∑
j=1

|h0
j | γ(n0

j), ∀m ≥ 0. (2.70)

Proof. Under (2.56), we know that Zk(n) is symmetric positive definite. Thus we

have(
Zk(n)u,u− v

)
≥ 1

2

(
Zk(n)u,u

)
− 1

2

(
Zk(n)v,v

)
, ∀u,v ∈ R2. (2.71)

Using (2.19) and ξ · n = γ(n), we get

(∂sX
m)TZk(n

m)∂sX
m = τm · (ξm)⊥ = γ(nm). (2.72)
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Combining (2.72) and (2.71), noting Zk(n) satisfies (2.56), we obtain(
Zk(n

m)∂sX
m+1, ∂sX

m+1 − ∂sX
m
)h
Γm

+

∫
Γm

γ(nm)ds

≥ 1

2

(
Zk(n

m)∂sX
m+1, ∂sX

m+1
)h
Γm

+
1

2

∫
Γm

γ(nm)ds

=
N∑
j=1

(
hm+1
j

)T
Zk(n

m
j )h

m+1
j + γ(nm

j )|hmj |2
2|hmj |

≥
N∑
j=1

|hm+1
j |

√((
nm+1
j

)⊥)T
Zk(nm

j )
(
nm+1
j

)⊥
γ(nm

j )

≥
N∑
j=1

|hm+1
j |

√
γ2(nm+1

j )

γ(nm
j )

γ(nm
j ) =

N∑
j=1

|hm+1
j |γ(nm+1

j ) =

∫
Γm+1

γ(nm+1)ds. (2.73)

Taking φh = µm+1 in (2.42a) and ωh = Xm+1 −Xm in (2.42b) and combining the

inequality (2.73), we get

Wm+1 −Wm =

∫
Γm+1

γ(nm+1)ds−
∫
Γm

γ(nm)ds

≤
(
Zk(n

m)∂sX
m+1, ∂sX

m+1 − ∂sX
m
)h
Γm

= −τ
(
∂sµ

m+1, ∂sµ
m+1
)h
Γm

≤ 0, ∀m ≥ 0, (2.74)

which implies the energy dissipation (2.70) for the symmetrized SP-PFEM (2.42).

Combining Theorems 2.3 and 2.4, finally we have

Corollary 2.2 (energy dissipation). Assume γ(n) satisfies (2.48) and taking k(n) ≥
k0(n) in (2.16), then the symmetrized SP-PFEM (2.42) is unconditionally energy

stable.

2.3.3 Explicit formulas for the minimal stabilizing function

Here we give explicit formulas of the minimal stabilizing function k0(n) for sev-

eral popular anisotropic surface energies γ(n) in applications. Denote

J =

0 −1

1 0

 , Z0(n) =

 1 n1n2

n1n2 1

 , ∀n =

n1

n2

 ∈ S1.
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Lemma 2.3 (Riemannian metric). When γ(n) is taken as the Riemannian metric

anisotropic surface energy (2.4), we have

k0(n) = γ(n)−1Tr(G), Zk0(n) = γ(n)−1JTGJ , ∀n ∈ S1. (2.75)

Proof. First we assume G = ( a bb c ) with a > 0 and ac − b2 > 0, then the minimal

stabilizing function k0(n) becomes

γ(n)−1Tr(G) = γ(n)−1(a+ c) := k1(n). (2.76)

By using ξ in (2.5), the corresponding surface energy matrix with respect to k1(n)

can be given as

Zk1(n) = γ(n)I2 − ξnT − nξT + k1(n)nn
T

= γ(n)I2 − γ(n)−1GnnT − γ(n)−1nnTG+ γ(n)−1(a+ c)nnT

= γ(n)−1

 γ(n)2 − 2(an2
1 + bn1n2) + (a+ c)n2

1 ∗
−(an1n2 + bn2

2)− (bn2
1 + cn1n2) + (a+ c)n1n2 ∗


= γ(n)−1

 c −b
−b a

 = γ(n)−1JTGJ , (2.77)

where the ∗ means the entry can be deduced in the same way. By direct computa-

tions, we obtain

γ(n) (n̂⊥)TZk1(n)n̂
⊥ − γ(n̂)2 = (n̂⊥)TJTGJn̂⊥ − γ(n̂)2

= n̂TGn̂− γ(n̂)2 = 0.

From the alternative definition of k0(n) in (2.57), we obtain k0(n) ≤ k1(n) =

γ(n)−1(a+ c).

On the other hand, we take n̂ → n in F (n, n̂). By applying (2.52) and the
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Hessian matrix derived in (2.5) and (2.15), we then have

(n⊥)THγn
⊥ +

|ξ|2
γ(n)

= γ(n)−3
(
(ac− b2)(n4

2 + 2n2
1n

2
2 + n4

1) + (an1 + bn2)
2 + (bn1 + cn2)

2
)

= γ(n)−3(ac+ a2n2
1 + 2abn1n2 + 2acn1n2 + c2n2

2)

= γ(n)−3(an2
1 + 2bn1n2 + cn2

2)(a+ c)

= γ(n)−1(a+ c) = k1(n),

which means k0(n) ≥ k1(n) = γ(n)−1(a+c) by (2.47), hence k0(n) = γ(n)−1Tr(G).

Remark 2.5. By taking k(n) = k0(n) in (2.16) and using the semi-implicit dis-

cretization nm instead of nm+ 1
2 , the SP-PFEM (2.42) collapses to the BGN formu-

lation used in [17].

Lemma 2.4 (lr-norm metric). When γ(n) is taken as the lr-norm metric anisotropic

surface energy (2.7), we have

(i) when r = 4, k0(n) = 2γ(n)−3 and Zk0(n) = γ(n)−3Z0(n), and

(ii) when r = 6, k0(n) = 2γ(n)−5(n4
1 + n2

1n
2
2 + n4

2).

Proof. (i) When r = 4, a direct computation shows

γ(n) (n̂⊥)TZk0(n)n̂
⊥ − γ(n̂)2

=
1− 2n1n2n̂1n̂2√

n4
1 + n4

2

−
√
n̂4
1 + n̂4

2

=
(n2

1 + n2
2)

2 + (n̂2
1 + n̂2

2)
2 − 4n1n2n̂1n̂2 − 2

√
n̂4
1 + n̂4

2

√
n4
1 + n4

2

2
√
n4
1 + n4

2

≥ (n2
1 + n2

2)
2 + (n̂2

1 + n̂2
2)

2 − 4n1n2n̂1n̂2 − n4
1 − n4

2 − n̂4
1 − n̂4

2

2
√
n4
1 + n4

2

=
(n1n2 − n̂1n̂2)

2√
n4
1 + n4

2

≥ 0, ∀n, n̂ ∈ S1.
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By Theorem 2.3, we get k0(n) ≤ 2γ(n)−3. On the other hand, by taking n̂ =

(n2, n1)
T ∈ S1 in (2.46) and the ξ vector given in (2.9), we obtain

F (n, n̂) =
2γ(n)(γ(n)−3(n3

1, n
3
2) · (−n1, n2))(−n2

1 + n2
2)

γ(n)(−n2
1 + n2

2)
2

= 2γ(n)−3 (−n2
1 + n2

2)
2(n2

2 + n2
1)

(−n2
1 + n2

2)
2

= k0(n).

By (2.47), we know that k0(n) ≥ 2γ(n)−3, hence k0(n) = 2γ(n)−3.

(ii) When r = 6, a direct computation shows

γ(n) (n̂⊥)TZk0(n)n̂
⊥ − γ(n̂)2

= γ(n)−4 (1− n2
1n

2
2 − 2n1n2n̂1n̂2)− 3

√
n̂6
1 + n̂6

2

= γ(n)−4

(
1− n2

1n
2
2 − 2n1n2n̂1n̂2 − 3

√
(n6

1 + n6
2)

2(n̂6
1 + n̂6

2)

)
≥ γ(n)−4

(
2(n2

1 + n2
2)

3 + (n̂2
1 + n̂2

2)
3

3
− n2

1n
2
2 − 2n1n2n̂1n̂2 −

2(n6
1 + n6

2) + (n̂6
1 + n̂6

2)

3

)
= γ(n)−4

(
6n4

1n
2
2 + 6n2

1n
4
2 + 3n̂4

1n̂
2
2 + 3n̂2

1n̂
4
2

3
− n2

1n
2
2 − 2n1n2n̂1n̂2

)
= γ(n)−4

(
2n2

1n
2
2(n

2
1 + n2

2) + n̂2
1n̂

2
2(n̂

2
1 + n̂2

2)− n2
1n

2
2 − 2n1n2n̂1n̂2

)
= γ(n)−4(n1n2 − n̂1n̂2)

2 ≥ 0, ∀n, n̂ ∈ S1.

By Theorem 2.3, we get k0(n) ≤ 2γ(n)−5(n4
2 + n2

2n
2
1 + n4

1). On the other hand, by

taking n̂ = (n2, n1)
T ∈ S1 in (2.46) and the ξ vector given in (2.9), we obtain

F (n, n̂) =
2γ(n)(γ(n)−5(n5

1, n
5
2) · (−n1, n2))(−n2

1 + n2
2)

γ(n)(−n2
1 + n2

2)
2

= 2γ(n)−5 (−n2
1 + n2

2)
2(n4

2 + n2
2n

2
1 + n4

1)

(−n2
1 + n2

2)
2

= k0(n).

By (2.47), we know that k0(n) ≥ 2γ(n)−5(n4
2 + n2

2n
2
1 + n4

1), hence k0(n) =

2γ(n)−5(n4
2 + n2

2n
2
1 + n4

1).

Lemma 2.5 (m-fold). When γ(n) is taken as the m-fold anisotropy (2.10), we have

(i) when γ(n) = 1 + β cos 2θ, then

k0(n) = 4− 2γ(n) +
4β2

γ(n)
; and (2.78)
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(ii) when γ(n) = 1 + β cos 4θ, then

k0(n) ≤ 2γ(n) +
16β + 16β2

γ(n)
: k1(n). (2.79)

Proof. For the m-fold anisotropy γ̄(θ) = γ(n) = 1+β cosmθ, we know that γ̄′(θ) =

−mβ sinmθ. The F̃ θ(θ̂) given in (2.65) is

F̃ θ(θ̂) =2(1 + β cosmθ)

+
(1 + β cosmθ̂)2 − (1 + β cosmθ)2

(1 + β cosmθ) sin2(θ̂ − θ)
+
mβ sinmθ sin(2(θ̂ − θ))

sin2(θ̂ − θ)
. (2.80)

(i) For the 2-fold anisotropy, i.e. m = 2, by applying Mathematica to (2.80), we

get

F̃ θ(θ̂) = 4− 2(1 + β cos 2θ) +
2β2(1− cos 2(θ̂ + θ))

1 + β cos 2θ
. (2.81)

Thus by (2.64) in Remark 2.4, we obtain

k0(n) = max
θ̂∈[θ−π

2
,θ+π

2
]
F̃ θ(θ̂) ≤ 4− 2γ(n) +

4β2

γ(n)
. (2.82)

On the other hand, by taking θ̂ = π
2
− θ in (2.81), we obtain

F̃ θ(
π

2
− θ) = 4− 2γ(n) +

4β2

γ(n)
≤ k0(n). (2.83)

By combining (2.82) and (2.83), we know k0(n) = 4 − 2γ(n) + 4β2

γ(n)
, which valids

(2.78).

(ii) For the 4-fold anisotropy, i.e. m = 4, by applying Mathematica to (2.80), we

get

F̃ θ(θ̂) =2γ(n)− 16β cos(θ̂ − θ) cos(θ̂ + 3θ)

γ(n)

− 4β2 cos(θ̂ − θ)(2 cos(θ̂ + 7θ) + cos(3θ̂ + 5θ) + cos(5θ̂ + 3θ))

γ(n)
. (2.84)

Thus by (2.64) in Remark 2.4, we obtain

k0(n) = max
θ̂∈[θ−π

2
,θ+π

2
]
F̃ θ(θ̂) ≤ 2γ(n) +

16β + 16β2

γ(n)
= k1(n), (2.85)

which valids (2.79).
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2.4 Numerical results

In this section, we numerically implement the symmetrized SP-PFEM (2.42)

for simulating the evolution of closed curves under anisotropic surface diffusion.

Numerical results demonstrate the high performance of the proposed scheme, e.g.,

the spatial/temporal convergence rates, energy dissipation, area conservation, and

asymptotic quasi-uniform mesh distribution. Here, the distance between two closed

curves Γ1 and Γ2 is measured by the manifold distance M(Γ1,Γ2) which was intro-

duced in the reference [155].

Since formally the scheme is first-order accurate in time and second-order ac-

curate in space, the mesh size h and the time step τ are chosen as τ = O(h2),

e.g. τ = h2, except where noted. Let Γm be the numerical approximation of

Γh(t = tm = mτ) with mesh size h and time step τ , the numerical error is then

measured as

eh(tm) :=M(Γm,Γ(t = tm)), m ≥ 0. (2.86)

Because the exact solution can not be obtained analytically, we choose fine meshes

h = he, τ = τe to obtain Γ(t = tm) numerically, e.g. he = 2−8 and τe = 2−16.

The normalized area loss and the mesh ratio Rh(tm), which indicates the mesh

quality during evolution, are defined as

∆Ah(tm)

Ah(0)
:=

Ah(tm)− Ah(0)

Ah(0)
, Rh(tm) :=

max1≤j≤N |hmj |
min1≤j≤N |hmj |

, m ≥ 0, (2.87)

where Ah(tm) is the area of the inner region enclosed by Γm.

In the following simulations, the initial shape is always chosen as an ellipse with

length 4 and width 1 except where noted, and the tolerance of the Newton iteration

in the SP-PFEM (2.42) is chosen as 10−12.

2.4.1 Convergence rates and energy dissipation

In order to test convergence rates of the symmetrized SP-PFEM (2.42), without

loss of generality, we choose the following two kinds of anisotropic surface energies:
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• Case I: the Riemannian metric anisotropic surface energy (2.4) with G =

diag(1, 2), and the corresponding minimal stabilizing function k0(n) is given

explicitly in (2.75);

• Case II: the lr-norm metric anisotropic surface energy (2.7) with r = 4 and the

corresponding minimal stabilizing function k0(n) is given explicitly in Lemma

2.4.
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Figure 2.1: Spatial convergence rates of the symmetrized SP-PFEM (2.42) for: Case

I at different times with k(n) = k0(n) in (2.75) (a), and at time t = 0.5 for different

k(n) (b); and Case II at different times with k(n) = k0(n) in Lemma 2.4 (c), and

at time t = 0.5 for different k(n) (d).

Fig. 2.1 plots spatial convergence rates of the symmetrized SP-PFEM at different

times under a fixed value k(n) in (2.16) or different values of k(n) under a fixed
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time t = 0.5. Fig. 2.2 depicts time evolution of the normalized area loss and the

normalized energy under different parameters. Fig. 2.3 depicts time evolution of the

mesh ratio Rh(t) under different mesh sizes h, time steps τ and k(n) for the above

two cases.

From Figs. 2.1–2.3, we can obtain the following results for the symmetrized

SP-PFEM (2.42) for simulating anisotropic surface diffusion of closed curves:

(i) The symmetrized SP-PFEM is second-order accurate in space (cf. Fig. 2.1);

(ii) The area is conserved numerically up to the round-off error around 10−16 (cf.

Fig. 2.2(a)&(d));

(iii) The number of Newton iteration at each time step is around 2 to 4, thus it

is very efficient (cf. Fig. 2.2(a)&(d));

(iv) The symmetrized SP-PFEM is unconditionally energy-stable when k(n)

satisfies the energy dissipation condition in Theorem 4.5 (cf. Fig. 2.2(b)-(c)&(e)-

(f));

(v) The mesh ratio Rh(t = tm) approaches a constant C when t ≫ 1 for each

case, which indicates asymptotic quasi-uniform mesh distribution, no matter what

kind of anisotropic surface energy is used as long as it is weakly anisotropic.

2.4.2 Application for morphological evolutions

Here, we use the symmetrized SP-PFEM (2.42) to simulate the morphological

evolution under different anisotropic surface energies, i.e., morphological evolutions

of closed curves from a 4 × 1 rectangle towards their corresponding equilibrium

shapes. Fig. 2.4 depicts morphological evolutions for the four different weakly

anisotropic surface energies including (a) the regularized l1-norm metric (2.14) with

ε = 0.1 by taking k(n) = k1(n) :=
1.01√

n2
1+0.01n2

2

+ 1.01√
0.01n2

1+n
2
2

, (b) the l4-norm metric

(2.7) with r = 4 and k(n) = k0(n) given in Lemma 2.4, (c) 2-fold anisotropic energy

(2.10) with m = 2, θ0 =
π
2
and β = 1

3
and k(n) = k0(n) given in (2.78), and (d) the

Riemannian metric (2.4) with G = diag(1, 2) and k(n) = k0(n) given in (2.75). Figs.

2.5 and 2.6 show morphological evolutions and the normalized energy Wh(t)
Wh(0)

under
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Figure 2.2: Time evolution of the normalized area loss ∆Ah(t)
Ah(0)

(first row, blue dashed

line) and iteration number (first row, black line) and the normalized energy Wh(t)
Wh(0)

(second and third rows) for: Case I with k(n) = k0(n) in (2.75) for h = 2−3 (a), and

with h = 2−3 for different τ (b), and with h = 2−3 for different k(n) (c); and Case

II with k(n) = k0(n) in Lemma 2.4 for h = 2−3 (d), and with h = 2−3 for different

τ (e), and with h = 2−3 for different k(n) (f).
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Figure 2.3: Time evolution of the mesh ratio Rh(t) for: Case I with k(n) = k0(n)

in (2.75) for different h (a), and with h = 2−5 for different k(n) (b); and Case II

with k(n) = k0(n) in Lemma 2.4 for different h (c), and with h = 2−5 for different

k(n) (d).
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the 2-fold γ(n) = 1+ 3
5
cos(2θ) and the 4-fold γ(n) = 1+ 3

10
cos(4θ), with k(n) given

in (2.78), (2.79), respectively, which are both strongly anisotropic surface energies.

The Frank diagrams of the above anisotropic energies are all shown in Fig. 2.7.
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Figure 2.4: Morphological evolutions of a close rectangular curve under anisotropic

surface diffusion with different anisotropic surface energies: (a) regularized l1-norm

metric γ(n) =
√
n2
1 + 0.01n2

2+
√

0.01n2
1 + n2

2; (b) l
4-norm metric γ(n) = 4

√
n4
1 + n4

2;

(c) 2-fold γ(n) = 1 + 1
3
cos(2(θ − π

2
)); and (d) Riemannian metric γ(n) =

√
nTGn,

where G = diag(1, 2) and the parameters h = 2−6, τ = h2, and the red line, black

dashed line and blue line represent the initial shape, intermediate shape and equi-

librium shape, respectively.

As shown in Fig. 2.4(a)–(b), if we choose the anisotropy as the regularized l1-

norm metric or the l4-norm metric, the equilibrium shapes are almost “faceting”

squares; for 2-fold anisotropy (c.f. 2.4(c)), the number of edges in its equilibrium

shape is exactly two; and for the Riemannian metric anisotropic energy (c.f. 2.4(d)),
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Figure 2.5: Morphological evolutions and the normalized energy of a close rectan-

gular curve under anisotropic surface diffusion with the strongly 2-fold anisotropic

surface energy γ(n) = 1 + 3
5
cos(2θ) towards its equilibrium at different times: (a)

t = 0; (b) t = 10τ ; (c) t = 20τ ; (d) t = 100τ ; (e) t = 250τ ; (f) t = 500τ ; (g)

t = 700τ ; and (h) t = 5000τ , the other parameters are chosen the same as Fig. 2.4.
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Figure 2.6: Morphological evolutions and the normalized energy of a close rectan-

gular curve under anisotropic surface diffusion with the strongly 4-fold anisotropic

surface energy γ(n) = 1 + 3
10
cos(4θ) towards its equilibrium at different times: (a)

t = 0; (b) t = 5τ ; (c) t = 10τ ; (d) t = 20τ ; (e) t = 160τ ; (f) t = 300τ ; (g) t = 500τ ;

and (h) t = 5000τ , where the parameters are chosen as h = 2−5, τ = h2, and the red

dashed line in (h) is the Wulff envelope.
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Figure 2.7: The Frank diagrams of the weakly anisotropic energies: (a)-(d)

anisotropic energies used in Fig. 2.4; and the strongly anisotropic energies: (e)

γ(n) = 1 + 3
5
cos(2θ) in Fig. 2.5, and (f) γ(n) = 1 + 3

10
cos(4θ) in Fig. 2.6.
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the equilibrium shape is an ellipse. The numerical results are perfectly consistent

with the theoretical predictions by the well-known Wulff construction [9, 17, 148].

Because the anisotropic surface diffusion is area preserving during the evolution,

we can easily obtain its theoretical equilibrium shape (or Wulff shape) by using

the expression in [9, 96]. As shown in Figs. 2.5(h)&2.6(h), the numerical equilib-

rium shapes are again perfectly consistent with the theoretical predictions by the

Wulff construction in the strongly anisotropic cases. Meanwhile, we can clearly see

that the normalized energy is monotonically decreasing during the evolution for the

strongly anisotropic cases. Furthermore, we observe that the numerical equilibrium

has several “cusps”, which result from the self intersection of the Wulff envelope [9].



