
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tctm20

Combustion Theory and Modelling

ISSN: 1364-7830 (Print) 1741-3559 (Online) Journal homepage: http://www.tandfonline.com/loi/tctm20

Effects of endothermic chain-branching reaction
on spherical flame initiation and propagation

Haiyue Li, Huangwei Zhang & Zheng Chen

To cite this article: Haiyue Li, Huangwei Zhang & Zheng Chen (2018): Effects of endothermic
chain-branching reaction on spherical flame initiation and propagation, Combustion Theory and
Modelling, DOI: 10.1080/13647830.2018.1555338

To link to this article:  https://doi.org/10.1080/13647830.2018.1555338

Published online: 09 Dec 2018.

Submit your article to this journal 

Article views: 12

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tctm20
http://www.tandfonline.com/loi/tctm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13647830.2018.1555338
https://doi.org/10.1080/13647830.2018.1555338
http://www.tandfonline.com/action/authorSubmission?journalCode=tctm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tctm20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2018.1555338&domain=pdf&date_stamp=2018-12-09
http://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2018.1555338&domain=pdf&date_stamp=2018-12-09


Combustion Theory and Modelling, 2018
https://doi.org/10.1080/13647830.2018.1555338

Effects of endothermic chain-branching reaction on spherical flame
initiation and propagation

Haiyue Lia, Huangwei Zhangb and Zheng Chen a,c∗

aCCSE, CAPT, SKLTCS, College of Engineering, Peking University, Beijing, People’s Republic of
China; bDepartment of Mechanical Engineering, National University of Singapore, Singapore,

Singapore; cBeijing Innovation Center for Engineering Science and Advanced Technology, Peking
University, Beijing, People’s Republic of China

(Received 24 January 2018; accepted 27 November 2018)

A theoretical model is developed to describe the spherical flame initiation and propaga-
tion. It considers endothermic chain-branching reaction and exothermic recombination
reaction. Based on this model, the effects of endothermic chain-branching reaction on
spherical flame initiation and propagation are assessed. First, the analytical solutions for
the distributions of fuel and radical mass fraction as well as temperature are obtained
within the framework of large activation energy and quasi-steady assumption. Then,
a correlation describing spherical flame initiation and propagation is derived. Based
on this correlation, different factors affecting spherical flame propagation and initi-
ation are examined. It is found that endothermicity of the chain-branching reaction
suppresses radical accumulation at the flame front and thus reduces flame intensity.
With the increase of endothermicity, the unstretched flame speed decreases while both
flame ball radius and Markstein length increases. Endothermicity has a stronger effect
on the stretched flame speed with larger fuel Lewis number. The Markstein length is
found to increase monotonically with endothermicity. Furthermore, the endothermicity
of the chain-branching reaction is shown to affect the transition among different flame
regimes including ignition kernel, flame ball, propagating spherical flame, and planar
flame. The critical ignition power radius increases with endothermicity, indicating that
endothermicity inhibits the ignition process. The influence of endothermicity on igni-
tion becomes relatively stronger at higher crossover temperature or higher fuel Lewis
number. Moreover, one-dimensional transient simulations are conducted to validate the
theoretical results. It is shown that the quasi-steady-state assumption used in theoreti-
cal analysis is reasonable and that the same conclusion on the effects of endothermic
chain-branching reaction can be drawn from simulation and theoretical analysis.

Keywords: ignition; spherical flame propagation; endothermic reaction; Lewis
number

1. Introduction

Due to its simple one-dimensional configuration, spherical flame has been popularly used
in theoretical studies on ignition and premixed flame propagation. One-step, irreversible,
global reaction model is usually used in theoretical analysis of spherical flame (e.g.
[1–6]). In the one-step chemistry model, fuel is converted directly into products and heat,
and thereby the combustion is mainly controlled by fuel and heat transport. However,
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during the combustion process of hydrocarbon fuels in practical engines, the fuel oxida-
tion involves numerous elementary reactions and intermediate species. As such, ignition
and flame propagation are affected not only by transport of fuel and heat but also by the
transport and chemical properties of intermediate species (especially radicals involved in
chain-branching reactions) [7].

