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We establish optimal error bounds on time-splitting methods for the nonlinear

Schrödinger equation with low regularity potential and typical power-type nonlinearity
f(ρ) = ρσ , where ρ := |ψ|2 is the density with ψ the wave function and σ > 0 the

exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, opti-
mal L2-norm error bound is proved for L∞-potential and σ > 0, and optimal H1-norm
error bound is obtained for W 1,4-potential and σ ≥ 1/2. For the second-order Strang

time-splitting method, optimal L2-norm error bound is established for H2-potential and

σ ≥ 1, and optimal H1-norm error bound is proved for H3-potential and σ ≥ 3/2 (or
σ = 1). Compared to those error estimates of time-splitting methods in the literature,

our optimal error bounds either improve the convergence rates under the same regu-

larity assumptions or significantly relax the regularity requirements on potential and
nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt
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a new technique called regularity compensation oscillation (RCO), where low frequency

modes are analyzed by phase cancellation, and high frequency modes are estimated by
regularity of the solution. Extensive numerical results are reported to confirm our error

estimates and to demonstrate that they are sharp.

Keywords: Nonlinear Schrödinger equation; low regularity potential; low regularity non-
linearity; time-splitting method; optimal error bound; regularity compensation oscilla-

tion (RCO).
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation (NLSE):{
i∂tψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + f(|ψ(x, t)|2)ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,

(1.1)

where t is time, x ∈ Rd (d = 1, 2, 3) is the spatial coordinate, ψ := ψ(x, t) is

a complex-valued wave function, Ω = Πd
i=1(ai, bi) ⊂ Rd is a bounded domain

equipped with periodic boundary condition. Here, V : Ω→ R is a time-independent

real-valued potential which is assumed to be purely bounded, and f is the power-

type nonlinearity given as

f(ρ) = βρσ, ρ := |ψ|2 ≥ 0, (1.2)

where β ∈ R is a given constant and σ > 0 is the exponent of the nonlinearity.

When V (x) = |x|2/2 and f(ρ) = βρ, the NLSE reduces to the cubic NLSE with

harmonic potential (or the NLSE with smooth potential and nonlinearity), also

known as the Gross–Pitaevskii equation (GPE), which is widely adopted for mod-

eling and simulation in quantum mechanics, nonlinear optics and Bose–Einstein

condensation (BEC).6, 20, 39 For the GPE, many accurate and efficient numerical

methods have been proposed and analyzed in last two decades, including finite

difference time domain (FDTD) methods,1, 4, 6, 21 exponential wave integrators

(EWI),12, 17, 22 time-splitting methods,4, 6, 7, 13, 19, 24, 29, 30 and, recently, low regu-

larity (resonance-based Fourier) integrators (LRI)3, 14, 27, 31–34, 36 designed for the

cubic NLSE with low regularity initial data.

While the cubic NLSE or GPE is prevalent, diverse physics applications require

the incorporation of low regularity potential and nonlinearity into the NLSE (1.1).

Typical examples include the square-well potential, which is discontinuous, the

disorder potential considered in the study of Anderson localization,37, 40 and the

noninteger power nonlinearity present in the Lee–Huang–Yang correction28 for mod-

eling quantum droplets.5, 15, 25, 35 For more applications involving low regularity

potential and nonlinearity, we refer the readers to Refs. 11, 12, 21, 41 and references

therein.
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Most numerical methods for the cubic NLSE with smooth potential can be

extended straightforwardly to solve the NLSE (1.1) with aforementioned low reg-

ularity potential and/or nonlinearity, e.g., the FDTD method,21 the time-splitting

method,11, 18, 23 the EWI12 and the LRI.2, 3, 41 However, the error analysis of them

with low regularity potential and/or nonlinearity is a very subtle and challenging

question, which requires new techniques and in-depth analysis. For low regularity

potential, the first error estimate concerning L∞-potential was obtained in Ref. 21

for the Crank–Nicolson Galerkin method. Recently, some LRIs2, 3, 41 are designed,

aiming at reducing the regularity requirements on potential and the exact solu-

tion at the same time. In these works, low regularity nonlinearity is not taken into

account. Very recently, a first-order EWI was analyzed in Ref. 12 for both low

regularity potential and nonlinearity.

In terms of time-splitting methods, the error estimates for the NLSE with

smooth potential and nonlinearity have been well established, and we refer to

Refs. 6, 13, 19, 24, 29 and 30 for the details. In the presence of low regularity poten-

tial and nonlinearity (especially the noninteger power nonlinearity), the first-order

Lie–Trotter time-splitting method was analyzed in Refs. 11, 18 and 23. In particular,

under the assumption of H2-solution, the first-order L2-norm error bound in time

requires σ ≥ 1/2 and H2-potential.11 This is essentially due to the Laplacian oper-

ator in the commutator bound, which takes two additional derivatives on potential

and nonlinearity (as well as the exact solution). When considering low regularity

nonlinearity with 0 < σ < 1/2, only 1/2 + σ-order convergence in L2-norm can

be proved.11 Moreover, for low regularity L∞-potential, there are no convergence

results at any order available. However, for the NLSE to be well-posed in H2, it

suffices to assume L∞-potential and σ > 0 (see Remark 2.1). Then the expected

“optimal” error bound should be able to provide first-order temporal convergence

(and second-order spatial convergence when considering full discretizations) in L2-

norm under the assumptions of L∞-potential, σ > 0 and H2-solution. In other

words, the optimal error bound needs to satisfy: (i) the convergence order is optimal

with respect to the order of the numerical method and the regularity of the exact

solution and (ii) the regularity requirements on potential and nonlinearity for the

optimal convergence order should be optimally weak, i.e., in line with the regularity

needed for the well-posedness of the equation. In this aspect, all the aforementioned

error estimates of time-splitting methods for low regularity potential and nonlin-

earity are certainly not “optimal”. However, it is worth noting that the first-order

L2-norm error bound in time is observed numerically for σ > 0 in Ref. 11, which

motivates us to improve the error estimates of time-splitting methods and to estab-

lish “optimal” error bounds. Surprisingly, our improved error bounds are also valid

for low regularity L∞-potential in addition to low regularity nonlinearity. Moreover,

the new analysis techniques can also be extended to relax the regularity require-

ments on potential and nonlinearity for higher-order error bounds on time-splitting

methods in the literature.
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The main aim of this paper is to improve the error estimates of time-

splitting methods and establish optimal error bounds under much weaker regu-

larity assumptions on potential and nonlinearity. Main results are summarized in

Sec. 2.3. Compared to the error estimates of time-splitting methods in the litera-

ture,6, 11, 13, 18, 23, 29 to obtain optimal convergence rates, our results significantly

relax the regularity requirements on both potential and nonlinearity as follows:

(i) for the first-order Lie–Trotter time-splitting method (Theorem 2.1)

(a) optimal L2-norm error bound is proved for L∞-potential and σ > 0, which

relaxes the assumption of H2-potential and σ ≥ 1/2 in Refs. 11 and 23;

(b) optimal H1-norm error bound is obtained for W 1,4-potential and σ ≥ 1/2,

which weakens the requirement of H3-potential and σ ≥ 1 in Ref. 11.

(ii) for the second-order Strang time-splitting method (Theorem 2.2)

(a) optimal L2-norm error bound is established for H2-potential and σ ≥ 1,

which improved the assumption of H4-potential and σ ≥ 3/2 (or σ = 1) in

Refs. 6, 13 and 29;

(b) optimal H1-norm error bound is proved for H3-potential and σ ≥ 3/2 (or

σ = 1), which relaxes the need of H5-potential and σ ≥ 2 (or σ = 1) in

Ref. 6.

Roughly speaking, the differentiability requirement on potential is reduced by two

orders and that on nonlinearity is reduced by one order (or 1/2 in terms of σ).

The price to pay is introducing a CFL-type time step size restriction τ < h2/π

where τ and h are the time step size and mesh size, respectively. Such time step

size restriction is natural in terms of the balance between temporal and spatial

errors. Moreover, it can be observed numerically when potential is of low regularity,

indicating that it cannot be removed or improved!

Here, we briefly explain the idea of our analysis. As highlighted in Ref. 11, to

obtain the optimal L2-norm error bound for the Lie–Trotter time-splitting method

for any σ > 0, one must be able to capture the error cancellation between dif-

ferent steps. To analyze the error cancellation, inspired by a recently developed

technique called regularity compensation oscillation (RCO),7 we truncate the fre-

quency according to the time step size and use summation by parts formula in

the estimate of accumulation of dominant local errors. As a result, the Laplacian

operator in the commutator, which requires the strongest regularity on potential

and nonlinearity, is replaced by a first-order temporal derivative, thereby reducing

the differentiability requirement on (time-independent) potential by two orders and

on nonlinearity by one order. The same analysis can be naturally generalized to

relax the regularity requirements of optimal H1-norm error bound for the first-

order Lie–Trotter splitting and the optimal L2- and H1-norm error bounds for the

second-order Strang splitting. Actually, the idea of substituting higher-order spa-

tial derivatives with lower-order temporal derivatives can be traced back to Kato,26
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and has been extensively employed in the analysis of the NLSE from PDE per-

spectives.8, 16 More recently, this approach has also been adopted in the numerical

analysis of the NLSE.12

The rest of this paper is organized as follows. In Sec. 2, we present the time-

splitting methods and state our main results. Sections 3 and 4 are devoted to the

error estimates of the first-order Lie–Trotter time-splitting method and the second-

order Strang time-splitting method, respectively. Numerical results are reported

in Sec. 5 to confirm our error estimates. Finally, some conclusions are drawn in

Sec. 6. Throughout the paper, we adopt standard Sobolev spaces as well as their

corresponding norms, and denote by C a generic positive constant independent

of the mesh size h and time step size τ , and by C(α) a generic positive constant

depending only on the parameter α. The notation A . B is used to represent that

there exists a generic constant C > 0, such that |A| ≤ CB.

2. Time-Splitting Methods and Main Results

In this section, we introduce the first-order Lie–Trotter and second-order Strang

time-splitting methods to solve the NLSE with low regularity potential and non-

linearity. We also state our main results here. For simplicity of the presentation

and to avoid heavy notations, we only carry out the analysis in one dimension

and take Ω = (a, b). Generalizations to two dimensions and three dimensions are

straightforward. In fact, the only dimension sensitive estimates are the Sobolev

embedding and inverse inequalities. In our analysis, we only use the embeddings

that hold for d = 1, 2, 3, and we explicitly show the dependence of dimension in

inverse inequalities.

We define periodic Sobolev spaces as (see, e.g., Ref. 2, for the definition in phase

space)

Hm
per(Ω) := {φ ∈ Hm(Ω) : φ(k)(a) = φ(k)(b), k = 0, . . . ,m− 1}, m ≥ 1, m ∈ N.

The operator splitting techniques are based on a decomposition of the flow

of (1.1)

∂tψ = A(ψ) +B(ψ),

where A(ψ) = i∆ψ and

B(ψ) = −iϕ(ψ)ψ := −i(V + f(|ψ|2))ψ with ϕ(φ) = V + f(|φ|2). (2.1)

Then the NLSE (1.1) can be decomposed into two sub-problems. The first one is{
∂tψ(x, t) = A(ψ) = i∆ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,
(2.2)

which can be formally integrated exactly in time as

ψ(·, t) = eit∆ψ0(·), t ≥ 0. (2.3)
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The second one is to solve{
∂tψ(x, t) = B(ψ) = −iV (x)ψ(x, t)− if(|ψ(x, t)|2)ψ(x, t), t > 0,

ψ(x, 0) = ψ0(x), x ∈ Ω,
(2.4)

which, by noting |ψ(x, t)| = |ψ0(x)| for t ≥ 0, can be integrated exactly in time as

ψ(x, t) = ΦtB(ψ0)(x) := ψ0(x)e−it(V (x)+f(|ψ0(x)|2)), x ∈ Ω, t ≥ 0. (2.5)

Different combinations of the linear step (2.3) and the nonlinear step (2.5) will yield

different time-splitting schemes.

2.1. Lie–Trotter time-splitting Fourier spectral method

Choose a time step size τ > 0, denote time steps as tn = nτ for n = 0, 1, . . . ,

and let ψ[n](·) be the approximation of ψ(·, tn) for n ≥ 0. Then a first-order semi-

discretization of the NLSE (1.1) via the Lie–Trotter splitting is given as

ψ[n+1] = eiτ∆ΦτB(ψ[n]), n ≥ 0, (2.6)

with ψ[0](x) = ψ0(x) for x ∈ Ω.

