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Abstract

The purpose of this essay is to analyse a recently proposed bilevel learning scheme
for image reconstruction in one dimension which optimises under a box constraint
with respect to both the regularisation parameter and the order of the regulariser.
The learning scheme is based on ICTV regularisation and is distinguished by the
fact that it involves fractional order ICTV seminorms, which happens to reduce
the staircasing effect. Along the analysis of the existence and uniqueness for the
bilevel learning scheme, the fractional Sobolev spaces are studied, leading to a result
concerning the asymptotic behaviour of the Gagliardo seminorm due to Bourgain,
Brezis and Mironescu. The fractional ICTV seminorms are introduced and the
asymptotic behaviour is investigated. In particular they are shown to lie interme-
diate between the surrounding integer ICTV seminorms. Further, the existence of
extremal functions for these new seminorms is established and the connection with
the total variation is analysed. Finally, a theorem guaranteeing the existence and
uniqueness of a solution to the learning scheme is proven.
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1 Introduction

1 Introduction

In Image Analysis and Signal Processing, variational noise removal techniques and
PDE methods have gained lots of popularity over the last decades. In a paper from
1992, the mathematicians L. I. Rudin, S. Osher and E. Fatemi introduced a total
variation based noise removal method which can be considered as the starting point
of this development, see [FOR92]. This method relies on minimising the so-called
ROF -functional

ROFα(u) :=
1

2
‖u− u0‖2

L2(I) + αTV (u),

where I := (0, 1) is the domain of a 1D-image/signal, u0 ∈ L2(I) represents the
corrupted image, and TV (u) denotes the total variation of u, i.e.

TV (u) = sup
φ∈C1

c (I)
‖φ‖∞≤1

∫ 1

0

u(x)φ′(x) dx = sup
P={x0,...,xnP }
P partition of I

nP−1∑
k=0

|u(xk+1)− u(xk)|.

The corrupted image u0 is of the form

u0 = uc + η,

where uc represents the clean picture and η is the noise that we want to remove.

Figure 1: (taken from [WX09]) ROF denoising of a signal including piecewise con-
stant, piecewise linear and piecewise parabolic parts.

As figure 1 shows, the ROF method has the property that it preserves disconti-
nuities in noisy step functions. However, there is a problem with this scheme. When
using total variation based image reconstruction schemes, the solutions are usually
piecewise constant which results in an effect called staircasing. In two dimensions,
the staircasing effect is responsible for the formation of blocks in the reconstructed
image, see figure 2.
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1 Introduction

Figure 2: (taken from [PS14]) TV image reconstruction and Staircasing.

The outcome of minimising the ROF -functional depends on the choice of the so-
called regularisation parameter α ∈ R+. On the one hand, if we choose α to be
very small, the functional basically minimises the L2-error to the corrupted image,
which means that we get a reconstructed image that is very close to u0, but where
the noise is still not removed. On the other hand, if we choose α to be very large,
the functional basically just minimises the total variation, which results in an over-
smoothed image that is not necessarily very close to u0. Therefore, one is interested
in finding “good” or even optimal regularisation parameters.
In order to find optimal regularisation parameters, one uses so-called bilevel learning
schemes, which adapt themselves to given perfect data. Bilevel learning schemes
are constrained optimisation problems where the constraint consists of solving an
optimisation problem itself. The latter one is called the lower level problem or the
second level problem. The idea of the learning scheme is now as follows. Suppose
our variational method is based on minimising the functional J = Jα, where α is the
vector consisting of all regularisation parameters. It would be a very difficult task to
tune the regularisation parameters by hand in order to find a suitable constellation
(particularly when optimising for more than one parameter as in the subsequently
discussed ICTV regularisation, cf. (1.1)). Instead, we choose a quality measure Q
such that Q(uα) evaluates the quality of a minimiser uα ∈ arg minu Jα(u). Then the
bilevel learning scheme minimises the quality measure with respect to the parameter
vector α, i.e. it is of the formmin

α
Q(uα)

s.t. uα ∈ arg min
u

Jα(u)
.

An example for a bilevel learning scheme which uses the ROF -functional as vari-
ational approach and the squared L2-error to some clean test picture uc ∈ L2(I) as
quality measure is the following:

(B1)

min
α>0

‖uα − uc‖2
L2(I)

s.t. uα = arg min
u∈BV (I)

ROFα(u)
.
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1 Introduction

The scheme (B1) then looks for the optimal regularisation parameter α∗ such that
the ROF -reconstruction u∗α minimises the L2-error to uc. The disadvantage of this
scheme is again the staircasing effect, since it is based on minimising the ROF -
functional.
There are two popular regularisation methods that are known for reducing the stair-
casing effect, the ICTV (infimal-convolution total variation) regulariser and the
TGV (total generalised variation) regulariser, which coincide in one dimension.
The integer ICTV seminorm/regulariser of order k + 1 ∈ N>1 and weight α =
(α0, . . . , αk) ∈ Rk+1

+ on I is defined by

|u|ICTV k+1
α (I) := inf

vl∈BV (I)
∀0≤l≤k−1

{
α0|u′ − v0|Mb(I) +

k−2∑
i=0

αi+1|v′i − vi+1|Mb(I) + αk|v′k−1|Mb(I)

}
,

(1.1)

where we are using the notation |u′|Mb
≡ TV (u).

An often used regulariser in this class is the ICTV regulariser of order two, which
reads as

|u|ICTV 2
α (I) := inf

v0∈BV (I)

{
α0|u′ − v0|Mb(I) + α1|v′0|Mb(I)

}
.

The definition of the regularisers can easily be adapted to a two dimensional setting.
A result of image reconstruction by using ICTV 2 (with squared L2 fidelity/data
term) is shown in figure 3.
We see that the staircasing effect in the ICTV 2 reconstructed image is reduced
compared to the TV reconstructed image. To see this mathematically, we take a
function v0 ∈ BV (I) and look at the expression in the ICTV 2 regulariser. If we
think of v0 as the distributional derivative of some other function w0 ∈ BV (I), then
the first term of the regulariser can be seen as first order TV term involving the total
variation of w0 and the second term can be seen as second order TV term involving
the total variation of w′0, which is small if w0 is piecewise linear. Therefore, this
second order TV term can counteract possible staircasing created by the first order
TV term.
In this essay, we will investigate the following bilevel learning scheme that optimises
both the regularisation parameter and the order of the ICTV regulariser (the order
of derivation) proposed by E. Davoli and P. Liu in [DL16]:

(B)


(α∗, r∗) := arg min

(α,r)

{
‖uα,r − uc‖2

L2(I) : (α, r) ∈ [a,A]brc+1 × [1, R]
}

uα,r := arg min
u∈BCV rα (I)

(
‖u− u0‖2

L2(I) + |u|ICTV rα (I)

) .

In this scheme, a,A > 0 and R > 1 are fixed real numbers and BCV r
α denotes the

space of functions with corresponding finite ICTV r
α seminorm (definition 10). To

give sense to the scheme, we need to define ICTV seminorms for non-integer orders.
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Figure 3: (taken from [DSV17]) TV and ICTV 2 image reconsruction.

The advantage in working with seminorms of fractional order is that fractional
order derivatives reduce contrast and staircasing effects.
We will define the fractional order ICTV seminorms |·|ICTV k+s

α
for k ∈ N and

s ∈ (0, 1) in such a way that they are in some sense intermediate between the
surrounding integer ICTV -spaces. For instance (see definition 9), the fractional
ICTV regulariser of order 1 + s for s ∈ (0, 1) is defined by

|u|ICTV 1+s
α (I) := inf

v0∈W s,1+s(1−s)(I),
(v0)I=0

{
α0|u′ − sv0|Mb(I) + α1s(1− s)|v0|W s,1+s(1−s)(I)

}
and the corresponding ICTV space is defined by

BCV 1+s
α (I) := {u ∈ L1(I) : |u|ICTV 1+s

α (I) <∞}.

This definition already shows that we need to study fractional Sobolev spaces
before we can understand the fractional ICTV spaces. The structure of this essay
is as follows.
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1 Introduction

Structure. The goal of this essay is to analyse the existence and uniqueness of
a solution (α∗, r∗) to (B) (which corresponds to the reconstructed image uα∗,r∗).
The main reference for this essay is [DL16].
Section 2 is based on [Alt06], [EG92] and [Sch16] and provides a quick review of
the cornerstones in the theory of functions of bounded variation. The main results
of this section will be approximation and compactness in the space BV .
In section 3, we are going to study fractional Sobolev spaces. The first part of the
section serves as an introduction to the main results in the theory of fractional
Sobolev spaces and provides an important toolbox including embedding theorems
and a Poincaré-type inequality, which will be used frequently throughout this essay.
The mentioned results concerning classical Sobolev space theory can be found in
[Eva10]. In the second part of the section, we are going to study the asymptotic
behaviour of the so-called Gagliardo seminorm on which section 4 crucially relies.
The results of this subsection are based on [Ma14] and [BBM02], where the latter
one is the main reference.
In section 4 we define both the integer ICTV regulariser as well as the fractional
ICTV regulariser and study the connection between them by looking at the
limit behaviour of the fractional ICTV seminorms. The section is concluded by
investigating the existence of extremal functions for the fractional ICTV seminorms
and a theorem relating the ICTV seminorms to the total variation. The results in
this section provide the foundation for the study of the bilevel learning scheme (B)
in section 5.
In section 5, we can finally use our results from the sections 3 and 4 to prove an
existence and uniqueness theorem for the learning scheme (B). The results in the
sections 4 and 5 are based on [DL16].

Contribution. This essay is not intended to provide new research results.
Rather, the aim of this essay is to come up with an improved version of the original
paper [DL16]. This involves firstly the correction of any mistakes made in [DL16]
which I was able to find, and secondly an attempt to improve the clarity of the
argumentation in the proofs.
In particular, this version of the proof of theorem 11 corrects and simplifies the
original one, and arose from collaboration with Pan Liu (especially lemma 2).
Further, this essay is aimed to be as self-contained as possible and hence it might
be accessible to a wider audience.

Acknowledgements. First of all I would like to thank my advisor Dr Carola-
Bibiane Schönlieb for suggesting this interesting topic and for her continuous sup-
port. Throughout the essay-writing process she provided plenty of good ideas and
always had an open ear for my questions.
Secondly I would like to thank Pan Liu for a very fruitful discussion of his paper
[DL16] and in particular for working together with me on the proof of theorem 11.
It was a great pleasure for me to discuss mathematics with both Carola Schönlieb
and Pan Liu on this modern topic of bilevel learning.
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2.1 Recap on signed Radon-measures

2 Functions of Bounded Variation

2.1 Recap on signed Radon-measures

In this section, we will recall some facts about signed Radon-measures. The re-
sults will not be proven in this essay, but we refer to [Rud87] for a more extensive
discussion of the topic. We start by defining signed Radon-measures.

Definition 1 (Signed Radon-measure). Let U be a set and let A be a σ-algebra on
U . A map µ : A → (−∞,∞) is called a signed Radon-measure, if the following two
properties are satisfied:

(i) µ is a signed measure, i.e. for any pairwise disjoint family of sets (An)n ⊂ A
there holds

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

(ii) The variation of µ,
|µ| : A −→ [0,∞]

|µ|(A) = sup

{∑
n∈N

|µ(An)| :
⋃
n∈N

An ⊂ A, Am ∩ Ar = ∅ ∀m 6= r

}
,

defines a Radon-measure, i.e. a Borel-measure that is finite on compact sets
and that satisfies the exterior regularity condition

∀A ∈ U : |µ|(A) = inf
B⊃A

B⊂U open

|µ|(B).