In order to consider the role of intermediate species, two-step chemistry model rather
than one-step model should be used in theoretical analysis. Recently, the two-step chain-
branching model proposed by Dold and coworkers [7–9] has been popularly used in
the theoretical analysis of premixed combustion. This model is the simplified version of
Zel’dovich-Liñán model [10,11]. It comprises a chain-branching reaction and a recombi-
nation reaction. This two-step chain-branching model was used in previous studies on the
ignition, propagation, extinction, and stability of premixed flames. For examples, Zhang
et al. [12–14] studied the effects of radical transport on critical ignition conditions and
stretched flame propagation; Bai et al. [15] and Zhang et al. [16] examined the effects of
radical quenching on the extinction of premixed flame; Gubernov et al. [17–20] and Sharpe
et al. [21,22] investigated the instability of premixed flames. More recently, Gubernov et al.
[23] proposed a chain-reaction model which can be used to describe both premixed and
diffusion flames. In these studies [7–9,12,13,15–18,21,22], the chain-branching reaction
is assumed to be thermally neutral and thereby the completion reaction releases all the
heat. However, in practical combustion of hydrocarbon fuels, the chain-branching reac-
tion is usually endothermic rather than thermally neutral [7]. Currently, it is not clear how
the endothermicity of the chain-branching reaction affects premixed flame initiation and
propagation. This motivates the present work, which aims to answer this question.

In fact, the influence of endothermic reaction on premixed flame propagation has been
studied based on parallel or sequential two-step chemistry model without considering inter-
mediate species. For example, using the paralleled exothermic and endothermic reaction
model, Simon et al. [24], Gray et al. [25], and Lazarovici et al. [26] found that the endother-
mic reaction can quench the flame under certain conditions. Gubernov et al. [27,28]
conducted stability analysis and found that the competitive endothermic reaction can lead
to different flame regimes. Please et al. [29] and Qian et al. [30] studied combustion
waves with sequential endothermic and exothermic chemical model and observed similar
quenching effects due to the endothermic reaction. These studies indicate that endothermic
reaction may have a strong impact on premixed flames. However, ignition and endothermic
chain-branching reaction were not investigated before. Therefore, the present work focuses
on ignition and spherical flame propagation with endothermic chain-branching reaction.

Due to its simple geometry, propagating spherical flames are popularly used to measure
the laminar flame speed of different fuel/air mixtures. Experimentally, static homogeneous
combustible mixture in a closed chamber is centrally ignited by an electrical spark or a
laser beam which results in an outwardly propagating spherical flame. The flame front
history and/or the pressure rise history are/is recorded during the experiment and used to
obtain the laminar flame speed. As reviewed in [31–33], there are more than 30 groups
which conduct spherical flame experiments. In addition, such experiments were also used
to study the ignition process and minimum ignition energy (e.g. [34,35]). However, it is
difficult to assess of the effects of endothermic chain-branching reaction on spherical flame
initiation and propagation. Therefore, theoretical analysis with simplified chemical model
is conducted there.

The objective of this work is to assess the effects of endothermicity of chain-branching
reaction on spherical flame initiation and propagation. The two-step reaction model
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containing endothermic chain-branching reaction and exothermic recombination reac-
tion is used. Unlike previous studies [7–9,12,13,15–18,21,22], the endothermicity of
the chain-branching reaction is considered for the first time. First, the analytical solu-
tions for spherical flame initiation and propagation are obtained within the framework
of large activation energy and quasi-steady assumptions. Then, the effects of endothermic
chain-branching reaction on flame propagation speed, Markstein length, ignition kernel
development, and critical ignition conditions are examined.

2. Mathematical model

We use the following two-step chain-branching model proposed by Dold and coworkers
[7–9]:

F + Z → 2Z : k̃B = ÃB exp(−T̃B/T̃), (1a)

Z + M → P + M : k̃C = ÃC , (1b)

where F, Z, P, and M denote fuel, radical, product, and the third body, respectively. ÃB,
ÃC , and T̃B are the frequency factor and activation temperature. The above model involves
a thermally-sensitive chain-branching reaction (1a) with a rate constant k̃B in the Arrhe-
nius form and a completion reaction (1b) with a rate constant k̃C , which is independent of
temperature T̃ .

