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Chapter 1

Drawing Inferences from Data:
Common Fallacies and Pitfalls

1.1 Introduction

Here are some remarks about statistics that I have been audience to:

• Statistics has never solved anything for me.

• Did you know you can use statistics to prove anything you want?

• In my entire life I have never needed to use a significance test.

What are the reasons for these attitudes? Should we try to convert these unbelievers?

There is no doubt that there are numerous examples where statistics is used wrongly.
Sometimes this is unintentional, and sometimes it is not. Other times, we see an anal-
ysis and come to a conclusion or make a decision. Later, it seems this decision was
wrong. This could have been due to an incorrect analysis, or due to our own misun-
derstanding of the analysis.

In this session, through the presentation of a few case studies and examples, I shall try
to highlight some things to watch out for, whether we are consuming or presenting an
analysis. Instead of specific rules to apply in different situations, you might conclude
that what you need most is patience, logic and an open mind.

1.2 Summary of Pitfalls

Before going through the examples and case studies, here is a summary of common
mistakes in statistical analyses. When we go through the examples, watch out for how
the investigators avoided (or committed) the following errors in their analyses. The
rough structure of this breakdown, and some of the examples noted here, come from
[8] and [9].
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1.2.1 Sources of Bias

Statistics allows us to make inferences about a large group (a population) based on
observations of a smaller subset of that group (a sample). It also allows us to make
comparisons between populations, and decide if observed differences between them
are real, and not simply due to random variation.

When we collect data to make such decisions, we must be careful about the following:

• The sample must be representative of the target population. One way to achieve
this is through randomisation.

• If we wish to apply statistical tests, the variables we measure must conform to
certain assumptions which underlie the statistical procedures.

– Several statistical tests assume that our observations are independent of
one another. This is the hardest assumption to check, and so we usually don’t
think too much about it!

• We must have a valid control group in order to make comparisons. Without this,
the primary goal of statistics, making comparisons, is nullified.

1.2.2 Errors in Methodology

Statistical methodology are varied, but the inductive logic behind testing is common
to all models. Here we highlight some common mistakes made when conducting
hypothesis tests, and conclusions from them.

• If we wish to perform a statistical hypothesis test, we need to collect data. How
much data to collect? Too little, and we might not detect a significant difference
(insufficient power) and too much, and we will find a difference that is statisti-
cally significant but not practically so. We should consider the power of our test
before we go ahead.

• In consulting sessions, I am routinely asked questions similar to this one:

When I perform a regression with 100 variables, none are significant,
but when I perform pairwise correlation with the response, I find 10
significant ones. I would like to report those significant correlations.

Increasing the number of hypothesis tests (multiple comparisons) that we apply
increases the number of false positive results we obtain.

• Related to this problem is the mistake of data-snooping, or formulating a hy-
pothesis test after observing the data. This increases the Type I error and greatly
reduces the reproducibility of the result.
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1.2.3 Misinterpretation of Results (intentional or otherwise)

In this category, I have included several issues pertaining to the presentation and re-
porting of results.

• Statistics show that more people die in hospital than at home. Also, there is a strong
association between dying and being in bed. These are nonsensical. In general, we
should not mistake correlation for causation, or even make the suggestion.

• Sometimes, we perform several analysis and only show the ones that strengthen
our case. This is very bad. The selective presentation of data is deceitful; unfor-
tunately the pressures of our time and the increasing number of analyses done
are making this more common. We must have integrity in our work and watch
out for this possibility when we study others’.

• Today, more and more statistics are being invented and presented. Here is one
such statistic, the symmetric Mean Absolute Percentage Error (sMAPE) in time
series analysis:

1
h

h

∑
t=1

200|yt− ŷt |
yt + ŷt

Although they can seem complicated, we should make an effort to understand
these metrics before we make a decision based on them.

• Lastly, we must be aware that a visual representation of the data can be influ-
ential. By manipulating the scale, or omitting outliers, a graph can appear to
strongly support a desired theory. Here is an example (from [21]) of the oppo-
site: a stunningly accurate record of data that led to a better understanding of
how cholera was spread, and kickstarted the field of epidemiology.
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1.3 Polio Vaccine Trial

In the 1950s, polio was a great concern for America. It hit young children the hardest
and left many of them crippled, including some who could only survive on a respi-
rator. Its inexplicable epidemic behaviour led the government to spare no effort to
eradicate it. In this section, we shall review how the government conducted a vast
experiment to determine the efficacy of a vaccine. Further details can be found in [13].