Chapter 3
Extension to surfaces with symmetric

surface energy

In this Chapter, our goal is to extend the symmetrized SP-PFEM for planer

curves (2.42) to surfaces Γ in 3D. Similar to Chapter 2, we focus on the symmetric

anisotropy as

γ(−n) = γ(n), ∀n = (n1, n2, n3)
T ∈ S2. (3.1)

Our goal is to establish a symmetrized SP-PFEM with the symmetric surface energy

γ(n) satisfies the following relatively mild regularity condition as

γ(p) ∈ C2(R3 \ {0}). (3.2)

Which is a direct generalization of the energy-stable condition (2.48) as in the 2D

case. To achieve this goal, although the symmetrized surface energy matrix Zk(n)

can be easily generalized by ξ, there are still several difficulties that need to be

solved. The first is we must take the surface gradient ∇Γ, which is more complicated

compared to the arc-length derivative ∂s. The second is the symmetrized strong

formulation (2.17b) for µ relies on ∂s, and we should design a proper generalization

of it with ∇Γ. Finally, the key concept in the analysis of energy stability – the

definition of the minimal stabilizing function k0(n) is dimensional dependent, which

means we need to develop a new approach for proving energy stability.

55
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Therefore, this Chapter is organized to answer these three questions one by

one. We first list the commonly-used symmetric anisotropic surface energies and

introduce the definition of surface gradient operators as well as the functional spaces.

Then we extend the symmetrized surface energy matrix Zk(n) in 3D and adopt it

to establish the weak formulation for µ, instead of a strong formulation in 2D. After

that, we derive the symmetrized conservative weak formulation and apply the PFEM

to get the full discretization. Next, the righteous energy stability is established by

generalizing the minimal stabilizing function k0(n). Finally, we provide numerous

numerical results to illustrate the efficiency and the unconditional energy stability

of the 3D extension of the symmetrized SP-PFEM.

3.1 Mathematical formulation

3.1.1 Some anisotropic surface energies and their ξ-vectors

Here we list the commonly used symmetric γ(n) with their ξ-vector and Hessian

as follows:

• the Riemannian metric anisotropic surface energy [17]

γ(n) =
√
nTGn, n ∈ S2, (3.3)

where G ∈ R3×3 is a symmetric positive definite matrix. We have

γ(p) =
√

pTGp, ∀p ∈ R3
∗ := R3 \ {0}, (3.4)

ξ = ξ(n) = γ(n)−1Gn, ∀n ∈ S2, (3.5)

Hγ(n) = γ(n)−3/2
[
γ(n)2G− (Gn)(Gn)T

]
. (3.6)

It is easy to check that Hγ(n) is semi-positive definite by using the Cauchy in-

equality, which indicates the Riemannian metric anisotropy is weakly anisotropic.

• the lr-norm (r ≥ 2) metric anisotropic surface energy [12,36]

γ(n) = (|n1|r + |n2|r + |n3|r)1/r, n = (n1, n2, n3)
T ∈ S2, (3.7)
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where 1 < r <∞. We have

γ(p) = ∥p∥lr = (|p1|r + |p2|r + |p3|r)
1
r , ∀p = (p1, p2, p3)

T ∈ R3
∗ , (3.8)

ξ = ξ(n) = γ(n)1−r


|n1|r−2n1

|n2|r−2n2

|n3|r−2n3

 , ∀n = (n1, n2, n3)
T ∈ S2, (3.9)

Hγ(n) = (r − 1)γ(n)1−2r


|n1|r−2(|n2|r + |n3|r) ∗ ∗

−|n1n2|r−2n1n2 ∗ ∗
−|n1n3|r−2n1n3 ∗ ∗

 , (3.10)

where the ∗ entries can be deduced from other entries. By checking leading

principal minors, we know that Hγ(n) is semi-positive definite. Thus the

lr-norm anisotropy is weakly anisotropic.

• the cubic anisotropic surface energy [55,83,113]

γ(n) = 1 + β(n4
1 + n4

2 + n4
3), n = (n1, n2, n3)

T ∈ S2, (3.11)

where m = 2, 3, 4, 6, and β is a dimensionless anisotropic strength constant.

We have

γ(p) =
(
p21 + p22 + p23

) 1
2 + β(p41 + p42 + p43)

(
p21 + p22 + p23

)− 3
2 , (3.12)

ξ = ξ(n) = n+ β
(
4n3

1 − 3n1(n
4
1 + n4

2 + n4
3), ∗, ∗

)T
, (3.13)

λ1(n) + λ2(n) = 2(1− 3β) + 36β(n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1), (3.14)

λ1(n)λ2(n) = 20(n4
1n

4
2 + n4

2n
4
3 + n4

3n
4
1) + 72n2

1n
2
2n

2
3) ≥ 0. (3.15)

Thus when β = 0, it is isotropic; when −1 < β < 0 or 0 < β ≤ 1
3
, it is weakly

anisotropic; and when β > 1
3
, it is strongly anisotropic.
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• the [001], [011], [111] orientation [101,102,113,126]

γ(n) = 1 + β(n4
1 + n4

2), [001] orientation, (3.16a)

γ(n) = 1 + β(n4
1 +

n4
2 + n4

3

2
+ 3n2

2n
2
3), [011] orientation, (3.16b)

γ(n) = 1 + β

(
n4
1 + n4

2

2
+
n4
3

3
+ n2

1n
2
2 + 2n2

3(n
2
1 + n2

2)

+
2
√
2

3
n3
1n3 − 2

√
2n1n

2
2n3

)
, [111] orientation. (3.16c)

here β is a dimensionless anisotropic strength constant;

• the regularized Riemannian metric anisotropic surface energy [19]

γ(n) =

(
L∑
l=1

(nTGln)
r/2

)1/r

, (3.17)

where r ≥ 1 and G1, G2, . . . , GL are symmetric positive definite matrices. For

the regularized Riemannian metric anisotropic surface energy (3.17)

γ(n) =

(
L∑
l=1

(nTGln)
r/2

)1/r

, (3.18)

where r ≥ 1 and G1, G2, . . . , GL are symmetric positive definite matrices, we

get

γ(p) =

(
L∑
l=1

(pTGlp)
r/2

)1/r

, ∀p ∈ R3
∗, (3.19)

ξ = ξ(n) = γ(n)1−r
L∑
l=1

γr−2
l (n)Gln ∀n ∈ S1, (3.20)

Hγ(n) = γ(n)1−2r(M 1 + (r − 1)M 2). (3.21)

where γl(n) :=
√
nTGln for l = 1, 2, . . . , L, and

M 1 = γ(n)r
L∑
l=1

γl(n)
r−4(γl(n)

2Gl − (Gln)(Gln)
T ),

M 2 = γ(n)r
L∑
l=1

(Gln)(Gln)
Tγr−4

l (n)− (
L∑
l=1

γr−2
l (n)Gln)(

L∑
l=1

γr−2
l (n)Gln)

T .
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By the Cauchy inequality, we obtain that M 1 and M 2 are semi-positive defi-

nite. Thus the regularized Riemannian metric anisotropy is weakly anisotropic

when r ≥ 1.

3.1.2 Global parameterization and functional spaces

Figure 3.1: An illustration of a closed and orientable surface Γ(t) in R3 under

anisotropic surface diffusion with an anisotropic surface energy γ(n), where n is the

outward unit normal vector, ξ is the Cahn-Hoffman ξ-vector in (1.3), and τ 1 and

τ 2 form a basis of the local tangential space.

Let the closed and orientable surface Γ := Γ(t) illustrated in Fig. 3.1 be globally

parameterized by X(ρ, t) in Definition 1.1 as

X(t) : Γ0 → R3,ρ 7→ X(ρ, t) = (x1(ρ, t), x2(ρ, t), x3(ρ, t))
T , (3.22)

where Γ0 ⊂ R3 is the initial surface. Recall that the motion of Γ(t) under the

anisotropic surface diffusion (1.21) can be mathematically described by the following

geometric partial differential equations (PDEs) via the Cahn-Hoffman ξ-vector [55]
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n · ∂tX(ρ, t) = ∆Γ µ, ρ ∈ Γ0, t > 0, (3.23a)

µ = ∇Γ · ξ, ξ = ∇γ(p)
∣∣
p=n

. (3.23b)

The anisotropic surface diffusion (3.23) can also be regarded as a geometric flow

from the given initial closed and orientable surface Γ0 := Γ(0) ⊂ R3 to the surface

Γ(t) ⊂ R3. We define the function spaces over the evolving surface Γ(t) = X(ρ, t).

L2(Γ(t)) :=
{
u : Γ(t) → R

∣∣∣ ∫
Γ(t)

|u|2dA <∞
}
, (3.24)

equipped with the L2-inner product

(u, v)Γ(t) :=

∫
Γ(t)

u vdA, ∀u, v ∈ L2(Γ(t)). (3.25)

Here the integration over Γ(t) can be interpreted by (1.18). The above inner product

can be extend to [L2(Γ(t))]3 by replacing the scalar product u v by the vector inner

product u · v. And we adopt the angle bracket to emphasize the inner product for

two matrix-valued functions U ,V in [L2(Γ(t))]3×3,

⟨U ,V ⟩Γ(t) :=
∫
Γ(t)

U : V dA, ∀U ,V ∈ [L2(Γ(t))]3×3, (3.26)

here U : V = Tr(V TU ) is the Frobenius inner product with Tr(U) denoting the

trace of a matrix U ∈ R3×3. Furthermore, we introduce the Sobolev space

H1(Γ(t)) :=
{
u : Γ(t) → R

∣∣∣u ∈ L2(Γ(t)), ∇u ∈ [L2(Γ(t))]3
}
. (3.27)

And this definition can be extended easily to [H1(Γ(t))]3. We adopt the notation

∇Γf = (D1f,D2f,D3f)
T for a scalar-valued function f [55], and the surface gradient

for a vector-valued function F = (f1, f2, f3)
T is defined as

∇ΓF := (∇Γf1, ∇Γf2, ∇Γf3)
T ∈ R3×3. (3.28)
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3.2 Surface energy matrix and weak formulation

3.2.1 A symmetric surface energy matrix

Introducing the symmetric surface energy matrix Zk(n)

Zk(n) = γ(n)I3 − nξT (n)− ξ(n)nT + k(n)nnT

= γ(n)I3 − nξT − ξnT + k(n)nnT , ∀n ∈ S2, (3.29)

where k(n) : S2 → R+ is a stabilizing function which ensures Zk(n) is positive

definite, it is easy to see that the above matrix is a direct generalization from 2D

to 3D as proposed in Chapter 2 (2.16). Then we obtain a symmetric and conser-

vative variational (weak) formulation for the chemical potential (or weighted mean

curvature) µ via the matrix Zk(n). We remark here that, in 2D case, we can obtain

both strong (PDE) and weak (variational) formulations for the chemical potential

(or weighted curvature) µ; however, in 3D case, it is not easy to write a simple

strong (PDE) formulation for the chemical potential (or weighted mean curvature)

µ via the matrix Zk(n).

Lemma 3.1 (The weak formulation for µ). The weighted mean curvature µ satisfies

the following weak formulation.

(µ,n · ω)Γ =
〈
Zk(n)∇ΓX,∇Γω

〉
Γ
, ∀ω = (ω1, ω2, ω3)

T ∈ [H1(Γ(t))]3. (3.30)

Proof. Noticing the fact Dixk = δi,k − nkni and ∇Γf · n = 0 [55], we obtain

∇Γxk · ∇Γωl =
3∑
i=1

(δi,k − nkni)Diωl = Dkωl − nk∇Γωl · n = Dkωl. (3.31)

From [55, equation (8.18)], we know that∫
Γ(t)

µn · ω dA = −
3∑

k,l=1

∫
Γ

ξknlDkωl dA+
3∑

k,l=1

∫
Γ

γ(n)DkxlDkωl dA. (3.32)
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Substituting the identity (3.31) into [55, equation (8.18)] yields the following

identity

(µ,n · ω)Γ = γ(n)
3∑
l=1

∫
Γ(t)

∇Γxl · ∇Γωl dΓ−
3∑

k,l=1

∫
Γ(t)

ξknl∇Γxk · ∇Γωl dΓ. (3.33)

Obviously, the second term ⟨γ(n)∇ΓX,∇Γω⟩Γ corresponds to γ(n)I3 in Zk(n).

Now by simplifying the last term, we have

3∑
k,l=1

∫
Γ

ξknl∇Γxk · ∇Γωl dA =

∫
Γ

(
3∑

k=1

ξk(∇Γxk)

)
·
(

3∑
l=1

nl(∇Γωl)

)
dA

=

∫
Γ

(
(∇ΓX)Tξ

)
·
(
(∇Γω)Tn

)
dA

=

∫
Γ

Tr
(
(∇Γω)TnξT (∇ΓX)

)
dA

=

∫
Γ

(
nξT (∇ΓX)

)
:
(
∇Γω

)
dA

= ⟨nξT∇ΓX,∇Γω⟩Γ, (3.34)

which is the nξT (n) part in Zk(n).

Finally, recalling the identity ∇ΓX = I3−nnT and combining the two identities

(3.33) and (3.34) yields

(µ,n · ω)Γ = ⟨(γ(n)I3 − nξT )∇ΓX,∇Γω⟩Γ
= ⟨Zk(n)∇ΓX,∇Γω⟩Γ + ⟨(ξnT − k(n)nnT )(I3 − nnT ),∇Γω⟩Γ
= ⟨Zk(n)∇ΓX,∇Γω⟩Γ, (3.35)

which is the desired result.

3.2.2 A symmetrized conservative weak formulation

With the weak formulation of µ (3.30) given in lemma 3.1, by taking integration

by parts, we can easily derive the following variational formulation for the anisotropic

surface diffusion (3.23) (or (1.21)): For a given closed and orientable initial surface
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Γ(0) := Γ0, find the solution (X(·, t), µ(·, t)) ∈ [H1(Γ(t))]3 ×H1(Γ(t)) such that

(n · ∂tX, ψ)Γ(t) + (∇Γµ,∇Γψ)Γ(t) = 0 ∀ψ ∈ H1(Γ(t)), (3.36a)

(µn,ω)Γ(t) − ⟨Zk(n)∇ΓX,∇Γω⟩Γ(t) = 0 ∀ω ∈ [H1(Γ(t))]3, (3.36b)

3.2.3 Structure-preserving properties

Denote the enclosed volume and the free energy of Γ(t) as V (t) and W (t), re-

spectively, which are defined by

V (t) :=
1

3

∫
Γ(t)

X · n dA, W (t) :=

∫
Γ(t)

γ(n) dA. (3.37)

We then show the two geometric properties still hold for the variational formulation

(3.36).

Theorem 3.1. The enclosed volume V (t) and the free energy W (t) of the solution

Γ(t) of the variational formulation (3.36) are conserved and dissipative, respectively,

i.e.

V (t) ≡ V (0), W (t) ≤ W (t′) ≤ W (0), t ≥ t′ ≥ 0. (3.38)

Proof. Taking the derivative of V (t) with respect to t. From [140], we know that

dV (t)

dt
=

∫
Γ(t)

n · ∂tX dA = (n · ∂tX, 1)Γ(t) = 0, t ≥ 0, (3.39)

which implies the volume conservation in the left of (3.38).

Similarly, the derivative of W (t) with respect to t is

dW (t)

dt
=

∫
Γ(t)

n · ∂tXµ dA = (n · ∂tX, µ)Γ(t) = − (∇Γµ,∇Γµ)Γ(t) ≤ 0, t ≥ 0,

(3.40)

which implies the energy dissipation in the right of (3.38).
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3.3 The SP-PFEM discretization

3.3.1 The discretization

We take τ > 0 to be the time step size, and the discrete time levels are tm = mτ

for each m ≥ 0. For spatial discretization, as illustrated in figure 3.2, the orientable

surface Γ(tm) is approximated by an orientable polyhedron Γm = ∪Jj=1σ̄
m
j with J

mutually disjoint non-degenerated triangles surfaces σmj and I vertices qmi . We

further denote {qmj1 , qmj2 , qmj3} as the three ordered vertices of the triangle σmj , the

induced orientation vector J {σmj } := (qmj2 −qmj1)× (qmj3 −qmj2), and the outward unit

normal vector nm
j of σmj is thus given by nm

j =
J{σm

j }
|J {σm

j }| . We refer the definition of

the orientable polyhedron to Definition 47 in [33].

Figure 3.2: An illustration of the approximation polyhedron Γ0. The vertices

{qj1 , qj2 , qj3} of the triangle σj is oriented counterclockwise, see the red circular

arrow. And the direction of the normal vector nj is determined by the right-hand

rule.

The finite element space with respect to the orientable surface Γm = ∪Jj=1σ̄
m
j is
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defined as follows

Km :=
{
u ∈ C(Γm)

∣∣∣u|σm
j
∈ P1(σmj ), ∀1 ≤ j ≤ J

}
, (3.41)

which is equipped with the mass lumped inner product (·, ·)hΓm with h denoting the

mesh size of Γm as

(f, g)hΓm :=
1

3

J∑
j=1

3∑
i=1

|σmj |f
(
(qmji )

−) g ((qmji )−) , (3.42)

where P1(σmj ) is the space of polynomials on σmj with degree at most 1, |σmj | :=
1
2
|J {σmj }| denotes the area of σmj , and f

(
(qmji )

−) means the one-sided limit of f(x)

at qmji inside σ
m
j . This definition is also valid for vector- and matrix-valued function,

and the mass lumped inner product of the matrix-valued functions U and V is also

emphsized by the angle bracket as

⟨U ,V ⟩hΓm :=
1

3

J∑
j=1

3∑
i=1

|σmj |U((qmji )
−) : V ((qmji )

−). (3.43)

We remark here that (f, g)hΓm and ⟨U ,V ⟩hΓm can be viewed as approximations of

(f, g)Γm and ⟨U ,V ⟩Γm , respectively. Finally, the discretized surface gradient oper-

ator ∇Γ for f ∈ Km is given by

∇Γf |σm
j
:=
(
f(qmj1)(q

m
j2
− qmj3) + f(qmj2)(q

m
j3
− qmj1) + f(qmj3)(q

m
j1
− qmj2)

)
× nm

j

|J {σmj }|
,

(3.44)

and for vector-valued function F = (f1, f2, f3)
T ∈ [Km]3, ∇ΓF := (∇Γf1, ∇Γf2,

∇Γf3)
T .

By using the PFEM for spatial discretization and adapting an implicit-explicit

(IMEX) Euler method for temporal discretization, i.e. linear parts via backward Eu-

ler method and nonlinear part via backward Euler method with proper linearization

as well as the integration limits via forward Euler method, an IMEX structural-

preserving finite element method (SP-PFEM) for the variational formulation (3.36)

can then be stated as follows: Given the initial approximation Γ0 = ∪Jj=1σ
0
j of Γ(0);

for each time step tm = mτ (m ≥ 0), find the solution
(
Xm+1, µm+1

)
∈ [Km]3 ×Km
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such that(
nm+ 1

2 · X
m+1 −Xm

τ
, ψ

)
Γm

+
(
∇Γµ

m+1,∇Γψ
)
Γm = 0, ∀ψ ∈ Km, (3.45a)

(
µm+1nm+ 1

2 ,ω
)
Γm

− ⟨Zk(n
m)∇ΓX

m+1,∇Γω⟩Γm = 0, ∀ω ∈ [Km]3. (3.45b)

HereXm(qmi ) = qmi ,X
m+1(qmi ) = qm+1

i for each i, nm|σm
j
= nm

j , σ
m+1
j = Xm+1(σmj )

is the triangle with ordered vertices {qm+1
j1

, qm+1
j2

, qm+1
j3

} for each j, and Γm+1 =

∪Jj=1σ̄
m+1
j for each m. The semi-implicit approximation nm+ 1

2 of the outward nor-

mal vector n at t = (m+ 1
2
)τ is defined as follows

nm+ 1
2 |σm

j
:=

J {σmj }+ 4J {σm+ 1
2

j }+ J {σm+1
j }

6|J {σmj }|
, (3.46)

where σ
m+ 1

2
j := 1

2

(
σmj + σm+1

j

)
.

Remark 3.1. We note the function Xm+1 has different meanings at time step tm

(as a function in [Km]3) and tm+1 (as a function in [Km+1]3), and we adopt the same

notation for simplicity.

3.3.2 Structure-preserving properties

For the discretized polygon surface Γm = ∪Jj=1σ̄
m
j , its enclosed volume and surface

energy are denoted as V m and Wm, respectively, which are defined as

V m :=
1

3

∫
Γm

Xm · nmdA =
1

9

J∑
j=1

3∑
i=1

|σmj |qmji · nm
j , (3.47a)

Wm :=

∫
Γm

γ(nm)dA =
J∑
j=1

|σmj |γ(nm
j ), ∀m ≥ 0. (3.47b)

Denote the following auxiliary function Fk(n,u,v) : [S2]3 → R as

Fk(n,u,v) := (uTZk(n) · u)(vTZk(n) · v), (3.48)

and define the minimal stabilizing function k0(n) : S2 → R as (its existence will be

given in the next section)

k0(n) = inf
{
k(n)

∣∣∣Fk(n,u,v) ≥ γ2(u× v), ∀u,v ∈ S2
}
. (3.49)
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Then for the symmetrized SP-PFEM (3.45), we have

Theorem 3.2 (structural-preserving). Assume γ(n) satisfies (3.2) and take k(n) in

(3.29) satisfying k(n) ≥ k0(n) for n ∈ S2, then the symmetrized SP-PFEM (3.45)

is volume conservation and energy dissiption, i.e.