Spherical flame initiation and propagation are studied by the classical reactive-diffusive
model, in which density ρ̃, specific heat C̃P, diffusion coefficients of fuel D̃F and radical
D̃Z , thermal conductivity λ̃, and global heat release Q̃ are assumed to be constant [36,37].
The one-dimensional conservation equations for temperature, T̃ , and mass concentrations
of fuel, ỸF , and radical, ỸZ , in a spherical coordinate are

ρ̃
∂ỸF

∂ t̃
= 1

r̃2

∂

∂ r̃
(r̃2ρ̃D̃F

∂ỸF

∂ r̃
) − W̃Fω̃B, (2a)

ρ̃
∂ỸZ

∂ t̃
= 1

r̃2

∂

∂ r̃
(r̃2ρ̃D̃Z

∂ỸZ

∂ r̃
) + W̃Z(ω̃B − ω̃C), (2b)

ρ̃C̃P
∂T̃

∂ t̃
= 1

r̃2

∂

∂ r̃
(r̃2̃λ

∂T̃

∂ r̃
) + Q̃Cω̃C − Q̃Bω̃B, (2c)

where t̃ and r̃ are time and radial coordinate, respectively. According to the constant-
density assumption, thermal expansion is neglected and thereby the convective flux is zero.
Q̃C is the heat release of completion reaction and Q̃B is the endothermicity of the chain-
branching reaction. Therefore the global heat release, Q̃, equals the difference between
them. The reaction rates are:

ω̃B = ρ̃ỸF

W̃F

ρ̃ỸZ

W̃Z

ÃB exp(− T̃B

T̃
), ω̃C = ρ̃ỸZ

W̃Z

ρ̃

W̃
ÃC , (3)

where W̃F and W̃Z are molecular weights of fuel and radical, respectively, and W̃ represents
the mean molecular weight.
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Following Sharpe [21], we introduce the following non-dimensional variables:

r = r̃

δ̃
, u = ũ

S̃0
u

, YF = ỸF

ỸF0
, YZ = ỸZW̃F

ỸF0W̃Z

, T = T̃

T̃0
, QB = Q̃BỸF0

W̃F C̃PT̃0
, QC = Q̃CỸF0

W̃F C̃PT̃0
, (4)

where ỸF0 is the fuel mass fraction in the unburned mixture and T̃0 is the room temperature.
The characteristic speed S̃0

u and characteristic length δ = λ̃/(ρ̃C̃PS̃0
u) are the laminar flame

speed and flame thickness of an adiabatic planar flame with an initial temperature of T̃0 =
298K.

In the coordinates attached to the propagating spherical flame front, the non-dimensional
governing equations for temperature, T, and mass fractions of fuel, YF , and radical, YZ , in
the unburned and burned zones are [12,38].

∂YF

∂t
− U

∂YF

∂r
= 1

LeF

1

r2

∂

∂r
(r2 ∂YF

∂r
) − ω, (5a)

∂YZ

∂t
− U

∂YZ

∂r
= 1

LeZ

1

r2

∂

∂r
(r2 ∂YZ

∂r
) + ω − �YZ , (5b)

∂T

∂t
− U

∂T

∂r
= 1

r2

∂

∂r
(r2 ∂T

∂r
) − QBω + QC�YZ , (5c)

where LeF = λ̃/(ρ̃C̃PD̃F) and LeZ = λ̃/(ρ̃C̃PD̃Z) are the Lewis numbers of the fuel and
radical, respectively. U = dR(t)/dt is propagation speed of the flame front. QB and QC are
the specific heat release of the completion reaction.