Here is some important information about polio and the trial:

• It is caused by a virus. There are 3 main types involved.

• Countries or communities where the hygiene level was highest were hardest hit
by the epidemics.

• Once an individual has been infected by the virus, he or she is immune to another
attack.

• In 1954, the government wished to test the use of a killed virus preparation to
inoculate people. This was known as the Salk vaccine.

• The desire was to show that the vaccine was at least 50% effective; the number
of subjects involved was more than a million.

1.3.1 Approach I

A first idea was to distribute the vaccine as widely as possible, through the schools,
and then check if the rate of reported polio was appreciably less in the next season
(year).
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Here’s one problem with that approach:

We need to consider the inherent variation
in polio incidence from year to year. We
have no control group in this approach!

Another problem with this loose approach is that it is difficult to diagnose the mild
cases of polio. A doctor might be influenced by his general feeling about how widespread
polio is in his or her community at that time.

1.3.2 Approach II

A second idea was to offer vaccination to all children in the second grade of partici-
pating schools, and to follow the polio experience not only in these children, but also
in the first and third grade children. The vaccinated children would constitute a treat-
ment group, and the first- and third- graders would make up the control group.

• Suppose you were a doctor, and a vaccinated second-grader came to see you
with mild fever. Would you be more inclined to diagnose him as having polio or
not?

• Is it fair to assume that the characteristics of the volunteer group is different from
those who do not volunteer?

• Is the issue of difficult diagnoses removed?

1.3.3 Approach III

• Children were randomly assigned to the polio vaccine or a placebo.

• Action was taken to eliminate any possible observer biases from administration
to diagnosis of polio by applying a double-blind protocol.

These are the results of the experiment:
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1.4 Measuring the Effects of Social Innovations

We have just seen that it in order to make a valid comparison, we need to have a
legitimate control group. What happens if we don’t? It is easy to be misled when
there appears to be no proper control. In such scenarios, we must be on the lookout
for the lack of a control group, and to find a proxy if we can.

1.4.1 Crackdown on Speeding

In the mid-1950s (see [4]) , the state of Connecticut instituted a state-wide crackdown
on speeding. To demonstrate the effectiveness of the program, a simple before-and-
after chart was presented, accompanied by the proud governor claiming that the pro-
gram was definitely worthwhile.
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Without any supporting context, it appears
to be a convincing argument.

There is a saving of 40 lives upon imple-
mentation of the crackdown!

With the larger context, the governor’s
claim appears almost certainly incorrect.

The drop in fatalities in 1956 might have
been part of a steady drop that was ongo-
ing.

There are several troubling issues with the official statement:

• There is no proper comparison or control group to assess the effect of the crack-
down.

• The selective presentation of the data amplifies the positive impact of the crack-
down.

Suppose we try to fix this, by testing the mean number of traffic fatalities before and
after the crackdown. To compare means, a commonly used procedure is the two sam-
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ple t-test. If we were to apply this, however, we would be completely wrong, because
one of the assumptions of this test is the independence of observations. We have a
time series of observations, and these are (almost by definition) not independent.

Consider the time series in the figure below, taken from [14].

If we were to extract one segment, compute its mean, and compare that to another seg-
ment after an intervention of sorts, we would be likely to get a false positive precisely
due to the autocorrelation among observations:

• If an elevation in one of the segments is elevated (or depressed), neighbouring
values will also be elevated (or depressed).

• Elements near to each other will be close to each other; the variance within
each segment will be under-estimated, leading to a larger test statistic than what
should be.

Before we proceed, here is another reason why the governor is being too optimistic
in his analysis. The number of fatalities in 1955 was an all-time high. The governor
felt he had little choice but to introduce a crackdown. However, there is a phenomena
referred to by statisticians as regression to the mean. You can read more about it in this
nontechnical article [3]. It basically contends that after an extreme point, subsequent
ones will be, on average, nearer the general trend. This is why we must avoid over-
fitting. Following this principle, even if there had been no intervention, traffic fatalities
in 1956 would probably have reduced.