Then we further discretize the semi-discrete scheme (2.6) in space by the Fourier

spectral method to obtain a fully discrete scheme.

We remark that usually, the Fourier pseudospectral method is used for spatial

discretization, which can be efficiently implemented with fast Fourier transform.

However, due to the low regularity of potential and/or nonlinearity, it is very hard

to establish error estimates of the Fourier pseudospectral method, and it is impos-

sible to obtain optimal error bounds in space as order reduction can be observed

numerically.12

Choose a mesh size h = (b − a)/N with N being a positive even integer and

denote grid points as

xj = a+ jh, j = 0, 1, . . . , N.

Define the index sets

TN =

{
−N

2
, . . . ,

N

2
− 1

}
and denote

XN = span{eiµl(x−a) : l ∈ TN}, µl =
2πl

b− a
. (2.7)

Let PN : L2(Ω)→ XN be the standard L2-projection onto XN as

(PNu)(x) =
∑
l∈TN

ûle
iµl(x−a), (2.8)
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where u ∈ L2(Ω), and ûl are the Fourier coefficients of u defined as

ûl =
1

b− a

∫ b

a

u(x)e−iµl(x−a)dx, l ∈ Z. (2.9)

Let ψn(·) be the numerical approximations of ψ(·, tn) for n ≥ 0. Then the first-

order Lie–Trotter time-splitting Fourier spectral (LTFS ) method reads

ψ(1)(x) = e−iτ(V (x)+f(|ψn(x)|2))ψn(x),

ψn+1(x) =
∑
l∈TN

e−iτµ
2
l (̂ψ(1))le

iµl(x−a),
x ∈ Ω, n ≥ 0, (2.10)

where ψ0 = PNψ0 in (2.10).

Let Sτ1 : XN → XN be the numerical integrator associated with the LTFS

method

Sτ1 (φ) := eiτ∆PNΦτB(φ), φ ∈ XN . (2.11)

Then ψn (n ≥ 0) obtained from the LTFS (2.10) satisfy

ψn+1 = Sτ1 (ψn) = eiτ∆PNΦτB(ψn), n ≥ 0,

ψ0 = PNψ0.
(2.12)

2.2. Strang time-splitting Fourier spectral method

Similar to the first-order semi-discretization (2.6), we can obtain a second-order

semi-discretization via the Strang splitting

ψ[n+1] = ei
τ
2 ∆ΦτB(ei

τ
2 ∆ψ[n]), n ≥ 0, (2.13)

with ψ[0](x) = ψ0(x) for x ∈ Ω.

By using the Fourier spectral method to further discretize (2.13), we get the

second-order Strang time-splitting Fourier spectral method (STFS )

ψ(1)(x) =
∑
l∈TN

e−i
τ
2 µ

2
l (̂ψn)le

iµl(x−a),

ψ(2)(x) = e−iτ(V (x)+f(|ψ(1)(x)|2))ψ(1)(x),

ψn+1(x) =
∑
l∈TN

e−i
τ
2 µ

2
l (̂ψ(2))le

iµl(x−a),

x ∈ Ω, n ≥ 0, (2.14)

where ψ0 = PNψ0 in (2.14).

Introduce a numerical flow Sτ2 : XN → XN associated with the STFS scheme

as

Sτ2 (φ) := ei
τ
2 ∆PNΦτB

(
ei
τ
2 ∆φ

)
, φ ∈ XN . (2.15)
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Note that ψn (n ≥ 0) obtained from the STFS (2.14) satisfy

ψn+1 = Sτ2 (ψn) = ei
τ
2 ∆PNΦτB(ei

τ
2 ∆ψn), n ≥ 0,

ψ0 = PNψ0.
(2.16)

2.3. Main results

For ψn (n ≥ 0) obtained from the first-order LTFS method (2.10), we have the

following.

Theorem 2.1. Under the assumptions that V ∈ L∞(Ω), σ > 0 and the exact

solution ψ ∈ C([0, T ];H2
per(Ω)) ∩ C1([0, T ];L2(Ω)), there exists h0 > 0 sufficiently

small such that when 0 < h < h0 and τ < h2/π, we have

‖ψ(·, tn)− ψn‖L2 . τ + h2, ‖ψ(·, tn)− ψn‖H1 .
√
τ + h, 0 ≤ n ≤ T/τ.

(2.17)

In addition, if V ∈ W 1,4(Ω) ∩ H1
per(Ω), σ ≥ 1/2 and the solution ψ ∈

C([0, T ];H3
per(Ω)) ∩ C1([0, T ];H1(Ω)), we have

‖ψ(·, tn)− ψn‖H1 . τ + h2, 0 ≤ n ≤ T/τ. (2.18)

For ψn (n ≥ 0) obtained from the second-order STFS method (2.14), we have

the following.

Theorem 2.2. Under the assumptions that V ∈ H2
per(Ω), σ ≥ 1 and the exact

solution ψ ∈ C([0, T ];H4
per(Ω)) ∩ C1([0, T ];H2(Ω)) ∩ C2([0, T ];L2(Ω)), there exists

h0 > 0 sufficiently small such that when 0 < h < h0 and τ < h2/π, we have

‖ψ(·, tn)− ψn‖L2 . τ2 + h4, ‖ψ(·, tn)− ψn‖H1 . τ
3
2 + h3, 0 ≤ n ≤ T/τ.

(2.19)

In addition, if V ∈ H3
per(Ω), σ ≥ 3

2 (or σ = 1) and the solution ψ ∈ C([0, T ];

H5
per(Ω)) ∩ C1([0, T ];H3(Ω)) ∩ C2([0, T ];H1(Ω)), we have

‖ψ(·, tn)− ψn‖H1 . τ2 + h4, 0 ≤ n ≤ T/τ. (2.20)

Remark 2.1. Our regularity assumptions on the exact solution ψ are compatible

with the assumptions on potential and nonlinearity. By Corollary 4.8.6 of Ref. 16

(see also Refs. 11, 12 and 26), the H2-regularity can be propagated by the NLSE

(1.1) with V ∈ L∞(Ω) and σ > 0 (corresponding to the case of (2.17)), i.e., it can

be expected that ψ ∈ C([0, T ];H2
per(Ω)) ∩ C1([0, T ];L2(Ω)) if ψ0 ∈ H2

per(Ω). The

assumptions for (2.18)–(2.20) are compatible with the assumption for (2.17) in the

sense that the increment of the Sobolev exponent of ψ is the same as the increment

of the differentiability order of potential and nonlinearity.
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Remark 2.2. According to our error estimates in Theorems 2.1 and 2.2, the time

step size restriction τ . h2 is natural in terms of the balance of spatial errors and

temporal errors. Moreover, we can clearly observe this time step size restriction in

the numerical results in Sec. 5, indicating that it is necessary and optimal.

Remark 2.3. The H1-norm error bounds in (2.17) and (2.19) follow directly from

the corresponding L2-norm error bounds with τ . h2, standard projection error

estimates of PN , and the inverse estimate ‖φ‖H1 . h−1‖φ‖L2 for all φ ∈ XN .38

3. Proof of Theorem 2.1 for the LTFS (2.10)

In this section, we shall show the optimal error bounds for the LTFS method (2.10).

We start with the optimal L2-norm error bound and present the proof of (2.17) in

Theorem 2.1. In the rest of this section, we assume that V ∈ L∞(Ω), σ > 0 and

ψ ∈ C([0, T ];H2
per(Ω)) ∩ C1([0, T ];L2(Ω)), and define a constant

M2 = max{‖V ‖L∞ , ‖ψ‖L∞([0,T ];H2(Ω)), ‖∂tψ‖L∞([0,T ];L2(Ω)), ‖ψ‖L∞([0,T ];L∞(Ω))}.

3.1. Some estimates for the operator B

For the operator B defined in (2.1), we have the following.

Lemma 3.1. Under the assumptions V ∈ L∞(Ω) and σ > 0, for any v, w ∈ L2(Ω)

satisfying ‖v‖L∞ ≤M and ‖w‖L∞ ≤M, we have

‖B(v)−B(w)‖L2 ≤ C(‖V ‖L∞ ,M)‖v − w‖L2 . (3.1)

In particular, when w = 0, we have

‖B(v)‖L2 ≤ C(‖V ‖L∞ ,M)‖v‖L2 . (3.2)

Let dB(·)[·] be the Gâteaux derivative defined as

dB(v)[w] := lim
ε→0

B(v + εw)−B(v)

ε
, (3.3)

where the limit is taken for real ε (see also Ref. 11). Introduce a continuous function

G : C→ C as

G(z) =

{
f ′(|z|2)z2 = βσ|z|2σ−2z2, z 6= 0,

0, z = 0,
z ∈ C. (3.4)

Plugging the expression of B (2.1) into (3.3), we obtain

dB(v)[w] = −i[V w + (1 + σ)f(|v|2)w +G(v)w], (3.5)

where we use f ′(|z|2)|z|2 = σf(|z|2) for all z ∈ C and define G(v)(x) := G(v(x)).

Then we have the following.
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Lemma 3.2. Under the assumptions V ∈ L∞(Ω) and σ > 0, for any v, w ∈ L2(Ω)

satisfying ‖v‖L∞ ≤M, we have

‖dB(v)[w]‖L2 ≤ C(‖V ‖L∞ ,M)‖w‖L2 .

The proofs of Lemmas 3.1 and 3.2 can be found in Lemmas 3.2 and 3.3 of Ref. 11

and we shall omit them for brevity.

From the definition of the nonlinear flow ΦτB in (2.5), we immediately have the

following.

Lemma 3.3. Under the assumptions V ∈ L∞(Ω) and σ > 0, for any v ∈ L∞(Ω)

and w ∈ L∞(Ω), we have

‖ΦτB(v)‖L2 = ‖v‖L2 , ‖ΦτB(w)‖L∞ = ‖w‖L∞ .

3.2. Local truncation error and stability estimates

We shall establish the local truncation error and stability estimates for the first-

order Lie–Trotter splitting. In the rest of this paper, we always abbreviate ψ(·, t)
by ψ(t) for simplicity of notations when there is no confusion.

Define the local truncation error of the Lie–Trotter time-splitting method as

En = PNψ(tn+1)− Sτ1 (PNψ(tn)), 0 ≤ n ≤ T/τ − 1. (3.6)

Then the local truncation error can be decomposed into two parts based on different

regularity requirements on potential and nonlinearity.

Proposition 3.1. Assuming that V ∈ L∞(Ω), σ > 0 and ψ ∈ C([0, T ];H2
per(Ω))∩

C1([0, T ];L2(Ω)), we have

En = En1 + En2 ,

where

‖En1 ‖L2 . τ2 + τh2, En2 = −eiτ∆

∫ τ

0

(I − e−is∆)PNB(PNψ(tn))ds.

Proof. The proof proceeds similarly to the proof of Proposition 3.6 in Ref. 11 and

we only sketch it here for the convenience of the reader. By Duhamel’s formula, one

has

PNψ(tn+1) = eiτ∆PNψ(tn) +

∫ τ

0

ei(τ−s)∆PNB(eis∆ψ(tn))ds+

∫ τ

0

∫ s

0

ei(τ−s)∆

PN (dB(ei(s−ς)∆ψ(tn + ς))[ei(s−ς)∆B(ψ(tn + ς))])dςds. (3.7)

Applying the first-order Taylor expansion

ΦτB(w) = w + τB(w) + τ2

∫ 1

0

(1− θ)dB(ΦθτB (w))[B(ΦθτB (w))]dθ, (3.8)
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to Sτ1 (PNψ(tn)), we have

Sτ1 (PNψ(tn)) = eiτ∆PNψ(tn) + τeiτ∆PNB(PNψ(tn)) + τ2

∫ 1

0

(1− θ)eiτ∆

PN (dB(ΦθτB (PNψ(tn)))[B(ΦθτB (PNψ(tn)))])dθ. (3.9)

Subtracting (3.9) from Section 3.2, recalling (3.6), one obtains

En = PNψ(tn+1)− Sτ1 (PNψ(tn)) = e1 + e2 + e3, (3.10)

where

e1 =

∫ τ

0

∫ s

0

ei(τ−s)∆PN (dB(ei(s−ς)∆ψ(tn + ς))[ei(s−ς)∆B(ψ(tn + ς))])dςds,

e2 = −τ2

∫ 1

0

(1− θ)eiτ∆PN (dB(ΦθτB (PNψ(tn)))[B(ΦθτB (PNψ(tn)))])dθ,

e3 =

∫ τ

0

ei(τ−s)∆PNB(eis∆ψ(tn))ds− τeiτ∆PNB(PNψ(tn)).