V m+1 = V m = . . . = V 0, ∀m ≥ 0, (3.50a)

Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (3.50b)

Proof of volume conservation

Define Γh(α) = Xh(·, α) as the linear conbination of Xm and Xm+1 as

Xh(·, α) := (1− α)Xm(·) + αXm+1(·),

and the enclosed volume by Γh(α) as V (α). By applying the Reynolds transport

theorem to V (α) ( [13, Theorem 3.1]), we obtain that

dV (α)

dα
=

∫
Γh(α)

∂αX
h · nh ds

=

∫
Γm

(Xm+1 −Xm) · J {σh(α)}
|J {σm}| ds

Integrate dV (α)
dα

from α = 0 to α = 1, we obtain

V (1)− V (0) =
(
(Xm+1 −Xm) · nm+ 1

2 , 1
)h
Γm

The volume conservation is a direct result by taking φh = 1 in (2.42a).

The energy dissipation or unconditional energy stability (3.50b) is given in next

section.

Remark 3.2. The symmetrized SP-PFEM (3.45) is ‘weakly’ implicit, i.e. at each

time step, one needs to solve a nonlinear coupled system, which can be solved effi-

ciently by Newton’s method. Of course, if we simply replace nm+ 1
2 in (3.45) by nm,

we can obtain a semi-implicit energy-stable PFEM (ES-PFEM), where only a linear

system needs to be solved at each time. Of course for the semi-implicit ES-PFEM,

the volume conservation is no longer valid. Under the same condition as in Theorem

3.2, the ES-PFEM is also unconditionally energy stable.
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Remark 3.3. The semi-discretization of the variational problem (3.36) in space by

the PFEM also preserves the two geometric properties. And the proof is similar to

the isotropic case, for details, we refer [13,16,154].

Remark 3.4. We remark here that all formulations in this section are still valid

in 2D. In fact, assume Γ(t) be a closed curve in 2D with unit outward normal

vector n ∈ S1 and tangent vector τ = n⊥, here ⊥ denotes the clockwise rotation

by π
2
. And assume Γ(t) be globally parameterized by X(ρ, t) : R/Z → R2 [8].

We further assume s be the arclength parameter of the closed curve Γ(t) and thus

τ = ∂sX(ρ, t) [8]. Notice that

∇Γ = τ ∂s, ∆Γ = (τ ∂s) · (τ ∂s) = ∂ss, ∇ΓX = ∂sXτ T ,

then we have

∆Γ µ = ∂ssµ, ∇Γ · ξ = τ · ∂sξ = n⊥ · ∂sξ = −n · ∂sξ⊥,

(∇Γµ,∇Γψ)Γ(t) = (τ∂sµ, τ∂sψ)Γ(t) = (∂sµ, ∂sψ)Γ(t) ,

⟨Zk(n)∇ΓX,∇Γω⟩Γ(t) = ⟨Zk(n)∂sXτ T , ∂sωτ T ⟩Γ(t)

=

∫
Γ(t)

Tr (τ∂sω
TZk(n)∂sXτ T ) dA

=

∫
Γ(t)

Tr (∂sω
TZk(n)∂sXτ Tτ ) dA

= (Zk(n)∂sX, ∂sω)Γ(t) .

Thus the above equations (3.23) and (3.36) collapse to the equations (1.5) and (2.11)

in [8], respectively, in the corresponding 2D setup.

3.4 Proof of energy dissipation

In this section, we first prove the existence of k0(n) and show its sub-linear

property as a functional of γ(n). By utilizing the existence of k0(n) together with

several lemmas, we finally prove the energy stability part of our main theorem

(3.50b).
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3.4.1 Minimal stabilizing function

From (3.49), we know that Fk0(n,u,v) ≥ 0. Taking k = k0, u = n and

v = τ ∈ S2 satisfying τ · n = 0 in (3.48), noticing τ TZk0(n)τ = γ(n) > 0 and

n · ξ = γ(n), we obtain

0 ≤ nTZk0(n)n = k0(n)− γ(n) ⇒ k0(n) ≥ γ(n) > 0, n ∈ S2. (3.51)

To prove the existence of k0(n), for any given n ∈ S2, we only need to show there

exists a k(n) sufficiently large such that Fk(n,u,v) ≥ γ2(u× v) for any u,v ∈ S2.

Lemma 3.2. Let G(n,u,v) be an auxiliary function given by

G(n,u,v) := γ(n) [γ(n)− 2(ξ · u)(n · u)− 2(ξ · v)(n · v)] , n,u,v ∈ S2,

(3.52)

then for any k(n) > 0, the following inequality holds

Fk(n,u,v)−G(n,u,v) ≥
[
γ(n)k(n)− 4|ξ|2

] [
(n · u)2 + (n · v)2

]
. (3.53)

Proof. By direct computation and the arithmetic-geometric mean inequality, we

obtain

Fk(n,u,v)−G(n,u,v)

≥ γ(n)k(n)
[
(n · u)2 + (n · v)2

]
+ k(n)2 (n · u)2 (n · v)2

− 4|ξ|2 |(n · u)(n · v)| − 2|ξ| k(n) |(n · u)(n · v)| (|n · u|+ |n · v|)

≥
[
γ(n)k(n)− 2|ξ|2

] [
(n · u)2 + (n · v)2

]
+ k(n)2 (n · u)2 (n · v)2

− k(n) |ξ|
[
(n · u)2

(
2|ξ|
k(n)

+
k(n)

2|ξ| (n · v)2
)
+ (n · v)2

(
2|ξ|
k(n)

+
k(n)

2|ξ| (n · u)2
)]

=
[
γ(n)k(n)− 4|ξ|2

] [
(n · u)2 + (n · v)2

]
,

which is the desired inequality (3.53).

Since γ(p) is not differentiable at 0, in order to handle γ2(u× v), we first show

the following lemma.
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Lemma 3.3. For any γ(n) satisfying (3.2), then γ2(p) is continuous differentiable

in R3. Moreover, there exists a constant C1 defined by

C1 =
1

2
sup
n∈S2

∥Hγ2(n)∥2 , Hγ2(n) = ∇∇γ2(p)|p=n. (3.54)

where ∥·∥2 is the spectral norm, such that

γ2(p)− γ2(q) ≤ ∇(γ2(q)) · (p− q) + C1|p− q|2, ∀p, q ∈ R3. (3.55)

Proof. It is straightforward to check γ2(p) ∈ C1(R3) by definition.

To prove the inequality (3.55), we first consider the case that the line segment

of p, q does not pass 0, i.e., λp + (1 − λ)q ̸= 0 for all 0 ≤ λ ≤ 1. Since γ2(p) is

homogeneous of degree 2, we know that Hγ2(p) is homogeneous of degree 0, which

yields

Hγ2(ζ) = Hγ2 (ζ/|ζ|) , ∀0 ̸= ζ ∈ R3. (3.56)

By the mean value theorem, there exists a λ0 ∈ (0, 1) and ζ = λ0p+ (1− λ0)q ̸= 0,

such that

γ2(p) = γ2(q) +∇(γ2(q)) · (p− q) +
1

2
(p− q)THγ2(ζ)(p− q). (3.57)

Thus (3.55) holds for such p, q.

If 0 is contained in line segment of p, q, we can find a sequence (pk, qk) → (p, q)

such that for each k, the line segment of pk, qk does not pass 0. We know (3.55)

holds for such pk, qk. By using the continuity of γ2(p) and ∇(γ2(p)), we obtain that

(3.55) is valid in this case by letting k → ∞.

Thus the inequity (3.55) is established.

Theorem 3.3. Suppose γ(n) satisfies the energy stability condition (3.2). Then

there exists a constant K(n) <∞ only depends on γ(n) given by

K := K(n) =
6|ξ(n)|2 + 8γ(n)|ξ(n)|+ 16C1

γ(n)
<∞, ∀n ∈ S2, (3.58)

such that FK(n,u,v) ≥ γ2(u× v) for any u,v ∈ S2.
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Proof. It is convenient to first consider the special case n = (0, 0, 1)T . For any

u,v ∈ S2, we write them in the spherical coordinates as

u = (cos θ1 cosϕ1, sin θ1 cosϕ1, sinϕ1)
T , 0 ≤ θ1 < 2π, −π

2
≤ ϕ1 ≤

π

2
, (3.59a)

v = (cos θ2 cosϕ2, sin θ2 cosϕ2, sinϕ2)
T , 0 ≤ θ2 < 2π, −π

2
≤ ϕ2 ≤

π

2
, (3.59b)

where in case when ϕ1 = ±π
2
, we choose θ1 = 0; and when ϕ2 = ±π

2
, we choose

θ2 = 0. The cross product u× v is then represented as

u× v = cosϕ2 sinϕ1 v̂0 + cosϕ1 sinϕ2 û0 + cosϕ1 cosϕ2 ŵ0, (3.60)

where

û0 = (sin θ1,− cos θ1, 0)
T , v̂0 = (− sin θ2, cos θ2, 0)

T ,

ŵ0 = (0, 0, sin θ21)
T , with θ21 = θ2 − θ1.

Since u,v are symmetric in FK(n,u,v) and γ
2(u× v). Without loss of generality,

we can always assume sin θ21 ≥ 0.

Denoting u0,v0 ∈ S2 as

u0 := (cos θ1, sin θ1, 0)
T , v0 := (cos θ2, sin θ2, 0)

T , (3.61)

we know that |(u−u0)×v| ≤ |u−u0|, |u×(v−v0)| ≤ |v−v0|, |(u−u0)×(v−v0)| ≤
|u− u0|+ |v − v0| since |u|, |v|, |u0|, |v0| = 1. Thus we get

|u× v − u0 × v0|2 ≤ 8
(
|u− u0|2 + |v − v0|2

)
. (3.62)

Taking p = u × v, q = u0 × v0 in (3.55), and noticing u0 × v0 = (sin θ21)n, we
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obtain

γ2(u× v)− (sin θ21)
2γ2(n)

≤ sin θ21 ∇(γ2(n)) · (u× v − u0 × v0) + C1|u× v − u0 × v0|2

≤ 2γ(n) ξ · (sinϕ1 v̂0 + sinϕ2 û0) sin θ21

+ 2γ(n)ξ · ((cosϕ2 − 1) sinϕ1v0 + (cosϕ1 − 1) sinϕ2u0) sin θ21

+ 2γ(n)ξ · ω̂0(1− cosϕ1 cosϕ2) sin θ21 + 8C1(|u− u0|2 + |v − v0|2)

≤ 2γ(n) ξ · [(cos θ21 v0 − u0) (n · u) + (cos θ2,1 u0 − v0) (n · v)]

+ 4(γ(n) |ξ|+ 4C1)
[
(n · u)2 + (n · v)2

]
. (3.63)

Here we use the facts |u−u0| = 2| sin ϕ1
2
|, |v−v0| = 2| sin ϕ2

2
|, (sinϕ)2 ≥ 2(sin ϕ

2
)2 =

1− cosϕ for all −π
2
≤ ϕ ≤ π

2
, and 0 ≤ 1− cosϕ1 cosϕ2 ≤ (1− cosϕ1) + (1− cosϕ2).

To estimate G(n,u,v), we observe the following inequalities

(ξ · u)(n · u) = (ξ · u0)(n · u) + (ξ · (u− u0))(n · (u− u0))

≤ (ξ · u0)(n · u) + |ξ||u− u0|2

≤ (ξ · u0)(n · u) + 2|ξ|(n · u)2, (3.64a)

(ξ · v)(n · v) ≤ (ξ · v0)(n · v) + 2|ξ|(n · v)2. (3.64b)

Combining (3.52) and (3.64) yields

G(n,u,v) = γ2(n)− 2γ(n) [(ξ · u)(n · u) + (ξ · v)(n · v)]

≥ γ2(n)− 2γ(n) [(ξ · u0)(n · u) + (ξ · u0)(n · u)] (3.65)

− 4γ(n)|ξ|
[
(n · u)2 + (n · v)2

]
.

Finally, by (3.53) in lemma 3.2, the estimate of γ2(u × v) in (3.63), and the
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estimate of G(n,u,v) in (3.65), we obtain

FK(n,u,v)− γ2(u× v)

≥ γ(n)2(cos θ21)
2 − 2γ(n) cos θ21 [(ξ · v0)(n · u) + (ξ · u0)(n · v)]

+
[
γ(n)K(n)− 4|ξ|2 − 8γ(n)|ξ| − 16C1

] [
(n · u)2 + (n · v)2

]
≥ γ(n)2(cos θ21)

2 − 2γ(n)| cos θ21| |ξ| [(n · u) + (n · v)]

+ 2|ξ|2
[
(n · u)2 + (n · v)2

]
≥ 0.

Thus we have FK(n,u,v) ≥ γ2(u× v) for the special case n = (0, 0, 1)T .

Since the constant K(n) only depends on γ(n), thus the proof is valid for arbi-

trary n ∈ S2 via a similar argument. The proof is completed.

Theorem 3.3 indicates that the set
{
k(n)

∣∣∣Fk(n,u,v) ≥ γ2(u×v), ∀u,v ∈ S2
}

contains at least an element K(n) < ∞, and thus it is not empty. This, together

with the fact k0(n) ≥ γ(n), yields the existence of the minimal stabilizing function

k0(n).

Corollary 3.1 (existence of the minimal stabilizing function). Suppose the surface

energy γ(n) satisfying the energy stable condition (3.2). Then the minimal stabiliz-

ing function k0(n) in (3.49) is well-defined.

Finally, we point out the minimal stabilizing function k0(n) is determined by

γ(n), and thus we can consider the mapping from γ(n) to k0(n). Similar to the

result in 2D in [8], the mapping is sub-linear.

Theorem 3.4 (positive homogeneity and subadditivity). Let k0(n), k1(n) and

k2(n) be the minimal stabilizing functions of γ(n), γ1(n) and γ2(n), respectively.

Then we have

(i) for any c > 0, ck0(n) is the stabilizing function of cγ(n); and

(ii) suppose γ(n) = γ1(n) + γ2(n), then k0(n) ≤ k1(n) + k2(n) for n ∈ S2.
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Proof. The proof of positive homogeneity in (i) is similar to the proof of Lemma 4.4

in [8], and thus details are omitted here for brevity.

To prove the subadditivity in (ii), we denote

ξ := ∇γ(p)
∣∣
p=n

, ξ1 := ∇γ1(p)
∣∣
p=n

, ξ2 := ∇γ2(p)
∣∣
p=n

.

Since k1(n) is the minimal stabilizing function of γ1(n), for any t ∈ R, we have

1

2
uTZk1(n)u+

t2

2
vTZk1(n)v − tγ1(u× v)

≥ 2

√
t2

4
Fk1(n,u,v)− tγ1(u× v)

≥ 0, ∀n,u,v ∈ S2. (3.66)

A similar inequality is also true for γ2(n). Adding the two inequalities together and

noticing ξ = ξ1 + ξ2, we obtain

1

2
uTZk1+k2(n)u+

t2

2
vTZk1+k2(n)v − tγ(u× v) ≥ 0, ∀t ∈ R, (3.67)

which means its discriminant γ2(u × v) − Fk1+k2(n,u,v) ≤ 0 for all n,u,v ∈ S2.

Then the subadditivity is a direct conclusion from the definition of the minimal

stabilizing function (3.49).

3.4.2 The proof

By establishing the existence of k0(n), we now have enough tools to prove (3.50b)

in theorem 3.2. To simplify the proof, we first introduce the following alternative

definition for the surface gradient operator ∇Γ.

Lemma 3.4. Suppose σ be a non-degenerated triangle with three ordered vertices

{q1, q2, q3} (cf. Fig. 3.2). Let f and F be scalar- and vector-valued functions

in P1(σ)/[P1(σ)]3, respectively, {n, τ 1, τ 2} forms an orthonormal basis. Then the

discretized surface gradient operator ∇Γ in (3.44) satisfies

∇Γf = (∂τ1f) τ 1 + (∂τ2f) τ 2, ∇ΓF = (∂τ1F ) τ T1 + (∂τ2F ) τ T2 , (3.68)

where ∂τf denotes the directional derivative of f with respect to τ .
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Proof. It suffices to prove the left equality in (3.68). Let x = λ1q1 + λ2q2 + λ3q3

with 0 ≤ λ1, λ2, λ3 ≤ 1 satisfying λ1 + λ2 + λ3 = 1 be a point in σ. We observe that

[(q3 − q2)× n] · (x− q3) = [(x− q3)× (q3 − q2)] · n

= [(−λ1(q3 − q1)− λ2(q3 − q2))× (q3 − q2)] · n

= −λ1 [(q2 − q1 + q3 − q2)× (q3 − q2)] · n

= −λ1 |J {σ}|. (3.69)

Thus λ1 =
(q2−q3)×n

|J {σ}| · (x− q3), and λ2, λ3 can be derived similarly.

By the definition of the directional derivative, we deduce that

∂τ1f(x) = lim
h→0

f(x+ hτ 1)− f(x)

h

= lim
h→0

1

h

(
f(q1)

(q2 − q3)× n

|J {σ}| · (hτ 1)

+f(q2)
(q3 − q1)× n

|J {σ}| · (hτ 1) + f(q3)
(q1 − q2)× n

|J {σ}| · (hτ 1)

)
= ∇Γf(x) · τ 1. (3.70)

Similarly, we have ∂τ2f = ∇Γf · τ 2. Since {n, τ 1, τ 2} forms an orthonormal basis,

by vector decomposition and ∇Γf · n = 0, we obtain

∇Γf = (∇Γf · n)n+ (∇Γf · τ 1)τ 1 + (∇Γf · τ 2)τ 2

= (∂τ1f) τ 1 + (∂τ2f) τ 2, (3.71)

which is the desired identity.

With the help of (3.68), we can then give the following upper bound of the

summand γ(n) |σ| in the discretized energy Wm in (3.47b).

Lemma 3.5. Suppose σ and σ̄ are two non-degenerated triangles with ordered ver-

tices {q1, q2, q3}, {q̄1, q̄2, q̄3}, and outward unit normal vectors n and n̄, respectively

(cf. Fig. 3.2). Let X be a vector-valued function in [P1(σ)]3 satisfying X(qi) = q̄i

for i = 1, 2, 3. Then for any k(n) ≥ k0(n) for n ∈ S2, the following inequality holds

1

6
|σ|

3∑
i=1

(
Zk(n)∇ΓX((qi)

−)
)
: ∇ΓX((qi)

−) ≥ γ(n̄) |σ̄|. (3.72)
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Proof. Since X ∈ [P1(σ)]3, its derivative ∇ΓX is a constant matrix in σ. Suppose

{n, τ 1, τ 2} forms an orthonormal basis, by applying (3.68), we obtain

∇ΓX((qi)
−) =

(
∂τ1X((qi)

−)
)
τ T1 +

(
∂τ2X((qi)

−)
)
τ T2 , i = 1, 2, 3. (3.73)

Let ∂τ1X = su and ∂τ2X = tv with s, t ≥ 0 and u,v ∈ S2. Substituding this and

the definition of Zk(n) in (3.29) into the LHS of (3.72), we get

1

6
|σ|

3∑
i=1

(
Zk(n)∇ΓX((qi)

−)
)
: ∇ΓX((qi)

−)

=
1

2
|σ|
(
Zk(n)(suτ

T
1 + tvτ T2 )

)
: (suτ T1 + tvτ T2 )

=
1

2
|σ|
(
s2(τ 1 · τ 1)u

TZk(n)u+ t2(τ 2 · τ 2)v
TZk(n)v

)
≥ st |σ|

√
Fk(n,u,v) ≥ st |σ| γ(u× v). (3.74)

For the RHS of (3.72), since σ̄ = X(σ), it holds that

γ(n̄) |σ̄| = γ(n̄)

∫
σ

|(∂τ1X)× (∂τ2X)| dA = st |σ| γ(n̄) |u× v|. (3.75)

Finally, since X ∈ [P1(σ)]3, for p and p + hτ 1 in σ, we have X(p + hτ 1) and

X(p) in σ̄. From the definition of directional derivative for functions in [P1(σ)]3,

we get

su · n̄ = (∂τ1X) · n̄ =
X(p+ hτ 1)−X(p)

h
· n̄ = 0, (3.76)

and similarly v · n̄ = 0, thus γ(u× v) = |u× v| γ(n̄). This equation, together with
(3.74) and (3.75), yields the desired inequality (3.72).

With the help of lemma (3.5), we can then prove the energy stability part (3.50b)

in our main theorem 3.2.