We denote by M(U) the space of all signed Radon-measures.

Remark 1. The space M(U) endowed with the total variation norm

‖µ‖M(U) := |µ|(U)

is a Banach space.

The main theorem in the study of the spaceM is Riesz’s representation theorem.
Before we state the theorem, we recall the definition of two important function
spaces.

Definition 2. Let U ⊂ RN . We define the space of compactly supported continuous
functions

Cc(U) := {f ∈ C(U ;R) : supp(u) compact}
and the space of continuous functions that vanish at infinity by

C0(U) := Cc(U)
‖·‖∞

= {f ∈ C(U ;R) : ∃(fn)n ⊂ Cc(U) s.t. fn −→ f uniformly}
= {f ∈ C(U ;R) : ∀ε > 0 ∃K ⊂ U compact s.t. |f(x)| < ε ∀x ∈ U\K}

=

{
f ∈ C(U ;R) : lim

x→±∞
f(x) = 0

}
.
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2.1 Recap on signed Radon-measures

Remark 2. The space C0(U) endowed with the norm ‖ · ‖∞ is a Banach space.

Riesz’s representation theorem provides a connection of the spaces C0(U) and
M(U). To be precise, it says that M(U) is the dual of the space C0(U).

Theorem 1 (Riesz’s Representation Theorem, C ′0 = M). Let U ⊂ RN and let
λ : C0(U)→ R be linear and continuous. Then there exists an unique signed Radon-
measure µ ∈M(U) such that

λ(f) =

∫
U

f dµ.

There holds
‖µ‖M(U) = ‖λ‖L(C0(U);R) := sup

f∈C0(U)
‖f‖∞≤1

|λ(f)|.

We note that this theorem implies that for any bounded sequence (un)n in L1(U) ⊂
M(U) = C ′0(U) there exists a signed Radon-measure µ ∈M(U) and a subsequence

such that un
∗
⇀ µ in M(U) along this subsequence, i.e.∫

U

un · f dLN −→
∫
U

f dµ

for any f ∈ C0(U).
Another important application of the theorem is the following. Consider the space
X := C0(RN). Since X is separable, there holds weak-∗ compactness in the dual
X ′ = M(RN) which means that for any bounded sequence (µn)n ⊂ M(RN) there

exists some µ ∈M(RN) and a subsequence such that µn
∗
⇀ µ in M(RN), i.e.∫

RN

f dµn −→
∫
RN

f dµ

for any f ∈ C0(RN).
Besides the weak-∗ convergence, there is also a notion of weak convergence in
M(RN).

Definition 3 (Weak Convergence in M(RN)). Let (µn)n, µ be positive Radon-
measures on RN . Then we say that the sequence (µn)n converges weakly to µ, denoted

by µn
M
⇀ µ, if ∫

RN

f dµn −→
∫
RN

f dµ

for any f ∈ Cc(RN).

To round the section off, we note the following connection between weak and
weak-∗ convergence:

µn
∗
⇀ µ ⇐⇒ µn

M
⇀ µ and ‖µn‖M(RN ) ≤ C.
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2.2 Definition and first properties

2.2 Definition and first properties

In some tasks in image analysis, in the analysis of partial differential equations and
in the calculus of variations, the given problem turns out to naturally provide no
more than an estimate on the L1-norm, which often results in difficulties. The prob-
lem is that since L1 is not reflexive, we cannot extract a convergent subsequence
for a L1 bounded sequence. In particular, we do not get easily a limit function (in
the PDE context the limit would be a candidate for the solution of the equation).
To overcome this problem, one passes into the space of signed Radon-measures M
instead of working in L1.
The motivation for defining the space of functions of bounded variation is the prob-
lem described above for the non-reflexive Sobolev space W 1,1. We would like to have
a Banach space that contains W 1,1 and where a bounded sequence has a convergent
subsequence. We will see that the function space BV possesses these properties.

Notation. Let U ⊂ RN be open. For a function u of integrability class L1(U), we
can identify u with the distribution

〈u〉 : C∞c (U) −→ R, φ 7−→ 〈u, φ〉 :=

∫
U
uφ dLN ,

and we write ∇u ∈M(U ;RN) if the distributional gradient

∇〈u〉 : C∞c (U ;RN) −→ R, φ 7−→ 〈∇u, φ〉 := −〈u,∇ · φ〉 = −
∫
U
u (∇ · φ) dLN

can be extended to an element of C0(U ;RN)′ = M(U ;RN), i.e. to a continuous
linear functional on C0(U ;RN).

Definition 4 (The space BV). Let U ⊂ RN be open. We define

BV (U) := {u ∈ L1(U) : ∇u ∈M(U ;RN)}

to be the space of functions of bounded variation over U .

We note that the so-defined function space, endowed with the right norm, is
actually a Banach space which contains W 1,1(U). This means that the condition
∇u ∈M(U ;RN) is weaker than the condition ∇u ∈ L1(U ;RN), in the sense that the
latter one is more restrictive. Moreover, we could have defined BV (U) equivalently
in a different way as the following theorem shows.

Theorem 2. Let U ⊂ RN be open. Then the following holds:

(i) The space BV (U) can be equivalently written as

BV (U) = {u ∈ L1(U) : TV (u) <∞},

where the total variation of the function u is defined by

TV (u) = sup
φ∈C1

c (U ;RN )
‖φ‖∞≤1

∫
U
u (∇ · φ) dLN .

11



2.2 Definition and first properties

(ii) W 1,1(U) is contained in BV (U).

(iii) BV (U) endowed with the norm

‖u‖BV (U) := ‖u‖L1(U) + TV (u) (2.1)

is a Banach space.

Proof. (i) Firstly, let u ∈ BV (U). Then ∇u is understood as the extension of
∇〈u〉 to C0(U ;RN). By definition of ‖ · ‖M(U ;RN ) = ‖ · ‖L(C0(U ;RN );R), we have
for all φ ∈ C1

c (U ;RN) ⊂ C0(U ;RN) that∫
U
u (∇ · φ) dLN = −〈∇u, φ〉 ≤ |〈∇u, φ〉| ≤ ‖∇u‖M(U ;RN )‖φ‖∞.

So TV (u) ≤ ‖∇u‖M(U ;RN ) <∞.
For the other direction, let u ∈ L1(U) with TV (u) < ∞. By definition of the
distributional gradient K = ∇〈u〉, the finite total variation of u implies

sup
φ∈C∞c (U ;RN )
‖φ‖∞≤1

|K(φ)| ≤ C <∞. (2.2)

This estimate implies that we can extend K to a continuous linear functional
on C0(U ;RN) as follows: Let φ∗ ∈ C0(U ;RN). By approximation, there exists
a sequence (φn)n ⊂ C∞c (U ;RN) with φn → φ∗ uniformly. Using linearity of K
and our estimate (2.2), we obtain

|K(φm)−K(φr)| = |K(φm − φr)| ≤ C‖φm − φr‖L∞(U) −→
m,r→∞

0.

Hence, (K (φn))n is as Cauchy sequence in R convergent and we can extend
K by K(φ∗) := lim

n→∞
K(φn) to K ∈ L(C0(U ;RN);R).

(ii) Let u ∈ W 1,1(U). By definition, u ∈ L1(U) and the distributional gradient can
be represented by an element in L1(U), i.e. there exists a function g ∈ L1(U)
such that K(φ) := 〈∇u, φ〉 = 〈g, φ〉 for all test functions φ ∈ C∞c (U ;RN). The
Cauchy-Schwarz inequality yields

sup
φ∈C∞c (U ;RN )
‖φ‖∞≤1

|K(φ)| ≤ ‖g‖L1(U) <∞.

As we have seen in the proof of (i), this estimate implies that we can extend
K to a continuous linear functional on C0(U ;RN). Hence, u ∈ BV (U).

(iii) It is easy to see that BV (U) is a vector subspace of L1(U) and that (2.1) defines
a norm on BV (U). It remains to show that the space is complete. This follows
directly from the completeness of L1(U) and the lower semi-continuity of the
total variation with respect to L1-convergence. We will prove the latter fact
at the beginning of the next subsection.
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The strong convergence in BV provided by the norm defined in (2.1) is just
rarely used. We will define a more useful type of convergence in BV , the weak-
star convergence. The advantage of the weak-star convergence is that one can show
that given a bounded sequence in BV , we can extract a weakly-star convergent
subsequence in BV .

Definition 5 (Weak-∗ convergence in BV ). Let U ⊂ RN be open and let (un)n be a
sequence in BV (U). We say that (un)n converges weakly-∗ in BV (U) to some limit
function u ∈ BV (U) if

un · LN
∗
⇀ u · LN , ∇un

∗
⇀ ∇u in M(U).

2.3 Approximation and Compactness

The goal of this section is to prove that we can approximate BV -functions by smooth
functions and that bounded sequences in BV have L1-convergent subsequences. As
a first step, we have to show that L1-limits are actually in BV .

Lemma 1 (Lower semi-continuity). Let U ⊂ RN be open. Further, let (un)n ⊂
BV (U) with un → u in L1(U). Then there holds the inequality

‖u‖BV (U) ≤ lim inf
n→∞

‖un‖BV (U). (2.3)

In particular, if the right hand side is finite, then u ∈ BV (U).

Proof. Since un → u strongly in L1(U), we have norm-convergence, i.e.

lim
n→∞

‖un‖L1(U) = ‖u‖L1(U). (2.4)

Let now φ ∈ C1
c (U ;RN) with ‖φ‖∞ ≤ 1. Using the strong L1-convergence we obtain∫

U
u (∇ · φ) dLN = lim

n→∞

∫
U
un (∇ · φ) dLN ≤ lim inf

n→∞
TV (un).

Hence, there holds
TV (u) ≤ lim inf

n→∞
TV (un),

which implies together with (2.4),

‖u‖BV (U) = ‖u‖L1(U) + TV (u) ≤ lim
n→∞

‖un‖L1(U) + lim inf
n→∞

TV (un)

≤ lim inf
n→∞

(
‖un‖L1(U) + TV (un)

)
= lim inf

n→∞
‖un‖BV (U),

the desired inequality (2.3).
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2.3 Approximation and Compactness

One of the most important and useful theorems in the theory of functions of
bounded variation is the result that functions of bounded variation can be approxi-
mated by smooth functions. This result is useful since it allows to prove things first
for smooth functions, which is often a lot easier than proving it directly, and once this
is done, one uses an approximation argument based on the following approximation
theorem.

Theorem 3 (Approximation Theorem). Let U ⊂ RN be open. Then given a function
u ∈ BV (U), there exists a sequence (un)n ⊂ BV (U) ∩ C∞(U) of smooth functions
with

un −→ u in L1(U), and

TV (un) −→ TV (u).

The proof in the general case is rather technical due to boundary difficulties. To
see the idea behind the proof, we will prove the theorem for the special case U = RN

and refer to [EG92] for the proof of the general case.