(3.11)

By the boundedness of eit∆ and PN , and using Lemmas 3.1–3.3 and Sobolev embed-

ding, we have

‖e1‖L2 . τ2, ‖e2‖L2 . τ2. (3.12)

Then we shall estimate e3. From e3 in (3.11), we have

e3 =

∫ τ

0

[ei(τ−s)∆PNB(eis∆ψ(tn))− eiτ∆PNB(PNψ(tn))]ds

=

∫ τ

0

ei(τ−s)∆PN (B(eis∆ψ(tn))−B(ψ(tn)))ds

+

∫ τ

0

ei(τ−s)∆PN (B(ψ(tn))−B(PNψ(tn)))ds

− eiτ∆

∫ τ

0

(I − e−is∆)PNB(PNψ(tn))ds =: e1
3 + e2

3 + e3
3. (3.13)

By (3.1), the boundedness of PN and eit∆, standard Fourier projection error esti-

mates of PN
38 and ‖(I − eit∆)φ‖L2 . t‖φ‖H2 for all φ ∈ H2

per(Ω),10, 13 we have

‖e1
3‖L2 . τ2, ‖e2

3‖L2 . τh2.

The conclusion follows by letting En1 = e1 + e2 + e1
3 + e2

3 and En2 = e3
3.

For the nonlinear flow, we have the following L∞-conditional L2-stability esti-

mate.
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Proposition 3.2. Let v, w ∈ XN such that ‖v‖L∞ ≤M, ‖w‖L∞ ≤M . Then

‖PN (ΦτB(v)− v)− PN (ΦτB(w)− w)‖L2 ≤ C(‖V ‖L∞ ,M)τ‖v − w‖L2 .

Proof. Let uθ = (1 − θ)w + θv for 0 ≤ θ ≤ 1. Then we have, by recalling ϕ(u) =

V + f(|u|2)

(ΦτB(v)− v)− (ΦτB(w)− w)

=

∫ 1

0

∂θ(Φ
τ
B(uθ)− uθ)dθ =

∫ 1

0

(v − w)(e−iτϕ(uθ) − 1)dθ

− iτ
∫ 1

0

(σf(|uθ|2)(v − w) +G(uθ)(v − w))e−iτϕ(uθ)dθ. (3.14)

From (3.14), noting that |eiθ − 1| ≤ θ for all θ ∈ R, ‖ϕ(uθ)‖L∞ . ‖V ‖L∞ + M2σ

and

|f(|z|2)|+ |G(z)| . |z|2σ, z ∈ C, σ > 0, (3.15)

we have

‖ΦτB(v)− v)− (ΦτB(w)− w)‖L2

≤ C(‖V ‖L∞ ,M)τ‖v − w‖L2 + C(M)τ‖v − w‖L2 . (3.16)

The conclusion then follows from (3.16) and the boundedness of PN immediately.

Remark 3.1. We cannot expect the constant C in Proposition 3.2 to depend

exclusively on the minimal of ‖v‖L∞ and ‖w‖L∞ as is the case of Proposition 3.8

in Ref. 11 since

lim
τ→0

(
ΦτB(v)(x)− v(x)

τ
− ΦτB(w)(x)− w(x)

τ

)
= B(v)(x)−B(w)(x), x ∈ Ω,

and the constant in (3.1) is already optimal. This also prevents us from generalizing

the results in this paper to the LogSE considered in Refs. 9 and 10.

3.3. Optimal L2-norm error bound

We shall establish the optimal L2-norm error bound (2.17) for the LTFS method

(2.12). As mentioned before, the main idea is to replace the Laplacian ∆ with a

temporal derivative in the dominant local error En2 .

Proof of (2.17) in Theorem 2.1. Let en = PNψ(tn) − ψn for 0 ≤ n ≤ T/τ .

We start with the L2-error bound. By standard projection error estimates of PN ,

recalling that ψ ∈ C([0, T ];H2
per(Ω)), we have

‖ψ(tn)− PNψ(tn)‖L2 . h2, 0 ≤ n ≤ T/τ. (3.17)
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Then the proof reduces to the estimate of en. For 0 ≤ n ≤ T/τ − 1, we have

en+1 = PNψ(tn+1)− ψn+1

= PNψ(tn+1)− Sτ1 (PNψ(tn)) + Sτ1 (PNψ(tn))− Sτ1 (ψn)

= eiτ∆en +Qn + En, (3.18)

where En is defined in (3.6) and

Qn = eiτ∆PN ((ΦτB(PNψ(tn))− PNψ(tn))− (ΦτB(ψn)− ψn)). (3.19)

Iterating (3.18), we have

en+1 = ei(n+1)τ∆e0 +

n∑
k=0

ei(n−k)τ∆(Qk + Ek), 0 ≤ n ≤ T/τ − 1. (3.20)

For Qn in (3.19), applying Proposition 3.2 and the isometry property of eit∆, we

have

‖Qn‖L2 ≤ C(‖ψn‖L∞ ,M2)τ‖en‖L2 , 0 ≤ n ≤ T/τ − 1,

which, together with the isometry property of eit∆ and the triangle inequality,

implies ∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Qk

∥∥∥∥∥
L2

≤ C1τ

n∑
k=0

‖ek‖L2 , 0 ≤ n ≤ T/τ − 1, (3.21)

where the constant C1 depends on max0≤k≤n ‖ψk‖L∞ and M2. By Proposition 3.1

and the isometry property of eit∆, we have∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Ek
∥∥∥∥∥
L2

. nτ(τ + h2) +

∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Ek2

∥∥∥∥∥
L2

= nτ(τ + h2)

+

∥∥∥∥∥
n∑
k=0

e−ikτ∆

∫ τ

0

(I − e−is∆)dsPNB(PNψ(tk))

∥∥∥∥∥
L2

= nτ(τ + h2) + ‖J n‖L2 , 0 ≤ n ≤ T/τ − 1, (3.22)

where

J n =

n∑
k=0

e−ikτ∆

∫ τ

0

(I − e−is∆)dsPNB(PNψ(tk)), 0 ≤ n ≤ T/τ − 1. (3.23)

From (3.20), using (3.21) and (3.22), we have

‖en+1‖L2 . τ + h2 + C1τ

n∑
k=0

‖ek‖L2 + ‖J n‖L2 , 0 ≤ n ≤ T/τ − 1. (3.24)
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We shall estimate J n carefully to capture the phase cancellation. Set

φn = PNB(PNψ(tn)) ∈ XN , 0 ≤ n ≤ T/τ − 1 (3.25)

and define

δl =

∫ τ

0

(1− eisµ
2
l )ds, Sn,l =

n∑
k=0

eikτµ
2
l , l ∈ TN , 0 ≤ n ≤ T/τ − 1. (3.26)

For δl defined in (3.26), we have

|δl| ≤
∫ τ

0

|1− eisµ
2
l |ds ≤

∫ τ

0

2| sin(sµ2
l /2)|ds ≤

∫ τ

0

sµ2
l ds =

τ2µ2
l

2
, l ∈ TN .

(3.27)

When τ < h2/π, using the fact that | sin(x)| ≥ 2|x|/π when x ∈ [0, π/2], we have

|Sn,l| =
|1− ei(n+1)τµ2

l |
|1− eiτµ2

l |
≤ 2

2 sin(τµ2
l /2)

.
1

τµ2
l

, 0 6= l ∈ TN . (3.28)

Combining (3.27) and (3.28) and noting that δl = 0 when l = 0, we have

|δlSn,l| . τ, l ∈ TN , 0 ≤ n ≤ T/τ − 1, (3.29)

where the constant is independent of n and l. Inserting (3.25) into (3.23) and

recalling (3.26), we have, for 0 ≤ n ≤ T/τ − 1

J n =

n∑
k=0

∑
l∈TN

eikτµ
2
l

∫ τ

0

(1− eisµ
2
l )dsφ̂kl e

iµl(x−a)

=

n∑
k=0

∑
l∈TN

eikτµ
2
l δlφ̂kl e

iµl(x−a). (3.30)

From (3.30), exchanging the order of summation, using summation by parts and

recalling (3.26), we obtain, for 0 ≤ n ≤ T/τ − 1

J n =
∑
l∈TN

δle
iµl(x−a)

n∑
k=0

eikτµ
2
l φ̂kl

=
∑
l∈TN

δle
iµl(x−a)

(
Sn,lφ̂nl −

n−1∑
k=0

Sk,l(φ̂
k+1
l − φ̂kl )

)
. (3.31)

From (3.31), using Parseval’s identity, Cauchy inequality and (3.29), we have, for

0 ≤ n ≤ T/τ − 1

‖J n‖2L2 = (b− a)
∑
l∈TN

δ2
l

∣∣∣∣∣Sn,lφ̂nl −
n−1∑
k=0

Sk,l
(
φ̂k+1
l − φ̂kl

)∣∣∣∣∣
2
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.
∑
l∈TN

δ2
l S

2
n,l

∣∣φ̂nl ∣∣2 +
∑
l∈TN

δ2
l

∣∣∣∣∣
n−1∑
k=0

Sk,l
(
φ̂k+1
l − φ̂kl

)∣∣∣∣∣
2

. τ2
∑
l∈TN

∣∣φ̂nl ∣∣2 +
∑
l∈TN

δ2
l

n−1∑
k1=0

|Sk1,l|2
n−1∑
k2=0

∣∣φ̂k2+1
l − φ̂k2l

∣∣2
. τ2‖φn‖2L2 +

n−1∑
k1=0

n−1∑
k2=0

∑
l∈TN

δ2
l |Sk1,l|2

∣∣φ̂k2+1
l − φ̂k2l

∣∣2
. τ2‖φn‖2L2 + nτ2

n−1∑
k=0

‖φk+1 − φk‖2L2 . (3.32)

Recalling (3.25), using the L2-projection property of PN and Lemma 3.1, we have

‖φn‖L2 ≤ ‖B(PNψ(tn))‖L2 ≤ C(M2)‖ψ(tn)‖L2 . C(M2), 0 ≤ n ≤ T/τ − 1

and, for 0 ≤ k ≤ T/τ − 2

‖φk+1 − φk‖L2 = ‖PNB(PNψ(tk+1))− PNB(PNψ(tk))‖L2

≤ ‖B(PNψ(tk+1))−B(PNψ(tk))‖L2

. ‖ψ(tk+1)− ψ(tk)‖L2 . τ‖∂tψ‖L∞([tk,tk+1];L2),

which, inserted into (3.32), yield

‖J n‖2L2 . τ2 + n2τ4 . τ2. (3.33)

Inserting (3.33) into (3.24), we have

‖en+1‖L2 . τ + h2 + C1τ

n∑
k=0

‖ek‖L2 , (3.34)

where C1 depends on M2 and max0≤k≤n ‖ψk‖L∞ , and can be controlled by discrete

Grönwall’s inequality and the standard argument of mathematical induction with

the inverse equality ‖φ‖L∞ ≤ Cinvh
− d2 ‖φ‖L2 for all φ ∈ XN

38

‖ψk‖L∞ ≤ ‖ψk − PNψ(tk)‖L∞ + ‖PNψ(tk)‖L∞

≤ Cinvh
− d2 ‖ek‖L2 + C‖PNψ(tk)‖H2 ≤ Cinvh

− d2 ‖ek‖L2 + C(M2),

(3.35)

where d is the dimension of the space, i.e., d = 1 in the current case. To estimate

h−
d
2 ‖ek‖L2 in (3.35), we also need to use the time step size restriction τ . h2

imposed in (3.28). As a result, we obtain

‖en‖L2 . τ + h2, 0 ≤ n ≤ T/τ,

which directly yields the optimal L2-norm error bound in (2.17) by recalling (3.17).

To obtain the H1-norm error bound in (2.17), as mentioned in Remark 2.3, by the
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inverse inequality, the step size restriction τ . h2 and standard projection error

estimates of PN , we have, for 0 ≤ n ≤ T/τ

‖ψ(tn)− ψn‖H1 ≤ ‖ψ(tn)− PNψ(tn)‖H1 + ‖en‖H1 . h+ h−1‖en‖L2 . τ
1
2 + h,

(3.36)

which completes the proof.