Proof. First for any p ∈ S2, since k(n) ≥ k0(n), we have

pTZk(n)p = γ(n)− 2(ξ · p)(n · p) + k(n)(n · p)2 ≥ 0, (3.77)
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thus Zk(n) is positive definite. By Cauchy’s inequality, it holds that

⟨Zk(n
m)∇ΓX

m+1,∇Γ(X
m+1 −Xm)⟩hΓm

≥ 1

2
⟨Zk(n

m)∇ΓX
m+1,∇ΓX

m+1⟩hΓm − 1

2
⟨Zk(n

m)∇ΓX
m,∇ΓX

m⟩hΓm . (3.78)

Suppose {nm
j , τ

m
j,1, τ

m
j,2} (1 ≤ j ≤ J) forms an orthonomal basis, by using (3.68),

we obtain

1

2
⟨Zk(n

m)∇ΓX
m,∇ΓX

m⟩hΓm

=
1

6

J∑
j=1

3∑
i=1

|σmj |
(
Zk(n

m
j )∇ΓX

m
(
(qmji )

−) |σm
j

)
:
(
∇ΓX

m
(
(qmji )

−) |σm
j

)
=

1

2

J∑
j=1

|σmj |
[
(τmj,1)

TZk(n
m
j )τ

m
j,1 + (τmj,2)

TZk(n
m
j )τ

m
j,2

]
=

1

2

J∑
j=1

|σmj | γ(nm
j )
(
τmj,1 · τmj,1 + τmj,2 · τmj,2

)
=

J∑
j=1

|σmj | γ(nm
j ) = Wm. (3.79)

For 1 ≤ j ≤ J , applying Lemma 3.5 with σ = σmj , σ̄ = σm+1
j and X = Xm+1|σm

j
, we

get

1

6
|σmj |

3∑
j=1

(
Zk(n

m
j )∇ΓX

m
(
(qmji )

−) |σm
j

)
:
(
∇ΓX

m
(
(qmji )

−) |σm
j

)
≥ γ(nm+1

j )|σm+1
j |.

(3.80)

Summing (3.80) for j = 1, 2, . . . , J and combining (3.78) and (3.79), we obtain

⟨Zk(n
m)∇ΓX

m+1,∇Γ(X
m+1 −Xm)⟩hΓm +Wm

≥ 1

2
⟨Zk(n

m)∇ΓX
m+1,∇ΓX

m+1⟩hΓm

≥ Wm+1, m ≥ 0. (3.81)

Finally, choosing ψ = µm+1 in (3.45a) and ω = Xm+1 in (3.45b), noting (3.81), we

have

Wm+1 −Wm ≤ τ
(
∇Γµ

m+1,∇Γµ
m+1
)h
Γm ≤ 0, m ≥ 0, (3.82)
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which immediately implies the unconditional energy stability (3.50b) in Theorem

3.2.

Remark 3.5. We remark here, if in 2D, the inequality (3.81) is replaced by [8,

(4.22)]
1

2
⟨Zk(n

m)∇ΓX
m+1,∇ΓX

m+1⟩hΓm +
1

2
Wm ≥ Wm+1. (3.83)

Due to the additional positive term 1
2
Wm on the left hand side of the above inequality,

the proof can much simplified and is straightforward by using the AM-GM inequality

[8].

3.5 Numerical results

In this section, we first state the setup for solving the symmetrized SP-PFEM

(3.45). Then we present several numerical computations, including the convergence

test and the structure-preserving test. Finally, we apply (3.45) to simulate surface

evolution for different anisotropic energies.

In our practical computations, the minimal stabilizing function k0(n) can be

obtained via numerically solving (3.49). Then by taking a stabilizing function

k(n) ≥ k0(n) for n ∈ S2, we can determine the surface energy matrix Zk(n), and

thus the symmetrized SP-PFEM (3.45) is well-determined. At each time step, the

weakly nonlinear system (3.45) is solved by Newton’s method with a given tolerance

at ε0 = 10−12 [13].

Given an initial closed surface Γ0, we generate its approximation Γ0 := Γh0 =

∪Jj=1σ
0
j with J triangles {σ0

j}Jj=1 and I vertices {q0
i }Ii=1 by using the Matlab toolbox

called CFDTool [132] with a given parameter mesh size h. Given a time step size τ

and a mesh size h, we denote (Xm
h,τ , µ

m
h,τ ) as the solution of (3.45) with the initial

approximation Γh0 at the time t = tm. We define Xh,τ (t) by

Xh,τ (·, t) =
t− tm
τ

Xm
h,τ (·)+

tm+1 − t

τ
Xm+1

h,τ (·), ∀t ∈ [tm, tm+1], m ≥ 0, (3.84)
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(h, τ) eh,τ (
1
2
) Case 1 order eh,τ (

1
2
) Case 2 order eh,τ (

1
2
) Case 3 order

(h0, τ0) 1.24E-1 - 1.47E-1 - 1.12E-1 -

(h0
2
, τ0

4
) 3.06E-2 2.01 3.54E-2 2.05 2.82E-2 1.98

(h0
22
, τ0

42
) 7.90E-3 1.96 8.74E-3 2.02 7.54E-3 1.90

(h, τ) eh,τ (
1
2
) Case 4 order eh,τ (

1
2
) Case 5 order eh,τ (

1
2
) Case 6 order

(h0, τ0) 1.10E-1 - 1.12E-1 - 1.12E-1 -

(h0
2
, τ0

4
) 2.83E-2 1.96 2.89E-2 1.96 3.09E-2 1.99

(h0
22
, τ0

42
) 7.48E-3 1.92 7.58E-3 1.93 7.86E-3 1.97

(h, τ) eh,τ (1) Case 1 order eh,τ (1) Case 2 order eh,τ (1) Case 3 order

(h0, τ0) 1.46E-1 - 1.22E-1 - 1.11E-1 -

(h0
2
, τ0

4
) 3.52E-2 2.05 3.01E-2 2.02 2.74E-2 2.02

(h0
22
, τ0

42
) 8.67E-3 2.02 7.75E-3 1.96 7.21E-3 1.93

(h, τ) eh,τ (1) Case 4 order eh,τ (1) Case 5 order eh,τ (1) Case 6 order

(h0, τ0) 1.10E-1 - 1.10E-1 - 1.13E-1 -

(h0
2
, τ0

4
) 2.76E-2 1.99 2.80E-2 1.97 2.90E-2 1.96

(h0
22
, τ0

42
) 7.23E-3 1.93 7.36E-3 1.93 7.56E-3 1.94

Table 3.1: Numerical errors of eh,τ (t = 0.5) and eh,τ (t = 1) for Cases 1-6, while

h0 := 2−1 and τ0 := 2−1

25
with 140 triangles and 72 vertices for the initial partition

Γh00 , with 624 triangles and 314 vertices for the initial partition Γ
h0/2
0 , and with 2502

triangles and 1253 vertices for the initial partition Γ
h0/4
0 .
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Figure 3.3: Plot of the normalized volume change ∆V (t)
V (0)

for different cases: (a) for

Case 1, (b) for Case 2, and (c) for Case 3.
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and the surface Γh,τ (t) is represented by Xh,τ (·, t).
To test the convergence rate of (3.45), we adopt the manifold distance M(·, ·) to

measure the difference between two closed surfaces Γ1 and Γ2, which is given by

M(Γ1,Γ2) := 2|Ω1 ∪ Ω2| − |Ω1| − |Ω2|, (3.85)

where Ω1 and Ω2 are the regions enclosed by Γ1 and Γ2, respectively, and |Ω| denotes
the volume of the region Ω. Based on the manifold distance, the numerical error is

defined as

eh,τ (t) :=M(Γh,τ (t),Γ(t)), t ≥ 0. (3.86)

In our practical computations, Γ(t) is obtained numerically by taking k(n) = k0(n)

and with a very refined mesh size at h = he = 2−4 and a very small time step at

τ = τe =
2
25
h2e.

In the numerical experiments for testing convergence rates, the time step size

and the mesh size are chosen as τ = 2
25
h2, the initial shape Γ0 is chosen as a 2×2×1

cuboid, and its finest partition is a polyhedron Γhe0 with 10718 triangles and 5361

vertices. We consider the following five cases of the anisotropic surface energy γ(n)

as well as the stabilizing function k(n):

• Case 1: γ(n) = 1 + 1
4
(n4

1 + n4
2 + n4

3), k(n) = k0(n);

• Case 2: γ(n) = 1 + 1
2
(n4

1 + n4
2 + n4

3), k(n) = k0(n);

• Case 3: γ(n) = (n4
1 + n4

2 + n4
3)

1
4 , k(n) = k0(n);

• Case 4: γ(n) = (n4
1 + n4

2 + n4
3)

1
4 , k(n) = k0(n) + 1;

• Case 5: γ(n) = (n4
1 + n4

2 + n4
3)

1
4 , k(n) = k0(n) + 2;

• Case 6: γ(n) = (n4
1 + n4

2 + n4
3)

1
4 , k(n) = k0(n) + 5.

The numerical errors are listed in Table 3.1. We note that while γ(n) and

k(n) are chosen differently in different cases, the convergence rates for this manifold

error are all about second order in h. These results indicate that the proposed
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Figure 3.4: Plot of the normalized energy W (t)
W (0)

for weak anisotropy γ(n) = 1 +

1
4
(n4

1 + n4
2 + n4

3) (left column) and strong anisotropy γ(n) = 1 + 1
2
(n4

1 + n4
2 + n4

3)

(right column) for: with fixed k(n) = k0(n) for different h and τ (top row with (a)

and (b)), and for fixed h = 2−4 and different τ (middle row with (c) and (d)); and

with fixed h = 2−4, τ = 2
25
h2 for different k(n) (bottom row with (e) and (f)).
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Figure 3.5: Evolution of a 2× 2× 1 ellipsoid by anisotropic surface diffusion with a

weak anisotropy γ(n) =
√
n2
1 + n2

2 + 2n2
3 and k(n) = k0(n) at different times.
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Figure 3.6: Evolution of a 2 × 2 × 1 cuboid by anisotropic surface diffusion with a

weak anisotropy γ(n) =
√
n2
1 + n2

2 + 2n2
3 and k(n) = k0(n) at different times.
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symmetrized SP-PFEM (3.45) has a good robustness in convergence rate, which is

in general independent of γ(n) and k(n). Thus in practical computations, there is

no need to choose k(n) as the minimal stabilizing function k0(n).

To examine the volume conservation and unconditionally energy dissipation, we

consider these two indicators: the normalized volume change ∆V (t)
V (0)

:= V (t)−V (0)
V (0)

and

the normalized energy W (t)
W (0)

. The initial shape is taken as a 2×2×1 ellipsoid. Figure

3.3 shows the normalized volume change ∆V (t)
V (0)

for Cases 1–3 with fixed h = 2−3 and

τ = 2
25
h2. We find the order of magnitude of the volume change ∆V (t) is at around

10−15, which is close to the machine epsilon at around 10−16, and thus it confirms

numerically volume conservation of the symmetrized SP-PFEM in Theorem (3.2).

Figure 3.4 plots the normalized energy W (t)
W (0)

for different mesh size h with τ = 2
25
h2

and for different τ with a fixed mesh size h = 2−4. We observe that the normalized

energy W (t)
W (0)

is monotonically decreasing in time for all cases, which again confirms

the unconditional energy stability of the symmetrized SP-PFEM in Theorem (3.2).

Furthermore, our numerical results suggest that different stabilizing functions k(n)

do not pollute the energy too much, and thus we can choose a relatively large

stabilizing function k(n) in practical computations.

Finally, we use the symmetrized SP-PFEM (3.45) to investigate the motion

by anisotropic surface diffusion with different anisotropies. We consider the weak

anisotropy γ(n) =
√
n2
1 + n2

2 + 2n2
3 with k(n) = k0(n). The evolutions of a smooth

2 × 2 × 1 ellipsoid and a non-smooth 2 × 2 × 1 cuboid are shown in figure 3.5 and

figure 3.6, respectively. We choose the mesh size h = 2−4 and the time step size

τ = 2
25
h2, and the ellipsoid and the cuboid are initially approximated by 10718 tri-

angles and 5361 vertices, and 32768 triangles and 16386 vertices, respectively. By

comparing the two figures, we find the two numerical equilibriums are close in shape,

which indicates our SP-PFEM (3.45) is robust in capturing the equilibrium shape

for different initial shapes. We can see that the meshes are well distributed during

the evolution, and there is no need to re-mesh during the evolution.

Then we show the evolution of a strong anisotropy γ(n) = 1 + 1
2
(n4

1 + n4
2 + n4

3)
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from a 2 × 2 × 1 cuboid, and the parameters are chosen the same as in previous

weak anisotropy. As it can be seen from Figure 3.7, the large and flat facets may

be broken into small facets, and the small facets may also merge into a large facet.

Moreover, we note from Figure 3.7 that the triangulations become dense at the edges

where the facets merge but become sparse at the other edges and at the interior of

the facets where the weighted mean curvature µ is almost a constant. This indicates

the meshes achieve the same ‘stable fashion’ as in the BGN scheme [19].

Figure 3.7: Evolution of a 2 × 2 × 1 cuboid by anisotropic surface diffusion with a

strong anisotropy γ(n) = 1 + 1
2
(n4

1 + n4
2 + n4

3) and k(n) = k0(n) at different times.



Chapter 4
A unified SP-PFEM for arbitrary surface

energy

So far, for the symmetric anisotropy γ(n) = γ(−n), we have successfully pro-

posed the symmetrized SP-PFEM for curves and surfaces, and developed the rigor-

ous analysis for energy stability. Hence, it is a natural question that for the arbitrary

anisotropic surface energy γ(n), especially the non-symmetric γ(−n) ̸= γ(n), how

to establish a PFEM that can be proved to be structural-preserving. In fact, several

important anisotropic surface energies do not satisfy the condition γ(−n) = γ(n),

such as the 3-fold anisotropy, and the piecewisely Riemannian metric anisotropic

surface energy. However, as mentioned in the Corollary 2.1, the symmetrized SP-

PFEM can only work for symmetric anisotropy. Therefore, to include the arbitrary

anisotropic surface energy, we need to develop an essentially different SP-PFEM.

Moreover, we also want the proposed SP-PFEM can be applied to both curves

and surfaces. To overcome this difficulty, we need to compare the essential dif-

ferences related to the dimension. First, the dimension of the tangential space is

different, which leads to the difference between the definition of the minimal stabi-

lizing function k0(n). Second, the proof of energy stability requires the estimate of

k0(n), which relies on several dimensional-dependent inequalities. However, the two

essential differences are related to the analysis of energy stability, which challenges

87
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us to develop a new analysis framework!

In this Chapter, we design a novel unified SP-PFEM for arbitrary anisotropic

surface energies that overcomes the two problems simultaneously – first, it can work

for both 2D curves (d = 2) and 3D surfaces (d = 3); second, it enlarges the energy

stability condition from γ(−n) = γ(n) to γ(−n) < (5−d)γ(n). To this end, we first
recall the definition of global parameterization and the surface gradient operator.

Then by introducing a unified surface energy matrix Gk(n), we derive a unified

weak formulation for the weighted mean curvature µ as well as the conservative

variational formulation for the anisotropic surface diffusion. After that, we adopt

the PFEM to get its full discretization – the unified SP-PFEM. Next, we develop

a new framework for the energy-stable analysis, including these three steps: First,

we adopt the definition of the minimal stabilizing function k0(n) to derive the local

estimate. Second, the local estimate is applied to prove the energy stability. Third,

by several in-depth and careful calculations, we get the existence of the minimal

stabilizing function k0(n). Finally, a large number of numerical experiments are

shown to illustrate the efficiency and validate the energy stability of our unified

SP-PFEM.

4.1 A unified weak formulation

4.1.1 Some general anisotropic surface energies and their

ξ-vectors

Here we list the commonly used non-symmetric γ(n) with their ξ-vector and

Hessian as follows:

• the piecewisely Riemannian metric anisotropic surface energy [55]

γ(n) =
√

(a+ b sgn(n1))n2
1 + n2

2, ∀n = (n1, n2)
T ∈ S1, (4.1)

where a, a + b > 0, sgn is the sign function. The ξ-vector and the Hessian

matrix are similar to the Riemannian metric anisotropy (2.4).



4.1 A unified weak formulation 89

It can also be extended to 3D as

γ(n) =
√

(a+ b sgn(n1))n2
1 + n2

2 + n2
3, ∀n ∈ S2, (4.2)

where n = (n1, n2, n3)
T ∈ S2.

• the 3-fold anisotropic surface energy [10,96,113,145]

γ(n) = 1 + β cos(3(θ − θ0)), ∀n = (− sin θ, cos θ)T ∈ S1, (4.3)

where θ0 ∈ [−π, π] is a constant, and β ≥ 0 is a dimensionless anisotropic

strength constant. When θ0 = 0, we have

γ(p) =
(
p21 + p22

) 1
2 (1 + β cos(3θ)),∀p = |p|(− sin θ, cos θ)T ∈ R2

∗. (4.4)

Plugging (4.4) into (1.3), we get

ξ = ξ(n) = n+ β cos(3θ)n+ 3β sin(3θ)n⊥, n = (− sin θ, cos θ), (4.5)

λ(n) = 1− 8β cos(mθ), (4.6)

which indicates that it is weakly anisotropic if 0 ≤ β ≤ 1
8
; otherwise, it is

strongly anisotropic.

4.1.2 Mathematical formulation

Let Γ0 ⊂ Rd be the initial orientable 2D curve/3D surface with the global pa-

rameterization X(ρ, t) as

X(·, t) : Γ0 → Rd, (ρ, t) 7→ X(ρ, t) := (X1(ρ, t), . . . , Xd(ρ, t))
T , (4.7)

Let n be the outward unit vector of the closed orientable surface Γ(t). By [33,

Definition 25], the normal velocity Vn of Γ(t) is thus given as

Vn = Vn(ρ, t) = ∂tX(ρ, t) · n. (4.8)

For a differentiable scalar-valued function f defined in an open neighbourhood

of Γ0, the surface gradient operator ∇Γ(t)f is defined by [12,55]

∇Γf = ∇Γ(t)f := ∇f − (∇f · n)n = (D1f, . . . , Ddf)
T . (4.9)
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Similarly, the surface gradient/divergence for a vector-valued function f = (f1, . . . , fd)
T

are

∇Γf = ∇Γ(t)f := (∇Γf1, . . . ,∇Γfd)
T , ∇Γ · f = ∇Γ(t) · f :=

d∑
i=1

Difi. (4.10)

The functional spaces L2(Γ0) is given as follows

L2(Γ0) :=

{
u : Γ0 → R |

∫
Γ0

|u|2 dA < +∞
}
, (4.11)

with the weighted inner product (·, ·)Γ(t) with respect to Γ(t) as

(u, v)Γ(t) :=

∫
Γ0

u v det(JX(·,t))dA =

∫
Γ(t)

u v dA(t), ∀u, v ∈ L2(Γ0). (4.12)

where dA, dA(t) is the area element of Γ0,Γ(t), respective. And JX(·,t) is the

Jacobian matrix given by X(·, t). Similarly, we can define the functional spaces

[L2(Γ0)]
d and [L2(Γ0)]

d×d. Moreover, the inner product for two matrix-valued func-

tions U ,V ∈ [L2(Γ0)]
d×d with respect to Γ(t) is emphasized as

⟨U ,V ⟩Γ(t) :=
∫
Γ0

U : V det(JX(·,t))dA =

∫
Γ(t)

U : V dA(t), (4.13)

here U : V = Tr(V TU ) is the Frobenius inner product. The Sobolev spaces

H1(Γ0), [H
1(Γ0)]

d are thus given as

H1(Γ0) :=
{
u : Γ0 → R | u ∈ L2(Γ0), ∇Γu ∈ [L2(Γ0)]

d
}
, (4.14)

[H1(Γ0)]
d :=

{
u : Γ0 → Rd | u ∈ [L2(Γ0)]

d, ∇Γu ∈ [L2(Γ0)]
d×d } . (4.15)

We recall that the motion of Γ(t) under the anisotropic surface diffusion (1.21)

can be reformulated as the PDE formulation

{
n · ∂tX = ∆Γµ,

µ = ∇Γ · ξ, ξ(n) = ∇γ(p)|p=n.

(4.16a)

(4.16b)

Let V (t) be the enclosed volume and W (t) be the total energy of the closed

orientable evolving curve/surface Γ(t), respectively. Based on this global parame-

terization, V (t),W (t) are formally given by

V (t) :=
1

d

∫
Γ(t)

X · n dA(t), W (t) :=

∫
Γ(t)

γ(n) dA(t). (4.17)
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From [33, 55] we know that the under the surface diffusion (4.16), the enclosed

volume V (t) is conserved, and the total energy W (t) is decreasing.

Finally, our goal is to propose a unified SP-PFEM with the following energy-

stable condition on γ(p):

γ(−p) < (5− d)γ(p), ∀p ∈ Rd
∗, γ(p) ∈ C(Rd) ∩ C2(Rd

∗). (4.18)

Remark 4.1. In fact, similar to the 2D paper [11], the regularity condition in (4.18)

can be relaxed to piecewise C2-anisotropies.