Proof. (U = RN) Let u ∈ BV (RN) be arbitrary. Then by definition of the space
BV , u ∈ L1(RN) and ∇u ∈ M(RN ;RN). We choose χ ∈ C∞c (RN) with 0 ≤ χ ≤ 1,∫
RN

χ dLN = 1 and define the mollifiers

χε(x) :=
1

εN
χ
(x
ε

)
, ε > 0.

By standard Lebesgue-theory, the functions un := u ∗ χ 1
n

are of regularity class

C∞(RN) and there holds un → u in L1(RN).
In particular, this implies ‖un‖L1(RN ) → ‖u‖L1(RN ), thus it remains to show that
TV (un) → TV (u). To this end, let φ ∈ C1

c (RN ;RN) with ‖φ‖∞ ≤ 1 and compute,
using the properties of the convolution,∫

RN

un (∇ · φ) dLN =

∫
RN

(
u ∗ χ 1

n

)
(∇ · φ) dLN

=

∫
RN

u
(

(∇ · φ) ∗ χ 1
n

)
dLN

=

∫
RN

u ∇ ·
(
φ ∗ χ 1

n

)
dLN ≤ TV (u),

where we used in the last step that φ ∗ χ 1
n
∈ C1

c (RN ;RN) and ‖φ ∗ χ 1
n
‖∞ ≤ 1. This

calculation shows (un)n ⊂ BV (RN) and

lim sup
n→∞

TV (un) ≤ TV (u).

By using lemma 1, we obtain

TV (u) ≤ lim inf
n→∞

TV (un) ≤ lim sup
n→∞

TV (un) ≤ TV (u).

Hence TV (un)→ TV (u) and the theorem is proven for the case U = RN .
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2.3 Approximation and Compactness

When we think back to our motivation of defining the space of functions with
bounded variations, the key point was that we wanted to have a space where bounded
sequences possess convergent subsequences. With the approximation theorem at
hand, we can state and prove the desired compactness result for the space BV .

Theorem 4 (Compactness Theorem). Let U ⊂ RN be open and bounded. Then
given a sequence of functions (un)n ⊂ BV (U) with ‖un‖BV (U) ≤ C for some constant
C > 0, there exists a function u ∈ BV (U) such that along a subsequence there holds

un −→ u in L1(U).

Proof. Step 1: We show that for a smooth function f ∈ BV (U)∩C∞(U) there holds

TV (f) =

∫
U

|∇f | dLN . (2.5)

For all φ ∈ C1
c (U ;RN) with ‖φ‖∞ ≤ 1 we find by using Gauß’s theorem∫

U
f (∇ · φ) dLN = −

∫
U
∇f · φ dLN ≤ ‖φ‖∞

∫
U
|∇f | dLN ≤

∫
U
|∇f | dLN ,

which shows

TV (f) ≤
∫
U

|∇f | dLN . (2.6)

To show the other direction, we consider a sequence of functions (φn)n ⊂ C1
c (U ;RN)

with ‖φn‖∞ ≤ 1 and

φn −→
n→∞

φf := − ∇f
|∇f |

in L1(U).

This is possible since φf ∈ L1(U ;RN) with ‖φf‖∞ = 1 due to density of C1
c (U ;RN)

in L1(U ;RN). We use again Gauß’s theorem to obtain∫
U
f (∇ · φn) dLN = −

∫
U
∇f · φn dLN −→

n→∞
−
∫
U
∇f · φf dLN =

∫
U

|∇f | dLN .

Together with (2.6), we deduce (2.5).
Step 2: Let now (un)n be a bounded sequence in BV (U). We apply the approxima-
tion theorem to each un and obtain a sequence (fn)n ⊂ BV (U) ∩ C∞(U) with

‖fn − un‖L1(U) ≤
1

n
and TV (fn) ≤ c ∀n ∈ N

for some constant c > 0. Using ‖un‖BV (U) ≤ C and “Step 1”, this implies the
boundedness of (fn)n in W 1,1(U). Since the embedding W 1,1(U) ↪→ L1(U) is com-
pact, there exists some u ∈ L1(U) such that fn → u in L1(U) for a subsequence.
Then there also holds un → u in L1(U) along a subsequence since

‖u− un‖L1(U) ≤ ‖u− fn‖L1(U) + ‖fn − un‖L1(U) ≤ ‖u− fn‖L1(U) +
1

n
−→ 0.

It remains to show that u ∈ BV (U), but this follows from lemma 1.
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2.3 Approximation and Compactness

To conclude this section, we remark that by adaptations (and using Rellich-
Kondrachov), one can show the following stronger compactness result:

Remark 3. If U ⊂ RN is a bounded domain with Lipschitz regularity and (un)n a
bounded sequence in BV (U), then there exists a subsequence that converges strongly
in Lq(U) for all q ∈ [1, 1∗), where 1∗ := N

N−1
(:=∞ if N = 1).

16



3.1 Definition and main results

3 Fractional Sobolev Spaces

3.1 Definition and main results

As motivation let us firstly recall that the Sobolev space W s,p(I) for s ∈ N and
p ∈ [1,∞] is defined as the space of Lp(I) functions whose distributional derivatives
up to order s can be represented by a Lp(I) function, i.e.

W s,p(I) := {u ∈ Lp(I) : Dαu ∈ Lp(I) ∀α ≤ s} .

The space W s,p(I) endowed with the norm

‖u‖W s,p(I) =
∑
α≤s

‖Dαu‖Lp(I),

is a Banach space. We would like to allow the derivative-index s also to lie in R+\N.
So we want to define for s ∈ R+\N a Banach space W s,p which is intermediate
between the integer derivative-index Sobolev spaces W bsc,p and W bsc+1,p whose norm
also measures fractional-order derivatives. The way this is done is by a modified
Hölder condition.

Definition 6 (Gagliardo seminorm). Let s ∈ (0, 1) and p ∈ [1,∞). We define for
u ∈ Lp(I) the Gagliardo seminorm by

|u|W s,p(I) :=

∫
I

∫
I

|u(x)− u(y)|p

|x− y|1+sp
dx dy

 1
p

.

Definition 7 (Fractional Sobolev spaces). Let s ∈ R+\N and p ∈ [1,∞). We define
the Fractional Sobolev space with derivative-index s and integrability-index p to be

W s,p(I) :=
{
u ∈ W bsc,p(I) : |Dbscu|W s−bsc,p(I) <∞

}
which becomes a Banach space endowed with the norm

‖u‖W s,p(I) := ‖u‖W bsc,p(I) + |Dbscu|W s−bsc,p(I).

Remark 4. In this essay we will mostly consider Fractional Sobolev spaces with
derivative-index s ∈ (0, 1), for which the definition reads as follows:

W s,p(I) :=
{
u ∈ Lp(I) : |u|W s,p(I) <∞

}
, ‖u‖W s,p(I) := ‖u‖Lp(I) + |u|W s,p(I).

One of the most important tools in Sobolev space theory are the Sobolev embed-
dings, so it is just natural to ask whether we also have them for fractional Sobolev
spaces. Fortunately the answer to this question is positive. We will just state em-
beddings into Lq spaces and into Sobolev spaces, but it should be mentioned that
there hold also embeddings into Cα spaces.

17



3.1 Definition and main results

Before we state the theorem, we want to think about what we would expect by
simply adapting the conditions from the Sobolev embedding theorems for integer
derivative-order Sobolev spaces.
We denote the Sobolev number corresponding to the Sobolev space W s,p by γs,p.
Recall that in one dimension

γs,p = s− 1

p
.

For a non-positive Sobolev number, i.e. in the case sp ≤ 1, we would expect

W s,p ↪→ Lq

for some q ≥ 1 if

γs,p ≥ γ0,q,

which is true without further restriction if sp = 1, and for q ≤ p
1−sp if sp < 1.

The following theorem confirms that our expectations are correct. It includes also
an important compactness statement for q strictly less than the “fractional critical
exponent” p∗ = p

1−sp .

Theorem 5 (Sobolev Embedding into Lq spaces). Let s ∈ (0, 1) and p ∈ [1,∞)
such that sp ≤ 1.

(i) If sp < 1, there exists a constant C = C(s, p) > 0 such that there holds

‖u‖Lq(I) ≤ C(s, p)‖u‖W s,p(I) ∀u ∈ W s,p(I)

for all q ∈ [1, p∗], where

p∗ =
p

1− sp

is the fractional critical exponent.
Moreover, the embedding W s,p(I) ↪→ Lq(I) is compact for all 1 ≤ q < p∗.

(ii) If sp = 1, then there holds the continuous embedding

W s,p(I) ↪→ Lq(I)

for all 1 ≤ q <∞.

Proof. We refer to [DPV12].

Another powerful Sobolev embedding theorem is about embeddings into other
Sobolev spaces

W s,p ↪→ W r,q

18



3.1 Definition and main results

with higher integrability index q ≥ p. By adapting the classical theory we would
expect the condition

γs,p ≥ γr,q.

Since q ≥ p, this implies r ≤ s, which means that we cannot gain both higher
integrability and higher differentiability. Our expectations are again correct as the
following theorem shows:

Theorem 6 (Sobolev Embedding into W r,q spaces). Let s, r ∈ (0, 1) and p, q ∈
[1,∞) such that q ≥ p, r ≤ s and

s− 1

p
≥ r − 1

q
.

Then there holds W s,p(I) ⊂ W r,q(I) and

|u|W r,q(I) ≤
36

rs
|u|W s,p(I) ∀u ∈ W s,p(I).

Proof. We refer to [Sim90].

Apart from the embedding theorems, there are also some nice other properties.
By identification of fractional Sobolev spaces with Besov spaces, one can show that
the fractional W s,p spaces are reflexive for p > 1, see e.g. [Tri10].

Theorem 7 (Reflexivity). The fractional Sobolev spaces W s,p are reflexive for s ∈
R+\N, p ∈ (1,∞).

In many cases, we will have a bound on the Gagliardo seminorm |·|W s,p(I) for some
sequence, but we would like to bound the full norm ‖·‖W s,p(I) such that we can make
use of the reflexivity to deduce the existence of a weakly convergent subsequence.
This can be done by using the following Poincaré inequality.

Theorem 8 (Poincaré inequality). Let s ∈ (0, 1) and p ∈ [1,∞) such that sp < 1.
Then there exists a constant C > 0 such that

‖u− (u)I‖pLp∗ (I)
≤ C

s(1− s)
(1− sp)p−1

|u|pW s,p(I),

where (u)I denotes the mean value of u over I, i.e. (u)I = 1
|I|

∫
u(x) dx.

Proof. We refer to [BBM02] where the result is proven for s ≥ 1
2

and to [MS02] for
the generalisation to s ∈ (0, 1).

Note that since I is bounded and since the fractional critical exponent satisfies
p∗ ≥ p whenever sp < 1, this theorem provides in particular an estimate for the
Lp(I)-norm.
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

In this section we will study the limit behaviour of the Gagliardo seminorm

|u|W s,1(I) =

∫
I

∫
I

|u(x)− u(y)|
|x− y|1+s

dx dy (0 < s < 1) (3.1)

as s↗ 1. Clearly, for non-constant smooth functions u ∈ C∞(I), there holds

lim
s↗1
|u|W s,1(I) =∞.