Remark 3.2. The key estimate (3.32) of J n (3.23) can be understood as a time-

discrete and global version of Lemma 3.6 in Ref. 12.

3.4. Optimal H1-norm error bound

In this section, we shall show the optimal H1-norm error bound (2.18) for the LTFS

method (2.10) under the assumptions that V ∈ W 1,4(Ω) ∩ H1
per(Ω), σ ≥ 1/2 and

ψ ∈ C([0, T ];H3
per(Ω)) ∩ C1([0, T ];H1(Ω)). We define a constant

M3 = max{‖V ‖W 1,4 , ‖ψ‖L∞([0,T ];H3(Ω)), ‖∂tψ‖L∞([0,T ];H1(Ω)), ‖ψ‖L∞([0,T ];L∞(Ω))}.

Note that W 1,4(Ω) ↪→ L∞(Ω) when 1 ≤ d ≤ 3. The proof follows exactly the same

framework as the proof of the optimal L2-norm error bound (2.17).

We start with the estimates for the operator B and present the H1-norm coun-

terparts of Lemmas 3.1–3.3 under the above higher regularity assumptions. The

proof of these lemmas can be found in Lemmas 4.2, 4.3 and 4.5 of Ref. 11.

Lemma 3.4. Under the assumptions that V ∈ W 1,4(Ω) and σ ≥ 1/2, for any

v, w ∈ H2(Ω) such that ‖v‖H2 ≤M, ‖w‖H2 ≤M, we have

‖B(v)−B(w)‖H1 ≤ C(‖V ‖W 1,4 ,M)‖v − w‖H1 . (3.37)

In particular, when w = 0, we have

‖B(v)‖H1 ≤ C(‖V ‖W 1,4 ,M)‖v‖H1 . (3.38)

Lemma 3.5. Under the assumptions that V ∈ W 1,4(Ω) ∩H1
per(Ω) and σ ≥ 1/2,

for any v, w ∈ H1
per(Ω) satisfying ‖v‖L∞ ≤ M, ‖w‖L∞ ≤ M, we have dB(v)[w] ∈

H1
per(Ω) and

‖dB(v)[w]‖H1 ≤ C(‖V ‖W 1,4 ,M)(‖v‖H1 + ‖w‖H1).

Lemma 3.6. Under the assumptions that V ∈ W 1,4(Ω) and σ ≥ 1/2, for any

v ∈ H1(Ω) satisfying ‖v‖L∞ ≤M, we have

‖ΦτB(v)‖H1 ≤ (1 + C(‖V ‖W 1,4 ,M)τ)‖v‖H1 .

Similar to Proposition 3.1, we have the following.

Proposition 3.3. Under the assumptions V ∈ W 1,4(Ω) ∩H1
per(Ω), σ ≥ 1/2 and

ψ ∈ C([0, T ];H3
per(Ω)) ∩ C1([0, T ];H1(Ω)), for the local error En defined in (3.6),

we have

En = En1 + En2 ,
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where

‖En1 ‖H1 . τ2 + τh2, En2 = −eiτ∆

∫ τ

0

(I − e−is∆)PNB(PNψ(tn))ds.

Proof. Again, we only sketch the proof here and the details can be found in Ref. 11.

We have the same error decomposition as (3.10) in the proof of Proposition 3.1.

By Lemmas 3.4–3.6, Sobolev embeddings and the boundedness of eit∆ and PN on

H1
per(Ω), we have

‖e1‖H1 . τ2, ‖e2‖H1 . τ2.

For e1
3 and e2

3 defined in (3.13), using (3.37), the boundedness of PN and eit∆, the

standard projection error estimates of PN and ‖(I − eit∆)φ‖H1 . t‖φ‖H3 for all

φ ∈ H3
per(Ω), we have

‖e1
3‖H1 . τ2, ‖e2

3‖H1 . τh2.

The conclusion follows again by letting En1 = e1 + e2 + e1
3 + e2

3 and En2 = e3
3.

We can also establish the following L∞-conditional H1-stability estimate of the

nonlinear flow.

Proposition 3.4. Let v, w ∈ XN such that ‖v‖L∞ ≤ M, ‖w‖L∞ ≤ M and

‖v‖H2 ≤M1. Then we have

‖PN (ΦτB(v)− v)− PN (ΦτB(w)− w)‖H1 ≤ C(‖V ‖W 1,4 ,M,M1)τ‖v − w‖H1 .

Proof. From (3.14), we have

∂x(ΦτB(v)− v)− ∂x(ΦτB(w)− w) =

∫ 1

0

(W1 − iτW2 − iτW3)dθ, (3.39)

where, recalling ϕ(uθ) = V + f(|uθ|2) in (2.1) and uθ = (1− θ)w + θv (0 ≤ θ ≤ 1)

W1 = ∂x[(v − w)(e−iτϕ(uθ) − 1)], W2 = ∂x(σf(|uθ|2)(v − w)e−iτϕ(uθ)),

W3 = ∂x(G(uθ)(v − w)e−iτϕ(uθ)).

(3.40)

For W1 in (3.40), by direct calculation, we have

W1 = ∂x(v − w)(e−iτϕ(uθ) − 1)

− iτ(v − w)(∂xV + f ′(|uθ|2)(uθ∂xuθ + uθ∂xu
θ))e−iτϕ(uθ), (3.41)

where f ′(|z|2)z and f ′(|z|2)z with z ∈ C are defined to be 0 when z = 0 and

σ ≥ 1/2. From (3.41), recalling |eiθ − 1| ≤ θ for all θ ∈ R and (by the convention

|z|0 ≡ 1, z ∈ C)

|f(|z|2)| . |z|2σ, |f ′(|z|2)z|+ |f ′(|z|2)z| . |z|2σ−1, σ ≥ 1

2
, z ∈ C, (3.42)
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we have, by Hölder’s inequality and Sobolev embedding

‖W1‖L2 ≤ τ‖ϕ(uθ)‖L∞‖∂x(v − w)‖L2 + τ‖(v − w)∂xV ‖L2

+ C(M)τ‖(v − w)∂xu
θ‖L2

≤ C(‖V ‖L∞ ,M)τ‖v − w‖H1 + τ‖V ‖W 1,4‖v − w‖L4

+ C(M)τ‖(v − w)∂xv‖L2 + C(M)θτ‖(v − w)∂x(v − w)‖L2

≤ C(‖V ‖W 1,4 ,M)τ‖v − w‖H1 + C(M)τ‖v‖W 1,4‖v − w‖L4

+ C(M)τ‖∂x(v − w)‖L2

≤ C(‖V ‖W 1,4 ,M,M1)τ‖v − w‖H1 . (3.43)

For W2 in (3.40), direct calculation yields

W2 = σf ′(|uθ|2)(uθ∂xuθ + uθ∂xu
θ)(v − w)e−iτϕ(uθ)

+ σf(|uθ|2)∂x(v − w)e−iτϕ(uθ) − iτσf(|uθ|2)(v − w)∂xϕ(uθ)e−iτϕ(uθ).

(3.44)

From (3.44), using Hölder’s inequality and Sobolev embedding and noting (3.42),

we have

‖W2‖L2 . C(M)‖(v − w)∂xu
θ‖L2 + C(‖V ‖L∞ ,M)‖∂x(v − w)‖L2

+ τC(M)‖(v − w)∂xV ‖L2 + τ‖(v − w)f(|uθ|2)∂xf(|uθ|2)‖L2

≤ C(M)‖(v − w)∂xv‖L2 + θC(M)‖(v − w)∂x(v − w)‖L2

+ C(‖V ‖L∞ ,M)‖v − w‖H1 + τC(M)‖∂xV ‖L4‖v − w‖H1

+ τ‖(v − w)∂x[f(|uθ|2)]2‖L2

≤ C(M)‖∂xv‖L4‖v − w‖L4 + C(M)‖∂x(v − w)‖L2

+ C(‖V ‖W 1,4 ,M)‖v − w‖H1 + C(M)‖(v − w)∂xu
θ‖L2

≤ C(‖V ‖W 1,4 ,M,M1)‖v − w‖H1 , (3.45)

where we use the identity

∂x[f(|uθ|2)]2 = β2∂x(|uθ|2)2σ = 2σβ2(|uθ|2)2σ−1(uθ∂xuθ + uθ∂xu
θ), σ ≥ 1/2.

Similarly, we have

‖W3‖L2 ≤ C(‖V ‖W 1,4 ,M,M1)‖v − w‖H1 . (3.46)

From (3.39), using (3.43), (3.45) and (3.46) and recalling Proposition 3.2, we obtain

the desired result.
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Proof of (2.18) in Theorem 2.1. The proof is similar to the proof of (2.17).

From (3.20), using Propositions 3.3 and 3.4, the isometry property of eit∆ and

triangle inequality, we have

‖en+1‖H1 . τ + h2 + C2τ

n∑
k=0

‖ek‖H1 + ‖J n‖H1 , 0 ≤ n ≤ T/τ − 1, (3.47)

where J n is defined in (3.23) and C2 depends on M3 and max0≤k≤n ‖ψk‖L∞ .

Recalling (3.30) and (3.31) and using Parseval’s identity, similar to (3.32), we have

‖J n‖2H1 = (b− a)
∑
l∈TN

(1 + µ2
l )δ

2
l

∣∣∣∣∣Sk,lφ̂nl −
n−1∑
k=0

Sk,l
(
φ̂k+1
l − φ̂kl

)∣∣∣∣∣
2

.
∑
l∈TN

(1 + µ2
l )δ

2
l S

2
k,l

∣∣φ̂nl ∣∣2 +
∑
l∈TN

(1 + µ2
l )δ

2
l

∣∣∣∣∣
n−1∑
k=0

Sk,l
(
φ̂k+1
l − φ̂kl

)∣∣∣∣∣
2

. τ2
∑
l∈TN

(1 + µ2
l )
∣∣φ̂nl ∣∣2 +

∑
l∈TN

(1 + µ2
l )δ

2
l

n−1∑
k1=0

|Sk1,l|2
n−1∑
k2=0

∣∣φ̂k2+1
l − φ̂k2l

∣∣2
. τ2‖φn‖2H1 +

n−1∑
k1=0

n−1∑
k2=0

∑
l∈TN

(1 + µ2
l )δ

2
l |Sk1,l|2

∣∣φ̂k2+1
l − φ̂k2l

∣∣2
. τ2‖φn‖2H1 + nτ2

n−1∑
k=0

‖φk+1 − φk‖2H1 , 0 ≤ n ≤ T/τ − 1. (3.48)

Recalling (3.25), using the projection property of PN and Lemma 3.4, we have

‖φn‖H1 ≤ ‖B(PNψ(tn))‖H1 ≤ C(M3)‖ψ(tn)‖H1 ≤ C(M3), 0 ≤ n ≤ T

τ
− 1,

‖φk+1 − φk‖H1 = ‖PNB(PNψ(tk+1))− PNB(PNψ(tk))‖H1

≤ ‖B(PNψ(tk+1))−B(PNψ(tk))‖H1

. ‖ψ(tk+1)− ψ(tk)‖H1 . τ‖∂tψ‖L∞([tk,tk+1];H1), 0 ≤ k ≤ T

τ
− 2,

which, inserted into (3.48), yield

‖J n‖2H1 . τ2 + n2τ4 . τ2, 0 ≤ n ≤ T/τ − 1.

With the above estimate of ‖J n‖H1 , noting the uniform L∞-bound of ψn (0 ≤ n ≤
T/τ) established in the proof of (2.17) in Sec. 3.3, the proof can be completed by

applying discrete Grönwall’s inequality to (3.47).

4. Proof of Theorem 2.2 for the STFS (2.14)

In this section, we shall show the optimal error bounds for the STFS method (2.14).

Again, we start with the optimal L2-norm error bounds and show the proof of
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(2.19) in Theorem 2.2. In the rest of this section, we assume that V ∈ H2
per(Ω),

σ ≥ 1 and ψ ∈ C([0, T ];H4
per(Ω))∩C1([0, T ];H2(Ω))∩C2([0, T ];L2(Ω)), and define

a constant

M4 = max{‖V ‖H2 , ‖ψ‖L∞([0,T ];H4(Ω)), ‖∂tψ‖L∞([0,T ];H2(Ω)), ‖∂ttψ‖L∞([0,T ];L2(Ω))}.