In Equations 5(a)–(c), the non-dimensional branching reaction rate is [15]

ω = ��2YFYZ exp

[
TB

(
1

TC
− 1

T

)]
, (6)

where TB = T̃B/T̃0 and TC = T̃C/T̃0 are the non-dimensional activation temperature
and in-homogeneous chain-branching crossover temperature, respectively [7], and � =
TB/TC . The non-dimensional rate constant, � = λ̃ÃC/C̃P(S̃0

u)
2W̃ , is given implicitly by

[21]:

�LeZ =
(

1 + 1 − TC

Q

)
(S2

2 − S2)(S1 − S2), S1,2 = LeZ ±
√

LeZ
2 + 4�LeZ

2
. (7)

In this study, the impact of external energy deposition on spherical flame initiation and
propagation is investigated and the ignition energy is provided as a heat flux at the centre.
Steady-state energy deposition is employed in order to achieve an analytical solution and
the boundary conditions are [39],

r → 0 : r2 ∂T

∂r
= −q ,

∂YF

∂r
= 0,

∂YZ

∂r
= 0, (8a)

r → ∞ : T = 1, YF = 1, YZ = 0, (8b)

where q is the ignition power normalised by 4πλ̃δ̃T̃0.
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3. Theoretical analysis

The flame propagation is assumed to be in a quasi-steady state in the coordinate attached
to the propagating flame front. This quasi-steady assumption was validated and used in
previous studies (e.g. [1–3,6,12]). Moreover, in the asymptotic limit of large activation
energy (TB → +∞), the chain-branching reaction is confined at an infinitesimally thin
flame sheet (r = R). At the two sides (i.e. the unburned and burned zones) of the flame
sheet, we have ω = 0. Based on these assumptions, the governing equations in Equations
5(a)–(c) are reduced to:

− U
dYF

dr
= 1

LeF

1

r2

d

dr

(
r2 dYF

dr

)
, (9a)

− U
dYZ

dr
= 1

LeZ

1

r2

d

dr

(
r2 dYZ

dr

)
− �YZ , (9b)

− U
dT

dr
= 1

r2

d

dr

(
r2 dT

dr

)
+ QC�YZ . (9c)

According to the asymptotic analysis conducted by Dold [7], the following conditions
must hold across or at the flame front:

[YF] = [YZ] = [T] =
[

1

LeF

dYF

dr
+ 1

LeZ

dYZ

dr

]
= T − TC

= YF
dT

dr
= [

dT

dr
] − QB

LeF
[
dYF

dr
] = 0, (10)

where [f ] = f (r = R+ ) − f (r = R− ). It is noted that here QB denotes the non-
dimensional endothermicity of the chain-branching reaction. The global heat release is
Q = QC–QB. Equation 9(a)–(c) can be solved analytically in the unburned and burned
zones respectively. The exact solutions for fuel mass fraction, radical mass fraction and
temperature are:

YF(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ r ≤ R

1 −
∫ ∞

r ξ
−2

e−LeF Uξdξ∫ ∞
R ξ

−2
e−LeF Uξdξ

if r ≥ R
, (11)

YZ(r) =

⎧⎪⎪⎨
⎪⎪⎩

YZf exp[0.5(ULeZ + k)(R − r)]
F(kr, ULeZ/k, −ULeZ/k)

F(kR, ULeZ/k, −ULeZ/k)
if 0 ≤ r ≤ R

YZf exp[0.5(ULeZ + k)(R − r)]
G(−kr, ULeZ/k, −ULeZ/k)

G(−kR, ULeZ/k, −ULeZ/k)
if r ≥ R

,

(12)

T(r) =

⎧⎪⎨
⎪⎩

TC + ∫ R
r

∫ s
0 I(s, ξ)dξds + q

∫ R
r s−2e−Usds if 0 ≤ r ≤ R

[TC + ∫ ∞
R

∫ ∞
s I(s, ξ)dξds]

∫ ∞
r s−2e−Usds∫ ∞
R s−2e−Usds

− ∫ ∞
r

∫ ∞
s I(s, ξ)dξds if r ≥ R

, (13)
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where

F(a, b, c) =
∫ 1

0
eattb(1 − t)cdt, G(a, b, c) =

∫ ∞

0
eattb(1 + t)cdt,

k =
√

(ULeZ)2 + 4�LeZ ,

YZf = LeZLeF
−1k−1R−2e−LeF UR/

∫ ∞
R ξ−2e−LeF Uξdξ

F(kR, 1 + ULeZ/k, −ULeZ/k)

F(kR, ULeZ/k, −ULeZ/k)
+ G(−kR, 1 + ULeZ/k, −ULeZ/k)

G(−kR, ULeZ/k, −ULeZ/k)

, (14)

I(s, ξ) = (
ξ

s
)2e−U(s−ξ)QC�YZ(ξ).