In particular the Gagliardo seminorm (3.1) does not converge to

|u|W 1,1(I) = ‖u′‖L1(I) =

∫
I

|u′(x)| dx

as s ↗ 1. However, as we shall see, there holds the following result, which goes
back to Brezis, Bourgain and Mironescu, and can be found in [BBM02].

Theorem 9. Let u ∈ BV (I). Then there holds

lim
s↗1

(1− s)|u|W s,1(I) = TV (u). (3.2)

As a first step, we take an arbitrary sequence (ρε)ε>0 of radial mollifiers, i.e. a
family of nonnegative radial functions ρε : R→ R+ which are absolutely integrable
and satisfy

•
∞∫
0

ρε(x)dx = 1,

• ∀δ > 0 : lim
ε→0

∞∫
δ

ρε(x)dx = 0.

We observe that it is enough to show that for all u ∈ BV (I) there holds∫
I

∫
I

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy −→ TV (u) as ε→ 0. (3.3)

Indeed, to see that (3.3) implies (3.2), let ε = 1− s and choose the specific sequence
(ρε)ε>0 defined by

ρε(x) =
ε

|x|1−ε
1[0,1](|x|).

An important role in the proof of (3.3) plays the limit behaviour of the integral over
the set {(x, y) ∈ I × I : x ≥ y}.
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

Proposition 1. Let u ∈ W 1,1(I). Then there holds

1∫
0

1∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy −→
1∫

0

|u′(y)|dy as ε→ 0. (3.4)

Proof. Step 1: We show that for any u ∈ W 1,1(I) and any nonnegative ρ ∈ L1(R):

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρ(x− y) dx dy . |u|W 1,1(I)‖ρ‖L1(R). (3.5)

By the Sobolev extension theorems, there exists an extension ū ∈ W 1,1(R) such that
ū = u in I, ū has compact support, and |ū|W 1,1(R) . |u|W 1,1(I). Note that for any
h ∈ R\{0} there holds

1

|h|

∫
R

|ū(x+ h)− ū(x)| dx ≤ |ū|W 1,1(R) . |u|W 1,1(I).

Hence, we find

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρ(x− y) dx dy ≤
∫
R

∫
R

|u(x)− u(y)|
|x− y|

ρ(x− y) dx dy

=

∫
R

 1

|h|

∫
R

|ū(x+ h)− ū(x)| dx

 ρ(h) dh

. |u|W 1,1(I)‖ρ‖L1(R),

the desired estimate (3.5).
Step 2: We claim that it suffices to show (3.4) for a dense subset of W 1,1(I), for

instance C2(Ī) .
Using the estimate (3.5), we obtain for any u, v ∈ W 1,1(I)∣∣∣∣∣∣

1∫
0

1∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy −
1∫

0

1∫
y

|v(x)− v(y)|
|x− y|

ρε(x− y) dx dy

∣∣∣∣∣∣
≤

1∫
0

1∫
y

||u(x)− u(y)| − |v(x)− v(y)||
|x− y|

ρε(x− y) dx dy

≤
1∫

0

1∫
y

|(u− v)(x)− (u− v)(y)|
|x− y|

ρε(x− y) dx dy

. |u− v|W 1,1(I),
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

which implies the claim.
Step 3: We show (3.4) for u ∈ C2(Ī). Let y ∈ I be arbitrary, but fixed.
By Taylor’s theorem we have∣∣∣∣ |u(x)− u(y)|

|x− y|
− |u′(y)|

∣∣∣∣ . |x− y| ∀x ∈ (y, y + δ)

for some 0 < δ ≤ 1− y. Hence, we find∣∣∣∣∣∣
y+δ∫
y

(
|u(x)− u(y)|
|x− y|

− |u′(y)|
)
ρε(x− y) dx

∣∣∣∣∣∣ .
y+δ∫
y

(x− y)ρε(x− y) dx

.

δ∫
0

hρε(h) dh

−→
ε→0

0,

which implies by the properties of the radial mollifiers:

lim
ε→0

1∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx = lim
ε→0

y+δ∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx

= |u′(y)| lim
ε→0

y+δ∫
y

ρε(x− y) dx

= |u′(y)| lim
ε→0

δ∫
0

ρε(h) dh

= |u′(y)|.

Since y was arbitrary, we have shown the pointwise convergence

1∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx −→
ε→0
|u′(y)| ∀y ∈ I. (3.6)

We note that u ∈ C2(Ī) is certainly Lipschitz. Therefore the convergence in L1(I)
follows from (3.6) and

1∫
y

|u(x)− u(y)|
|x− y|

ρε(x− y) dx ≤ Lip(u)

by the dominated convergence theorem. It follows (3.4), which is nothing else than
the convergence of the L1(I)-norms.
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

Remark 5. • Using the same procedure, we see that any ϕ ∈ C1
c (I) satisfies

lim
ε→0

1∫
y

ϕ(x)− ϕ(y)

x− y
ρε(x− y) dx = ϕ′(y) ∀y ∈ I, (3.7)

which will be crucial in proving (3.3).

• A similar computation as in “Step 1” for u ∈ BV (I) – using the estimate
1
|h|

∫
|u(x+ h)− u(x)|dx ≤ TV (u) – yields :

lim sup
ε→0

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy ≤ TV (u). (3.8)

Now we can prove theorem 9.

Proof of Theorem 9. As we have already seen, it suffices to show (3.3).
Step 1: We claim that for any u ∈ L1(R), ϕ ∈ C1

c (R) and any nonnegative radial

function ρ ∈ L1(R):∣∣∣∣∣∣
∫
R

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρ(x− y)dxdy

∣∣∣∣∣∣ ≤
∫
R

∫
R

|u(x)− u(y)|
|x− y|

|ϕ(x)|ρ(x− y)dxdy. (3.9)

Without loss of generality we can assume that ρ ≡ 0 in some ball around the origin.
(Otherwise replace ρ by ρn = 1{|x|> 1

n
}ρ and take n→∞)

Observe that since ρ is radial, there holds for all x ∈ R:

∞∫
x

ρ(x− y)

y − x
dy =

x∫
−∞

ρ(x− y)

x− y
dy. (3.10)

Therefore, by renaming integration variables, (3.10) and Fubini’s theorem, we find

∫
R

∞∫
y

u(y)ϕ(y)
ρ(x− y)

x− y
dx dy =

∫
R

∞∫
x

u(x)ϕ(x)
ρ(x− y)

y − x
dy dx

=

∫
R

x∫
−∞

u(x)ϕ(x)
ρ(x− y)

x− y
dy dx

=

∫
R

∞∫
y

u(x)ϕ(x)
ρ(x− y)

x− y
dx dy.
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

Hence, we have∣∣∣∣∣∣
∫
R

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρ(x− y)dxdy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R

∞∫
y

u(y)− u(x)

x− y
ϕ(x)ρ(x− y)dxdy

∣∣∣∣∣∣
≤
∫
R

∞∫
y

∣∣∣∣u(y)− u(x)

x− y
ϕ(x)ρ(x− y)

∣∣∣∣ dxdy
≤
∫
R

∫
R

|u(x)− u(y)|
|x− y|

|ϕ(x)|ρ(x− y)dxdy.

Step 2: Let now u ∈ BV (I) and let ϕ ∈ C1
c (I) with ‖ϕ‖∞ ≤ 1.

By extending u and ϕ with zero outside of I, we are in the situation of “Step 1”.
We write K := supp(ϕ) and r := dist(Ic, K). By using (3.9) we then obtain∣∣∣∣∣∣

1∫
0

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρε(x− y)dxdy

∣∣∣∣∣∣ ≤
∫
R

∫
K

|u(x)− u(y)|
|x− y|

|ϕ(x)|ρε(x− y)dxdy

≤
1∫

0

∫
K

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy +

∫
Ic

∫
K

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy

≤
1∫

0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy +
‖u‖L1(I)

r

∞∫
r

ρε(h) dh

≤
1∫

0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy + o(1). (ε→ 0)

We note that for fixed y ∈ I, using (3.7), there holds

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρε(x− y)dx = u(y)

1∫
y

ϕ(x)− ϕ(y)

x− y
ρε(x− y)dx+ o(1)

−→
ε→0

u(y)ϕ′(y).

Since ϕ ∈ C1
c (I), it is certainly Lipschitz and hence for ε sufficiently small:∣∣∣∣∣∣

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρε(x− y)dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣u(y)

1∫
y

ϕ(x)− ϕ(y)

x− y
ρε(x− y)dx

∣∣∣∣∣∣+ C

≤ Lip(ϕ)|u(y)|+ C.
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3.2 Limit behaviour of the Gagliardo seminorm as s↗ 1

Since u ∈ BV (I), the right-hand side (as a function of y ∈ I) is absolutely integrable
over I and we can apply the dominated convergence theorem, which yields

lim
ε→0

1∫
0

∞∫
y

u(y)
ϕ(x)− ϕ(y)

x− y
ρε(x− y) dx dy =

1∫
0

u(y)ϕ′(y) dy.

By taking the limit inferior in the previous calculation we find∣∣∣∣∣∣
1∫

0

u(y)ϕ′(y)dy

∣∣∣∣∣∣ ≤ lim inf
ε→0

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy. (3.11)

The relation (3.11) holds for all ϕ ∈ C1
c (I) with ‖ϕ‖∞ ≤ 1, hence

TV (u) ≤ lim inf
ε→0

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy.

Together with (3.8), we obtain

lim
ε→0

1∫
0

1∫
0

|u(x)− u(y)|
|x− y|

ρε(x− y) dx dy = TV (u),

which is exactly (3.3), what we wanted to show.

Instead of working with some fixed u, one could also consider the case of a se-
quence. Bourgain, Brezis and Mironescu showed a strong compactness result by
using a variant of the Riesz-Fréchet-Kolmogorov theorem, see [BBM02, Theorem 4].
For our purposes, the following special case is sufficient for this essay.

Theorem 10 (Case of a sequence, Compactness). Let (sn)n ⊂ (0, 1) be a sequence
with sn ↗ 1 as n→∞. Further, let (un)n ⊂ L1(I) satisfy

(i) (un)I = 0 for all n ∈ N, and

(ii) (1− sn)|un|W sn,1(I) ≤ C uniformly in n.

Then (un)n is relatively compact in L1(I), and there exists a function u ∈ BV (I)
such that

un −→
n→∞

u in L1(I)

up to a subsequence.

Proof. We refer to [BBM02, Theorem 4].
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4.1 Definition of the space

4 Fractional ICTV Spaces

4.1 Definition of the space

Firstly, let us recall the definition of the ICTV k+1
α seminorm for k ∈ N.

Throughout this section we will make use of the notation |u′|Mb(I) ≡ TV (u). This
becomes particularly handy when for instance some v ∈ L1(I) is the distributional
derivative of a function ṽ ∈ BV (I) such that we can write |v|Mb(I) ≡ TV (ṽ).

Definition 8 (Integer-order ICTV seminorm). Let u ∈ BV (I). Then we define for
k ∈ N and α = (α0, . . . , αk) ∈ Rk+1

+ the integer ICTV seminorm/ ICTV regulariser
of order k + 1 and weight α on I by

|u|ICTV k+1
α (I) := inf

vl∈BV (I)
∀0≤l≤k−1

{
α0|u′ − v0|Mb(I) +

k−2∑
i=0

αi+1|v′i − vi+1|Mb(I) + αk|v′k−1|Mb(I)

}
.