4.1. Some estimates for the operator B

Lemma 4.1. When σ ≥ 1, for any v ∈ H2(Ω), we have

‖f(|v|2)‖H2 ≤ C(‖v‖H2), ‖G(v)‖H2 ≤ C(‖v‖H2).

Proof. By direct calculation, we have

∂xf(|v|2) = f ′(|v|2)(v∂xv + v∂xv),

∂xxf(|v|2) = f ′′(|v|2)(v∂xv + v∂xv)2 + f ′(|v|2)(v∂xxv + v∂xxv + 2|∂xv|2).

(4.1)

From (4.1), using Sobolev embedding and noting (3.42) and

|f ′(|z|2)|+ |f ′′(|z|2)z2|+ |f ′′(|z|2)|z|2|+ |f ′′(|z|2)z2| . |z|2σ−2, σ ≥ 1, z ∈ C,
(4.2)

we have

‖f(|v|2)‖L2 . ‖v‖2σL∞ ≤ C(‖v‖H2),

‖∂xf(|v|2)‖L2 . ‖v‖2σ−1
L∞ ‖∂xv‖L2 ≤ C(‖v‖H2),

‖∂xxf(|v|2)‖L2 . ‖v‖2σ−2
L∞ ‖∂xv‖2L4 + ‖v‖2σ−1

L∞ ‖∂xxv‖L2 ≤ C(‖v‖H2),

which implies ‖f(|v|2)‖H2 ≤ C(‖v‖H2). Similarly, we can show that ‖G(v)‖H2 ≤
C(‖v‖H2) and the proof is completed.

Lemma 4.2. Under the assumptions V ∈ H2(Ω) and σ ≥ 1, for any v, w ∈ H2(Ω)

such that ‖v‖H2 ≤M, ‖w‖H2 ≤M, we have

‖B(v)−B(w)‖H2 ≤ C(‖V ‖H2 ,M)‖v − w‖H2 . (4.3)

In particular, when w = 0, we have

‖B(v)‖H2 ≤ C(‖V ‖H2 ,M). (4.4)

Proof. Noting that H2(Ω) is an algebra when 1 ≤ d ≤ 3, we get

‖V v − V w‖H2 ≤ ‖V ‖H2‖v − w‖H2 . (4.5)

Let uθ = (1− θ)w + θv for 0 ≤ θ ≤ 1 and define

γ(θ) = f(|uθ|2)uθ, 0 ≤ θ ≤ 1.
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Then one has

f(|v|2)v − f(|w|2)w = γ(1)− γ(0) =

∫ 1

0

γ′(θ)dθ, (4.6)

where

γ′(θ) = (1 + σ)f(|uθ|2)(v − w) +G(uθ)(v − w), 0 ≤ θ ≤ 1. (4.7)

Inserting (4.7) into (4.6), by Lemma 4.1 and the algebra property of H2(Ω), we

have

‖f(|v|2)v − f(|w|2)w‖H2 ≤
∫ 1

0

‖γ′(θ)‖H2dθ ≤ C(M)‖v − w‖H2 ,

which, combined with (4.5), completes the proof.

Lemma 4.3. Under the assumptions V ∈ L∞(Ω) and σ ≥ 1/2, for any vj , wj ∈
L∞(Ω) satisfying ‖vj‖L∞ ≤M and ‖wj‖L∞ ≤M with j = 1, 2, we have

‖dB(v1)[w1]− dB(v2)[w2]‖L2 ≤ C(‖V ‖L∞ ,M)(‖v1 − v2‖L2 + ‖w1 − w2‖L2).

Proof. Recalling (3.5), we have

‖dB(v1)[w1]− dB(v2)[w2]‖L2 . ‖V ‖L∞‖w1 − w2‖L2 + ‖f(|v1|2)w1 − f(|v2|2)w2‖L2

+ ‖G(v1)w1 −G(v2)w2‖L2 . (4.8)

When σ ≥ 1/2, we have (see (4.9) in Ref. 11)

|f(|z1|2)− f(|z2|2)| . max{|z1|, |z2|}2σ−1|z1 − z2|, z1, z2 ∈ C, (4.9)

which implies

‖f(|v1|2)w1 − f(|v2|2)w2‖L2

≤ ‖(f(|v1|2)− f(|v2|2))w1‖L2 + ‖f(|v2|2)(w1 − w2)‖L2

≤ ‖f(|v1|2)− f(|v2|2)‖L2‖w1‖L∞ + ‖f(|v2|2)‖L∞‖w1 − w2‖L2

≤ C(M)(‖v1 − v2‖L2 + ‖w1 − w2‖L2). (4.10)

Similarly, we have

‖G(v1)w1 −G(v2)w2‖L2 ≤ C(M)(‖v1 − v2‖L2 + ‖w1 − w2‖L2). (4.11)

Inserting (4.10) and (4.11) into (4.8) yields the desired estimate.

Lemma 4.4. Under the assumptions V ∈ H2(Ω) and σ ≥ 1, for any v, w ∈ H2(Ω)

satisfying ‖v‖H2 ≤M, ‖w‖H2 ≤M, we have

‖dB(v)[w]‖H2 ≤ C(‖V ‖H2 ,M).

Proof. Recalling (3.5) and using Lemma 4.1 and the algebra property of H2(Ω),

we obtain the desired result.
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Lemma 4.5. Under the assumption that σ ≥ 1/2, for any v ∈ L∞(Ω) and w ∈
L2(Ω) satisfying ‖v‖L∞ ≤M, we have

‖dG(v)[w]‖L2 ≤ C(M)‖w‖L2 .

Proof. Recalling (3.3) and (3.4), we have

dG(v)[w] = f ′′(|v|2)v3w + f ′′(|v|2)v2vw + 2f ′(|v|2)vw, (4.12)

where f ′′(|z|2)z3 and f ′′(|z|2)z2z with z ∈ C are defined as 0 when z = 0. From

(4.12), using the fact that

|f ′′(|z|2)z3|+ |f ′′(|z|2)z2z|+ |f ′(|z|2)z| . |z|2σ−1, σ ≥ 1/2, z ∈ C, (4.13)

and Sobolev embedding, we obtain

‖dG(v)[w]‖L2 . ‖v‖2σ−1
L∞ ‖w‖L2 ≤ C(M)‖w‖L2 ,

which completes the proof.

4.2. Local truncation error and stability estimates

Similar to the estimate of the first-order Lie–Trotter time-splitting method, we first

establish the local truncation error and stability estimates for the second-order

Strang splitting.

Define the local truncation error of the Strang time-splitting method as

Ln = PNψ(tn+1)− Sτ2 (PNψ(tn)), 0 ≤ n ≤ T/τ − 1. (4.14)

Proposition 4.1. Assuming that V ∈ H2
per(Ω), σ ≥ 1 and ψ ∈

C([0, T ];H4
per(Ω)) ∩ C1([0, T ];H2(Ω)) ∩ C2([0, T ];L2(Ω)), we have

Ln = Ln1 + Ln2 ,

where

‖Ln1‖L2 . τ3 + τh4, Ln2 = −τ3∆2

∫ 1

0

ker(θ)ei(1−θ)τ∆PNB(eiθτ∆PNψ(tn))dθ,

with ker(θ) the Peano kernel for the mid-point rule.

Proof. From Section 3.2, using (3.1) and Lemma 4.3, the isometry property of eit∆

and the standard projection error estimates of PN , we have

PNψ(tn+1) = eiτ∆PNψ(tn) +

∫ τ

0

ei(τ−s)∆PNB(eis∆PNψ(tn))ds+

∫ τ

0

∫ s

0

ei(τ−s)∆

PN (dB(ei(s−ς)∆PNψ(tn + ς))[ei(s−ς)∆B(PNψ(tn + ς))])dςds+ eh,

(4.15)
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where ‖eh‖L2 . τh4. By the Taylor expansion for ΦτB in (3.8), we have

Sτ2 (PNψ(tn)) = eiτ∆PNψ(tn) + τei
τ
2 ∆PNB(ei

τ
2 ∆PNψ(tn))

+ τ2

∫ 1

0

(1− θ)γ(θ)dθ, (4.16)

where

γ(θ) = ei
τ
2 ∆PNdB(ΦθτB (ei

τ
2 ∆PNψ(tn)))[B(ΦθτB (ei

τ
2 ∆PNψ(tn)))], 0 ≤ θ ≤ 1.

(4.17)

Subtracting (4.16) from (4.15), we have

Ln = PNψ(tn+1)− Sτ2 (PNψ(tn)) = e1 + e2 + e3 + eh,

where

e1 =

∫ τ

0

∫ s

0

ei(τ−s)∆PN (dB(ei(s−ς)∆PNψ(tn + ς))[ei(s−ς)∆B(PNψ(tn + ς))])dςds,

e2 = −τ2

∫ 1

0

(1− θ)γ(θ)dθ,

e3 =

∫ τ

0

ei(τ−s)∆PNB(eis∆PNψ(tn))ds− τei τ2 ∆PNB(ei
τ
2 ∆PNψ(tn)).

(4.18)

Set, for 0 ≤ ς ≤ s ≤ τ

D(s, ς) = ei(τ−s)∆PN (dB(eis∆PNψ(tn))[ei(s−ς)∆B(eiς∆PNψ(tn))]). (4.19)

Noting that

D
(τ

2
,
τ

2

)
= γ(0) = ei

τ
2 ∆PNdB(ei

τ
2 ∆PNψ(tn))[B(ei

τ
2 ∆PNψ(tn))],

we have

e1 + e2 = r1 + r2 + r3,

where

r1 =

∫ τ

0

∫ s

0

[
ei(τ−s)∆PN (dB(ei(s−ς)∆PNψ(tn + ς))[ei(s−ς)∆B(PNψ(tn + ς))])

−D(s, ς)
]
dςds,

r2 =

∫ τ

0

∫ s

0

[
D(s, ς)−D

(τ
2
,
τ

2

)]
dςds, r3 = τ2

∫ 1

0

(1− θ)[γ(0)− γ(θ)]dθ.

(4.20)

Then one has (the proof is postponed to Lemma 4.6)

‖rj‖L2 . τ3 for j = 1, 2, 3. (4.21)
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To estimate e3 in (4.18), let

gn(s) = ei(τ−s)∆PNB(eis∆PNψ(tn)), 0 ≤ s ≤ τ. (4.22)

Then we have

e3 =

∫ τ

0

[gn(s)− gn(τ/2)]ds = τ3

∫ 1

0

ker(θ)∂ssg
n(θτ)dθ, (4.23)

where ker(θ) is the Peano kernel for the mid-point rule (see Refs. 6 and 29). For

simplicity of the presentation, we define

v(s) = PNB(eis∆PNψ(tn)), w(s) = eis∆PNψ(tn), 0 ≤ s ≤ τ. (4.24)

Note that we have gn(s) = ei(τ−s)∆v(s) for 0 ≤ s ≤ τ and

∂ssg
n(s) = ei(τ−s)∆(∂ssv(s)− i∆∂sv(s)−∆2v(s)), 0 ≤ s ≤ τ. (4.25)

Then e3 (4.23) can be decomposed as

e3 = τ3

∫ 1

0

ker(θ)ei(1−θ)τ∆(∂ssv(θτ)− i∆∂sv(θτ))dθ

− τ3

∫ 1

0

ker(θ)ei(1−θ)τ∆∆2v(θτ)dθ =: e1
3 + e2

3. (4.26)

From (4.24), by direct calculation, we have

∂sv(s) = PNdB(w(s))[i∆w(s)]

= PN [V∆w(s) + (1 + σ)f(|w(s)|2)∆w(s) +G(w(s))∆w(s)], (4.27)

∂ssv(s) = PN [iV∆2w(s) + (1 + σ)f ′(|w(s)|2)(i∆w(s)w(s)

− iw(s)∆w(s))∆w(s) + (1 + σ)f(|w(s)|2)i∆2w(s)

+ dG(w(s))[i∆w(s)]∆w(s)− iG(w(s))∆2w(s)]. (4.28)

From (4.27), recalling that V ∈ H2
per(Ω) and ψ ∈ C([0, T ];H4

per(Ω)) and using the

algebra property of H2(Ω), Lemma 4.1 and the boundedness of PN on H2
per(Ω), we

have, for 0 ≤ s ≤ τ

‖∆∂sv(s)‖L2 . ‖∂sv(s)‖H2 . ‖V ‖H2‖w‖H4 + C(‖w‖H2)‖w‖H4 ≤ C(M4).