1.4.2 Breathalyser Crackdown in Britain

About a decade later, the British government introduced a toughened stance on drink
driving (see [15] for full details). The testing was made more stringent and the pun-
ishment more severe. If we take a look at the effect on serious casualties on Friday and
Saturday nights, it is almost undeniable that this was a successful measure.
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This can be made even more apparent by introducing a comparison group. The ideal
control group is not available, but consider the number of casualties during hours that
the British pubs are not open:

Let us see if this approach works for the Connecticut crackdown. Instead of comparing
fatalities in a different hour, let us compare them to fatalities in nearby states, where
the crackdown was not applied.

1.4.3 Summary and Fixes

We have been discussing situations where there was no control group until after all
the data collection had been carried out. In these cases, we should try to be creative
and find similar populations. These can serve as the basis for comparison.

It is imperative that we decide on the evaluation criteria before the innovation is im-
plemented.

What other ways can be used to assess if the change is significant?
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1.5 The Choice of Control Group

In the previous cases, we encountered situations where the control group was not
present. Now let us study a case where it is not clear what the control group should
be, and where the choice of control group leads to different outcomes! For more details
on the following analyses, the reader is referred to [19].

1.5.1 Employment Discrimination

In the 1970s, the US government sued the Hazelwood school district for discriminat-
ing against African American (AA) teachers. The decisions went back and forth, but
statistics played a significant role in the arguments. Note that Hazelwood is a district
in St. Louis County, which includes the city of St. Louis.

(a) First, in the district court, the percentage of AA teachers in Hazelwood district was
compared to the percentage of AA students. Since they were roughly the same, the
decision ruled in favour of the Hazelwood school district.

(b) Next, the Court of Appeals ruled that the comparison with students was irrelevant
and reversed the decision.

(c) Then the case was tried in the Supreme Court.

(d) Here, the Court noted that

• the percentage of AA teachers in the school district was 3.7%.

• the percentage of AA teachers in the encompassing St. Louis County (exclud-
ing the city of St. Louis) was 5.7%.

• the percentage of AA teachers in the encompassing St. Louis County (includ-
ing the city of St. Louis) was 15.5%.

The comparison of 3.7% to 5.7% was not significant, but the comparison of 3.7% to
15.5% was.

It all boiled down to a question of the relevant labour market. To get around this gray
area, the argument in courts shifted towards a different question:

Given the actual pool of AA applicants for the job, how did they do in
comparison to the non-AA applicants?

In 1977, the Washington Hospital Center was sued for employment discrimination
based on the following data:

Selected Rejected Pass Rate
AA 4 5 44%
non-AA 26 0 100

This difference in proportions was statistically significant, even accounting for the
small sample sizes.
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1.5.2 Simpson’s Paradox

In many corporations, we deal with data at the department or sub-department level.
This innocuous choice of the basis for comparison can lead to spurious correlations
known as Simpson’s Paradox.

In the 1970s, UC Berkeley was accused of discrimination against females when con-
sidering admissions to graduate school: the overall proportion of females was much
lower than the proportion of males admitted. Paradoxically, this observation at the
aggregate level could have (and did) arise due to differing numbers of applicants to
departments. Here is a simplified example of how it could happen:

Mathematics English Combined
Admit Deny % Admit Deny % Admit Deny %

Males 90 10 90 1 9 10 91 19 83
Females 9 1 90 10 90 10 19 91 17

1.5.3 Related Problems With Aggregation

In 1854, John Snow contributed to the discovery that cholera is spread via water, not
air. Was he also responsible for the end of that epidemic, and the saving of hundreds
of lives? The truth is this:

With a choice of aggregation into weeks, we can make him out to be a bigger hero than
he was:
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Through his careful and painstaking anal-
ysis and investigation, John Snow identi-
fied the Broad Street pump as the one caus-
ing the transmission of cholera in that epi-
demic.

If he had only dealt with aggregated data,
his conclusion would have differed based
on the aggregation!