For k = 1 the above definition reads

|u|ICTV 2
α (I) := inf

v0∈BV (I)

{
α0|u′ − v0|Mb(I) + α1|v′0|Mb(I)

}
. (4.1)

Note that in case of the ICTV 2
α regularisation, the choice of a very large α1 in

(4.1) will result in a TV-similar regularisation.
We will now define the fractional-order ICTV space via defining a suitable semi-
norm. We want to define the seminorm in such a way that it is intermediate between
the surrounding integer-order ICTV seminorms. As we shall see, the following def-
inition works.

Definition 9 (Fractional-order ICTV seminorm). Let u ∈ L1(I) and let s ∈ (0, 1).

(i) For k = 1 and α = (α0, α1) ∈ R2
+, the fractional ICTV seminorm/ ICTV

regulariser of order 1 + s and weight α on I is defined by

|u|ICTV 1+s
α (I) := inf

v0∈W s,1+s(1−s)(I),
(v0)I=0

{
α0|u′ − sv0|Mb(I) + α1s(1− s)|v0|W s,1+s(1−s)(I)

}
.

(ii) For k ∈ N>1 and α = (α0, . . . , αk) ∈ Rk+1
+ , the fractional ICTV seminorm/

ICTV regulariser of order k + s and weight α on I is defined by

|u|ICTV k+s
α (I) :=

:= inf
v0,...,vk−2∈BV (I),

vk−1∈W s,1+s(1−s)(I),
(vk−1)I=0

{α0|u′ − v0|Mb(I) +
k−3∑
i=0

αi+1|v′i − vi+1|Mb(I)+

+ αk−1|v′k−2 − svk−1|Mb(I) + αks(1− s)|vk−1|W s,1+s(1−s)(I)}.

26



4.2 Limit behaviour of the fractional ICTV seminorm

Definition 10 (Fractional ICTV spaces). Let k ∈ N, s ∈ (0, 1) and α ∈ Rk+1
+ .

We denote by BCV k+s
α (I) the space of functions with finite fractional ICTV k+s

α (I)
seminorm,

BCV k+s
α (I) := {u ∈ L1(I) : |u|ICTV k+s

α (I) <∞},
and we define the norm on this space to be

‖u‖BCV k+s
α (I) := ‖u‖L1(I) + |u|ICTV k+s

α (I).

Moreover, we define

BCV k+s(I) := {u ∈ L1(I) | ∃ α ∈ Rk+1
+ : u ∈ BCV k+s

α (I)}.

4.2 Limit behaviour of the fractional ICTV seminorm

The first thing we have to check is whether our definition of the fractional ICTV
seminorm is compatible with the definition of the integer ICTV seminorm. For
simplicity we will just consider the case k = 1. We will state a general result in
the end which follows by simple adaptations. Our goal is to prove the following
theorem:

Theorem 11 (Limit behaviour of ICTV seminorm). Let u ∈ BV (I). Then there
holds, up to a subsequence:

(i) lim
s→0
|u|ICTV 1+s

α (I) = α0|u′|Mb(I)

(ii) lim inf
s→1

|u|ICTV 1+s
α (I) ≥ |u|ICTV 2

α (I).

As a first step we need to investigate the limit behaviour of the W s,1+s(1−s) semi-
norm as s→ 1. Fortunately, a part of the work of this was already done in section
3.2 in deriving the limit behaviour of the W s,1 seminorm. We will use theorem 9 to
show:

Lemma 2 (Limit behaviour of W s,1+s(1−s) seminorm). Let u ∈ BV (I) ∩ C∞(I).
Then there holds

lim sup
s→1

(1− s)|u|W s,1+s(1−s)(I) ≤ |u′|Mb(I). (4.2)

Proof. Since u ∈ BV (I) ∩ C∞(I) and s ∈ (0, 1), there holds the pointwise estimate

|u(x)− u(y)| ≤ |u′|Mb(I)|x− y| ≤ |u
′|Mb(I)|x− y|

s

for all x, y ∈ I. Hence, we have

|u|1+s(1−s)
W s,1+s(1−s)(I)

=

1∫
0

1∫
0

|u(x)− u(y)|1+s(1−s)

|x− y|1+s+s2(1−s) dx dy

≤ |u′|s(1−s)Mb(I)

1∫
0

|u(x)− u(y)|
|x− y|1+s

dx dy

= |u′|s(1−s)Mb(I)
|u|W s,1(I),
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4.2 Limit behaviour of the fractional ICTV seminorm

which implies the estimate

|u|W s,1+s(1−s)(I) ≤ |u′|
s(1−s)

1+s(1−s)
Mb(I)

|u|
1

1+s(1−s)
W s,1(I) . (4.3)

Without loss of generality, we may assume that |u′|Mb(I) 6= 0 (otherwise (4.2) is
trivial). Then there holds

|u′|
s(1−s)

1+s(1−s)
Mb(I)

−→
s→1

1

and we deduce from (4.3) and theorem 9 that

lim sup
s→1

(1− s)|u|W s,1+s(1−s)(I) ≤ lim sup
s→1

(1− s)|u|
1

1+s(1−s)
W s,1(I)

= lim sup
s→1

[(
(1− s)|u|W s,1(I)

) 1
1+s(1−s) · (1− s)

s(1−s)
1+s(1−s)

]
= lim sup

s→1

[
e

1
1+s(1−s) log((1−s)|u|Ws,1(I)) · e

s(1−s)
1+s(1−s) log(1−s)

]
= |u′|Mb(I) · 1 = |u′|Mb(I).

Besides the asymptotic behaviour of the W s,1+s(1−s) seminorm, we need some
compactness and lower semicontinuity result for W s,1+s(1−s) functions with mean
zero. This becomes very important once we consider minimal sequences for the
infimum in the definition of the fractional ICTV seminorm.

Lemma 3 (Compactness and Lower Semicontinuity). Let (sn)n ⊂ (0, 1) be a se-
quence with sn → s̄ for some 0 < s̄ ≤ 1. Further, let (vn)n ⊂ W sn,1+sn(1−sn)(I)
satisfy

(1) (vn)I = 0 for all n ∈ N, and

(2) sup
n∈N

sn(1− sn)|vn|W sn,1+sn(1−sn)(I) <∞.

Then there holds the following:

(i) If s̄ < 1, there exists a function v ∈ W s̄,1+s̄(1−s̄)(I) such that, up to a subse-
quence,

vn −→
n→∞

v in L1(I)

and

s̄(1− s̄)|v|W s̄,1+s̄(1−s̄)(I) ≤ lim inf
n→∞

sn(1− sn)|vn|W sn,1+sn(1−sn)(I). (4.4)
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4.2 Limit behaviour of the fractional ICTV seminorm

(ii) If s̄ = 1, there exists a function v ∈ BV (I) such that, up to a subsequence,

vn −→
n→∞

v in L1(I)

and

|v′|Mb(I) ≤ lim inf
n→∞

sn(1− sn)|vn|W sn,1+sn(1−sn)(I). (4.5)

Proof. For n ∈ N, we write pn := 1+sn(1−sn) and we set p̄ := 1+ s̄(1− s̄). Without
loss of generality – up to a subsequence – we may assume that the sequences (sn)n
and (pn)n converge monotonically. We obtain the following five cases:

• Case 1: s̄ ∈ [1
2
, 1), sn ↘ s̄ and pn ↗ p̄,

• Case 2: s̄ ∈ (0, 1
2
), sn ↘ s̄ and pn ↘ p̄,

• Case 3: s̄ ∈ (0, 1
2
], sn ↗ s̄ and pn ↗ p̄,

• Case 4: s̄ ∈ (1
2
, 1), sn ↗ s̄ and pn ↘ p̄,

• Case 5: s̄ = 1 , sn ↗ 1 and pn ↘ 1.

Case 1: In this case, there holds for all n that s̄ ≤ sn and p̄ ≥ pn. Since the function

f : (0, 1)→ R, f(x) := x− 1

1 + x(1− x)

is strictly increasing, we also have

sn −
1

pn
= f(sn) ≥ f(s̄) = s̄− 1

p̄
.

Hence, we can apply theorem 6 and obtain

|vn|W s̄,p̄(I) ≤
36

sns̄
|vn|W sn,pn (I) ≤ 144|vn|W sn,pn (I) ≤ C (4.6)

for all n, where we used sn ≥ s̄ ≥ 1
2

and assumption (2) in the last two steps.
Note that the constant on the right-hand side does not depend on n, i.e. we have
an uniform bound on the W s̄,p̄ seminorm. In order to use the reflexivity of W s̄,p̄

(theorem 7), we need a uniform bound on the full norm. This is done via the
Poincaré inequality (theorem 8):
We have s̄p̄ < 1, hence by theorem 8 and (4.6) there holds

‖vn‖
L

p̄
1−s̄p̄ (I)

. |vn|W s̄,p̄(I) ≤ C, (4.7)

where we used (vn)I = 0. Since p̄
1−s̄p̄ ≥ p̄ and I is bounded, (4.7) implies in particular

a control of the Lp̄-norm and hence

‖vn‖W s̄,p̄(I) = ‖vn‖Lp̄(I) + |vn|W s̄,p̄(I) . ‖vn‖
L

p̄
1−s̄p̄ (I)

+ |vn|W s̄,p̄(I) . |vn|W s̄,p̄(I) ≤ C.
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4.2 Limit behaviour of the fractional ICTV seminorm

By theorem 7, W s̄,p̄(I) is reflexive. Thus, there exists a function v ∈ W s̄,p̄(I) such
that, up to a subsequence,

vn ⇀ v weakly in W s̄,p̄(I).

Since s̄p̄ < 1 and p̄∗ ≥ p̄ > 1, the embedding W s̄,p̄(I) ↪→ L1(I) is compact by
theorem 5. Hence, up to a subsequence,

vn −→ v strongly in L1(I). (4.8)

The first part of the claim is proven and it remains to show (4.4). To this end, we
note that (4.8) implies, up to a subsequence, convergence almost everywhere such
that we find by Fatou’s lemma

|v|p̄W s̄,p̄(I) ≤ lim inf
n→∞

|vn|pnW sn,pn (I),

which implies the desired estimate (4.4).

Case 2: Our goal is again to apply theorem 6 in order to get boundedness of our
sequence (vn)n in some fractional Sobolev space W s,p. We show that there exists
some s ≤ s̄ and some p ≥ p̄ such that, for n sufficiently large, there holds

s ≤ sn, p ≥ pn (4.9)

and

sn −
1

pn
≥ s− 1

p
. (4.10)

We simply set s := s̄ − εs and p := p̄ + εp with some εs ∈ (0, s̄
2
) and εp > 0 to be

determined later. We observe that the condition (4.9) is satisfied, for n sufficiently
large, for any choice of εs and εp. Note that for all n, we have

sn −
1

pn
≥ s̄− 1

pn
≥ s̄− 1

p̄
= s+ εs −

1

p− εp
,

hence(
sn −

1

pn

)
−
(
s− 1

p

)
≥ εs +

1

p
− 1

p− εp
= εs −

εp
p(p− εp)

= εs −
εp

(p̄+ εp)p̄
.