(4.29)

From (4.28), recalling that V ∈ H2
per(Ω) and ψ ∈ C([0, T ];H4

per(Ω)), using

Lemma 4.5, Sobolev embedding, and the boundedness of PN , and noting (3.15), we

have

‖∂ssv(s)‖L2 . ‖V ‖L∞‖w‖H4 + ‖w‖2σ−1
L∞ ‖∆w‖2L4 + ‖w‖2σL∞‖w‖H4

+ C(‖w‖H4)‖∆w‖L∞ ≤ C(M4), 0 ≤ s ≤ τ. (4.30)
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Combing (4.29) and (4.30), recalling (4.26), we have, by the isometry property of

eit∆

‖e1
3‖L2 . τ3. (4.31)

The conclusion then follows from letting Ln1 = e1 + e2 + e1
3 + eh and Ln2 = e2

3.

Lemma 4.6. Under the assumption of Proposition 4.1, for rj (j = 1, 2, 3) defined

in (4.20), we have

‖rj‖L2 . τ3, j = 1, 2, 3.

Proof. Recalling (4.19), by the boundedness of eit∆ and PN , Lemmas 3.1 and 4.3,

we have

‖r1‖L2 ≤
∫ τ

0

∫ s

0

‖dB(ei(s−ς)∆PNψ(tn + ς))[ei(s−ς)∆B(PNψ(tn + ς))]

− dB(eis∆PNψ(tn))[ei(s−ς)∆B(eiς∆PNψ(tn))]‖L2dςds

.
∫ τ

0

∫ s

0

(‖ei(s−ς)∆PNψ(tn + ς)− eis∆PNψ(tn)‖L2

+ ‖ei(s−ς)∆B(PNψ(tn + ς))− ei(s−ς)∆B(eiς∆PNψ(tn))‖L2)dςds

≤ τ2 sup
0≤σ≤τ

‖ψ(tn + ς)− eiς∆ψ(tn)‖L2

≤ τ2 sup
0≤ς≤τ

∫ ς

0

‖ei(ς−s)∆B(ψ(tn + s))‖L2ds

≤ τ3 sup
0≤s≤τ

‖B(ψ(tn + s))‖L2 . τ3, (4.32)

where we also use the Duhamel’s formula for ψ(tn + ς). To estimate r2, recalling

(4.19) and w(t) = eit∆PNψ(tn) for 0 ≤ t ≤ τ in (4.24), we have

∂sD(s, ς) = −i∆D(s, ς) + ei(τ−s)∆PN∂s(dB(w(s))[ei(s−ς)∆B(w(ς))]). (4.33)

Recalling (3.5), by direct calculation, we have

∂s(dB(w(s))[ei(s−ς)∆B(w(ς))])

= −i∂s[V ei(s−ς)∆B(w(ς)) + (1 + σ)f(|w(s)|2)ei(s−ς)∆B(w(ς))

+G(w(s))ei(s−ς)∆B(w(ς))]

= V ei(s−ς)∆∆B(w(ς))

− i(1 + σ)f ′(|w(s)|2)(w(s)∂sw(s) + w(s)∂sw(s))ei(s−ς)∆B(w(ς))

+ (1 + σ)f(|w(s)|2)ei(s−ς)∆∆B(w(ς))− idG(w(s))[∂sw(s)]

× e−i(s−ς)∆B(w(ς))−G(w(s))e−i(s−ς)∆∆B(w(ς)),
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from which, noting (3.15) and (3.42) and

‖w(s)‖L∞ . ‖w(s)‖H2 ≤ ‖ψ(tn)‖H2 ≤M4, 0 ≤ s ≤ τ, (4.34)

we have

‖∂s(dB(w(s))[ei(s−ς)∆B(w(ς))])‖L2

. ‖B(w(ς))‖H2 + ‖∂sw(s)‖L2‖ei(s−ς)∆B(w(ς))‖L∞

+ ‖dG(w(s))[∂sw(s)]‖L2‖e−i(s−ς)∆B(w(ς))‖L∞ . (4.35)

From (4.35), using (4.4), Lemma 4.5, (4.34), Sobolev embedding and the isometry

property of eit∆, we have

‖∂s(dB(w(s))[ei(s−ς)∆B(w(ς))])‖L2

. C(‖V ‖H2 , ‖ψ(tn)‖H2) + ‖ψ(tn)‖H2‖B(w(ς))‖H2

+ C(‖w(s)‖L∞)‖∂sw(s)‖L2‖B(w(ς))‖H2 ≤ C(M4). (4.36)

From (4.33), using Lemma 4.4 and (4.36) and the boundedness of eit∆ and PN , we

obtain

‖∂sD(s, ς)‖L2 ≤ ‖∆D(s, ς)‖L2 + ‖∂s(dB(w(s))[ei(s−ς)∆B(w(ς))])‖L2

≤ C(M4). (4.37)

Similarly, using (4.4) and Lemma 3.2, we have ‖∂ςD(s, ς)‖L2 ≤ C(M4), which,

combined with (4.37), yields

‖∇D(s, ς)‖L2 ≤ C(M4), 0 ≤ ς ≤ s ≤ τ, (4.38)

which further implies

‖r2‖L2 . τ3 sup
0≤ς≤s≤τ

‖∇D(s, ς)‖L2 . τ3. (4.39)

For r3 in (4.20), recalling (4.17), (2.5) and w(t) = eit∆PNψ(tn), by Lemma 4.3

and (3.1), we have

‖r3‖L2 ≤ τ2

∫ 1

0

‖γ(θ)− γ(0)‖L2dθ

≤ τ2

∫ 1

0

‖dB(ΦθτB (w(τ/2)))[B(ΦθτB (w(τ/2)))]

− dB(w(τ/2))[B(w(τ/2))]‖L2dθ

. τ2 sup
0≤θ≤1

(‖ΦθτB (w(τ/2))− w(τ/2)‖L2

+ ‖B(ΦθτB (w(τ/2)))−B(w(τ/2))‖L2)

. τ2 sup
0≤θ≤1

‖w(τ/2)(e−iτ(V+f(|w(τ/2)|2)) − 1)‖L2 . τ3. (4.40)

Combing (4.32), (4.39) and (4.40), we complete the proof.
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Proposition 4.2. Let v, w ∈ XN such that ‖ei τ2 ∆w‖L∞ ≤ M and ‖v‖H2 ≤ M1,

then we have

‖(Sτ2 (v)− eiτ∆v)− (Sτ2 (w)− eiτ∆w)‖L2 ≤ C(‖V ‖L∞ ,M,M1)τ‖v − w‖L2 .

Proof. Recalling (2.15) and noting that PN is an identity on XN , we have

(Sτ2 (v)− eiτ∆v)− (Sτ2 (w)− eiτ∆w)

= ei
τ
2 ∆PN (ΦτB(ei

τ
2 ∆v)− ei τ2 ∆v)− ei τ2 ∆PN (ΦτB(ei

τ
2 ∆w)− ei τ2 ∆w). (4.41)

By (4.41), using Proposition 3.2, the isometry property of eit∆ and Sobolev embed-

ding, we have

‖(Sτ2 (v)− eiτ∆v)− (Sτ2 (w)− eiτ∆w)‖L2

≤ ‖PN (ΦτB(ei
τ
2 ∆v)− ei τ2 ∆v)− PN (ΦτB(ei

τ
2 ∆w)− ei τ2 ∆w)‖L2

≤ C(‖V ‖L∞ , ‖ei τ2 ∆v‖L∞ , ‖ei τ2 ∆w‖L∞)‖ei τ2 ∆v − ei τ2 ∆w‖L2

≤ C(‖V ‖L∞ , ‖v‖H2 , ‖ei τ2 ∆w‖L∞)‖v − w‖L2 ,

which completes the proof.

4.3. Optimal L2-norm error bound

Proof of (2.19) in Theorem 2.2. Let en = PNψ(tn) − ψn for 0 ≤ n ≤
T/τ . By the standard Fourier projection error estimates and noting that ψ ∈
C([0, T ];H4

per(Ω)), we have

‖ψ(tn)− PNψ(tn)‖L2 . h4.

Then the proof reduces to the estimate of en. For 0 ≤ n ≤ T/τ − 1

en+1 = PNψ(tn+1)− ψn+1

= PNψ(tn+1)− Sτ2 (PNψ(tn)) + Sτ2 (PNψ(tn))− Sτ2 (ψn)

= eiτ∆en + Zn + Ln, (4.42)

where Ln is defined in (4.14) and

Zn =
(
Sτ2 (PNψ(tn))− eiτ∆PNψ(tn)

)
− (Sτ2 (ψn)− eiτ∆ψn). (4.43)

Iterating (4.42), we have, for 0 ≤ n ≤ T/τ − 1

en+1 = ei(n+1)τ∆e0 +

n∑
k=0

ei(n−k)τ∆(Zk + Lk). (4.44)
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For Zn in (4.43), by Proposition 4.2 and the boundedness of eit∆ and PN , we have

‖Zn‖L2 ≤ C(‖V ‖L∞ , ‖ψ(tn)‖H2 , ‖ei τ2 ∆ψn‖L∞)τ‖PNψ(tn)− ψn‖L2

≤ C(M4, ‖ei
τ
2 ∆ψn‖L∞)τ‖en‖L2 , 0 ≤ n ≤ T/τ − 1,

which, together with the isometry property of eit∆ and the triangle inequality, yields∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Zk

∥∥∥∥∥
L2

≤
n∑
k=0

‖Zk‖L2 ≤ C3τ

n∑
k=0

‖ek‖L2 , 0 ≤ n ≤ T/τ − 1,

(4.45)

where C3 depends on max0≤k≤n ‖ei
τ
2 ∆ψk‖L∞ and M4. It follows from Proposi-

tion 4.1 and the isometry property of eit∆ that∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Lk
∥∥∥∥∥
L2

. nτ(τ2 + h4) +

∥∥∥∥∥
n∑
k=0

ei(n−k)τ∆Lk2

∥∥∥∥∥
L2

= nτ(τ2 + h4) +

∥∥∥∥∥τ3
n∑
k=0

e−ikτ∆∆2ηk

∥∥∥∥∥
L2

, (4.46)

where

ηn =

∫ 1

0

ker(θ)ei(1−θ)τ∆PNB(eiθτ∆PNψ(tn))dθ ∈ XN , 0 ≤ n ≤ T/τ − 1.

(4.47)

Moreover, define

Gn = τ3
n∑
k=0

e−ikτ∆∆2ηk, 0 ≤ n ≤ T/τ − 1. (4.48)

From (4.44), using (4.45) and (4.46) and recalling (4.48), we have

‖en+1‖L2 . τ2 + h4 + C3τ

n∑
k=0

‖ek‖L2 + ‖Gn‖L2 . (4.49)

We shall use similar techniques as before to analyze Gn. Note that

Gn = τ3
n∑
k=0

∑
l∈TN

eikτµ
2
l µ4
l η̂
k
l e
iµl(x−a), (4.50)

from which, exchanging the order of summation, using summation by parts and

recalling (3.28), we obtain

Gn = τ3
∑
l∈TN

µ4
l e
iµl(x−a)

n∑
k=0

eikτµ
2
l η̂kl

= τ3
∑
l∈TN

µ4
l e
iµl(x−a)

(
Sn,lη

n
l −

n−1∑
k=0

Sk,l
(
η̂k+1
l − η̂kl

))
. (4.51)
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Noting that µl = 0 when l = 0, similar to (3.29), we have

|τµ2
l Sn,l| . 1, l ∈ TN , 0 ≤ n ≤ T/τ − 1, (4.52)

where the constant is independent of n and l. From (4.51), using Parseval’s identity

and (4.52), we get

‖Gn‖2L2 = (b− a)τ6
∑
l∈TN

µ8
l

∣∣∣∣∣Sn,lηnl −
n−1∑
k=0

Sk,l
(
η̂k+1
l − η̂kl

)∣∣∣∣∣
2

. τ6
∑
l∈TN

µ8
l S

2
n,l

∣∣η̂nl ∣∣2 + τ6
∑
l∈TN

µ8
l

∣∣∣∣∣
n−1∑
k=0

Sk,l
(
η̂k+1
l − η̂kl

)∣∣∣∣∣
2

. τ4
∑
l∈TN

µ4
l

∣∣η̂nl ∣∣2 + τ6
∑
l∈TN

µ8
l

n−1∑
k1=0

|Sk1,l|2
n−1∑
k2=0

∣∣η̂k2+1
l − η̂k2l

∣∣2
. τ4‖ηn‖2H2 + τ4

n−1∑
k1=0

n−1∑
k2=0

∑
l∈TN

µ4
l

∣∣η̂k2+1
l − η̂k2l

∣∣2
. τ4‖ηn‖2H2 + nτ4

n−1∑
k=0

‖ηk+1 − ηk‖2H2 . (4.53)

Recalling (4.47) and using (4.4) and the boundedness of eit∆ and PN , we have

‖ηn‖H2 . sup
0≤θ≤1

‖B(eiθτ∆PNψ(tn))‖H2 ≤ C(M4), 0 ≤ n ≤ T/τ − 1. (4.54)

Moreover, for 0 ≤ k ≤ T/τ − 2, we have

ηk+1 − ηk =

∫ 1

0

ker(θ)ei(1−θ)τ∆PN (B(eiθτ∆PNψ(tk+1))−B(eiθτ∆PNψ(tk)))dθ.