For more details on the comprehensive de-
tective work he did, take a look at chapter
2 in [20].

1.6 Regression Modeling Strategies

Regression models are usually of the form

response=weight1×predictor1+weight2×predictor2+· · ·+weightp×predictorp+error

When we fit such a model to the data, we certainly want a good fit. However, some
standard and accepted practices actually lead to overfitting to the data, leading to
irreproducible results.

For a nontechnical introduction to these ideas, please refer to [1]. For technical expla-
nations, please take a look at [6] and [7].

1.6.1 Dubious Practices

One such practice is known as automated stepwise variable selection. In this procedure,
we perform a hypothesis test one stage at a time and either reject or include a new
variable, finally stopping when no change occurs. These multiple comparisons inflate
the possibility of Type I errors and thus result in the inclusion of useless variables!

Another common practice is the pre-screening of variables - to determine what transfor-
mation to use for each variable, to drop/retain variables, etc. Although we have not
performed a hypothesis test, we will still end up over-fitting to the data.
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Finally, a common practice of dichotomizing continuous variables and including them
as factors in a linear model can lead to overfitting when two of these variables are
correlated.

1.6.2 Some Suggested Solutions

Stay away from automated stepwise variable selection. When you fit a model, you
might have some pre-planned hypothesis you wish to test; stick to those when report-
ing p-values. By all means, do go ahead and explore the data to find which is the
“best-fitting” model and pre-screen the variables. Data are too expensive to restrict
ourselves to just those pre-determined questions. As Tukey said,

Even here, restricting one’s self to the planned analysis – failing to accom-
pany it with exploration – loses sight of the most interesting results too
frequently to be comfortable.

However, do not over-generalise the findings from exploring the data. Confirm them,
perhaps with a follow-up experiment, or using a validation set of data.

If you have correlated variables, try to combine them (using PCA perhaps) or leave
out all except one.

Finally, ensure that you have enough power to perform your tests. Empirically, studies
have found that we need a minimum sample size of 15 per regression variable. If you
wish to explore the functional form for a particular variable, then you would need
more.

1.6.3 Selection Problem

Suppose that we were to run an experiment to compare battery brands. We buy 10
batteries each of 4 brands, then run them on the same type of device to see how long
they last. We apply an ANOVA test and find there is a significant difference between
the mean battery life-times. We pick the brand which yielded the longest life, and esti-
mate the mean lifetime using a 95% confidence interval constructed using the sample
data for that brand. Is there anything wrong with this?
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The problem with this approach is that we
have not taken into account the selection
procedure!

The maximum of a group will tend to be
large, so our final estimate of that group’s
mean should be shrunk slightly.

On the left, we have a simulation exper-
iment with 10, 50 and 100 groups, each
with 50 observations, where the means of
all groups are identical. The mounds rep-
resent the upper and lower confidence in-
tervals for the mean of the group with the
maximum sample mean, over 1000 simula-
tions.

1.7 Visualisation Principles

Graphics are invaluable when we present an analysis. As John Tukey said in [22],

The greatest value of a picture is when it forces us to notice what we never
expected to see.

However, there are many graphics that are untruthful to say the least. When we
present data in a graphic, we could try to abide by these principles:

• The representation of numbers should be directly proportional to the quantities
represented.

• Show data variation, not design variation.

• In time-series displays of money, deflated and standardized units of monetary
measurement are nearly always better than nominal units.

• Graphics must not quote data out of context.

Here are some examples where these principles have been violated.
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It is easy and striking enough to present the data truthfully:

When dealing with time series data of money, it is worth considering adjusting the
prices for inflation before presenting it.

A garish choice of colours can also lead to a very poor understanding of your data.
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In how many ways does this improve on the previous image?

1.8 Enamoured of Large Models and Small p-Values

As more and more complex models are being developed, it becomes more and more
difficult to judge whether their contribution is worth the additional computing re-
sources, time and intelligence to run.

Bear the following empirical rules in mind. These were outlined after two very exten-
sive forecasting competitions involving a number of experts in their domain [12].

• Statistically sophisticated or complex methods do not necessarily provide more
accurate forecasts than simple ones.

• The relative ranking of the performance of various methods varies according to
the accuracy measure being used.