For any choice of εs ∈ (0, s̄
2
) we can find some εp > 0 such that the right-hand side

is nonnegative, i.e. such that (4.10) holds.
Now we can conclude exactly as in the first case

|vn|W s,p(I) ≤ C
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4.2 Limit behaviour of the fractional ICTV seminorm

and hence by Poincaré, reflexivity of W s,p(I) and compactness of the embedding
W s,p(I) ↪→ L1(I), there exists a function vs,p ∈ W s,p(I) such that, up to subse-
quences,

vn ⇀ vs,p weakly in W s,p(I), and

vn → vs,p strongly in L1(I).

If we now let εs, εp → 0 and use a diagonal argument, we obtain the desired
v ∈ W s̄,p̄(I). As in the first case, by using Fatou’s lemma, we are then able to
deduce the estimate (4.4).

Case 3: We show that there exists some s ≤ s̄ such that, for n sufficiently large,
there holds s ≤ sn and

sn −
1

pn
≥ s− 1

p̄
.

We set s := s1 − ε for some ε ∈ (0, s1
2

) fixed. Then clearly s ≤ s1 ≤ sn ≤ s̄. Since
pn → p̄, we have for n sufficiently large

1

pn
− 1

p̄
≤ ε,

hence

sn −
1

pn
≥ s1 −

1

pn
≥ s1 −

(
1

p̄
+ ε

)
= s− 1

p̄
.

Thus, we can apply theorem 6 and analogously to the previous cases, we find a
function v ∈ W s,p̄(I) such that, up to subsequences,

vn ⇀ v weakly in W s,p(I), and

vn → v strongly in L1(I).

By using Fatou’s lemma, we obtain (4.4), which also shows that v ∈ W s̄,p̄(I) since
the right hand side of (4.4) is finite by assumption (2).

Case 4: In this case, there holds for all n that s1 ≤ sn and p1 ≥ pn. Further, we
observe

sn −
1

pn
= f(sn) ≥ f(s1) = s1 −

1

p1

,

where we used that f is strictly increasing on (0, 1). So we can apply theorem 6
and proceed as previously.

Case 5: By assumption (2), there holds

(1− sn)|vn|W sn,1(I) ≤ C

uniformly in n. Observe, that we are in the situation of theorem 10, which shows
the first part of the claim. Regarding the estimate (4.5), we refer to [BBM02].
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4.2 Limit behaviour of the fractional ICTV seminorm

Now we will use both the asymptotic behaviour of the W s,1+s(1−s) norm from
lemma 2, and the compactness and lower semicontinuity result from lemma 3, in
order to prove theorem 11.

Proof of Theorem 11. (i) We note that by definition of |u|ICTV 1+s
α (I): (take v0 = 0)

|u|ICTV 1+s
α (I) ≤ α0|u′|Mb(I) (4.11)

for all s ∈ (0, 1). Hence, there holds

lim sup
s→0

|u|ICTV 1+s
α (I) ≤ α0|u′|Mb(I). (4.12)

By definition of the fractional ICTV seminorm, we find for each 0 < s < 1 some
function vs ∈ W s,1+s(1−s)(I) with (vs)I = 0 and

α0|u′ − svs|Mb(I) + α1s(1− s)|vs|W s,1+s(1−s)(I) ≤ |u|ICTV 1+s
α (I) + s. (4.13)

We write p := 1 + s(1 − s) and observe that sp < 1. Thus, we can use theorem 8,
the Poincaré inequality, to obtain

‖vs‖L1(I) . ‖vs‖
L

p
1−sp (I)

.

(
s(1− s)

(1− sp)p−1

) 1
p

|vs|W s,p(I). (4.14)

By (4.13) and (4.11), there holds the uniform estimate (in s)

s(1− s)|vs|W s,p(I) ≤ C

for some C > 0, such that we deduce from (4.14),

‖svs‖L1(I) .
1

1− s

(
s(1− s)

(1− sp)p−1

) 1
p

−→
s→0

0,

i.e.

svs −→
s→0

0 in L1(I).

We note that we have by (4.13),

α0|u′ − svs|Mb(I) ≤ |u|ICTV 1+s
α (I) + s,

such that taking the limit inferior yields

α0|u′|Mb(I) ≤ lim inf
s→0

|u|ICTV 1+s
α (I). (4.15)

Combining (4.12) and (4.15) results in

lim sup
s→0

|u|ICTV 1+s
α (I) ≤ α0|u′|Mb(I) ≤ lim inf

s→0
|u|ICTV 1+s

α (I),
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4.2 Limit behaviour of the fractional ICTV seminorm

which implies

lim
s→0
|u|ICTV 1+s

α (I) = α0|u′|Mb(I).

(ii) Let v ∈ BV (I) be an extremal function for |u|ICTV 2
α (I), i.e. such that

α0|u′ − v|Mb(I) + α1|v′|Mb(I) = |u|ICTV 2
α (I).

By the approximation theorem (theorem 3), there exists a sequence of smooth func-
tions (vn) ⊂ BV (I) ∩ C∞(I) such that

vn −→ v in L1 , and

|v′n|Mb(I) −→ |v
′|Mb(I).

By definition of the fractional ICTV seminorm, we have

|u|ICTV 1+s
α (I) ≤ α0|u′ − s (vn − (vn)I)|Mb(I) + α1s(1− s)|vn − (vn)I |W s,1+s(1−s)(I)

= α0|u′ − svn + s(vn)I |Mb(I) + α1s(1− s)|vn|W s,1+s(1−s)(I).

Using lemma 2, we obtain

lim sup
s→1

|u|ICTV 1+s
α (I) ≤ α0|u′ − vn|Mb(I) + α0|(vn)I |+ α1|v′n|Mb(I)

and passing to the limit n→∞, we find

lim sup
s→1

|u|ICTV 1+s
α (I) ≤ α0|u′ − v|Mb(I) + α0|(v)I |+ α1|v′|Mb(I)

= |u|ICTV 2
α (I) + α0|(v)I |.

(4.16)

By definition of the fractional ICTV seminorm, we find for each 0 < s < 1 some
function vs ∈ W s,1+s(1−s)(I) with (vs)I = 0 and

α0|u′ − svs|Mb(I) + α1s(1− s)|vs|W s,1+s(1−s)(I) ≤ |u|ICTV 1+s
α (I) + (1− s). (4.17)

With regard to (4.16), the conditions (1) and (2) of lemma 3 are satisfied. By lemma
3, we find a function v ∈ BV (I) such that, up to a subsequence,

vs −→
s→1

v in L1(I),

and

|v′|Mb(I) ≤ lim inf
s→1

s(1− s)|vs|W s,1+s(1−s)(I).

Taking the limit inferior in (4.17), we obtain

α0|u′ − v|Mb(I) + α1|v′|Mb(I) ≤ lim inf
s→1

|u|ICTV 1+s
α (I),

which implies

|u|ICTV 2
α (I) ≤ lim inf

s→1
|u|ICTV 1+s

α (I)

by definition of the ICTV 2
α seminorm.
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4.3 Extremal functions and seminorm equivalences

By adaptations of the arguments used in the proof, we obtain for k ∈ N>1 the
following result:

Remark 6. Let k ∈ N>1 and let u ∈ BV (I). Then there holds, up to a subsequence:

(i) lim
s→0
|u|ICTV k+s

(α0,...,αk)
(I) = |u|ICTV k

(α0,...,αk−1)
(I)

(ii) lim inf
s→1

|u|ICTV k+s
α (I) ≥ |u|ICTV k+1

α (I).

4.3 Extremal functions and seminorm equivalences

4.3.1 Extremal functions for the fractional ICTV seminorm

In the first part of this subsection, we deal with the existence of extremal functions
for the fractional ICTV seminorms from definition 9. For simplicity, we just con-
sider the case k = 1. The general case follows then by simple adaptations.
In the case k = 1, we want to solve for given u ∈ BCV 1+s

α (I) the following con-
strained minimisation problem:

(Pu)

{
min α0|u′ − sv|Mb(I) + α1s(1− s)|v|W s,1+s(1−s)(I)

s.t. v ∈ W s,1+s(1−s)(I), (v)I = 0
.

Before we prove the existence of a solution to the optimisation problem (Pu), we
first note that every BCV 1+s

α (I)-function is of bounded variation.

Remark 7. Let u ∈ BCV 1+s
α (I) for some α ∈ R2

+ and s ∈ (0, 1). Then u ∈ BV (I).

Proof. By definition of the fractional ICTV seminorm, we can find a function v ∈
W s,1+s(1−s)(I) with (v)I = 0 such that

α0|u′ − sv|Mb(I) + α1s(1− s)|v|W s,1+s(1−s)(I) ≤ |u|ICTV 1+s
α (I) + 1.

We note that s(1 + s(1− s)) < 1, hence by theorem 5

‖v‖L1(I) ≤ C‖v‖W s,1+s(1−s)(I)

for some C > 0, and we obtain

|u′|Mb(I) ≤ |u
′ − sv|Mb(I) + s‖v‖L1(I)

≤ |u′ − sv|Mb(I) + Cs‖v‖W s,1+s(1−s)(I)

=
1

α0

(
α0|u′ − sv|Mb(I) + α1s(1− s)|v|W s,1+s(1−s)(I)

)
+

(
Cs− α1

α0

s(1− s)
)
|v|W s,1+s(1−s)(I) + Cs‖v‖L1+s(1−s)(I)

≤
|u|ICTV 1+s

α (I) + 1

α0

+ s

(
C − α1

α0

(1− s)
)
|v|W s,1+s(1−s)(I) + Cs‖v‖L1+s(1−s)(I)

<∞.
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4.3 Extremal functions and seminorm equivalences

Now we are going to prove, that for any function u ∈ BCV 1+s
α (I), we can find an

extremal function for the fractional ICTV seminorm. In other words, we prove the
existence of a solution to (Pu).

Theorem 12 (Existence of extremal functions). Let u ∈ BCV 1+s
α (I) for some

α ∈ R2
+ and s ∈ (0, 1). Then there exists a solution v∗ to the optimisation problem

(Pu), i.e. there exists v∗ ∈ W s,1+s(1−s)(I) with (v∗)I = 0, such that

P v∗

u := α0|u′ − sv∗|Mb(I) + α1s(1− s)|v∗|W s,1+s(1−s)(I) = |u|ICTV 1+s
α (I).

Proof. By definition of the expression |u|ICTV 1+s
α (I), there exists a minimising se-

quence (vn)n ⊂ W s,1+s(1−s)(I) with (vn)I = 0 for all n ∈ N and

α0|u′ − svn|Mb(I) + α1s(1− s)|vn|W s,1+s(1−s)(I) −→
n→∞

|u|ICTV 1+s
α (I). (4.18)

In particular, since |u|ICTV 1+s
α (I) <∞ and the left-hand side is convergent, we have

sup
n∈N
|vn|W s,1+s(1−s)(I) ≤ c

for some c > 0. We note that s(1 + s(1− s)) < 1, hence theorem 8 yields

sup
n∈N
‖vn‖W s,1+s(1−s)(I) ≤ C,

where we used the fact that (vn)I = 0 for all n ∈ N. By reflexivity of W s,1+s(1−s)(I)
(theorem 7), we find a function v∗ ∈ W s,1+s(1−s)(I) such that, up to a subsequence,

vn ⇀ v∗ weakly in W s,1+s(1−s)(I).