4.1.3 A unified surface energy matrix

Define the unified surface energy matrix Gk(n) as

Gk = Gk(n) = γ(n)Id − nξT + ξnT + k(n)nnT , (4.19)

where k(n) : Sd−1 → R≥0 is the stabilizing function. Denote its symmetric part as

G
(s)
k , and its anti-symmetric part as G(a), i.e.,

G
(s)
k := γ(n)Id + k(n)nnT , G(a) := −nξT + ξnT , Gk = G

(s)
k +G(a). (4.20)

The importance of the proposed unified surface energy matrix Gk(n) can be seen

from the following theorem.

Theorem 4.1. Let Γ be a closed orientable C2-curve/surface with the outward unit

normal vector n. For any ω ∈ [H1(Γ)]d, there holds the following equality

(µn,ω)Γ = ⟨Gk(n)∇ΓX,∇Γω⟩Γ. (4.21)

Proof. We first consider the 2D curve. Let s be the arc-length parameter for the

closed orientable curve Γ, ∂s be the arc-length derivative, and τ = ∂sX be the unit

tangential vector. From [11], we know that the left-hand side for (4.21) becomes

(µn,ω)Γ = (Gk(n)∂sX, ∂sω)Γ . (4.22)
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On the other hand, [33, Definition 5] gives that

∇ΓX = ∂sXτ T , ∇Γω = ∂sωτ T . (4.23)

Thus by applying the definition of the inner product for two matrix-valued functions

(4.13), the right-hand side for (4.21) can be simplified as

⟨Gk(n)∇ΓX,∇Γω⟩Γ =

∫
Γ

Tr(τ (∂sω)TGk(n)∂sXτ T ) dA

=

∫
Γ

Tr((∂sω)TGk(n)∂sX(τ Tτ )) dA

=

∫
Γ

Tr((∂sω)TGk(n)∂sX) dA

= (Gk(n)∂sX, ∂sω)Γ . (4.24)

The desired equality (4.1) is the direct result of (4.22) and (4.24).

For the 3D case, from [12, Lemma 2.1] and (4.19), we have already known that

(µn,ω)Γ = ⟨(γ(n)I3 − nξT − ξnT + k(n)nnT )∇ΓX,∇Γω⟩Γ
= ⟨Gk(n)∇ΓX,∇Γω⟩Γ − 2⟨ξnT∇ΓX,∇Γω⟩Γ. (4.25)

From equation (24b) in [55], we obtain that

∇ΓX = I3 − nnT . (4.26)

Thus by combining (4.25) and (4.26), we deduce that

(µn,ω)Γ = ⟨Gk(n)∇ΓX,∇Γω⟩Γ − 2⟨ξnT (I3 − nnT ),∇Γω⟩Γ
= ⟨Gk(n)∇ΓX,∇Γω⟩Γ − 2⟨ξ0T ,∇Γω⟩Γ
= ⟨Gk(n)∇ΓX,∇Γω⟩Γ. (4.27)

Which validates (4.21)

4.1.4 A weak formulation and its structure-preserving prop-

erties

By utilizing (4.1) and taking integration by parts, we then derive the following

unified conservative weak formulation for (4.16): Let the initial closed and orientable
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curve/surface be Γ0 and the function X0(ρ) = ρ,∀ρ ∈ Γ0. Find the solution

(X(·, t), µ(·, t)) ∈ [H1(Γ0)]
d ×H1(Γ0), such that X(·, 0) = X0(·) and

(∂tX · n, ϕ)Γ(t) + (∇Γµ,∇Γϕ)Γ(t) = 0, ∀ϕ ∈ H1(Γ0), (4.28a)

(µn,ω)Γ(t) − ⟨Gk(n)∇ΓX,∇Γω⟩Γ(t) = 0, ∀ω ∈ [H1(Γ0)]
d. (4.28b)

Here Γ(t) is given by X(Γ0, t).

For the unified conservative weak formulation (4.28), in the same way as Theorem

2.2 in [12], it can be shown that the two geometric properties are well preserved.

Theorem 4.2. Let Γ(t) be the solution of the unified conservative weak formulation,

then the enclosed volume V (t) is conserved, and the total energy W (t) is dissipative:

V (t) ≡ V (0), W (t) ≤ W (t′) ≤ W (0), ∀t ≥ t′ ≥ 0. (4.29)

4.2 The unified SP-PFEM

4.2.1 The unified discretization

To discretize the unified conservative weak formulation (4.28), we approximate

the closed orientable curve/surface Γ with the closed orientable polygon curve/polyhedral

surface Γh. For convenience, we assume that Γh is composed of a family of disjoint

and open non-degenerate line segments/triangles

Γh := ∪Jj=1σ̄j, (4.30)

where the intersection of σ̄i and σ̄j is a k-simplex of both σ̄i and σ̄j, where k < d−1.

For each line segment σj, its two vertices {qj1 , qj2} are assigned an order such that

the induced direction vector J {σ} given by

J {σj} := −(qj2 − qj1)
⊥, (4.31)
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pointing the outside of the closed polygon curve Γh, where (u1, u2)
⊥ = (u2,−u1),∀u =

(u1, u2) ∈ R2. And for each triangle σj, its three vertices {qj1 , qj2 , qj3} are also as-

signed an order with the direction vector

J {σj} := (qj2 − qj1)× (qj3 − qj2), (4.32)

see Figure. 4.1.

Figure 4.1: Plot of the direction vector J , left is 2D and right is 3D.

By using the direction vector J {σj}, we can thus denote the area |σj| and the

outward normal vector nj of σj as follows

|σj| :=
1

d− 1
|J {σj}|, nj :=

J {σj}
|J {σj}|

. (4.33)

The discretized surface gradient operator ∇Γ in 2D becomes

∇Γf |σj :=
(
f(qj2)− f(qj1)

) qj2 − qj1
|σj|2

. (4.34)

And in 3D, it is

∇Γf |σj :=
(
f(qj1)(qj2 − qj3) + f(qj2)(qj3 − qj1)

+f(qj3)(qj1 − qj2)
)
× nj

2|σj|
. (4.35)
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Suppose the closed orientable C2-evolving curve/surface Γ(t) is approximated by

the closed orientable evolving polygon curve/polyhedral surface Γh(t) = ∪Jj=1σ̄j(t)

with the vertices qi(t). And we denote Γh0 := Γh(0), σj,0 := σj(0), qi,0 := qi(0).

The global parameterization X(·, t) is approximated by Xh(qi,0, t) = qi(t) with

Xh(qi,0, 0) = Xh(qi,0) = qi,0. Similarly, due to the one-to-one correspondence

between the function on Γh(t) and Γh0 , it suffices to restrict our interest to the

functions on Γh0 .

Denote the approximation of L2(Γ0) as K(Γh0) given by

K(Γh0) :=
{
u ∈ C(Γh0)

∣∣∣u|σj,0 ∈ P1(σj,0), ∀j
}
, (4.36)

here P1(σj,0) is the set of polynomials on σj,0 with degree no higher than 1. Suppose

u, v ∈ K(Γh), the weighted inner product (u, v)Γ(t) is approximated by the weighted

mass-lumped inner product (u, v)h
Γh(t)

in the following way:

(u, v)hΓh(t) : =
1

d

J∑
j=1

d∑
i=1

|Xh(σj,0, t)|u((qji,0)−) v((qji,0)−)

=
1

d

J∑
j=1

d∑
i=1

|σj(t)|u((qji(t))−) v((qji(t))−), (4.37)

where u((qji,0)
−) = lim

q→qji,0
q∈σj,0

u(q). This definition holds true for [K(Γh0)]
d, [K(Γh0)]

d×d,

and applies to the piecewise continuous functions as well. We present the mass-

lumped inner product for two matrix-valued functions U ,V as follows

⟨U ,V ⟩hΓh(t) :=
1

d

J∑
j=1

d∑
i=1

|σj(t)|U((qji(t))
−) : V ((qji(t))

−). (4.38)

To derive a unified full-discretization, we choose the uniform time step τ , and

the discrete time levels become tm = mτ, m = 0, 1, 2, . . .. Let Γm = ∪Jj=1σ̄
m
j be an

approximation of Γ(tm), and we use the notation Kh to refer to K(Γ0). By adopting

the backward-Euler method, the unified conservative weak formulation (4.28) can

thus be discretized by a unified semi-implicit parametric finite element method as

follows. Let Γ0 = ∪Jj=1σ̄
0
j be an approximation of Γ0 with vertices q0

i . For each
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m = 0, 1, 2, . . ., find the solution (Xm+1, µm+1) ∈ [Kh]d ×Kh such that(
Xm+1 −Xm

τ
· nm+ 1

2 , ϕ

)h
Γm

+
(
∇Γµ

m+1,∇Γϕ
)h
Γm = 0, ∀ϕ ∈ Kh (4.39a)(

µm+1nm+ 1
2 ,ω

)h
Γm

− ⟨Gk(n
m)∇ΓX

m,∇Γω⟩hΓm = 0, ∀ω ∈ [Kh]d. (4.39b)

And σm+1
j = Xm+1(σmj ) with the ordered vertices qm+1

ji
= Xm+1(qmji ), ∀1 ≤ j ≤

J, i = 1, . . . , d. Here nm+ 1
2 is defined by

nm+ 1
2 |σm

j
:=


1
2

1
|σm

j |(J {σmj }+ J {σm+1
j }), d = 2;

J{σm
j }+4J{σ

m+1
2

j }+J{σm+1
j }

12|σm
j | , d = 3.

(4.40)

and σ
m+ 1

2
j := 1

2
(σmj + σm+1

j ).

Remark 4.2. The only implicit term in (4.39) is the smart approximation nm+ 1
2

proposed by Bao and Zhao in [13], which preserves the enclosed volume exactly.

Therefore a significant number of terms in the fully-implicit unified SP-PFEM (4.39)

are given explicitly, especially the domain of integration Γm. The unified SP-PFEM

(4.39) achieves good performance in terms of computation. In fact, by adopting

Newton’s method, only 2 or 3 iterations are needed for each time step for the isotropic

surface diffusion [13], and the anisotropic surface diffusion with the even γ(n) [8,12].

4.2.2 The minimal stabilizing function

In 2d, the unit tangent vector τ together with n form an orthonormal basis

{τ ,n}. We thus define the auxiliary 2 × 2 symmetric matrix M̃(O,α) for any

O ∈ SO(2) and α ∈ R≥0 as follows

M̃(O,α) :=

 γ(n) + α(Oτ · n)2 ∗
−1

2
((Oτ · τ )γ(n) + (Oτ · n)(τ · ξ) + γ(On)) γ(n)

 , (4.41)

here the entries above the main diagonal are abbreviated to ∗.
By utilizing M̃(O,α), we can define the minimal stabilizing function k0(n) as

k0(n) := inf
{
α
∣∣∣ M̃(O,α) is semi-positive definite ∀O ∈ SO(2)

}
. (4.42)

The existence of k0(n) is given by the following theorem.
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Theorem 4.3. For any γ(n) satisfies (4.18), the minimal stabilizing function k0(n)

given in (4.42) is well-defined.

In 3d, for any n ∈ S2, it can be assigned with two normal vectors τ 1, τ 2 ∈ S2,

such that {τ 1, τ 2,n} form an orthornormal basis. We thus define the auxiliary 4×4

symmetric matrix M(O,α) for any O ∈ SO(3) and α ∈ R≥0 as follows
γ(n) + α(Oτ 1 · n)2 ∗ ∗ ∗

−1
2
γ(On) γ(n) + α(Oτ 2 · n)2 ∗ ∗

α(Oτ 1 · n)(Oτ 2 · n) 0 γ(n) + α(Oτ 2 · n)2 ∗
M41 M42 M43 γ(n)

 , (4.43)

and M41,M42,M43 are

M41 = −1

2
(γ(n)(Oτ 1 · τ 1) + (Oτ 1 · n)(τ 1 · ξ)), (4.44a)

M42 = −1

2
(γ(n)(Oτ 2 · τ 2) + (Oτ 2 · n)(τ 2 · ξ)), (4.44b)

M43 = −1

2
(γ(n)(Oτ 2 · τ 1) + (Oτ 2 · n)(τ 1 · ξ)). (4.44c)

Similarly, the minimal stabilizing function k0(n) for 3d is given as

k0(n) := inf
{
α
∣∣∣ M(O,α) is semi-positive definite ∀O ∈ SO(3)

}
. (4.45)

And

Theorem 4.4. For any γ(n) satisfies (4.18), the minimal stabilizing function k0(n)

given in (4.45) is well-defined.

We give the proof for Theorem 4.3/4.4 in Section 4.4.

4.2.3 Structure-preserving properties

The minimal stabilizing function is critical in showing the energy stability in the

unified SP-PFEM (4.39). Suppose the enclosed volume and surface energy for the
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solution Γm = ∪Jj=1σ̄
m
j of (4.39) to be V m and Wm, respectively, which are given as

V m :=
1

d
(Xm,nm)hΓm =

1

d2

J∑
j=1

d∑
i=1

|σmj | qmji · nm
j , (4.46a)

Wm := (γ(nm), 1)hΓm =
J∑
j=1

|σmj |γ(nm
j ). (4.46b)

And our main result is the structure-preserving property of unified SP-PFEM (4.39):

Theorem 4.5 (structure-preserving). Suppose the stabilizing function k(n) ≥ k0(n),

then the unified SP-PFEM (4.39) is volume conservative and energy dissipative, i.e.

V m+1 = V m = . . . = V 0, (4.47a)

Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m = 0, 1, . . . (4.47b)

The proof of volume conservation for 2D/3D is similar to Theorem 2.1/3.2 in

Chapter 2/Chapter 3, respectively. Thus it is omitted here for brevity. However,

the proof of energy stability (4.47b) part requires in-depth analysis, thus we leave

it to the next section.

4.3 Proof of energy dissipation

To prove (4.47b), it is quite useful to establish the following estimate of Wm+1−
Wm

⟨Gk(n
m)∇ΓX

m+1, ∇Γ(X
m+1 −Xm)⟩hΓm ≥ Wm+1 −Wm. (4.48)

Since the velocity by anisotropic surface diffusion (4.16) is locally determined, we

can expect that for d = 2, 3, the local version of (4.48) on σmj also holds, i.e.,

1

d
|σmj |

d∑
i=1

(
Gk(n

m
j )∇ΓX

m+1((qmji )
−)
)
: (∇ΓX

m+1((qmji )
−)−∇ΓX

m((qmji )
−))

≥ γ(nm+1
j )|σm+1

j | − γ(nm
j )|σmj |, (4.49)

should hold for all 1 ≤ j ≤ J . The inequality (4.49) is called the local estimate.
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4.3.1 Local estimate in 2D

To verify (4.49), a proper representation of ∇ΓX
m+1 is required, which is given

by the following lemma.

Lemma 4.1 (QR factorization). Let {τ ,n} be an orthonormal basis of R2. Suppose

A ∈ R2×2 satisfies Aτ · An = 0 and det(A) > 0. Then there exists a matrix

O ∈ SO(2) and p, q ∈ R, such that p, q > 0 and

A
[
τ ,n

]
= O

[
τ ,n

]p 0

0 q

 . (4.50)

Here SO(d) stands for the special orthogonal group in dimension d. We refer the

proof to the proof of lemma 4.3.

Lemma 4.2. Suppose σ and σ̄ are two non-degenerated line-segments with ordered

vertices {q1, q2}, {q̄1, q̄2}, and outward unit normal vectors n and n̄, respectively.

Let X be a vector-valued function in [P1(σ)]2 satisfying X((qi)
−) = q̄i for i = 1, 2.

Then for any k(n) ≥ k0(n) for n ∈ S1, the following inequality holds

1

2
|σ|

2∑
i=1

(
Gk(n)∇ΓX((qi)

−)
)
: (∇ΓX((qi)

−)−∇Γid((qi)
−))

≥ γ(n̄) |σ̄| − γ(n)|σ|. (4.51)

Here id(q) = q, ∀q ∈ R2.

Proof. Suppose {τ 1,n} forms an orthonormal basis. Let the matrix A ∈ R2×2 and

b ∈ R2 satisfy

q̄i = Aqi + b, i = 1, 2, n̄ = An. (4.52)

It is easy to see such {τ ,n} and A satisfy the condition in Lemma 4.1. Thus by

applying Lemma 4.1, we deduce that there exists a matrix O ∈ SO(2) and p, q > 0,

such that

A
[
τ ,n

]
= O

[
τ ,n

]p 0

0 q

 . (4.53)
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We further notice that 1 = |n̄| = |An| = |qOn| = |q|. Together with q > 0, we

deduce that q = 1.

Moreover, since id ,X ∈ [P1(σ)]2 and id(q) = q,X(qi) = q̄i = Aqi + b. By

applying Lemma 3.6 in [12], we obtain

∇Γid((qi)
−) = ττ T , i = 1, 2. (4.54)

And

∇ΓX((qi)
−) = (∂τ (Aq + b))|(qi)

− τ T = Aττ T , i = 1, 2. (4.55)

The left-hand side of (4.51) can be written as the summation of two parts. By

applying (4.53), (4.55) and the definition of Gk(n) (4.19), and noticing (4.20) that

Gk(n) = G
(s)
k +G(a), the first term can be written as

1

2
|σ|

2∑
i=1

(
Gk(n)∇ΓX((qi)

−)
)
: ∇ΓX((qi)

−)

= |σ|
(
G

(s)
k (n)(Aττ T )

)
: (Aττ T )

= |σ|Tr
[
(ττ TAT )(γ(n)I2 + k(n)nnT )(Aττ T )

]
= |σ|

[
|Aτ |2γ(n) + k(n)(Aτ · n)2

]
= |σ|

[
p2γ(n) + k(n)p2(Oτ · n)2

]
. (4.56)

The second term can be written as

1

2
|σ|

2∑
i=1

(
Gk(n)∇ΓX((qi)

−)
)
: ∇Γid((qi)

−)

= |σ|Tr
(
(ττ T )(γ(n)I2 − nξT + ξnT + k(n)nnT )(Aττ T )

)
= |σ| [(Aτ · τ )γ(n) + (Aτ · n)(τ · ξ)]

= |σ| [p(Oτ · τ )γ(n) + p(Oτ · n)(τ · ξ)] . (4.57)

For the right-hand side of (4.51), by applying (4.53) again, and noticing σ̄ =

X(σ), n̄ = An, q = 1, we deduce that

γ(n̄) |σ̄| = γ(qOn)

∫
σ

|(∂τX)| dA = γ(On)

∫
σ

|Aτ | dA

= γ(On)

∫
σ

|pOτ | dA = p γ(On)|σ| (4.58)
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By substituting (4.56), (4.57), (4.58) into (4.51), and noticing (4.41), we know

the inequality (4.51) is equivalent to

|σ|

p
1

T M̃(O, k(n))(n)

p
1

 ≥ 0. (4.59)

By the definition of k0(n), we know M̃(O, k(n))(n) is semi-positive definite for all

O ∈ SO(2). Therefore the desired inequality (4.51) is validated.

Proof of (4.49) in 2D. Suppose {τmj ,nm
j } (1 ≤ j ≤ J) forms an orthonomal basis.

By applying Lemma 4.2 with σ = σmj , σ̄ = σm+1
j and X = Xm+1|σm

j
for 1 ≤ j ≤ J ,

we get

1

2
|σmj |

2∑
i=1

(
Gk(n

m
j )∇ΓX

m+1((qmji )
−)
)
: (∇ΓX

m+1((qmji )
−)−∇ΓX

m((qmji )
−))

≥ γ(nm+1
j )|σm+1

j | − γ(nm
j )|σmj |, ∀1 ≤ j ≤ J. (4.60)

which immediately implies the local estimate (4.49) in 2D.

4.3.2 Local estimate in 3D

Similar to the proof in 2D, to represent ∇ΓX
m+1, we need the following lemma.

Lemma 4.3 (QR factorization). Let {τ 1, τ 2,n} be an orthonormal basis of R3.

Suppose A ∈ R3×3 satisfies Aτ 1 ·An = 0, Aτ 2 ·An = 0 and det(A) > 0. Then there

exists a matrix O ∈ SO(3) and p, q, r, s ∈ R, such that p, q, r > 0 and

A
[
τ 1, τ 2,n

]
= O

[
τ 1, τ 2,n

]
p 0 0

s q 0

0 0 r

 . (4.61)

Proof. By QR factorization, we have

A
[
τ 1, τ 2,n

]
= QR =

(
Q
[
τ 1, τ 2,n

]T)[
τ 1, τ 2,n

]
R, (4.62)
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where Q is orthogonal and R = (rij) is an lower trianglar matrix with rii > 0 and

thus detR > 0. Furthermore, since Aτ 1 · An = 0 and Q is orthogonal, we have

0 = Aτ 1 · An =

Q

r11

r21

r31


 ·

Q


0

0

r33


 = r31 r33. (4.63)

Thus r31 = 0, and similarly r32 = 0. We obtain

R =


p 0 0

s q 0

0 0 r

 , (4.64)

with p, q, r > 0.

On the other hand, We know {τ 1, τ 2,n} forms an orthonormal basis implies the

matrix
[
τ 1, τ 2,n

]
is also orthogonal. Therefore O := Q

[
τ 1, τ 2,n

]T
is orthogonal,

and such O satisfies (4.61).

Finally, det(O) = det(A)
det(R)

= det(A)
pqr

> 0, thus det(O) = 1 and O ∈ SO(3). Which is

the desired result.