• The accuracy when various methods are being combined outperforms, on av-
erage, the individual methods being combined and does well in comparison to
other methods.

17



• The accuracy of various methods depends upon the length of the forecasting
horizon involved.

Related to this point is the one that we are simply performing too many hypothesis
tests these days. In almost all of them, the p-value is simply being compared to 0.01
or 0.05. Why? This pressure to publish, or just to find something significant, has led
to highly irreproducible results. It has come to a point where a large coalition of very
famous statisticians are petitioning for the default α-level to be 0.005 (see [2]).

1.9 Summary

If we had to make a list, here are the things I would ask/watch out for in a data
analysis:

• Has any data been left out? Were they outliers?

• Why was the data aggregated in this way?

• Were too many comparisons made?

• Could there have been other reasons for this data to appear so, other than the
conclusions stated here?
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Chapter 2

Risk Analysis for Complex Systems

2.1 Characteristics of Complex Systems

Classical science tends to dissect a system into smaller and smaller isolated parts in
an effort to reduce the problem to essential elements. Each of these elements are then
studied separately. Quite often, we search for a physical law that explains the process
we are studying. An example of this is an explanation of planetary motion.

On the other hand, we now find we are dealing with systems so complex that we can-
not afford to study their components in isolation. Here are some examples of complex
systems:

• The swarming of locusts.

• Traffic jams.

• The 2010 BP oil spill.

There is no single definition that is agreed upon for complex systems (see the interpre-
tations reviewed in the essay [10]), but it is possible to derive certain properties that
these systems exhibit. For a deeper explanation of these traits, take a look at the book
[11].

• The system contains a collection of many interacting objects of agents.

• The objects’ behaviour is affected by feedback.

• The system exhibits emergent behaviour which are generally surprising, and
could be extreme.

• The emergent behaviour arise in the absence of a central control.

• The system oscillates between orderly and disorderly states.

Complexity science is a new field that is emerging to deal with models with the above
traits. It focuses on what new phenomena can emerge from a collection of relatively
simple components, interacting together.
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2.2 The Financial System

We would all love to predict what will happen in tomorrow’s financial market. Meth-
ods and strategies that claim to do so sell for exorbitant prices. In time series methods
of forecasting, we would typically we would try several models, assess them via their
prediction errors, and decide to use the one that returns the smallest prediction errors.

One of the most popular models for financial time series is a random walk model:

yt = yt−1 + et

where et is typically assumed to be Gaussian errors. This sort of model can predict a
time series of this sort quite well:

There is no monotonic trend in the series, and the differenced series looks a lot like
white noise. It can in fact be shown that the optimal prediction is the most recent
observation.

This, however, is the reductionist view of the financial world. We consider one time
series at a time, and try to determine its behaviour as best we can. However, this
is rather simplistic a view of the financial world. This model will never be able to
produce a crash like this:
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This is an example of the financial system, a complex system, moving in and out of
pockets of order. When the order emerges, what is happening is that huge groups of
traders are selling at the same time. Then the groups fizzle out and we are back in the
state of disorder, which is the norm. The emergent phenomenon is the pocket of order.

The crucial element lacking in traditional models is that of feedback. Note that all
traders in the market are privy to historical prices, news updates, and expert forecasts.
In addition, these agents adjust their behaviour according to how their strategy is
performing.

Suppose then, that we simulate the financial market in the following way:

(a) Traders have to pick a buy or sell signal at each unit of time.

(b) Each trader knows the true behaviour of the market for the past, say 10 units of
time.

(c) Each trader has a simple strategy to decide, based on the 10 recent values, what to
do. For instance, he could just look at when the same behaviour occurred and see
what happened then.

This is almost enough to produce crashes like we see in reality, but not quite. It turns
out that a slight modification will do it:

Traders should only enter the market if their strategy has been successful
in the recent past.

If we believe we can model the financial market with some degree of confidence, the
next natural question is whether we can predict these pockets of order and disorder.
An important paper that tries to answer this question is [17]. In that paper, the author
purports that we can create prediction corridors, that suggest in which direction the
system is moving. The width of these corridors change with time; when the system is
moving into a pocket of order, the corridors narrow.