By theorem 5, the embedding W s,1+s(1−s)(I) ↪→ L1(I) is compact and hence, up to
a subsequence,

vn −→ v∗ strongly in L1(I). (4.19)

By lemma 1, the total variation is lower semicontinuous with respect to the L1-
convergence, and as we have seen earlier, the W s,1+s(1−s) seminorm is weakly lower
semicontinuous. Thus, we conclude that

P v∗

u ≤ lim inf
n→∞

α0|u′ − svn|Mb(I) + lim inf
n→∞

α1s(1− s)|vn|W s,1+s(1−s)(I)

≤ lim inf
n→∞

[
α0|u′ − svn|Mb(I) + α1s(1− s)|vn|W s,1+s(1−s)(I)

]
= |u|ICTV 1+s

α (I),

where we used (4.18) in the last step. We note, that there also holds

P v∗

u ≥ |u|ICTV 1+s
α (I),

which follows from the definition of |u|ICTV 1+s
α (I) and the fact that v∗ ∈ W s,1+s(1−s)(I)

satisfies

(v∗)I = lim
n→∞

(vn)I = 0

by (4.19) and since (vn)I = 0 for all n ∈ N.
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4.3 Extremal functions and seminorm equivalences

By adaptations of the arguments used in the proof, we obtain for k ∈ N>1 the
following result:

Remark 8. Let u ∈ BCV k+s
α (I) with some k ∈ N>1, α ∈ Rk+1

+ and s ∈ (0, 1). Then
the infimum in definition 9 is attained.

4.3.2 Seminorm equivalences

We want to investigate the relationship between the fractional ICTV seminorms
and the total variation. As we shall see, they are equivalent. For simplicity, we will
again consider the case k = 1.

Proposition 2. Let s ∈ (0, 1). Then there holds

BV (I) ∼ BCV 1+s(I).

Proof. Regarding (4.11), it is enough to show that there exists an α ∈ R2
+ such that

|u′|Mb(I) . |u|ICTV 1+s
α (I). (4.20)

Let v ∈ W s,1+s(1−s)(I) with (v)I = 0 be arbitrary. We use theorem 5 and theorem 8
to deduce

|u′|Mb(I) ≤ |u
′ − sv|Mb(I) + s‖v‖L1(I)

≤ |u′ − sv|Mb(I) + Cs|v|W s,1+s(1−s)(I)

for some constant C > 0. Hence, by arbitrariness of v, there holds (4.20) with
α := (1, C

1−s).

By adaptations of the proof, we obtain for k ∈ N the following result:

Remark 9. Let k ∈ N and let s ∈ (0, 1). Then there holds

BV (I) ∼ BCV k(I) ∼ BCV k+s(I) ∼ BCV k+1(I). (4.21)

The last equivalence relation in (4.21) can be shown by [BV11, Theorem 3.3].
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5 Analysis of the Bilevel Learning Scheme

5.1 The Bilevel Learning Scheme

We want to analyse the following bilevel learning scheme, which is looking for the
optimal parameter vector α ∈ Rk+1

+ and the optimal order r ≥ 1 of the ICTV
regulariser at the same time:

(B)


(α∗, r∗) := arg min

(α,r)

{
‖uα,r − uc‖2

L2(I) : (α, r) ∈ [a,A]brc+1 × [1, R]
}

uα,r := arg min
u∈BCV rα (I)

(
‖u− u0‖2

L2(I) + |u|ICTV rα (I)

) .

In this scheme, u0 ∈ BV (I) represents the noisy image and uc ∈ BV (I) a clean
(free of noise) test picture. Moreover, the numbers a,A > 0 and R > 1 are fixed.
We note that the integer ICTV seminorm of order r = 1 is not defined yet, however
it is natural to set

|u|ICTV 1
α0

(I) := α0|u′|Mb(I).

The bilevel learning scheme (B) then results in an optimal reconstructed image
uα∗,r∗ . Our aim is to show that (B) admits a unique solution and hence our recon-
struction is well-defined.
As we shall see, the restriction of the range of possible α and r to lie within the box

(α, r) ∈ [a,A]brc+1 × [1, R], (5.1)

ensures that uα∗,r∗ belongs to the class BCV r∗
α∗ (I). Further, (5.1) is necessary in

order to realise the bilevel scheme (B) numerically. For a numerical algorithm, we
refer to the appendix and [DL16], where the authors propose a first order primal-
dual algorithm which relies on non-smooth convex optimisation and Besov space
techniques.

5.2 Existence and Uniqueness of Solutions

The following lemma will be essential in proving the existence of a solution to (B),
since it provides a compactness and lower semicontinuity result.

Lemma 4. Let k ∈ N, (sn)n ⊂ (0, 1) and let (αn)n ⊂ Rk+1
+ be a sequence of vectors

αn = (αn0 , . . . α
n
k) that satisfy

a < inf
n∈N

i∈{0,...,k}

αni ≤ sup
n∈N

i∈{0,...,k}

αni < A (5.2)

for some a,A > 0. Further, let (un)n ⊂ L1(I) with un ∈ BCV k+s
αn (I) for all n ∈ N

and

sup
n∈N
‖un‖BCV k+sn

αn (I) <∞. (5.3)
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Then there exists 0 ≤ s̄ ≤ 1, α = (α0, . . . , αk) ∈ Rk+1 and a function u ∈ BCV k+s̄
α (I)

(u ∈ BV (I) respectively if k = 1 and s̄ = 0) such that there holds, up to a subse-
quence, sn → s̄, αn → α and

un
∗
⇀ u in BV (I).

Moreover, there holds

lim inf
n→∞

|un|ICTV k+sn
αn (I) ≥


|u|ICTV k+s̄

α (I) , if s̄ > 0.

α0|u′|Mb(I) , if s̄ = 0, k = 1.

|u|ICTV k
(α0,...,αk−1)

(I) , if s̄ = 0, k > 1.

Proof. (Just for k = 1)
By the boundedness assumption (5.2) and the Bolzano-Weierstraß theorem, there
holds, up to a subsequence,

αn = (αn0 , α
n
1 ) −→ (α0, α1),

sn −→ s̄,

for some α := (α0, α1) ∈ (a,A)× (a,A) and s̄ ∈ [0, 1].
Since un ∈ BCV 1+s

αn (I) for all n, by using theorem 12, we can find functions vn ∈
W sn,1+sn(1−sn)(I) with (vn)I = 0 that satisfy

αn0 |u′n − snvn|Mb(I) + αn1sn(1− sn)|vn|W sn,1+sn(1−sn)(I) = |un|ICTV 1+sn
αn (I). (5.4)

We write pn := 1+sn(1−sn) and observe that snpn < 1 for all n. Hence, by theorem
8, we have

‖vn‖L1(I) . ‖vn‖
L

pn
1−snpn (I)

.

(
sn(1− sn)

(1− snpn)pn−1

) 1
pn

|vn|W sn,pn (I)

= [sn(1− sn)(1− snpn)]
1−pn
pn · sn(1− sn)|vn|W sn,pn (I).

It is easy to see that the first term in the last line is uniformly bounded in n, i.e.
we obtain

‖vn‖L1(I) . ‖vn‖
L

pn
1−snpn (I)

. sn(1− sn)|vn|W sn,pn (I), (5.5)

and we find (using sn < 1)

|u′n|Mb(I) ≤ |u
′
n − snvn|Mb(I) + sn‖vn‖L1(I)

. |u′n − snvn|Mb(I) + sn(1− sn)|vn|W sn,pn (I).
(5.6)
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By the boundedness assumption of the sequence (αn)n and (5.3), we deduce from
(5.6) that

sup
n∈N
‖un‖BV (I) . sup

n∈N
‖un‖BCV 1+sn

αn (I) <∞,

i.e. the sequence (un)n is uniformly bounded in BV (I). Hence, there exists a
function u ∈ BV (I) such that, up to a subsequence, there holds

un
∗
⇀ u in BV (I).

We note that since snpn < 1 and by (5.5), we have

‖vn‖Lpn (I) . ‖vn‖
L

pn
1−snpn (I)

. sn(1− sn)|vn|W sn,pn (I),

hence (note sn < 1)

sn(1− sn)‖vn‖W sn,pn (I) ≤ ‖vn‖Lpn (I) + sn(1− sn)|vn|W sn,pn (I)

. sn(1− sn)|vn|W sn,pn (I)

. ‖un‖BCV 1+sn
αn (I),

where we used the boundedness assumption of the sequence (αn)n in the last step.
In view of (5.3), this implies

sup
n∈N

sn(1− sn)‖vn‖W sn,pn (I) <∞. (5.7)

We distinguish the cases s̄ = 0, s̄ ∈ (0, 1) and s̄ = 1:
Case s̄ = 0: As in the proof of theorem 11, we obtain from (5.7) that, up to a
subsequence,

snvn −→ 0 in L1(I).

By using (5.4), we conclude

lim inf
n→∞

|un|ICTV 1+sn
αn (I) = lim inf

n→∞

[
αn0 |u′n − snvn|Mb(I) + αn1sn(1− sn)|vn|W sn,pn (I)

]
≥ lim inf

n→∞
αn0 |u′n − snvn|Mb(I)

≥ α0|u′|Mb(I).

Case s̄ ∈ (0, 1): We note that we are in the situation of lemma 3. Hence, there exists

a function v ∈ W s̄,1+s̄(1−s̄)(I) such that, up to a subsequence,

vn −→
n→∞

v in L1(I) (5.8)

and

s̄(1− s̄)|v|W s̄,1+s̄(1−s̄)(I) ≤ lim inf
n→∞

sn(1− sn)|vn|W sn,pn (I).
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By using (5.4), we conclude

lim inf
n→∞

|un|ICTV 1+sn
αn (I) = lim inf

n→∞

[
αn0 |u′n − snvn|Mb(I) + αn1sn(1− sn)|vn|W sn,pn (I)

]
≥ lim inf

n→∞
αn0 |u′n − snvn|Mb(I) + lim inf

n→∞
αn1sn(1− sn)|vn|W sn,pn (I)

≥ α0|u′ − s̄v|Mb(I) + α1s̄(1− s̄)|v|W s̄,1+s̄(1−s̄)(I)

≥ |u|ICTV 1+s̄
α (I),

where we used in the last step the definition of the fractional ICTV seminorm
together with the fact (v)I = 0 (follows from (5.8) and (vn)I = 0).
Case s̄ = 1: In this case, by lemma 3, there exists a function v ∈ BV (I) such that,
up to a subsequence,

vn −→
n→∞

v in L1(I)

and

|v′|Mb(I) ≤ lim inf
n→∞

sn(1− sn)|vn|W sn,1+sn(1−sn)(I).

Similar to the previous case, we obtain

lim inf
n→∞

|un|ICTV 1+sn
αn (I) ≥ α0|u′ − v|Mb(I) + α1|v′|Mb(I) ≥ |u|ICTV 2

α (I).

Now we are able to prove the existence and uniqueness of solutions for our bilevel
learning scheme (B). The main work lies in proving the existence, whereas unique-
ness will easily follow from strict convexity.