Lemma 4.4. Suppose σ and σ̄ are two non-degenerated triangles with ordered ver-

tices {q1, q2, q3}, {q̄1, q̄2, q̄3}, and outward unit normal vectors n and n̄, respec-

tively. Let X be a vector-valued function in [P1(σ)]3 satisfying X((qi)
−) = q̄i for

i = 1, 2, 3. Then for any k(n) ≥ k0(n) for n ∈ S2, the following inequality holds

1

3
|σ|

3∑
i=1

(
Gk(n)∇ΓX((qi)

−)
)
: (∇ΓX((qi)

−)−∇Γid((qi)
−))

≥ γ(n̄) |σ̄| − γ(n)|σ|. (4.65)

Here id(q) = q, ∀q ∈ R3.

Proof. Suppose {τ 1, τ 2,n} forms an orthonormal basis, where τ 1, τ 2 are determined

by n as in M(O,α)(n). Let the matrix A ∈ R3×3 and b ∈ R3 satisfy

q̄i = Aqi + b, i = 1, 2, 3, n̄ = An. (4.66)
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It is easy to see such {τ 1, τ 2,n} and A satisfy the condition in Lemma 4.3. Similarly,

we know that there exists a matrix O ∈ SO(3) and p, q > 0, s ∈ R, such that

A
[
τ 1, τ 2,n

]
= O

[
τ 1, τ 2,n

]
p 0 0

s q 0

0 0 1

 . (4.67)

By the same argument as in (4.54), (4.55), we have

∇Γid((qi)
−) = τ 1τ

T
1 + τ 2τ

T
2 , i = 1, 2, 3. (4.68)

∇ΓX((qi)
−) = Aτ 1τ

T
1 + Aτ 2τ

T
2 , i = 1, 2, 3. (4.69)

For the left-hand side of (4.65), by applying lemma 4.3 and the calculations for

(4.56), (4.57), we deduce that

1

3
|σ|

3∑
i=1

(
Gk(n)∇ΓX(q−

i )
)
: (∇ΓX((qi)

−)−∇Γid((qi)
−))

= |σ|
[
(p2 + s2 + q2)γ(n)

]
+ |σ|

[
k(n)(p2(Oτ 1 · n)2 + (s2 + q2)(Oτ 2 · n)2 + 2ps(Oτ 1 · n)(Oτ 2 · n))

]
+ 2|σ|(M41p+M42q +M43s). (4.70)

For the right-hand side of (4.65), similar to (4.58), it holds that

γ(n̄) |σ̄| = γ(An)

∫
σ

|(∂τ1X)× (∂τ2X)| dA = γ(On)

∫
σ

|(Aτ 1)× (Aτ 2)| dA

= γ(On)

∫
σ

|(pOτ 1 + sOτ 2)× (qOτ 2)| dA = pq γ(On)|σ| (4.71)

Finally, by substituting (4.70), (4.71) into (4.65), and noticing (4.43), we know

the inequality (4.65) is equivalent to

|σ|


p

q

s

1



T

M(O, k(n))(n)


p

q

s

1

 ≥ 0. (4.72)

By the definition of k0(n), we know M(O, k(n))(n) is semi-positive definite for all

O ∈ SO(3), which validates the desired inequality (4.65).
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The local estimate (4.49) in 3D is also a direct result of Lemma 4.4.

4.3.3 The proof

With the help of the local estimate (4.49), we are finally able to finish the proof

energy stability part (4.47b) of the main theorem 4.5.

Proof of energy stability. By taking summation of (4.49) for j from 1 to J , and

applying the mass-lumped inner product (4.38) and the definition for Wm (4.46b),

we get

⟨Gk(n
m)∇ΓX

m+1, ∇Γ(X
m+1 −Xm)⟩hΓm

=
1

d

J∑
j=1

|σmj |
d∑
i=1

(
Gk(n

m
j )∇ΓX

m+1((qmji )
−)
)
: (∇ΓX

m+1((qmji )
−)−∇ΓX

m((qmji )
−))

≥
J∑
j=1

(
γ(nm+1

j )|σm+1
j | − γ(nm

j )|σmj |
)
= Wm+1 −Wm, m ≥ 0, (4.73)

Choosing ϕ = µm+1 in (4.39a) and ω = Xm+1 in (4.39b), together with (4.73) yields

that

Wm+1 −Wm ≤ ⟨Gk(n
m)∇ΓX

m+1,∇Γ(X
m+1 −Xm)⟩hΓm

= −τ
(
∇Γµ

m+1,∇Γµ
m+1
)h
Γm ≤ 0, m ≥ 0, (4.74)

which validates the unconditional energy stability (4.47b) in Theorem 4.5.

4.4 Existence of minimal stabilizing function

4.4.1 Useful lemmas

In this section, we provide some useful lemmas in proving the semi-definiteness

of M(O,α).

Lemma 4.5 (Sylvester’s criterion). Let A be an n×n symmetric matrix with leading

principle minors be A1, A2, . . . , An. Denote Fi = det(Ai), i = 1, 2, . . . , n, then

A is positive definite ⇐⇒ Fi > 0, ∀i = 1, 2, . . . , n. (4.75)
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Lemma 4.6 (Schur complement). Let A be an n×n symmetric matrix, An−1 be its

n− 1th leading principle minor. If An−1 is positive definite, and det(A) ≥ 0, then

A is semi-positive definite. (4.76)

Proof. Denote the Schur complement for An−1 as A/An−1, which can also be re-

garded as a real number. From the fact that An−1 is positive definite, we know An−1

is invertible with det(An−1) > 0. From Appendix A.5.5 in [37], we know that

A is semi-positive definite ⇐⇒ A/An−1 is semi-positive definite. (4.77)

On the other hand, the property of Schur complement indicates that

det(A/An−1) =
det(A)

det(An−1)
≥ 0. (4.78)

Since A/An−1 is a non-negative number, we know A/An−1 is semi-positive definite.

By (4.77), we know that A is semi-positive definite.

Lemma 4.7. Suppose the two n × n symmetric continuous matrices A,D defined

in SO(d)× R and SO(d) satisfy

A(O,α) = A(O, 0) + αD(O), D(O) is semi-positive definite. (4.79)

Let An−1 be the (n−1)th leading principle minor of A. And there exists a kn−1 ≥ 0,

such that

An−1(O,α) is positive definite, ∀O ∈ SO(d), α ≥ kn−1. (4.80)

If for any O ∈ SO(d), there exists a constant kn,O ≥ kn−1 and an open neighbourhood

UO of O, such that

Fn(Õ, kn,O) = det(A(Õ, kn,O)) ≥ 0, ∀Õ ∈ UO. (4.81)

Then there exists a finite constant kn ≥ kn−1, such that for any O ∈ SO(d), α ≥ kn,

it holds

A(O,α) is semi-positive definite. (4.82)
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Proof. For any O ∈ SO(d) with the constant kn,O ≥ kn−1 and neighbourhood UO,
we know that for all Õ ∈ UO, det(A(Õ, kn,O)) ≥ 0 and An−1(Õ, kn,O) is positive

definite. Thus by Lemma 4.6, we know that A(Õ, kn,O) is semi-positive definite.

For any α ≥ kn,O, by (4.79), we know that

A(Õ, α) = A(Õ, kn,O) + (α− kn,O)D(Õ). (4.83)

Thus A(Õ, α) is semi-positive definite for all α ≥ kn,O, Õ ∈ UO. And (4.82) is a

direct result of the compactness of SO(d) and the open cover theorem.

Lemma 4.7 gives a simple approach to show the semi-positive definiteness of a

symmetric continuous matrix Mn(O,α). The positive definiteness of Mn−1 can be

established by applying Lemma 4.5. To verify condition (4.81), if Fn(O, kn,O) > 0

for some kn,O > 0, then the existence of such neighbourhood UO is ensured by the

continuity of Fn(·, kn,O). The problem is when Fn(O, kn,O) = 0, we need to show that

O is a local minimum of Fn(·, kn,O), which requires to consider its Hessian matrix.

Thus an elegant formulation for the Hessian matrix of a determinant (4.8) as well as

a proper parameterization for SO(d) (Lemma 4.9, 4.10) are important and highly

demanded.

Lemma 4.8 (Jacobi’s formula). Suppose A = (ai,j)n×n be a matrix of functions, we

have
∂ det(A)

∂α
= tr

(
adj(A)

∂A

∂α

)
. (4.84)

∂2 det(A)

∂α∂β
= tr

(
adj(A)

∂2A

∂α∂β

)
+
∑
i ̸=j

det



a1,1 a1,2 . . . a1,n
...

... . . .
...

∂ai,1
∂α

∂ai,2
∂α

. . .
∂ai,n
∂α

...
... . . .

...

∂aj,1
∂α

∂aj,2
∂α

. . .
∂aj,n
∂α

...
... . . .

...

an,1 an,2 . . . an,n


. (4.85)

Here adj(A) is the adjunct matrix of A.



4.4 Existence of minimal stabilizing function 107

Lemma 4.9 (Euler angles, 2d). For any O ∈ SO(2), there exists θ, such that

O
[
τ ,n

]
=
[
τ ,n

]
O(θ), (4.86)

where

O(θ) =

 cos θ sin θ

− sin θ cos θ

.
Moreover, we have

O
∣∣∣
(0)

[
τ ,n

]
=
[
τ ,n

]
I2, (4.87a)

dO

dθ

∣∣∣
(0)

[
τ ,n

]
=
[
τ ,n

] 0 1

−1 0

, (4.87b)

d2O

dθ2

∣∣∣
(0)

[
τ ,n

]
=
[
τ ,n

]−1 0

0 −1

. (4.87c)

Lemma 4.10 (Euler angles, 3d). For any O ∈ SO(3), there exists ϕ, θ, ψ, such that

O
[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
O(ϕ, θ, ψ), (4.88)

where

O(ϕ, θ, ψ) =


cos θ cosψ − cosϕ sinψ + sinϕ sin θ cosψ sinϕ sinψ + cosϕ sin θ cosψ

cos θ sinψ cosϕ cosψ + sinϕ sin θ sinψ − sinϕ cosψ + cosϕ sin θ sinψ

− sin θ sinϕ cos θ cosϕ cos θ

.
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Moreover, for β, γ ∈ {ϕ, θ, ψ}, we have

O
∣∣∣
(0,0,0)

[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
I3, (4.89a)

∂O

∂ϕ

∣∣∣
(0,0,0)

[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
0 0 0

0 0 −1

0 1 0

, (4.89b)

∂O

∂θ

∣∣∣
(0,0,0)

[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
0 0 1

0 0 0

−1 0 0

, (4.89c)

∂O

∂ψ

∣∣∣
(0,0,0)

[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
0 −1 0

1 0 0

0 0 0

, (4.89d)

∂2O

∂ψ2

∣∣∣
(0,0,0)

[
τ 1, τ 2,n

]
=
[
τ 1, τ 2,n

]
−1 0 0

0 −1 0

0 0 0

, (4.89e)

∂2

∂β∂γ
(Oτ 1 · n)2

∣∣∣
(0,0,0)

= 2δβϕδγϕ,
∂2

∂β∂γ
(Oτ 2 · n)2

∣∣∣
(0,0,0)

= 2δβθδγθ. (4.89f)

4.4.2 For curves in 2D

In this section, our main aim is to prove that there exists a k0(n) < ∞, such

that for any α ≥ k0(n), the matrix M̃(O,α) defined as follows

M̃(O,α) :=

 γ(n) + α(Oτ · n)2 ∗
−1

2
((Oτ · τ )γ(n) + (Oτ · n)(τ · ξ) + γ(On)) γ(n)

 , (4.90)

is semi-positive definite for any O ∈ SO(2).

The leading principle minors of M̃(O,α) are denoted as M̃1(O,α), M̃2(O,α),

their determinants are named by F̃1(O,α), F̃2(O,α), respectively.

Now we are going to prove the existence of k0(n) by applying Lemma 4.7.
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Lemma 4.11. For any γ(n) ∈ C2, there exists a k1 < ∞, such that ∀O ∈
SO(2), α ≥ k1, there holds

M̃1(O,α) is positive definite. (4.91)

Proof. We choose k1 = 0. It is easy to check F̃1(O,α) = γ(n)+α(Oτ ·n)2 > 0, and

thus we know that M̃1(O,α) is positive definite.

Lemma 4.12. For any γ(n) ∈ C2, there exists k1 ≤ k2,(0) < ∞ with the open

neighbourhood U of 0 such that

F̃2(O, k2,(0)) ≥ 0, ∀θ ∈ U ; (4.92)

Proof. First by applying the chain rule, noticing ∇γ(p)|p=n = ξ(n),∇∇γ(p)|p=n =

Hγ(n), together with (4.87), we obtain that

γ(On)
∣∣∣
0
= γ(n), (4.93a)

dγ(On)

dθ

∣∣∣
0
= ξ · τ , (4.93b)

d2γ(On)

dθ2

∣∣∣
0
=

(
dO

dθ

∣∣∣
0
n

)
·Hγ(n) ·

(
dO

dθ

∣∣∣
0
n

)
+ ξ ·

(
d2O

dθ2

∣∣∣
0
n

)
= τ · (Hγ(n)τ )− γ(n). (4.93c)

By definition of M̃2(O,α), (4.87), (4.93), and the definition of adjunct matrix,

we know that

M̃2(O,α)
∣∣∣
0
= γ(n)

 1 −1

−1 1

 , (4.94a)

adj(M̃2(O,α))
∣∣∣
0
= γ(n)

1
1

[1 1
]
, (4.94b)

dM̃2(O,α)

dθ

∣∣∣
0
=

0 0

0 0

 , (4.94c)

d2M̃2(O,α)

dθ2

∣∣∣
0
=

 2α ∗
−1

2
(−2γ(n) + τ · (Hγ(n)τ )) 0

 . (4.94d)
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(4.84), (4.85) in Lemma 4.8 and (4.94a)-(4.94d) suggest that

F̃2(O,α)
∣∣∣
0
= 0,

dF̃2(O,α)

dθ

∣∣∣
0
= 0, (4.95)

and
d2F̃2(O,α)

dθ2

∣∣∣
0
= γ(n) (2α + 2γ(n)− τ · (Hγ(n)τ )) . (4.96)

(4.96) implies that there exists a k1 ≤ k2,(0) < ∞, such that
d2F̃2(O,k2,(0))

dθ2

∣∣∣
0
> 0.

By the continuity of
d2F̃2(O,k2,(0))

dθ2
, we know that there exists an open neighbourhood

U of 0, such that
d2F̃2(O,k2,(0))

dθ2
|θ ≥ 0, ∀θ ∈ U . Thus by Taylor expansion and (4.95),

we know that there exists a F̃2(O, k2,(0)) ≥ 0,∀θ ∈ U , which validates (4.92).

Lemma 4.13. For any γ(n) ∈ C2 with γ(−n) < 3γ(n), there exists a k2 < ∞,

such that ∀O ∈ SO(2), α ≥ k2, there holds

M̃2(O,α) is semi-positive definite. (4.97)

Proof. First from Lemma 4.11, we know that there exists a α ≥ k1 ≥ 0, such that

M̃1(O,α) is positive definite.

Suppose (O0τ · n)2 ̸= 0, we have

F̃2(O0, α) = γ(n)(O0τ · n)2α +O(1) (4.98)

Thus for such O0, there exists a k1 ≤ k2,O0 < ∞ and a neighborhood UO0 of O0,

such that F̃2(O, k2,O0) ≥ 0,∀O ∈ UO0 .

If (O1τ ·n)2 = 0, we know that O1n = ±n. First we assume that O1n = n, i.e.

θ = 0. In this case, the open neighborhood and constant are given by Lemma 4.12.

The last case is O1n = −n. From the fact γ(−n) < 3γ(n) and O1τ = −τ , we

have

F̃2(O1, α) =
3γ(n)− γ(−n)

4
(γ(n) + γ(−n)) > 0. (4.99)

Thus there is an open neighbourhood UO1 of O1 and a k1 = k2,O1 < ∞, such that

∀O ∈ UO1 , it holds F̃2(O, k2,O1) ≥ 0.

It is obvious that M̃2(O,α) = M̃2(O, 0) + αD̃, where D̃ = diag((Oτ · n)2 , 0) is
semi-positive definite. By Lemma 4.7, we derive the desired result (4.117).
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The proof of the existence of k0(n) is almost done, and we make it clear as

follows

Proof of Theorem 4.3. Lemma 4.13 shows that

k2 <∞ ∈
{
α
∣∣∣ M̃(O,α) is semi-positive definite ∀O ∈ SO(2)

}
. (4.100)

Thus such a set is nonempty. On the other hand, let Oτ · n = 1 and α̃ = −2γ(n).

We know that F̃1(O, α̃) = γ(n) + α̃(Oτ · n)2 = −γ(n) < 0, and the set is also

bounded below. Therefore the set has a finite infimum k0(n).

4.4.3 For surfaces in 3D

In this section, our main aim is to prove that there exists a k0(n) < ∞, such

that for any α ≥ k0(n), the matrix M(O,α) defined as follows
γ(n) + α(Oτ 1 · n)2 ∗ ∗ ∗

−1
2
γ(On) γ(n) + α(Oτ 2 · n)2 ∗ ∗

α(Oτ 1 · n)(Oτ 2 · n) 0 γ(n) + α(Oτ 2 · n)2 ∗
M41 M42 M43 γ(n)

 (4.101)

is semi-positive definite for any O ∈ SO(3).

The leading principle minors ofM(O,α) are denoted asM1(O,α),M2(O,α),M3(O,α).

And we also use M4(O,α) to stand for M(O,α). Their determinants are named by

F1(O,α), F2(O,α), F3(O,α) and F4(O,α), respectively.

To apply Lemma 4.7, we first need to showM3(O,α) is positive definite for large

enough α.

Lemma 4.14. For any γ(n) ∈ C2 with γ(−n) < 2γ(n), there exists a k3 < ∞,

such that ∀O ∈ SO(3), α ≥ k3, there holds

M3(O,α) is positive definite. (4.102)

Proof. By Lemma 4.5, M3(O,α) is positive definite if and only if F1, F2, F3 > 0. It
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is easy to verify that

F1(O,α) = γ(n) + α(Oτ 1 · n)2, (4.103a)

F2(O,α) = α2(Oτ 1 · n)2(Oτ 2 · n)2 + α((Oτ 1 · n)2 + (Oτ 2 · n)2)γ(n)

+
4γ(n)2 − γ(On)2

4
, (4.103b)

F3(O,α) =

(
α((Oτ 1 · n)2 + (Oτ 2 · n)2)γ(n) +

4γ(n)2 − γ(On)2

4

)
(γ(n) + α(Oτ 2 · n)2). (4.103c)

Thus for α ≥ 0, we know F1(O,α) > 0, α2(Oτ 1 · n)2(Oτ 2 · n)2 ≥ 0, and F2, F3 is

nondecreasing with respect to α. Moreover, if α((Oτ 1 · n)2 + (Oτ 2 · n)2)γ(n) +
4γ(n)2−γ(On)2

4
> 0, we can deduce that F2, F3 > 0.

Suppose (O1τ 1 ·n)2+(O1τ 2 ·n)2 > 0. Then for such O1 ∈ SO(3), we know that

there exists a k3,O1 ≥ 0 with an open neighbourhood UO1 of O1, such that

α((Õ1τ 1 · n)2 + (Õ1τ 2 · n)2)γ(n) +
4γ(n)2 − γ(Õ1n)

2

4
> 0, ∀Õ ∈ UO1 , α > k3,O1 .

(4.104)

On the contrary, if both O2τ 1 ·n = 0 and O2τ 2 ·n = 0, we know that O2n = ±n.

In this case, α((Oτ 1 · n)2 + (Oτ 2 · n)2)γ(n) + 4γ(n)2−γ(On)2

4
becomes

4γ(n)2 − γ(On)2

4
≥ min

{
3γ(n)2

4
,
4γ(n)2 − γ(−n)2

4

}
> 0. (4.105)

And we can simply choose k3,O2 = 0. By applying the open cover theorem and

(4.104),(4.105), and the above analysis, we deduce the desired result.