2.3 Mathematical Models for Complex Systems

2.3.1 Cellular Automata (CA)

A cellular automaton is a model of a world with very simple physics. The space is
divided into cells. Each cell typically has 2 states - on or off. Time is also divided into
discrete steps. Rules specify how to compute the next state of each cell, based on the
current state.

Probably the most popular CA to be studied is known as the Game of Life. It was
developed by John Conway in 1970. The cells in GoL are arranged in a 2D grid, and
each cell is either alive or dead. The next state (in time) depends on the current state
of itself and its eight neighbours. This behaviour is loosely analogous to cell growth:
cells that are isolated or overcrowded die, but at moderate densities they flourish.
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Number of neighbours Current state Next state
2 – 3 live live
0 – 1, 4 – 8 live dead
3 dead live
0 – 2, 4 – 8 dead dead

There are a number of stable patterns that emerge from relatively simple starting
states. A visualisation of these patterns can be found https://bitstorm.org/
gameoflife/ and https://www.youtube.com/watch?v=bTPN3spiq1I.

2.3.2 Agent Based Models

Agent-based models depict the interacting components in the system as agents that

• are intelligent, based on a simple set of rules.

• have local, imperfect information.

• have differing behaviours.

One of the first agent-based models was put forward by Thomas Schelling in [16]
to explain how racial segregation arose in cities. Suppose we have an array of cells,
where each cell represents a house. A house could be occupied by a blue agent, a red
agent, or it could be unoccupied. At any time, an agent may be unhappy or happy. If
there are at least two neighbours like themselves they are happy. Otherwise they are
unhappy. If an agent is unhappy, he chooses one of the unoccupied cells at random
and moves there.

Surprisingly, if we start with a simulated city that is entirely unsegregated, clusters of
similar agents will appear very quickly. As time passes, the clusters grow until there
are a small number of large clusters and most agents live in homogeneous neighbour-
hoods.

One of the most common arenas for agent-based modeling is traffic jams. Suppose we
consider a one-lane road that forms a circle. We start drivers at random positions and
speeds, but they follow these rules:

• If the following distance to the next car is too short, the driver brakes. Otherwise,
he accelerates.

• If the current speed would cause a collison, the driver stops.

This is enough to create the emergent behaviour of traffic jams!

Another domain where agents have been successfully used to model a real-life pro-
cess is the study of swarms. The following image was taken from a story in WIRED
magazine: https://www.wired.com/2013/03/powers-of-swarms/.
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2.4 Risk Modeling for Complex Systems

As you can see, most of these techniques involve simulation, and rely on the model
being a good representation of the true system. At present, most of the work is being
done on generating or identifying the rules that result in emergent behaviour of the
system.

As part of the simulation, we track adverse outcomes and the frequency with which
they they occur. We must be careful to compare the model we are using to the observed
data. There have been cases when the output of the resultant model does not adhere
to observed data.

For instance, when modeling the structure
of the internet, a common assumption is
that the degree structure of vertices follows
a power law or Zipf Law, which results
in what is known as a scale free network.
This leads to a robust yet fragile network of
nodes, where random attacks can be with-
stood, but not targeted ones.

At left, the graphs in the top row cor-
respond to scale-free networks, while the
graphs below correspond to what real-
world internet nodes look like.

However, it has been shown that this is not true and that a different set of modeling
assumptions should be used (see [5])
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2.5 Introduction to Probabilistic Risk Assessment

A complex system, such as the company that writes a popular operating software, or
a large hospital, or a nuclear power plant, consists of a multitude of people, processes
and technologies working together.

In order to ensure a satisfactory operating standard, it is not sufficient to ensure that
each component, on its own, operates at an acceptable level. We have to be aware of
how components work together, and the impact of their simultaneous failure.

In this session, we shall discuss a tool known as Probabilistic Risk Assessment (PRA).
It provides a formal framework for modeling the combinations of multiple failures
that lead to a specific undesirable outcome. It is used to systematically identify and
review all of the factors that can contribute to an event.

The main goal of a PRA is to quantify risk by answering the following questions:

(a) What can go wrong?

(b) How likely is it?

(c) What are the associated consequences?