Substituting the temperature distribution into the jump conditions in Equation (10), we
obtain the following correlation depicting the change of the flame propagation speed U
with flame radius R: ∫ ∞

R

∫ s

0
I(s, ξ)dξds + q

∫ ∞

R
s−2e−Usds

− QB

LeF
eUR(1−LeF )

∫ ∞
R s−2e−Usds∫ ∞

R s−2e−LeF Usds
= TC − 1. (15)

The difference between present correlation, Equation (15) and that in previous work [12] is
the term which is proportional to the endothermicity QB. Consequently, it can be reduced
to previous solutions for flame balls, propagating spherical flames and planar flames in
limiting cases. Therefore, Equation (15) is a general solution to describe adiabatic flame
balls, propagating spherical flames, and planar flames with endothermic chain-branching
reaction. As will be shown later, the dynamics of flame kernel growth and the transition
among different flame regimes can be predicted by this correlation. Based on Equation
(15), spherical flame propagation and initiation will be investigated and the effects of
endothermic chain-branching reaction will be examined by changing the value of QB in
the following section.

4. Results and discussion

To assess the effects of endothermicity of chain-branching reaction on spherical flame
propagation and ignition, we change the value of non-dimensional endothermicity QB

while fix the global heat release Q = 6 (i.e. the adiabatic flame temperature is around
2100 K, Q = QC–QB). Typical values of non-dimensional parameters of LeF = LeZ = 1
and TC = 4 (the corresponding dimensional temperature is around 12,002 K) are used
unless otherwise specified. These are typical values also discussed and used by Dold [7].

4.1. Effects of endothermicity on spherical flame propagation

We first study the spherical flame propagation without ignition power deposition at the
centre (i.e. q = 0 in Equation (15)). Figure 1 shows the effects of endothermicity of chain-
branching reaction on spherical flame propagation speed at different values of fuel Lewis
number. Solutions on the horizontal axis with U = 0 are for flame balls and those on the
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Figure 1. Spherical flame propagation speed as a function of flame radius.

right vertical axis with R = +∞ are for planar flames, while the region between these two
limits represents propagating spherical flame. The effects of endothermic reaction on these
three types of flames will be separately discussed later. It is observed that flame propaga-
tion speed reduces when the endothermicity of chain-branching reaction is increased from
QB = 0 to QB = 0.6. Therefore, the endothermicity of chain-branching reaction weakens
the premixed flame propagation. This is consistent with previous results based on parallel
or sequential two-step chemistry model [25–30].

The effects of endothermic reaction on unstretched planar flames are analysed first.
Figure 2 shows the effects of endothermicity of chain-branching reaction on the planar
flame structure. The renormalised temperature is defined as θ = (T − 1)/Q. It is observed
that endothermicity slightly suppresses the radical accumulation and thus reduces flame
intensity. Consequently, the flame speed decreases as the endothermicity increases. This
trend is demonstrated in Figure 3.

Figure 2. Distributions of normalised temperature, fuel mass fraction and radical mass fraction for
QB/Q = 0 and QB/Q = 0.1.
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Figure 3. Change of planar flame speed with endothermicity.

Figure 4. Effects of (a) radical Lewis number and (b) crossover temperature on planar flame
structure for QB/Q = 0.1 and LeF = 1.0.
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Figure 3 shows that the influence of endothermicity becomes stronger at lower radical
Lewis number or lower crossover temperature. This can be explained by the planar flame
structure shown in Figure 4. Since lower radical Lewis number corresponds to higher mass
diffusivity of radical, the radical concentration at the flame front is smaller for lower LeZ .
Consequently, at lower LeZ , the flame becomes weaker and is more strongly affected by
endothermicity of chain-branching reaction. At lower crossover temperature TC , the chain-
branching reaction becomes faster and the radical concentration becomes larger as shown
in Figure 4(b). Meanwhile, the influence of endothermicity becomes stronger since it is also
proportional to the reaction rate of the chain-branching reaction in the governing equation
for temperature, Equation 9(c).