(4.55)

From (4.55), using (4.3) and the boundedness of eit∆ and PN , we have

‖ηk+1 − ηk‖H2 .
∫ 1

0

‖B(eiθτ∆PNψ(tk+1))−B(eiθτ∆PNψ(tk))‖H2dθ

.
∫ 1

0

‖eiθτ∆PN (ψ(tk+1)− ψ(tk))‖H2dθ

. ‖ψ(tk+1)− ψ(tk)‖H2 . τ‖∂tψ‖L∞([tk,tk+1];H2), 0 ≤ k ≤ T

τ
− 2,

which together with (4.54), inserted into (4.53), yields

‖Gn‖2L2 . τ4 + n2τ6 . τ4, 0 ≤ n ≤ T/τ − 1.
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Recalling (4.49), we have

‖en+1‖L2 . τ2 + h4 + C3τ

n∑
k=0

‖ek‖L2 , 0 ≤ n ≤ T/τ − 1, (4.56)

where C3 depends on max0≤k≤n ‖ei
τ
2 ∆ψk‖L∞ and M4. The proof can be completed

by applying discrete Grönwall’s inequality to (4.56) and using the standard induc-

tion argument with the inverse estimate

‖ei τ2 ∆ψk‖L∞ ≤ ‖ei τ2 ∆(ψk − PNψ(tk))‖L∞ + ‖ei τ2 ∆PNψ(tk)‖L∞

≤ Cinvh
− d2 ‖ei τ2 ∆(ψk − PNψ(tk))‖L2 + C‖ei τ2 ∆PNψ(tk)‖H2

= Cinvh
− d2 ‖ek‖L2 + C(M4), (4.57)

to control the constant C3 in (4.56). The H1-norm error bound in (2.19) can be

obtained similarly to (3.36) by using inverse inequalities and the time step size

restriction τ . h2, and we omit the details here. Thus the proof is completed.

4.4. Optimal H1-norm error bound

Then we shall show the optimal H1-norm error bound (2.20) for the STFS method

under the assumptions that V ∈ H3
per(Ω), σ ≥ 3/2 and ψ ∈ C([0, T ];H5

per(Ω)) ∩
C1([0, T ];H3(Ω)) ∩ C2([0, T ];H1(Ω)). All the results in this section hold trivially

for σ = 1, and we shall omit this case for simplicity. We define a constant

M5 = max{‖V ‖H3 , ‖ψ‖L∞([0,T ];H5(Ω)), ‖∂tψ‖L∞([0,T ];H3(Ω)), ‖∂ttψ‖L∞([0,T ];H1(Ω))}.

We first show the higher-order counterparts of Lemmas 4.1–4.5.

Lemma 4.7. When σ ≥ 3/2, for any v ∈ H3(Ω), we have

‖f(|v|2)‖H3 ≤ C(‖v‖H3), ‖G(v)‖H3 ≤ C(‖v‖H3).

Proof. By some elementary calculation, we have the point-wise estimate

|∂xxxf(|v|2)| . (|f ′′′(|v|2)|v|3||f ′′(|v|2)|v||)|∂xv|3

+ (|f ′′(|v|2)|v|2|+ |f ′(|v|2)|)|∂xv||∂xxv|

+ |f ′(|v|2)|v|||∂xxxv|, (4.58)

where f ′′′(|z|2)|z|3, f ′′(|z|2)|z| and f ′′(|z|2)|z|2 with z ∈ C are defined as 0 when

z = 0. From (4.58), using Sobolev embedding and Hölder’s inequality and noting

(3.42), (4.13) and

|f ′′′(|z|2)|z|3|+ |f ′′(|z|2)|z|| . |z|2σ−3, σ ≥ 3

2
, z ∈ C, (4.59)

we have

‖∂xxxf(|v|2)‖L2 . ‖v‖2σ−3
L∞ ‖∂xv‖3L6 + ‖v‖2σ−2

L∞ ‖∂x‖L4‖∂xxv‖L4 + ‖v‖2σ−1
L∞ ‖∂xxxv‖L2

≤ C(‖v‖H3),
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which, combined with Lemma 4.1, yields ‖f(|v|2)‖H3 ≤ C(‖v‖H3). Similarly, we

have ‖G(v)‖H3 ≤ C(‖v‖H3) and complete the proof.

Lemma 4.8. Under the assumptions V ∈ H3(Ω) and σ ≥ 3/2, for any v, w ∈
H3(Ω) such that ‖v‖H3 ≤M, ‖w‖H3 ≤M, we have

‖B(v)−B(w)‖H3 ≤ C(‖V ‖H3 ,M)‖v − w‖H3 . (4.60)

In particular, when w = 0, we have

‖B(v)‖H3 ≤ C(‖V ‖H3 ,M). (4.61)

Proof. With Lemma 4.7, the proof follows the same way as the proof of Lemma 4.2

and we shall omit it for brevity.

Lemma 4.9. Under the assumptions V ∈W 1,4(Ω) and σ ≥ 3/2, for any vj , wj ∈
H2(Ω) satisfying ‖vj‖H2 ≤M and ‖wj‖H2 ≤M with j = 1, 2, we have

‖dB(v1)[w1]− dB(v2)[w2]‖H1 ≤ C(‖V ‖W 1,4 ,M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1).

Proof. By Lemma 4.3, it suffices to prove

‖∂x(dB(v1)[w1]− dB(v2)[w2])‖L2

≤ C(‖V ‖W 1,4 ,M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.62)

Recalling (3.5), we have

∂x(dB(v1)[w1]− dB(v2)[w2])

= −i∂x(V (w1 − w2))− i(1 + σ)∂x(f(|v1|2)w1 − f(|v2|2)w2)

− i∂x(G(v1)w1 −G(v2)w2) =: Y1 + Y2 + Y3. (4.63)

For Y1, by Sobolev embedding and Hölder’s inequality, we have

‖Y1‖L2 ≤ ‖∂xV ‖L4‖w1 − w2‖L4 + ‖V ‖L∞‖w1 − w2‖H1 . ‖V ‖W 1,4‖v − w‖H1 .

(4.64)

For Y2, we have

‖Y2‖L2 . ‖f ′(|v1|2)v1w1∂xv1 − f ′(|v2|2)v2w2∂xv2‖L2

+ ‖f ′(|v1|2)v1w1∂xv1 − f ′(|v2|2)v2w2∂xv2‖L2

+ ‖f(|v1|2)∂xw1 − f(|v2|2)∂xw2‖L2

=: ‖Y 1
2 ‖L2 + ‖Y 2

2 ‖L2 + ‖Y 3
2 ‖L2 . (4.65)

One can easily check that when σ ≥ 3/2, for z1, z2 ∈ C satisfying |z1| ≤ M0 and

|z2| ≤M0

|f ′(|z1|2)z1 − f ′(|z2|2)z2| .M2σ−2
0 |z1 − z2|,

|f ′(|z1|2)z1 − f ′(|z2|2)z2| .M2σ−2
0 |z1 − z2|.

(4.66)
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Using (4.66), Sobolev embedding and Hölder’s inequality and noting that

|f ′(|z|2)z|+ |f ′(|z|2)z| . |z|2σ−1 for all z ∈ C, we have, for Y 1
2 in (4.65)

‖Y 1
2 ‖L2 ≤ ‖f ′(|v1|2)v1 − f ′(|v2|2)v2‖L4‖w1‖L∞‖∂xv1‖L4

+ ‖f ′(|v2|2)v2‖L∞‖w1 − w2‖L4‖∂xv1‖L4

+ ‖f ′(|v2|2)v2‖L∞‖w2‖L∞‖∂xv1 − ∂xv2‖L2

≤ C(M)
(
‖v1 − v2‖L4 + ‖w1 − w2‖L4 + ‖∂xv1 − ∂xv2‖L2

)
≤ C(M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.67)

Similar to (4.67), we have, for Y 2
2 in (4.65)

‖Y 2
2 ‖L2 ≤ C(M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.68)

For Y 3
2 in (4.65), we have, by using (4.9), Sobolev embedding and Hölder’s inequality

and noting (3.42)

‖Y 3
2 ‖L2 ≤ ‖f(|v1|2)− f(|v2|2)‖L4‖∂xw1‖L4 + ‖f(|v2|2)‖L∞‖∂xw1 − ∂xw2‖L2

≤ C(M)
(
‖v1 − v2‖L4 + ‖∂xw1 − ∂xw2‖L2

)
≤ C(M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.69)

Combining (4.67)–(4.69) and noting (4.65), we have

‖Y2‖L2 ≤ C(M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.70)

Similar to the estimate of Y2, we have

‖Y3‖L2 ≤ C(M)(‖v1 − v2‖H1 + ‖w1 − w2‖H1). (4.71)

Inserting (4.64), (4.70) and (4.71) into (4.63) yields (4.62). The proof is thus

completed.

Lemma 4.10. Under the assumptions V ∈ H3(Ω) and σ ≥ 3/2, for any v, w ∈
H3(Ω) satisfying ‖v‖H3 ≤M, ‖w‖H3 ≤M, we have

‖dB(v)[w]‖H3 ≤ C(‖V ‖H3 ,M).

Proof. Recalling (3.5) and using Lemma 4.7 and the algebra property of H3(Ω),

we obtain the desired result.

Lemma 4.11. When σ ≥ 1, for any v ∈ H2(Ω) and w ∈ H1(Ω) satisfying

‖v‖H2 ≤M, we have

‖dG(v)[w]‖H1 ≤ C(M)‖w‖H1 .

Proof. By Lemma 4.5, it suffices to prove

‖∂x(dG(v)[w])‖L2 ≤ C(M)‖w‖H1 . (4.72)
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Recalling (4.12), we have the point-wise estimate

|∂x(dG(v)[w])| . (|f ′′′(|v|2)|v|4|+ |f ′′(|v|2)|v|2|+ |f ′(|v|2)|)|∂xv||w|

+ (|f ′′(|v|2)|v|3|+ |f ′(|v|2)v|)|∂xw|. (4.73)

From (4.73), noting (4.13) and

|f ′′′(|z|2)|z|4|+ |f ′′(|z|2)|z|2|+ |f ′(|z|2)| . |z|2σ−2, z ∈ C, σ ≥ 1, (4.74)

and using Sobolev embedding and Hölder’s inequality, we have

‖∂x(dG(v)[w])‖L2 . ‖v‖2σ−2
L∞ ‖∂xv‖L4‖w‖L4 + ‖v‖2σ−1

L∞ ‖∂xw‖L2 ≤ C(M)‖w‖H1 ,

which proves (4.72) and completes the proof.

With Lemmas 4.7–4.11 and the product estimate

‖vw‖H1 . ‖v‖W 1,4‖w‖H1 , v ∈W 1,4(Ω), w ∈ H1(Ω), (4.75)

similar to the proof of Proposition 4.1, we can obtain the following local error

decomposition.

Proposition 4.3. Assuming that V ∈ H3
per(Ω), σ ≥ 3/2 and ψ ∈

C([0, T ];H5
per(Ω)) ∩ C1([0, T ];H3(Ω)) ∩ C2([0, T ];H1(Ω)), for the local truncation

error defined in (4.14), we have

Ln = Ln1 + Ln2 , 0 ≤ n ≤ T/τ − 1,

where

‖Ln1‖H1 . τ3 + τh4, Ln2 = τ3∆2

∫ 1

0

ker(θ)ei(1−θ)τ∆PNB(eiθτ∆PNψ(tn))dθ.