We can use the answers from a PRA to decide on resource allocation, or to review spe-
cific processes that contribute to undesired scenarios with high probability of system
failure.

2.6 Late for Work!

Let us begin with a simple example that we can all relate to [23]. The outcome of being
late for work is undesirable. Our first task is to identify all possible scenarios that
lead to this outcome. At this stage, the PRA process uses a graphic known as an Event
Tree (ET) to visualise the relationship between the scenarios and the adverse outcome.
Here is one possible ET for being late. The event at the extreme left is an Initiating
Event (IE). It kicks off the sequence of events that could lead to the undesirable out-
come. Between the IE and the outcome are chronologically arranged Pivotal Events
(PE) that ultimately decide if we are late or not. Can we add on to this diagram, based
on our local knowledge (of Singapore, of ourselves, etc.)?
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The next step is to extend this tree, to model each of those PEs. This extended tree is
known as a Fault Tree (FT). Modeling a PE amounts to arranging events that culminate
in the PE occurring in a top-down tree. A FT utilises AND and OR logic gates to reflect
that certain events must occur together in order in order for the PE to happen, while
other sets of events only need one member to occur.

At the base of each FT are the basic events, for which we have to assign probabilities.
This is one of the most difficult parts of PRA. The difficulty stems from the fact that
these are typically rare events, that we might not have observed at all! How then do
we put down a reasonable number? What if we are wrong? Would we even be able to
tell if we are far from the truth?

Supposing that we can overcome the anxiety and put down some plausible numbers.
How do we then compute probabilities further up the FT? There are software that will
do it for you, but the ideas are not to complicated. Consider one of the AND gates:

P(no gas) = P(no gas in tank AND no gas in spare can)
= P(no gas in tank)×P(no gas in spare can)
= (0.01)(0.3) = 0.003
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Assuming the basic events are independent, the computations for the OR gates are
only slightly more complicated:

P(no backup electrics) = P(no jumper cable OR no second battery)
= 1−P(jumper cable AND second battery)
= 1− (1−0.1)(1−0.1)
= 0.19

Following the FTA, we can generate minimal cut sets – minimal sets of events that
result in the adverse outcome, and their overall probability of occurrence. At this
point, we are in a position to use sensitivity analysis to decide which event we should
target to eliminate or reduce, and so on.

Here is an example of minimal cut sets, from the NASA manual on PRA ([18]).

The typical follow-up, a risk assessment of the dominating scenario, would look some-
thing along these lines:
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2.7 Limitations of These Approaches

Assessing risk through a model-based approach, or through a PRA approach relies on
having a sufficiently detailed representation of the real-world sytem. In my opinion,
we should start with a simple model, and then slowly add complicated modifications.

One possibility that could result from these simulation-based probabilities is that we
ignore behavioural traits, or more specifically, how people react to policy changes.
Suppose we find that the probability that the pharmacist and doctor both make a mis-
take when dispending medication is unacceptably high. Maybe we try to solve this
with a third person checking the medication. This may not reduce the mistake prob-
ability, because the mind set that “the other person will check this again, so I do not
need to spend so much time on it” may materialise.

The other, more obvious limitation of these approaches is that we do not know the
probabilities of certain events. How do we ascertain the probability that the doctor
prescribes the wrong medication? One way is to acknowledge the uncertainty in our
probability model; this is known as the epistemic uncertainty (as opposed to aleatory)
uncertainty. Once we acknowledge this, we can assess the probability of an adverse
event in a better context.

2.8 Summary

At the end of the day, any model is only an approximation to the real process. If we
do not utilise an adequate model, we will not be alerted to the important safety issues
we were looking for.

There are serious questions that require us to think carefully about our own system.
There is no intelligent black box that will autonomously identify the extreme emergent
behaviour that we will see in the real system.

In short, here are my thoughts on risk analysis and management:

(a) Come up with a model for the system, be it an emergent one, or one using PRA.
Identify the main risk areas.

(b) When developing this model and fixing probabilities, for instance, consult the peo-
ple from all involved departments.

(c) Use online monitoring to alert you as early as possible to out-of-control behaviour.
These tools can also feedback into your model to refine it.
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