Figure 1 shows that similar to the planar flame, the positively stretched spherical flame
has lower propagation speed as the endothermicity of chain-branching reaction is consid-
ered. Figure 5 shows the change of spherical flame propagation speed with the stretch
rate, which is K = 2U/R for spherical flame propagation. It is observed that U changes
linearly with K at the low stretch rate. Therefore, the unstretched planar flame speed, U0

(as shown in Figure 3), and Markstein length, L, can be obtained from linear extrapo-
lation. The Markstein length characterises the sensitivity of flame propagation speed to
stretch rate. As expected, the influence of stretch on flame speed becomes stronger at higher
fuel Lewis number. Moreover, Figure 5 shows that the effects of endothermicity become
stronger at the larger stretch rate. Therefore, compared to an unstretched planar flame,
stretched flame is more easily affected by the endothermic reaction. The Markstein length
represents the sensitivity of flame speed to stretch rate. The influence of endothermicity
of chain-branching reaction on Markstein length is shown in Figure 6. It is seen that the
Markstein length L increases monotonically with the endothermicity QB. This is because
the flame becomes weaker when the chain-branching reaction becomes endothermic and
weaker flame is more sensitive to stretch rate [40]. The influence of endothermicity is sim-
ilar to that of radiative loss [38,41] and droplet evaporation [42] which also weaken the
flame and increase the Markstein length.

In the next subsection, ignition of spherical flame will be investigated. It is well-known
that the critical ignition condition greatly depends on the flame ball radius. Therefore, we
also examine the influence of the endothermicity of chain-branching reaction on flame ball

Figure 5. Spherical flame propagation speed as a function of stretch rate.
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Figure 6. Change of the Markstein length with endothermicity.

Figure 7. Change of flame ball radius with endothermicity for different values of (a) fuel Lewis
number and (b) crossover temperature.
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radius with zero ignition power. The results are shown in Figure 7. The flame ball radius
is shown to always increase with the endothermicity. The influence of endothermicity is
stronger for larger fuel Lewis number LeF and higher crossover temperature TC . For larger
LeF , the heat loss (due to thermal conduction away from the flame) dominates over the
enthalpy gain (due to fuel diffusion into the flame) for a positively stretched spherical
flame and thereby the effect of endothermicity becomes stronger. At higher TC , less radical
can be produced and the influence of endothermic reaction is stronger.

4.2. Effects of endothermicity on spherical flame initiation

In this subsection, we examine the effects of endothermicity of chain-branching reaction
on ignition kernel development and critical ignition conditions.

To initialise the ignition kernel, an external energy flux (q > 0) is deposited in the cen-
tre of a quiescent pre-mixture. Figures 8 and 9 show the spherical flame propagation speed

Figure 8. Flame propagation speed as a function of flame radius at different ignition powers for
(a) QB = 0.0 and (b) QB = 0.6 for LeF = 1.
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Figure 9. Flame propagation speed as a function of flame radius at different ignition powers for
(a) QB = 0.0 and (b) QB = 0.6 for LeF = 2.

as a function of flame radius at different ignition powers for LeF = 1 and 2 respectively.
For q = 0, the U–R curves (line #1) in Figures 8 and 9 are the same as that in Figure
1, for which the outwardly propagating spherical flame only exists beyond the flame ball
solution. At low ignition powers, there exist two branches of solutions: the original trav-
elling flame branch on the right and a new ignition kernel branch on the left. Once the
external power is larger than the so-called critical (minimum) ignition power, qc, these
two branches merge resulting in a new upper branch, along which successful ignition is
achieved. For LeF = 1, the critical ignition power, qc, is changed from 0.54 to 0.71 when
the endothermicity of chain-branching reaction is increased from QB = 0 to QB = 0.6.
However, for LeF = 2, it is changed from 1.71 to 1.9 when QB is increased from QB = 0
to QB = 0.6.