Proposition 4.4. Let v, w ∈ XN such that ‖ei τ2 ∆w‖L∞ ≤ M and ‖v‖H2 ≤ M1

Then we have

‖(Sτ2 (v)− eiτ∆v)− (Sτ2 (w)− eiτ∆w)‖H1

≤ C(‖V ‖W 1,4 , ‖v‖H2 , ‖ei τ2 ∆w‖L∞)τ‖v − w‖H1 .

Proof. Recalling (4.41), using Proposition 3.4, the isometry property of eit∆ and

Sobolev embedding, we have

‖(Sτ2 (v)− eiτ∆v)− (Sτ2 (w)− eiτ∆w)‖H1

≤ ‖PN (ΦτB(ei
τ
2 ∆v)− ei τ2 ∆v)− PN (ΦτB(ei

τ
2 ∆w)− ei τ2 ∆w)‖H1

≤ C(‖V ‖W 1,4 , ‖ei τ2 ∆v‖L∞ , ‖ei τ2 ∆w‖L∞ , ‖ei τ2 ∆v‖H2)‖ei τ2 ∆v − ei τ2 ∆w‖H1

≤ C(‖V ‖W 1,4 , ‖v‖H2 , ‖ei τ2 ∆w‖L∞)‖v − w‖H1 ,

which completes the proof.

By Propositions 4.3 and 4.4, we can establish the proof for (2.20) in a manner

analogous to the proof of (2.19) in Sec. 4.3. To maintain brevity, we will not detail

this process here.
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5. Numerical Results

In this section, we present some numerical results for the NLSE with either low

regularity potential or nonlinearity. In the following, we fix Ω = (−16, 16), T = 1

and d = 1. Here, we only focus on temporal errors. Standard convergence orders of

the Fourier spectral method can be observed as in Ref. 12, and we omit them for

brevity. To quantify the error, we introduce the following error functions:

eL2(tn) := ‖ψ(·, tn)− ψn‖L2 , eH1(tn) := ‖ψ(·, tn)− ψn‖H1 , 0 ≤ n ≤ T/τ.

5.1. For the NLSE with low regularity potential

In this section, we only consider the cubic NLSE with low regularity potential and

a Gaussian initial datum as

i∂tψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t)− |ψ(x, t)|2ψ(x, t), x ∈ Ω, t > 0,

ψ(x, 0) = e−x
2/2, x ∈ Ω,

(5.1)

where V is chosen as Vj with j = 1, 2, 3, 4 defined as

V1(x) =

{
−4, x ∈ (−2, 2),

0, otherwise,
V2(x) = |x|0.76,

V3(x) = |x|1.51

(
1− x2

162

)2

, V4(x) = |x|2.51

(
1− x2

162

)3

,

x ∈ Ω. (5.2)

Note that the potential functions Vj(1 ≤ j ≤ 4) defined in (5.2) satisfy V1 ∈ L∞(Ω),

V2 ∈W 1,4(Ω) ∩H1
per(Ω), V3 ∈ H2

per(Ω) and V4 ∈ H3
per(Ω).

We shall test the convergence orders of the LTFS (2.10) and the STFS (2.14)

for the NLSE (5.1) with V = Vj(1 ≤ j ≤ 4). We remark here that the results shown

in Figs. 1 and 2 cannot be observed if one use the standard Fourier pseudospectral

(a) (b)

Fig. 1. Temporal errors of the LTFS method with different mesh sizes for (5.1) (a) V = V1 ∈
L∞(Ω) and (b) V = V2 ∈W 1,4(Ω) ∩H1

per(Ω).
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(a) (b)

Fig. 2. Temporal errors of the STFS method with different mesh sizes for (5.1) (a) V = V3 ∈
H2

per(Ω) and (b) V = V4 ∈ H3
per(Ω).

method for spatial discretization since the spatial errors will become dominant and

thus hide the temporal errors when τ . h2. The “exact” solutions are computed

by the STFS with τ = τe := 10−6 and h = he := 2−9.

We start with the LTFS method and choose V = V1 and V = V2 for optimal

first-order L2- and H1-norm error bounds, respectively. The numerical results are

shown in Fig. 1, where the marker on the line corresponding to h = 2−2/2k is placed

at τ = τ0/4
k for k = 0, 1, . . . , 4 to highlight the data points satisfying τ ∼ h2.

We can observe that the optimal first-order L2- and H1-norm error bounds are

only valid when τ . h2, and there is order reduction when τ � h2 (approximate

half order as observed in the numerical results). This confirms our error bounds in

Theorem 2.1 for the NLSE with low regularity potential and indicates that the step

size restriction τ . h2 is necessary and optimal.

Then we present the results of the STFS method with V = V3 and V = V4 for

optimal second-order L2- and H1-norm error bounds, respectively. Figure 2 exhibits

that the optimal second-order L2- and H1-norm error bounds can be observed only

when τ . h2, and there is order reduction when τ � h2 (approximately first order

as observed in the numerical results). This observation validates our error bounds

in Theorem 2.2 for the NLSE with low regularity potential and indicates that the

step size restriction τ . h2 is necessary and optimal.

5.2. For the NLSE with low regularity nonlinearity

In this section, we consider the NLSE with power-type nonlinearity and without

potential as

i∂tψ(x, t) = −∆ψ(x, t)− |ψ(x, t)|2σψ(x, t), x ∈ Ω, t > 0,

ψ0(x) = xe−
x2

2 , x ∈ Ω.
(5.3)
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The initial data is chosen as an odd function such that the solution to (5.3) will

satisfy ψ(0, t) ≡ 0 for all t ≥ 0 to demonstrate the influence of the low regularity

of the nonlinearity at the origin. Moreover, we numerically check that the exact

solution ψ(t) ∈ H3.5+2σ(Ω) and thus the assumptions on the exact solution in

Theorems 2.1 and 2.2 are satisfied.

In this section, we shall test the convergence orders of the LTFS (2.10) and the

STFS (2.14) for the NLSE (5.3) with different σ > 0. The “exact” solutions are

computed by the STFS (2.14) with τ = τe := 10−6 and h = he := 2−9.

Figure 3 exhibits the temporal errors in L2- and H1-norm of the LTFS method

with different mesh size h for σ = 0.1 (σ > 0) and σ = 0.5 (σ ≥ 1/2), respectively.

Figure 3(a) shows that the temporal convergence is first order in L2-norm when

σ = 0.1 and Fig. 3(b) shows that the temporal convergence is first order in H1-

norm when σ = 0.5. The results in Fig. 3 confirm our optimal error bounds in

Theorem 2.1 for the NLSE with low regularity nonlinearity.

Figure 4 displays the temporal errors in L2- and H1-norm of the STFS method

with different mesh size h for σ = 1.1 (σ ≥ 1) and σ = 1.5 (σ ≥ 3/2), respectively.

Figure 4(a) shows that the temporal convergence is second order in L2-norm when

σ = 1.1 and Fig. 4(b) shows that the temporal convergence is second order in

H1-norm when σ = 1.5. The results in Fig. 4 confirm our optimal error bounds in

Theorem 2.2 for the NLSE with low regularity nonlinearity.

Nevertheless, the numerical results in Figs. 3 and 4 indicate that the temporal

convergence order seems to be independent of the mesh size h, which suggests that

the step size restriction τ . h2 may be relaxed in cases of purely low regularity

nonlinearity. This phenomenon will be further investigated in our future work. It

is worth noting that this step size restriction remains necessary and optimal in the

presence of low regularity potential, as discussed in the preceding section.

Then we show the temporal errors of the LTFS and the STFS methods for

different σ > 0 with a fixed h = he = 2−9, which can be regarded as testing the

(a) (b)

Fig. 3. Temporal errors of the LTFS method with different mesh sizes for (5.3) (a) σ = 0.1 and

(b) σ = 0.5.
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(a) (b)

Fig. 4. Temporal errors of the STFS method with different mesh sizes for (5.3) (a) σ = 1.1 and
(b) σ = 1.5.

(a) (b)

Fig. 5. Temporal errors of the LTFS method for (5.3) with fixed mesh size h = he and different
values of σ (a) L2-error and (b) H1-error.

convergence at the time semi-discrete level. We choose several time steps τ from

10−4 to 10−1. From Figs. 5 and 6, we observe that: when there is no step size

restriction, first-order L2-norm error bound holds for any σ > 0 while the first-

order H1-norm error bound only holds for σ ≥ 1/2; and second-order L2- and

H1-norm error bounds can only hold for σ ≥ 1 and σ ≥ 3/2, respectively. This

observation implies that the threshold values of σ in Theorems 2.1 and 2.2 for

optimal convergence orders are indeed sharp at semi-discrete level.

5.3. Comparison with the first-order Gautschi-type EWI

In this section, we shall compare the performance of the first-order Lie–Trotter

time-splitting method and the first-order Gautschi-type EWI (also known as the

exponential Euler scheme22) analyzed in Ref. 12 when applied to the NLSE with

low regularity potential and nonlinearity. Since the EWI is a first-order scheme,
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(a) (b)

Fig. 6. Temporal errors of the STFS method for (5.3) with fixed mesh size h = he and different
values of σ (a) L2-error and (b) H1-error.

here, we only present the comparison between the EWI and the first-order LTFS

method (2.10).

According to our analysis before, for the time-splitting method, we only present

the results computed at the fully discrete level by using the Fourier spectral method

for spatial discretization subject to the CFL-type time step size restriction τ <

h2/π. While for the EWI, we present the results computed with fixed h = he since

the mesh size h has almost no influence on the performance of the EWI as long

as it is small enough (such that the spatial error is smaller than the temporal

error). The comparison between the time-splitting method and the EWI both at

the semi-discrete level (i.e., τ � h2) can be found in Sec. 5.3 of Ref. 12.

In Fig. 7(a), we show the L2-errors of using the LTFS and the EWI to solve the

NLSE (5.1) with V (x) = V1(x) defined in (5.2). In Fig. 7(b), we show the H1-errors

of using the LTFS and the EWI to solve the NLSE (5.1) with V (x) = V2(x) defined

10-4 10-3 10-2
10-4

10-1

EWI
LTFS

(a)

10-4 10-3 10-2

10-3

10-1

EWI
LTFS

(b)

Fig. 7. Temporal errors of the LTFS method and the EWI for solving (5.1) (a) V = V1 ∈ L∞(Ω)

and (b) V = V2 ∈W 1,4(Ω).
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(a) (b)

Fig. 8. Temporal errors of the LTFS method and the EWI for solving (5.3) (a) σ = 0.1 and (b)
σ = 0.5.

in (5.2). We can observe that both the LTFS and the EWI show optimal first-order

convergence in each case, while the value of errors of the LTFS is smaller than those

of the EWI.

In Fig. 8(a), we show the L2-errors of using the LTFS and the EWI to solve

the NLSE (5.3) with σ = 0.1. In Fig. 8(b), we show the H1-errors of using the

LTFS and the EWI to solve the NLSE (5.3) with σ = 0.5 defined in (5.2). We can

observe that both the LTFS and the EWI show optimal first-order convergence in

each case, while the value of errors of the LTFS is smaller than those of the EWI.

Based on the observation above, we can conclude that the time-splitting methods

perform better than the EWI at fully discrete level under the CFL-type time step

size restriction τ < h2/π.

6. Conclusion

We established optimal error bounds on time-splitting Fourier spectral methods

for the NLSE with low regularity potential V and typical power-type nonlinearity

f(ρ) = ρσ(σ > 0). For the first-order Lie–Trotter time-splitting method, optimal

L2- and H1-norm error bounds were established for V ∈ L∞, σ > 0 and V ∈
W 1,4, σ ≥ 1/2, respectively. For the second-order Strang time-splitting method,

optimal L2- and H1-norm error bounds were established for V ∈ H2, σ ≥ 1 and V ∈
H3, σ ≥ 3/2 (or σ = 1), respectively. Compared to the error estimates of the time-

splitting methods in the literature, our optimal error bounds require much weaker

regularity on potential and nonlinearity for optimal convergence rates. Extensive

numerical results were reported to validate our error estimates and to show that

they are sharp. In particular, a CFL-type time step size restriction which is needed

in our proof can be observed numerically in the presence of low regularity potential,

indicating that it cannot be removed or improved. Furthermore, numerical results

for various values of σ > 0 suggest that the above threshold values of σ for optimal

convergence orders are also sharp.
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