Theorem 13 (Existence and Uniqueness for (B)). Let u0, uc ∈ BV (I) be given.
Then there exists a unique solution

(α∗, r∗) ∈ [a,A]br
∗c+1 × [1, R]

to (B) with the corresponding optimal reconstructed image

uα∗,r∗ ∈ BCV r∗

α∗ (I).

Proof. Step 1: We show that for each (α, r) ∈ [a,A]brc+1 × [1, R], there exists a
unique function uα,r ∈ BCV r

α (I) satisfying

‖uα,r − u0‖2
L2(I) + |uα,r|ICTV rα (I) = min

u∈BCV rα (I)

[
‖u− u0‖2

L2(I) + |u|ICTV rα (I)

]
. (5.9)

To this end, we first note that

inf
u∈BCV rα (I)

[
‖u− u0‖2

L2(I) + |u|ICTV rα (I)

]
=: γ ∈ [0,∞).
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Hence, by definition of γ, there exists a minimising sequence (un)n ⊂ BCV r
α (I) with

‖un − u0‖2
L2(I) + |un|ICTV rα (I) −→

n→∞
γ. (5.10)

In view of remark 9, the sequence (un)n is uniformly bounded in BV (I), hence we
find some uα,r ∈ BV (I) such that (up to a subsequence)

un
∗
⇀ uα,r in BV (I)

and by compactness

un → uα,r in L2(I).

We use lemma 4 (and the fact that integer order ICTV seminorms are lower semi-
continuous with respect to weak-star convergence in BV ) to conclude

‖uα,r − u0‖2
L2(I) + |uα,r|ICTV rα (I) ≤ lim inf

n→∞
‖un − u0‖2

L2(I) + lim inf
n→∞

|un|ICTV rα (I)

≤ lim inf
n→∞

[
‖un − u0‖2

L2(I) + |un|ICTV rα (I)

]
= γ,

where we used (5.10) in the last equality. Note that this shows in particular that
u ∈ BCV r

α (I) and hence (5.9) follows.
To show uniqueness, it is sufficient to show that the functional

J : BCV r
α (I)→ R, J(v) := ‖v − u0‖2

L2(I) + |v|ICTV rα (I)

is strictly convex. This is clearly true, since the squared L2-norm is strictly convex
and the ICTV seminorm is convex.
Step 2: We write

Γ := inf
{
‖uα,r − uc‖2

L2(I) : (α, r) ∈ [a,A]brc+1 × [1, R]
}

and note that Γ ∈ [0,∞). Hence, there exists a minimising sequence {(αn, rn)}n
with

(αn, rn) ∈ [a,A]brnc+1 × [1, R] (5.11)

for all n ∈ N and

‖uαn,rn − uc‖2
L2(I) −→

n→∞
Γ,

where uαn,rn ∈ BCV rn
αn (I) is the unique function from step 1 satisfying

‖uαn,rn − u0‖2
L2(I) + |uαn,rn|ICTV rnαn (I) = min

u∈BCV rnαn (I)

[
‖u− u0‖2

L2(I) + |u|ICTV rnαn (I)

]
.

(5.12)
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We observe that by (5.11) and the definition of the ICTV seminorms, (take all
vi = 0)

|u0|ICTV rnαn (I) . |u′0|Mb(I),

which implies u0 ∈ BCV rn
αn (I). Then, in view of (5.12), there holds

‖uαn,rn − u0‖2
L2(I) + |uαn,rn|ICTV rnαn (I) ≤ |u0|ICTV rnαn (I) . |u′0|Mb(I)

and we deduce

sup
n∈N
‖uαn,rn‖BCV rnαn (I) <∞.

By (5.11) and Bolzano-Weierstraß, there exist some r∗, k ∈ [1, R] such that, up to a
subsequence,

rn −→ r∗, brnc −→ k.

Clearly, for n sufficiently large, there holds αn ∈ [a,A]k+1 and

rn = k + sn,

where sn := rn − k → r∗ − k =: s̄ ∈ [0, 1]. Hence, we are in the situation of lemma
4 and we find α∗ ∈ [a,A]br

∗c+1 and a function uα∗,r∗ ∈ BCV r∗
α∗ (I) such that, up to a

subsequence,

uαn,rn
∗
⇀ uα∗,r∗ in BV (I)

and by compactness

uαn,rn → uα∗,r∗ in L2(I).

Thus, we can deduce

‖uα∗,r∗ − uc‖2
L2(I) ≤ lim

n→∞
‖uαn,rn − uc‖2

L2(I) = Γ.

It remains to show that the minimiser is unique, but this follows directly from the
strict convexity of the squared L2(I)-norm.
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6 Conclusion

Now that we have finished the mathematical analysis of the bilevel learning scheme
(B), we want to have a look back on what we have done in this essay. Further, we
will have a look at a simulation of the scheme and discuss open problems in the
end.

Review. Let us briefly remind ourselves of the cornerstones in this essay. After
having recalled the main results from the theory of the space BV in section 2
(approximation and compactness), we started studying fractional Sobolev spaces
in section 3. In the first part of section 3, we provided, apart from the definition
of the spaces, a very useful toolbox consisting of embedding theorems (including
compactness), a Poincaré inequality and a theorem stating reflexivity. We used
these tools throughout our analysis to find convergent subsequences. In the second
part of section 3, we studied the asymptotic behaviour of the Gagliardo seminorm
and proved our first big theorem (theorem 9) which built the basis for section 4.
In section 4, we investigated the asymptotic behaviour of the fractional ICTV
seminorms (theorem 11, remark 6). On our way to this result, we proved a very
useful compactness and lower semicontinuity result (lemma 3) which has been
used in the proof of lemma 4, which was crucial for establishing the existence of
a solution of (B). In the last part of section 4, we saw firstly, that for an ICTV
function there always exists an extremal function for the infimum in the definition
of the ICTV seminorm (theorem 12, remark 8) and secondly, that the fractional
ICTV seminorms are actually equivalent to the total variation (proposition 2,
remark 9).
Section 5 was then all about the proof of theorem 13, the existence and uniqueness
of a solution to (B). In the first step of the proof, we showed that minimising
sequences for the minimisation problem in the second level of the bilevel learning
scheme are bounded in BV such that we were able to use compactness in BV and
lemma 4, the key lemma in the proof, to deduce the existence of a solution. The
second step was then to show with a minimising sequence for the first level of the
scheme (B) at hand, that we are in the situation of lemma 4, which concludes the
proof. This shows that the main work was in the proof of lemma 4, which made
use of our results from sections 4.2 and 4.3.
Finally, deducing uniqueness of the solution was straightforward by using strict
convexity.

Staircasing effect. One motivation in using our bilevel learning scheme was to
reduce the staircasing effect which occurs in total variation based image reconstruc-
tion schemes. Figure 4 illustrates the signal denoising via (B) where the clean signal
includes a piecewise linear part. Apparently, the staircasing effect is attenuated and
we get a very satisfactory result.
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Figure 4: (taken from [DL16]) Denoising via the bilevel learning scheme (B) with
a = 0.001, A = 2.5 and R = 2.

Current and future works. The following problems are currently/can be taken
up for further research:

• Higher dimensions : A generalisation of the bilevel learning scheme (B) to the
two dimensional setting (analysis and numerics).
In the one dimensional setting we used the Gagliardo seminorm as a way to ex-
press fractional derivatives, which can be seen as a global definition (no point-
wise information). Another approach would be to use fractional derivatives
in the sense of Riemann-Liouville. The so-called left-sided Riemann-Liouville
derivative provides a definition of the fractional derivative pointwise almost
everywhere, see [CZ15].
Using this pointwise approach, in [CZ15] the function space BV s for s ∈ (0, 1)
is introduced. This space consists of L1 functions with s-bounded variation,
that is

TV s(u) := sup
φ∈C∞c (Ω)
‖φ‖∞≤1

∫
Ω

−u(x) divsφ(x) dx,

where Ω ⊂ R2 is the domain of the image u, and divs is the sum of the
Riemann-Liouville fractional derivatives of order s over all coordinate direc-
tions.
This approach could be used as starting point to construct a regulariser in two
dimensions similar to the fractional ICTV seminorms. The key challenge is
the lack of knowledge of the space BV s, i.e. whereas we were able to use all the
interpolation space tools and Sobolev space properties in the Gagliardo set-
ting, we basically start from scratch in two dimensions with this new starting
point.

• New regularisers : A further extension to fractional order ICTV seminorms.
The authors of [DL16] are currently investigating this point with the help of
quasiconvexity theory.
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• Denoising locally : Improving (B) by a spatially dependent learning method.
A trilevel learning scheme which improves (B) is suggested by P. Liu in [Liu16].
The idea of the scheme is as follows. Given a partition of the domain in cubes,
we find for each cube the optimal regularisation parameter separately and then
glue the corresponding reconstructed images together. The learning scheme
then finds the best such partition and results in the image corresponding to
this optimal partition.
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7.1 Notation

• I := (0, 1) ⊂ R.

• R+ := (0,∞) ⊂ R.

• X ′: Dual space of X.

• LN : Lebesgue-measure of dimension N .

• |u′|Mb(I): Total variation of u on I.

• 1Ω(x) :=

{
1 , x ∈ Ω

0 , x 6∈ Ω
: Characteristic function on the set Ω ⊂ RN .

• (u)Ω := 1
|Ω|

∫
Ω
u: Mean of u on Ω, where |Ω| is the Lebesgue-measure of Ω.

• (un), (un)n, (un)n∈N: Sequences with running index n.

• supp(u) := {x ∈ Ω : u(x) 6= 0}: Support of u : Ω→ R.

• dist(Ω1,Ω2): Distance of the sets Ω1,Ω2 ⊂ RN .

• Lip(u): Lipschitz constant of u.

• Dαu: The α-th derivative of u.

• o,O: Landau-symbols.

• bxc := max{m ∈ Z : m ≤ x}: Floor-function.

• . : Write A . B if there exists C > 0 s.t. A ≤ CB.
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7.2 Numerics

The following numerical method for solving the lower level problem in (B) is pre-
sented in [DL16]. It relies on the fact that we can identify fractional Sobolev spaces
with Besov spaces, see [Tri10]. Let us consider the case k = 1.
By definition of the fractional ICTV seminorms and using the minimax formulation
of Besov spaces presented in [GLM07], we find

min
u

[
1

2
‖u− u0‖2

L2(I) + |u|ICTV 1+s
α (I)

]
= min

u,v0

[
1

2
‖u− u0‖2

L2(I) + α0|u′ − sv0|Mb(I) + α1s(1− s)|v0|W s,1+s(1−s)(I)

]

= min
u,v0

max
ϕ,t

1

2
‖u− u0‖2

L2(I) + 〈u′ − sv0, ϕ〉 − χϕ,α0 + α1s(1− s)

∫
I

|Ks
t ∗ v0|s

′

 1
s′
 ,

where Ks
t denotes the operator from [GLM07, Section 3.4], s′ := 1 + s(1− s), and

χϕ,α0(x) :=

{
0 , if |ϕ(x)| ≤ α0

∞ , else

for x ∈ I. We observe that the reformulated minimax problem is actually a saddle-
point problem which fits into the framework of [CP11] and can be solved by a
first-order primal-dual algorithm.
The numerical solution of the bilevel problem for ICTV k is a matter of future
research. The case k = 2 has been investigated in [DSV17].
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