Figure 10 shows the dependence of critical ignition power on the endothermicity of
chain-branching reaction. It is seen that the critical ignition power, qc, always increases
with QB. Therefore, similar to radiative loss [38 41] and droplet evaporation [42], the
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Figure 10. Change of critical ignition power with endothermicity for different values of (a) fuel
Lewis number and (b) crossover temperature.

endothermicity of the chain-branching reaction inhibits the ignition process. This is
expected since the flame becomes weaker and the production and consuming rate of rad-
icals are lower as the chain-branching reaction becomes endothermic. In the case with
higher fuel Lewis number LeF , the difference between the enthalpy gain (due to fuel dif-
fusion into the flame) and heat loss (due to thermal conduction away from the flame) for a
positively stretched flame also gets larger. Relatively stronger effects of heat loss are inten-
sified by endothermicity and thereby the slope of lines in Figure 10(a) is larger. However,
since both critical ignition power and energy are much higher at large fuel Lewis number
due to stronger stretch effect and lower propagation velocity, the normalised critical igni-
tion power and radius scaled by corresponding values without endothermic reaction do not
change significantly with endothermicity in Figure 11. Moreover, at lower crossover tem-
perature TC , flame gets more sensitive to the endothermic reaction and normalised ignition
power increases more significantly as endothermicity according to Figure 11.
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Figure 11. Normalised critical ignition power as a function of endothermicity for different values
of fuel Lewis number and crossover temperature.

5. Numerical validation

In theoretical analysis, the spherical flame propagation is assumed to proceed in a quasi-
steady manner and thus unsteady transition effects are neglected. Moreover, according to
the large activation energy assumption, the chain-branching is restricted to an infinitely
thin reaction front. To validate the theoretical analysis, we conduct transient numerical
simulations with finite activation energy. The time-dependent system given by Equations
5(a)–(c) is solved by the finite volume method. The numerical methods are similar to those
described in Reference [43]. The only difference is that here two-step chemistry instead of
detailed chemistry is considered. In simulation, a seven-level adaptive gridding algorithm
is employed to accurately and efficiently resolve the moving flame front, where the mesh
addition and removal are based on the gradient and curvature of the temperature distribu-
tion. The computation domain is 0 ≤ r ≤ 1040. The boundary conditions of zero gradient
for temperature, fuel and radical mass fraction are used at both r = 0 and r = 1040.

We first justify the validity of the quasi-steady-state assumption by evaluating the magni-
tude of the unsteady term. The numerical results from transient simulation are transformed
into the flame front-attached coordinate (in which theoretical analysis is conducted). In the
transformed coordinate, the magnitudes of the unsteady term (∂T/∂t + U∂T/∂r), convec-
tion term (−U∂T/∂r), diffusion term (∂(∂T/r2∂r)r2∂r), and reaction term (QCYZ–QBω)
of the energy equation in the flame front-attached coordinate are compared. Figure 12
shows the results for a flame at LeF = 1.0, LeZ = 1.0, QB = 0.6. Compared to the con-
vection, diffusion and reaction terms, the unsteady term is shown to be much smaller and
is nearly negligible. This demonstrates that the quasi-steady assumption used in theoretical
analysis is reasonable.

We then validate the main theoretical results by transient simulations. Figure 13 plots
the change of spherical flame propagation speed with the flame radius. It is seen that
endothermicity reduces flame propagation speed and thus inhibits flame propagation. This
is consistent with theoretical results shown in Figure 1.

Figure 14 shows the change of Markstein length with endothermicity predicted transient
simulation. The Markstein length is shown to monotonically increase with endothermicity,
which qualitatively agrees with theoretical results shown in Figure 6.
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Figure 12. The unsteady term (∂T/∂t + U∂T/∂r), convection term (−U∂T/∂r), diffusion term
(∂(∂T/r2∂r)r2∂r) and reaction term (QCYZ – QBω) of the energy equation in the flame front-attached
coordinate for LeF = 1.0, LeZ = 1.0, QB = 0.6.

Figure 13. Change of the spherical flame propagation speed with the flame radius for LeF = 1.0,
LeZ = 1.0.