Lemma 4.15. For any γ(n) ∈ C2 with γ(−n) < 2γ(n), there exists k3 ≤ k4,(0,0,0) <

∞, k3 ≤ k4,(0,0,π) <∞ with the open neighbourhood U of (0, 0, 0), V of (0, 0, π) such

that

F4(O, k4,(0,0,0)) ≥ 0, ∀(ϕ, θ, ψ) ∈ U ; (4.106)

F4(O, k4,(0,0,π)) ≥ 0, ∀(ϕ, θ, ψ) ∈ V . (4.107)
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Proof. First by applying the chain rule, noticing ∇γ(p)|p=n = ξ(n),∇∇γ(p)|p=n =

Hγ(n), together with (4.89), we obtain that

γ(On)
∣∣∣
(0,0,0)

= γ(n), (4.108a)

∂γ(On)

∂ϕ

∣∣∣
(0,0,0)

= ∇γ(On)
∣∣∣
(0,0,0)

·
(
∂O

∂ϕ

∣∣∣
(0,0,0)

n

)
= −ξ · τ 2, (4.108b)

∂γ(On)

∂θ

∣∣∣
(0,0,0)

= ξ · τ 1, (4.108c)

∂γ(On)

∂ψ

∣∣∣
(0,0,0)

= 0, (4.108d)

∂2γ(On)

∂ψ2

∣∣∣
(0,0,0)

=

(
∂O

∂ψ

∣∣∣
(0,0,0)

n

)
·Hγ(n) ·

(
∂O

∂ψ

∣∣∣
(0,0,0)

n

)
+ ξ ·

(
∂2O

∂ψ2

∣∣∣
(0,0,0)

n

)
= 0 · (Hγ(n)0) + ξ · 0 = 0. (4.108e)

By definition of M4(O,α), (4.89), (4.108), and the definition of adjunct matrix,
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we know that

M4(O,α)
∣∣∣
(0,0,0)

= γ(n)


1 −1/2 0 −1/2

−1/2 1 0 −1/2

0 0 1 0

−1/2 −1/2 0 1

 , (4.109a)

adj(M4(O,α))
∣∣∣
(0,0,0)

=
3

4
γ(n)3


1

1

0

1


[
1 1 0 1

]
, (4.109b)

∂M4(O,α)

∂ϕ

∣∣∣
(0,0,0)

=
1

2


0 τ 2 · ξ 0 0

τ 2 · ξ 0 0 −τ 2 · ξ
0 0 0 −τ 1 · ξ
0 −τ 2 · ξ −τ 1 · ξ 0

 , (4.109c)

∂M4(O,α)

∂θ

∣∣∣
(0,0,0)

=
τ 1 · ξ
2


0 −1 0 1

−1 0 0 0

0 0 0 0

1 0 0 0

 , (4.109d)

∂M4(O,α)

∂ψ

∣∣∣
(0,0,0)

=
γ(n)

2


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , (4.109e)

∂2M4(O,α)

∂ψ2

∣∣∣
(0,0,0)

=
γ(n)

2


0 0 0 1

0 0 0 1

0 0 0 0

1 1 0 0

 . (4.109f)

(4.84) in Lemma 4.8 and (4.109a)-(4.109e) suggest that

F4(O,α)
∣∣∣
(0,0,0)

= 0,
∂F4(O,α)

∂β

∣∣∣
(0,0,0)

= 0, ∀β ∈ {ϕ, θ, ψ}. (4.110)
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Obviously,M4(O, 0) is independent of α. From (4.109), we observe thatM4(O,α)
∣∣∣
(0,0,0)

,

∂M4(O,α)
∂β

∣∣∣
(0,0,0)

, β ∈ {ϕ, θ, ψ} are also independent of α. Thus for any β, φ ∈ {ϕ, θ, ψ},
we define the constant C1

4,β,φ, C
2
4,β,φ as follows

C1
4,β,φ :=

3

4
γ(n)3


1

1

0

1



T

∂2M4(O, 0)

∂β∂φ

∣∣∣
(0,0,0)


1

1

0

1

 , (4.111a)

C2
4,β,φ :=

∑
i ̸=j

det


M1,1 M1,2 M1,3 M1,4

∂Mi,1

∂β

∂Mi,2

∂β

∂Mi,3

∂β

∂Mi,3

∂β

∂Mj,1

∂φ

∂Mj,2

∂φ

∂Mj,3

∂φ

∂Mj,3

∂φ

M4,1 M4,2 M4,3 M4,4

 . (4.111b)

From the definition of M(O,α), we know that

M4(O,α) :=M4(O, 0) + αD(O)

=M4(O, 0) + α


(Oτ 1 · n)2 0 (Oτ 1 · n)(Oτ 2 · n) 0

0 (Oτ 2 · n)2 0 0

(Oτ 1 · n)(Oτ 2 · n) 0 (Oτ 2 · n)2 0

0 0 0 0

 .

(4.112)

Use (4.85) in Lemma 4.8, together with (4.109b), (4.89f), (4.111), (4.112), we
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deduce for any β, φ ∈ {ϕ, θ, ψ}, the second order derivative of F4 as follows

∂2F4(O,α)

∂β∂φ

∣∣∣
(0,0,0)

= tr

(
adj(M4(O,α))

∂2M4(O,α)

∂β∂φ

)
+
∑
i ̸=j

det


M1,1 M1,2 M1,3 M1,4

∂Mi,1

∂β

∂Mi,2

∂β

∂Mi,3

∂β

∂Mi,3

∂β

∂Mj,1

∂φ

∂Mj,2

∂φ

∂Mj,3

∂φ

∂Mj,3

∂φ

M4,1 M4,2 M4,3 M4,4



=
3

4
γ(n)3


1

1

0

1

 · ∂
2(M4(O, 0) + αD(O))

∂β∂φ

∣∣∣
(0,0,0)


1

1

0

1

+ C2
4,β,φ

= C1
4,β,φ + C2

4,β,φ +
3α

4
γ(n)3(2δβϕδφϕ + 2δβθδφθ). (4.113)

We note only ∂2F3(O,α)
∂ϕ2

∣∣∣
(0,0,0)

, ∂
2F3(O,α)
∂θ2

∣∣∣
(0,0,0)

depend on α. Hence the Hessian matrix

HF4(O,α)

∣∣∣
(0,0,0)

can be written as

HF4(O,α)

∣∣∣
(0,0,0)

= (C1
4,β,φ + C2

4,β,φ)β,φ∈{ϕ,θ,ψ} +
3α

2
γ(n)3diag(1, 1, 0). (4.114)

Moreover, by combining (4.109b), (4.109e), (4.109f), (4.111), (4.114) for ∂
2F4(O,α)
∂ψ2

∣∣∣
(0,0,0)

,

we have
∂2F4(O,α)

∂ψ2

∣∣∣
(0,0,0)

= C1
4,ψ,ψ + C2

4,ψ,ψ =
9

8
γ(n)4 > 0. (4.115)

This together with (4.114) and Lemma 4.5 imply that there exists a k3 ≤ k4,(0,0,0) <

∞, such that HF4(O,k4,(0,0,0))

∣∣∣
(0,0,0)

is positive definite. By the continuity of HF4(O,α),

we know that there is an open neighbourhood U of (0, 0, 0), such that ∀(ϕ, θ, ψ) ∈ U ,
it holds

HF4(O,k4,(0,0,0))

∣∣∣
(ϕ,θ,ψ)

is semi-positive definite. (4.116)

Thus by Taylor expansion, we know that F4(O, k4,(0,0,0)) ≥ 0,∀(ϕ, θ, ψ) ∈ U , which
validates (4.106). And the proof of (4.107) is similar.
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Lemma 4.16. For any γ(n) ∈ C2 with γ(−n) < 2γ(n), there exists a k4 < ∞,

such that ∀O ∈ SO(3), α ≥ k4, there holds

F4(O,α) ≥ 0, M4(O,α) is semi-positive definite. (4.117)

Proof. First from Lemma 4.14, we know that there exists a α ≥ k3 ≥ 0, such that

M3(O,α) is positive definite.

Suppose (O0τ 2 · n)2 ̸= 0, we have

F4(O0, α) = (O0τ 2 · n)2γ(n)2
(
(O0τ 1 · n)2 + (O0τ 2 · n)2

)
α2

− (O0τ 2 · n)2 ((O0τ 1 · n)M43 − (O0τ 2 · n)M41)
2 α2 +O(α)

= (O0τ 2 · n)2γ(n)2
(
(O0τ 1 · n)2 + (O0τ 2 · n)2

)
α2

− (O0τ 2 · n)2γ(n)2
4

[(O0τ 1 · n)(O0τ 2 · τ 1)− (O0τ 2 · n)(O0τ 1 · τ 1)]
2α2

+O(α)

≥ (O0τ 2 · n)2γ(n)2
2

(
(O0τ 1 · n)2 + (O0τ 2 · n)2

)
α2 +O(α)

Thus for such O0, there exists a k3 ≤ k4,O0 < ∞ and a neighborhood UO0 of O0,

such that F4(O, k4,O0) ≥ 0,∀O ∈ UO0 .

Next, suppose (O1τ 1 · n)2 ̸= 0, (O1τ 2 · n)2 = 0, we have

F4(O1, α) = γ(n)(O1τ 1 · n)2
(
γ(n)2 −M2

42 −M2
43

)
α +O(1)

≥ 1

2
γ(n)3(O1τ 1 · n)2α +O(1)

By the same argument, we know that there exists a k3 ≤ k4,O1 < ∞ and a neigh-

borhood UO1 of O1, such that F4(O, k4,O1) ≥ 0, ∀O ∈ UO1 .

If both (O2τ 1 ·n)2 = 0 and (O2τ 2 ·n)2 = 0, we know that O2n = ±n. First we

assume that O2n = n, i.e. ϕ = θ = 0. In this case, from Lemma 4.10 and (4.88) we

obtain

O2τ 1 ·τ 1 = cosψ, O2τ 1 ·τ 2 = sinψ, O2τ 2 ·τ 2 = cosψ, O2τ 2 ·τ 1 = − sinψ. (4.118)

For any α ≥ k3, by applying (4.118) we have

F4(O2, α) =
9 sin2 ψ

16
γ(n)4. (4.119)
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Thus if ψ ̸= 0, π, we know that F4(O2, k3) > 0. By the same argument, there exists

such open neighbourhood UO2 of O2 and the k3 = k4,O2 < ∞. And if ψ = 0 or

ψ = π, the open neighborhood and constant are given by Lemma 4.15.

The last case is O3n = −n, we assume that ϕ = π, θ = 0. For any α > 0, from

the fact γ(−n) < 2γ(n) and Lemma 4.10, we have

F4(O3, α) = γ(n)2
2γ(n)− γ(−n)

32

(
γ(n)(10− 2 cos(2ψ))

+γ(−n)(7− 2 cos(2ψ))
)
> 0. (4.120)

By the same argument, there is an open neighbourhood UO3 of O3 and a k3 = k4,O3 <

∞, such that ∀O ∈ UO3 , it holds F4(O, k4,O3) ≥ 0.

By Lemma 4.7 and (4.112), we derive the desired result (4.117).

Similar to the proof of Theorem 4.3, Theorem 4.4 is also a direct result of Lemma

4.16.

4.5 Numerical results

In this section, we present numerical results for the proposed unified SP-PFEM

(4.39) for surfaces in 3D. We demonstrate the efficiency of the method using a con-

vergence test and verify the main result (4.5) with a conservation law test. And we

also apply (4.39) to show the morphological evolution of several non-even anisotropic

energies.

For the spatial discretization, the initial surface S0 is approximated by the poly-

hedral mesh Γh,τ (0) = Γ0 = ∪Jj=1σ
0
j with the mesh size parameter h via the CFDTool.

The time step τ corresponding to the mesh Γ0 is chosen as τ = 2
25
h2. To solve the

implicit unified SP-PFEM (4.39), we employ the Newton iteration proposed in [12],

where the tolerance ε is chosen as 10−12.

In the numerical tests, we consider the three anisotropic surface energies as

follows
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• Case I: γ(n) = 1 + 1
8
(n3

1 + n3
2 + n3

3);

• Case II: γ(n) = 1 + 1
4
(n3

1 + n3
2 + n3

3);

• Case III: γ(n) =
√

(5
2
+ 3

2
sign(n1))n2

1 + n2
2 + n2

3.

The minimal stabilizing function k0(n) is determined numerically as follows: for

the interpolation points nij = (cos θi cosϕj, cos θi sinϕj, sin θi)
T for θi = iπ

10
, ϕj =

−π
2
+ j−1

10
π, i = 1, 2, . . . , 20, j = 1, 2, . . . , 21, we solve the optimization problem

(4.43) to determine k0(nij); and for the other points, k0(n) is given by the bilinear

interpolation.

To test the convergence rate, the initial surface S0 is chosen as a 2×1×1 cuboid.

We denote the numerical error between the numerical solution as Γh,τ (t) and the

exact solution Γ(t) as eh(t). The intermediate surface Γh,τ (t) is defined as

Γh,τ (t) :=
t− tm
τ

Γh,τ (tm) +
tm+1 − t

τ
Γh,τ (tm+1), tm ≤ t < tm+1. (4.121)

And the exact solution Γ(t) is approximated by She,τe(t) with a small mesh size

of he = 2−4 and a time step of τe = 2
25
h2e. We adopt the manifold distance

M(Sh,τ (t),Γ(t)) to quantify the numerical error eh(t), which is given as

eh(t) =M(Γh,τ (t),Γ(t)) := 2|Ω1 ∪ Ω2| − |Ω1| − |Ω2|. (4.122)

Here Ω1,Ω2 represents the enclosed region by Γh,τ (t),Γ(0), respectively.

The numerical errors for the anisotropic energies γ(n) in Case I-III and the

stabilizing functions k(n) = k0(n) and k(n) = supn∈S2 k0(n) are presented in Ta-

ble 4.1. Our results demonstrate that the order of convergence in h is approxi-

mately 2 for all configurations, which suggests that our unified SP-PFEM (4.39)

is efficient. Additionally, we can reduce the bilinear interpolation cost by setting

k(n) = supn∈S2 k0(n) but achieve the same performance of efficiency.

To validate the volume conservation and the energy dissipation, we consider the

normalized volume change ∆V h(t)
V h(0)

and the normalized energy Wh(t)
Wh(0)

as follows

∆V h(t)

V h(0)

∣∣∣
t=tm

:=
V m − V 0

V 0
,

W h(t)

W h(0)

∣∣∣
t=tm

:=
Wm

W 0
. (4.123)
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Figure 4.2: Plot of the normalized volume change ∆V (t)
V (0)

for different cases: (a) for

Case 1, (b) for Case 2, and (c) for Case 3.
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(h, τ) eh(1) Case 1 order eh(1) Case 2 order eh(1) Case 3 order

(h0, τ0) 1.48E-1 - 1.56E-1 - 1.63E-1 -

(h0
2
, τ0

4
) 3.68E-2 2.01 3.87E-2 2.01 3.98E-2 2.03

(h0
22
, τ0

42
) 8.95E-3 2.04 9.73E-3 1.99 9.53E-3 2.06

(h, τ) eh(1) Case 1’ order eh(1) Case 2’ order eh(1) Case 3’ order

(h0, τ0) 1.63E-1 - 1.65E-1 - 1.66E-1 -

(h0
2
, τ0

4
) 3.95E-2 2.04 4.23E-2 1.96 4.04E-2 2.04

(h0
22
, τ0

42
) 9.66E-3 2.03 1.01E-2 2.07 9.76E-3 2.05

Table 4.1: Numerical errors of eh,τ (t = 1) with k(n) = k0(n) (the first row)

and k(n) = sup
n∈S2

k0(n) (the second row) for Cases 1-3, while h0 := 2−1 and

τ0 := 2−1

25
. Here Case i/ Case i’ means the anisotropic energy in Case i with

k(n) = k0(n)/k(n) = sup
n∈S2

k0(n), respectively.

We investigate the anisotropic energies in Case I-III with the initial 2×1×1 elliptic

and fixed mesh size h = 2−4 and time step τ = 2
25
h2. Figure 4.2 shows the normal-

ized volume changes with k(n) = k0(n), and Figure 4.3 illustrates the normalized

energies with different k(n) ≥ k0(n). It can be seen in Figure 4.2 that the normal-

ized volume changes are in the same order of 10−15, which is almost the machine

epsilon. We also observe that the normalized energies are monotonically decreasing,

as shown in Figure 4.3. In particular, the right column in Figure 4.3 indicates that

the normalized energies are independent of k(n).

The morphological evolutions of the 2× 2× 1 cuboid under anisotropic surface

diffusion are shown in Figure 4.4-4.6 for different anisotropies. We observe that the

mesh points are well-behaved in each figure, and no mesh regularization is required.

Moreover, by comparing the numerical equilibrium shapes in Figure 4.4 and 4.5, we

can find the corners become sharper as the anisotropic effect increases from 1
8
to

1
4
. Finally, we note that although the regularity of γ(n) in Case III is not C2, our
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Figure 4.3: Plot of the normalized energy W (t)
W (0)

for anisotropic energies in Case I-III

with the fixed k(n) = k0(n) (left column) for different h and τ ; or the fixed h = 2−4

and τ = 2
25
h2 with different k(n) (right column). The top, middle, and bottom rows

correspond to the anisotropic energies in Case I-III, respectively.



4.5 Numerical results 123

unified SP-PFEM (4.39) works well for all the numerical tests, which validates our

remark 4.1.

Figure 4.4: Evolution of a 2 × 2 × 1 cuboid by anisotropic surface diffusion with a

weak anisotropy γ(n) = 1 + 1
8
(n3

1 + n3
2 + n3

3) and k(n) = k0(n) at different times.
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Figure 4.5: Evolution of a 2 × 2 × 1 cuboid by anisotropic surface diffusion with a

weak anisotropy γ(n) = 1 + 1
4
(n3

1 + n3
2 + n3

3) and k(n) = k0(n) at different times.
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Figure 4.6: Evolution of a 2×2×1 cuboid by anisotropic surface diffusion with a weak

anisotropy γ(n) =
√

(5
2
+ 3

2
sign(n1))n2

1 + n2
2 + n2

3 and k(n) = k0(n) at different

times.



Chapter 5
Extensions to other anisotropic geometric

flows

This Chapter extends the unified SP-PFEM discussed in the previous Chapter to

other anisotropic flows, including the anisotropic curvature flow and the anisotropic

mass-conserved curvature flow. In fact, the energy stable condition on γ(n) in (4.18),

the definition of Gk(n) in (4.19), the alternative expression for µ in (4.21), and the

definition of k0(n) in 2d (4.41) or in 3d (4.45) are independent of the anisotropic

surface diffusion flow. Thus these definitions and the proof of energy stability can be

directly applied to other anisotropic geometric flows after some minor modifications.

Unless otherwise specified, the notations used in this Chapter have the same

meanings as those defined in Chapter 4.

5.1 For anisotropic curvature flow

5.1.1 Introduction

Curvature flow is a specific type of geometric flow, in which the normal velocity,

Vn, of an interface, Γ, is dictated by the curvature, κ, such that Vn = −κ. It is

another important model in the analysis of interface evolution within various multi-

phase physical models [115]. Similar to surface diffusion, which is the H−1-gradient

126
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flow of surface energy, curvature flow also emerges in problems involving surface en-

ergy, and it can be interpreted as the L2-gradient flow of the energy functional [139].

However, one key difference between curvature flow and surface diffusion is the con-

servation of mass. While surface diffusion preserves the total mass, mean curvature

flow does not conserve mass, instead dissipating it at a specific rate. In addition to

these two geometric properties, curvature flow possesses numerous other well-studied

properties, including convexity preserving, and irregularities smoothing. We refer

to [111] for a comprehensive overview.

The significance of the anisotropic surface energy for curvature flow is increas-

ing across various scientific domains. This is particularly notable in the study of

phase changes and phase separation within multiphase materials [1]. Such changes

are integral to a multitude of physical phenomena and dictate the behavior of ma-

terials under different conditions. However, most studies on anisotropic curvature

flow focus on the crystalline case [2, 44, 141]. By extending our unified SP-PFEM

to anisotropic curvature flow, it can handle anisotropic mean curvature flow for a

broader range of anisotropies. Therefore, we can model and analyze a more extensive

physical phenomena, and contribute to the understanding of behavior in multiphase

and crystalline materials.

5.1.2 The unified SP-PFEM

The normal velocity for the anisotropic curvature flow is Vn = −µ. Similar to

the anisotropic surface diffusion (1.21), for the anisotropic curvature flow, we have

its geometric PDE formulation as


∂tX = −µn,

µ = ∇Γ · ξ, ξ(n) = ∇γ(p)|p=n.

(5.1a)

(5.1b)

By utilizing the surface energy matrix Gk(n) and the identity (4.21) in Theorem

4.1, we have the conservative weak formulation for the weighted mean curvature µ:

(µn,ω)Γ = ⟨Gk(n)∇ΓX,∇Γω⟩Γ, ∀ω ∈ [H1(Γ0)]
d. (5.2)
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Suppose the initial curve X(·, 0) = (x(·, 0), y(·, 0))T := Γ0 ∈ [H1(Γ0)]
d and the

initial weighted curvature µ(·, 0) := µ0(·) ∈ H1(Γ0). Based on the conservative form

(5.2), the variational formulation for anisotropic curvature flow is as follows: For

any t > 0, find the solution (X(·, t), µ(·, t)) ∈ [H1(Γ0)]
d ×H1(Γ0) satisfying(

n · ∂tX, φ
)
Γ(t)

+
(
µ, φ

)
Γ(t)

= 0, ∀φ ∈ H1(Γ0), (5.3a)(
µn,ω

)
Γ(t)

−
〈
Gk(n)∇ΓX,∇Γω

〉
Γ(t)

= 0, ∀ω ∈ [H1(Γ0)]
d. (5.3b)

And the unified SP-PFEM for the anisotropic curvature flow (5.1) is as follows:

Suppose the initial approximation Γ0(·) ∈ [Kh]d is given by X0(ρj) = X0(ρj),∀j,
then for any m = 0, 1, 2, . . ., find the solution (Xm(·), µm(·)) ∈ [Kh]d × Kh, such

that(
nm+ 1

2 · X
m+1 −Xm

τ
, φh
)h
Γm

+
(
µm+1, φh

)h
Γm

= 0, ∀φh ∈ Kh, (5.4a)(
µm+1nm+ 1

2 ,ωh
)h
Γm

−
〈
Gk(n

m)∇ΓX
m+1,∇Γω

h
〉h
Γm

= 0, ∀ωh ∈ [Kh]d. (5.4b)

5.1.3 Main theorem

For the unified SP-PFEM (5.4), we have

Theorem 5.1 (structure-preserving). Suppose γ(n) satisfies (4.18) and take a sta-

bilizing function k(n) ≥ k0(n), then the unified SP-PFEM (5.4) preserves mass

decay rate and energy dissipation, i.e.,

V m+1 − V m

τ
= −

(
µm+1, 1

)h
Γm
, Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (5.5)

Proof. From [13, Theorem 2.1], we know that

V m+1 − V m =
(
nm+ 1

2 · (Xm+1 −Xm), 1
)h
Γm
. (5.6)

Thus by taking φh ≡ 1 ∈ Kh in (5.4a), we know that

V m+1 − V m

τ
=
(
nm+ 1

2 · X
m+1 −Xm

τ
, 1
)h
Γm

= −
(
µm+1, 1

)h
Γm
, (5.7)
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which is the desired decay rate in (5.5).

For energy dissipation, we have already known that the local energy estimates

(4.49) is true. Taking φh = µm+1 in (5.4a) and ωh = Xm+1 − Xm in (5.4b), we

know that

0 ≥ −τ
(
µm+1, µm+1

)h
Γm

=
〈
Gk(n

m)∇ΓX
m+1,∇Γ(X

m+1 −Xm)
〉h
Γm

≥ Wm+1 −Wm.

Hence we complete the proof.

5.1.4 Numerical results

We apply the proposed unified SP-PFEM to simulate the morphological evolution

driven by the anisotropic curvature flow and anisotropic surface diffusion in 2D. Here

we consider the following two anisotropic surface energies:

• Case I, the piecewisely Riemannian metric anisotropic surface energy (4.1)

with a = 5
2
and b = 3

2
,

γ(n) =

√(
5

2
+

3

2
sgn(n1)

)
n2
1 + n2

2, ∀n ∈ S1. (5.8)

• Case II, the 3-fold anisotropic surface energy (2.10) with θ0 = 0,

γ(n) = 1 + β cos(3θ), ∀n = (− sin θ, cos θ)T ∈ S1. (5.9)

Fig 5.1 and Fig 5.2 depict the anisotropic curvature flow and anisotropic surface

diffusion at different times with anisotropy in case I and in case II with β = 1/3,

respectively.

From Fig. 5.1-5.2, we can see that anisotropic curvature flow and anisotropic

surface diffusion have the same equilibriums in shapes. While due to the different in-

ertial geometric properties, they have different dynamics. The anisotropic curvature

flow will first approach to the equilibrium shape, then shrink to a point; while the

anisotropic surface diffusion approaches its equilibrium shape and remains stable.
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Figure 5.1: Morphological evolutions of a 4 × 1 ellipse under anisotropic curvature

flow (first, third rows) and anisotropic surface diffusion (second, fourth rows) with

the anisotropic surface energy in Case I at different times. The evolving curves and

their enclosed regions are colored by blue and black. The mesh size and time step

are taken as h = 2−7, τ = 0.001.
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Figure 5.2: Morphological evolutions of a 4 × 1 ellipse under anisotropic curvature

flow (first, third rows) and anisotropic surface diffusion (second, fourth rows) with

the anisotropic surface energy in Case II with β = 1/3 at different times. The

evolving curves and their enclosed regions are colored by blue and black. The mesh

size and time step are taken as h = 2−7, τ = 0.001.



132 Chapter 5. Extensions to other anisotropic geometric flows

5.2 For anisotropic mass-conserved curvature flow

5.2.1 Introduction

A notable challenge in the anisotropic curvature flow lies in the mass dissipation

that results in eventual contraction to a singular point. To balance the contrac-

tion, a force term λ(t) depends on the evolving interface Γ(t) in normal direction is

introduced. More precisely, if λ(t) satisfies the following equation

λ(t) =

∫
Γ(t)

µ dA∫
Γ(t)

1 dA
, (5.10)

the resulting regularized anisotropic curvature flow, i.e.,


∂tX = (−µ+ λ(t))n,

µ = ∇Γ · ξ, ξ(n) = ∇γ(p)|p=n.

(5.11a)

(5.11b)

will conserve its total mass. This alteration leads to a new variant of the anisotropic

curvature flow, known as the anisotropic mass-conserved curvature flow, which pre-

serves mass while maintaining the desired anisotropic properties.

5.2.2 The unified SP-PFEM

For the anisotropic mass-conserved curvature flow Vn = −µ + λ(t) with λ(t) =∫
Γ(t) µdA∫
Γ(t) 1 dA

, the geometric PDE is given as


n · ∂tX = −µ+ λ(t),

µ = ∇Γ · ξ, ξ(n) = ∇γ(p)|p=n.

(5.12a)

(5.12b)

and the variational formulation can be derived in a similar way.

In order to design a unified structure-preserving full discretization, we need to

properly discretize λ(t). Denote λm+ 1
2 with respect to Γm as

λm+ 1
2 :=

(µm+1, 1)
h
Γm

(1, 1)hΓm

. (5.13)



5.2 For anisotropic mass-conserved curvature flow 133

By adopting this λm+ 1
2 , the unified SP-PFEM for the anisotropic mass-conserved

curvature flow in (5.12) is as follows: Suppose the initial approximation Γ0(·) ∈
[Kh]d is given by X0(ρj) = X0(ρj),∀j; for any m = 0, 1, 2, . . ., find the solution

(Xm(·), µm(·)) ∈ [Kh]d ×Kh, such that(
nm · X

m+1 −Xm

τ
, φh
)h
Γm

+
(
µm+1 − λm+ 1

2 , φh
)h
Γm

= 0, ∀φh ∈ Kh, (5.14a)(
µm+1nm,ωh

)h
Γm

−
〈
Gk(n

m)∇ΓX
m+1,∇Γω

h
〉h
Γm

= 0, ∀ωh ∈ [Kh]d. (5.14b)

5.2.3 Main theorem

For the above unified SP-PFEM (5.14), we have

Theorem 5.2 (structure-preserving). Suppose γ(n) satisfies (4.18) and take a finite

stabilizing function k(n) ≥ k0(n), then the unified SP-PFEM (5.4) is structure-

preserving, i.e.,

V m+1 ≡ V 0, Wm+1 ≤ Wm ≤ . . . ≤ W 0, ∀m ≥ 0. (5.15)

Proof. For the mass conservation, taking φh ≡ 1 in (5.14a) yields that(
nm+ 1

2 · (Xm+1 −Xm), 1
)h
Γm

= −τ
(
µm+1 − λm+ 1

2 , 1
)h
Γm

= −τ
(
µm+1, 1

)h
Γm

+ τλm+ 1
2

(
1, 1
)h
Γm

= −τ
(
µm+1, 1

)h
Γm

+ τ
(µm+1, 1)

h
Γm

(1, 1)hΓm

(
1, 1
)h
Γm

= 0, m ≥ 0.

By noting (5.5), we deduce that V m+1 − V m = 0, which shows mass conservation.

For energy dissipation, by Cauchy-Schwarz inequality, we have(
λm+ 1

2 , µm+1
)h
Γm

= λm+ 1
2

(
1, µm+1

)h
Γm

=
1

(1, 1)hΓm

((
1, µm+1

)h
Γm

)2

≤ 1

(1, 1)hΓm

(
1, 1
)h
Γm

(
µm+1, µm+1

)h
Γm

=
(
µm+1, µm+1

)h
Γm
, m ≥ 0.
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Taking φh = µm+1 in (5.14a) and ωh = Xm+1 −Xm in (5.14b), and adopting the

local energy estimates (4.49) yields that

Wm+1 −Wm ≤ −τ
(
µm+1 − λm+ 1

2 , µm+1
)h
Γm

≤ 0, m ≥ 0, (5.16)

which implies the energy dissipation in (5.15).

5.2.4 Numerical results

Here we adopt the unified SP-PFEM to simulate the morphological evolution

driven by the anisotropic mass-conserved curvature flow and anisotropic surface

diffusion in 2D. The anisotropic surface energies are the same as those in the previous

section.

As shown in Fig. 5.3 (b)-(d), the edges emerge during the evolution and corners

become sharper as the strength β increases. In contrast, there are no edges or corners

in the morphological evolutions with anisotropy in Case I. This suggests that even

if it is not a C2-function, it is more like weak anisotropy!

From Fig. 5.4-5.5, we can see that the anisotropic surface diffusion and the

anisotropic mass-conserved curvature flow have the same equilibriums in shapes,

while they have different dynamics, i.e., the equilibriums are different in posi-

tions, and the anisotropic surface diffusion evolves faster than the anisotropic mass-

conserved curvature flow.
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Figure 5.3: Morphological evolutions of a 4 × 1 ellipse under anisotropic mass-

conserved curvature flow with four different anisotropic energies: (a) anisotropy in

Case I; (b)-(d) anisotropies in case II with β = 1/9, 1/7, 1/3, respectively. The red

and blue lines represent the initial curve and the numerical equilibrium, respectively;

and the black dashed lines represent the intermediate curves. The mesh size and

time step are taken as h = 2−7, τ = h2.
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Figure 5.4: Morphological evolutions of a 4 × 1 ellipse under anisotropic mass-

conserved curvature flow (first, third rows) and anisotropic surface diffusion (second,

fourth rows) with the anisotropic surface energy in Case I at different times. The

evolving curves and their enclosed regions are colored by blue and black. The mesh

size and time step are taken as h = 2−7, τ = 0.001.
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Figure 5.5: Morphological evolutions of a 4 × 1 ellipse under anisotropic mass-

conserved curvature flow (first, third rows) and anisotropic surface diffusion (second,

fourth rows) with the anisotropic surface energy in Case II with β = 1/3 at different

times. The evolving curves and their enclosed regions are colored by blue and black.

The mesh size and time step are taken as h = 2−7, τ = 0.001.
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Conclusion and Future Works

This thesis is focusing on the design of structure-preserving parametric finite

element methods for anisotropic surface diffusion of 2d curves and 3d surfaces with

arbitrary anisotropic surface energies. For the symmetric anisotropy γ(−n) = γ(n),

based on the newly proposed symmetric surface energy matrix Zk(n), we have

proposed the novel symmetrized SP-PFEMs of curves and surfaces. For the general

anisotropy, we introduced a unified SP-PFEM by adopting the surface energy matrix

Gk(n). The energy stability condition on γ(n) has been improved drastically to all

the C2 anisotropies with γ(−n) < (5 − d)γ(n) for general γ(n). This mild and

simple condition makes our SP-PFEMs applicable for almost all the commonly-used

anisotropic surface energies. Moreover, the framework developed in this thesis can

also be extended to other geometric flows with the anisotropic effect.

In Chapter 2, for anisotropic surface diffusion in 2D with symmetric anisotropy,

we proposed a symmetric positive definite surface energy matrix Zk(n) and a sta-

bilizing function k(n). By utilizing Zk(n), we reformulated the anisotropic surface

diffusion equation into a novel symmetrized form and derived a new variational

formulation. We discretized the variational problem in space by the PFEM. For

temporal discretization, we proposed a fully implicit symmetrized SP-PFEM, which

can rigorously preserve the total area up to machine precision. Then we rigorously

proved that the proposed symmetrized SP-PFEM is unconditionally energy-stable

138
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by showing the existence of the minimal stabilizing function k0(n). For several

commonly-used symmetric anisotropies, we also gave the analytic formulation for

the minimal stabilizing function k0(n). Furthermore, in Chapter 3, by introduc-

ing the surface gradient operator, we extended the symmetrized SP-PFEM to the

evolution of a closed and orientable surface in 3D. We generalized the novel sym-

metric positive definite surface energy matrix Zk(n) and thus derived a new sym-

metrized variational formulation for anisotropic surface diffusion in 3D with weakly

or strongly anisotropic surface energy as well as the full discretization by sym-

metrized SP-PFEM. Compared to the 2D symmetrized SP-PFEM, we developed an

essentially different approach to show that the 3D symmetrized SP-PFEM is un-

conditionally energy-stable for almost all anisotropic surface energies γ(n) arising

in practical applications.

In Chapter 4, for the arbitrary anisotropic surface energy γ(n), we propose a

unified SP-PFEM for anisotropic surface diffusion in both two and three dimen-

sions (d = 2, 3). The proposed unified SP-PFEM is based on the unified sur-

face energy matrix Gk(n), which is a sum of a symmetric positive definite ma-

trix G
(s)
k (n) and an anti-symmetric matrix G(a)(n), and the unified weak formula-

tion of the chemical potential µ. The main challenge and contribution are estab-

lishing a unified framework to prove energy stability under the simple conditions

γ(p) ∈ C2(Rd
∗), γ(−n) < (5 − d)γ(n), which rely on the insight of the local energy

estimates and the existence of k0(n).

Finally, in Chapter 5, we extended the unified SP-PFEM to other geometric flows

with an anisotropic effect. We proposed SP-PFEMs for the evolution of a close curve

under the anisotropic curvature flow and anisotropic mass-conserved curvature flow.

In each Chapter, we provided a large number of numerical simulations, and

the numerical results indicate that the SP-PFEMs are second-order accurate in

space, first-order in time, unconditionally energy-stable, and enjoy very good mesh

quality during the evolution, and no mesh redistribution procedure is needed even

for strongly anisotropic cases. Moreover, our SP-PFEMs work well for the piecewise
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C2 anisotropy, which is a significant achievement compared with other PFEMs.

A few notable future research prospects include the following:

• By selecting an appropriate k(n), our 2D symmetrized SP-PFEM can reduce

to the BGN’s PFEM as described in [17] (see Remark 2.5). However, in 3D,

our symmetrized SP-PFEM is essentially different from their PFEM. This

suggests the possible existence of a more generalized PFEM that could serve

as an extension of both.

• The minimal stabilizing function k0(n) is given explicitly only for a few sym-

metric anisotropies in 2D, and deriving its explicit formulation is quite com-

plicated. For numerical implementation, it is desirable to find an estimate of

the upper bound of k0(n).

• Since both the symmetrized SP-PFEM and the unified SP-PFEM are appli-

cable to symmetric anisotropy, it is important to know which method is more

accurate and efficient.

• The energy stability still requires the anisotropic surface energy γ(p) to be

piecewise C2(Rd) and satisfy the condition γ(−n) < (5−d)γ(n). The regular-
ity condition relies on the existence of k0(n), and the constant 5−d comes from

the local error estimates, and the two conditions both can not be improved

in our newly developed analysis framework. It is important but difficult to

develop a ”global” analysis framework that can relax the regularity condition

to piecewise C1 and improve the constant 5− d.

• The convergence tests show that the convergence rate is rather robust. How-

ever, due to the tangential motion, the error analysis of the proposed PFEMs

is still unknown.

• The global parameterization X assumes that there is a diffeomorphism be-

tween the initial interface Γ0 and the interface Γ(t) at time t, which makes

our SP-PFEMs difficult to handle the topological change. We may explore
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the concept of ”surgery” from the mean curvature flow, or use the phase-field

model to capture the topological change.

• It will be interesting to generalize the SP-PFEMs to other anisotropic geomet-

ric flows and free boundary problems.
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[5] E. Bänsch, P. Morin, and R. H. Nochetto, Surface diffusion of graphs:

variational formulation, error analysis, and simulation, SIAM J. Numer.

Anal., 42 (2004), pp. 773–799.

[6] W. Bao, H. Garcke, R. Nürnberg, and Q. Zhao, Volume-preserving

parametric finite element methods for axisymmetric geometric evolution equa-

tions, J. Comput. Phys., 460 (2022), article 111180.

142



Bibliography 143

[7] , A structure-preserving finite element approximation of surface diffusion

for curve networks and surface clusters, Numer. Methods Partial Differ. Equ.,

39 (2023), pp. 759–794.

[8] W. Bao, W. Jiang, and Y. Li, A symmetrized parametric finite element

method for anisotropic surface diffusion of closed curves, SIAM J. Numer.

Anal., 61 (2023), pp. 617–641.

[9] W. Bao, W. Jiang, D. J. Srolovitz, and Y. Wang, Stable equilibria of

anisotropic particles on substrates: a generalized Winterbottom construction,

SIAM J. Appl. Math., 77 (2017), pp. 2093–2118.

[10] W. Bao, W. Jiang, Y. Wang, and Q. Zhao, A parametric finite element

method for solid-state dewetting problems with anisotropic surface energies, J.

Comput. Phys., 330 (2017), pp. 380–400.

[11] W. Bao and Y. Li, A structure-preserving parametric finite element method

for geometric flows with anisotropic surface energy, arXiv preprint arXiv:

2211.00297, (2022).

[12] , A symmetrized parametric finite element method for anisotropic surface

diffusion ii. three dimensions, SIAM J. Sci. Comput., 45 (2023), pp. A1438–

A1461.

[13] W. Bao and Q. Zhao, A structure-preserving parametric finite element

method for surface diffusion, SIAM J. Numer. Anal., 59 (2021), pp. 2775–

2799.

[14] , An energy-stable parametric finite element method for simulating solid-

state dewetting problems in three dimensions, J. Comput. Math., 41 (2023),

pp. 771–796.



144 Bibliography

[15] J. W. Barrett, H. Garcke, and R. Nürnberg, On the variational

approximation of combined second and fourth order geometric evolution equa-

tions, SIAM J. Sci. Comput., 29 (2007), pp. 1006–1041.

[16] , A parametric finite element method for fourth order geometric evolution

equations, J. Comput. Phys., 222 (2007), pp. 441–467.

[17] , Numerical approximation of anisotropic geometric evolution equations

in the plane, IMA J. Numer. Anal., 28 (2008), pp. 292–330.

[18] , Parametric approximation of Willmore flow and related geometric evo-

lution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225–253.

[19] , A variational formulation of anisotropic geometric evolution equations

in higher dimensions, Numer. Math., 109 (2008), pp. 1–44.

[20] , Finite-element approximation of coupled surface and grain boundary mo-

tion with applications to thermal grooving and sintering, Eur. J. Appl. Math.,

21 (2010), pp. 519–556.

[21] , Numerical approximation of gradient flows for closed curves in Rd, IMA

J. Numer. Anal., 30 (2010), pp. 4–60.

[22] , On stable parametric finite element methods for the Stefan problem and

the Mullins–Sekerka problem with applications to dendritic growth, J. Comput.

Phys., 229 (2010), pp. 6270–6299.

[23] , The approximation of planar curve evolutions by stable fully implicit fi-

nite element schemes that equidistribute, Numer. Methods Partial Differ. Equ.,

27 (2011), pp. 1–30.

[24] , Eliminating spurious velocities with a stable approximation of viscous

incompressible two-phase Stokes flow, Comput. Methods Appl. Mech. Eng.,

267 (2013), pp. 511–530.



Bibliography 145

[25] , Finite-element approximation of one-sided Stefan problems with

anisotropic, approximately crystalline, Gibbs–Thomson law, Adv. Differential

Equations, 18 (2013), pp. 383 – 432.

[26] , A stable parametric finite element discretization of two-phase Navier–

Stokes flow, J. Sci. Comput., 63 (2015), pp. 78–117.

[27] , Computational parametric Willmore flow with spontaneous curvature

and area difference elasticity effects, SIAM J. Numer. Anal., 54 (2016),

pp. 1732–1762.

[28] , A stable numerical method for the dynamics of fluidic membranes, Nu-

mer. Math., 134 (2016), pp. 783–822.

[29] , Finite element approximation for the dynamics of fluidic two-phase

biomembranes, ESAIM: Math. Model. Numer., 51 (2017), pp. 2319–2366.

[30] , Stable variational approximations of boundary value problems for will-

more flow with gaussian curvature, IMA J. Numer. Anal., 37 (2017), pp. 1657–

1709.

[31] , Gradient flow dynamics of two-phase biomembranes: sharp interface

variational formulation and finite element approximation, SMAI J. Comput.

Math., 4 (2018), pp. 151–195.

[32] , Finite element methods for fourth order axisymmetric geometric evolu-

tion equations, J. Comput. Phys., 376 (2019), pp. 733–766.

[33] , Parametric finite element approximations of curvature-driven interface

evolutions, in Handb. Numer. Anal., vol. 21, Elsevier, 2020, pp. 275–423.

[34] O. Bekhtereva, Y. L. Gavrilyuk, V. Lifshits, and B. Churusov,

Indium surface phase formation on Si (111) surface and their role in diffusion

and desorption, Poverkhnost’. Physika, Khimiia i Mekhanika, 8 (1988), article

54.



146 Bibliography

[35] G. Bellettini, M. Novaga, and M. Paolini, Facet-breaking for three-

dimensional crystals evolving by mean curvature, Interfaces Free Bound., 1

(1999), pp. 39–55.

[36] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in

the context of Finsler geometry, Hokkaido Math. J., 25 (1996), pp. 537–566.

[37] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge univer-

sity press, 2004.

[38] J. E. Brothers and F. Morgan, The isoperimetric theorem for general

integrands., Mich. Math. J., 41 (1994), pp. 419–431.
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