In the simulation of spherical flame initiation, the initial temperature in the whole
domain is uniformly zero. Due to the absence of chain-initiation reaction in two-step
chemistry model, a small amount of radical needs to be added. Here the initial radical
concentration distribution is set to be YZ = 0.001e−5r, which cannot ignite the mixture
without an external energy flux (i.e. q > 0) at the centre. A self-sustained propagation
flame is shown to be successfully initiated only when the ignition energy is above the min-
imum ignition energy (MIE). Figure 15 shows the results for LeF = 2 and LeZ = 1. It is
seen that for the same ignition power of q = 1.4, ignition succeeds when endothermicity
is zero but it fails for QB = 0.6 (i.e. the endothermicity is 10% of total heat release). For
q = 1.5, successful ignition is achieved for both QB = 0 and QB = 0.6 while endothermic-
ity reduced the propagation speed of the spherical flame. Therefore, ignition is suppressed
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Figure 14. Change of the Markstein length with endothermicity for LeF = 1.0, LeZ = 1.0.

Figure 15. Flame propagation speed as a function of flame radius at different ignition powers for
LeF = 2 and LeZ = 1.

and the MIE increases when endothermicity is included. In a brief summary, the above
results in Figures 13–15 from 1D transient simulation are consistent with theoretical results
from analysis based on quasi-steady assumption.

6. Conclusions

Spherical flame initiation and propagation are analysed with endothermic chain-branching
reaction and exothermic recombination reaction. Within the framework of large activation
energy and quasi-steady assumptions, a correlation describing spherical flame propaga-
tion speed as a function of flame radius is derived. Based on this correlation, the effects
of endothermicity of chain-branching reaction on flame speed, Markstein length, ignition
kernel development, and critical ignition conditions are successfully assessed. Spheri-
cal flame propagation is shown to be influenced significantly by the endothermicity of
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chain-branching reaction. It is found that with the increase of endothermicity, the radical
accumulation at flame front is supressed and thus the flame becomes weaker. Therefore, the
flame speed decreases with the increase in endothermicity. The Markstein length is found
to increase with endothermicity. Therefore, spherical flame propagation is more sensitive
to the stretch rate for higher endothermicity of chain-branching reaction. Ignition is also
strongly affected by the endothermicity of chain-branching reaction. The endothermicity
prohibits the ignition kernel development. Therefore, the critical ignition power is found
to increase with endothermicity.

It is noted that the theory is restricted to quasi-steady state and large activation energy
assumptions. In order to confirm the validity of theoretical prediction, one-dimensional
transient simulations with finite reaction rates are conducted. It is shown that the quasi-
steady-state assumption used in theoretical analysis is reasonable and that the results from
theoretical analysis agree qualitatively with those from numerical simulation.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
HL and ZC were supported by National Natural Science Foundation of China [grant numbers
91741126 and 91541204]. HZ was supported by the start-up grant [grant number R-265-000-604-
133] by the assistant professorship provided by National University of Singapore.

ORCID
Zheng Chen http://orcid.org/0000-0001-7341-6099

References

[1] M.L. Frankel and G.I. Sivashinsky, On effects due to thermal expansion and Lewis number in
spherical flame propagation, Combust. Sci. Technol. 31 (1983), pp. 131–138.

[2] B. Deshaies and G. Joulin, On the initiation of a spherical flame kernel, Combust. Sci. Technol.
37 (1984), pp. 99–116.

[3] L. He, Critical conditions for spherical flame initiation in mixtures with high Lewis numbers,
Combust. Theor. Model. 4 (2000), pp. 159–172.

[4] R. Addabbo, J.K. Bechtold, and M. Matalon, Wrinkling of spherically expanding flames, Proc.
Combust. Inst. 29 (2002), pp. 1527–1535.

[5] C.J. Sung, A. Makino, and C.K. Law, On stretch-affected pulsating instability in rich hydro-
gen/air flames: asymptotic analysis and computation, Combust. Flame 128 (2002), pp.
422–434.

[6] Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and
planar flame, Combust. Theor. Model. 11 (2007), pp. 427–453.

[7] J.W. Dold, Premixed flames modelled with thermally sensitive intermediate branching kinetics,
Combust. Theor. Model. 11 (2007), pp. 909–948.

[8] J.W. Dold, R.W. Thatcher, A. Omon-Arancibia, and J. Redman, From one-step to chain-
branching premixed flame asymptotics, Proc. Combust. Inst. 29 (2002), pp. 1519–1526.

[9] J.W. Dold, R.O. Weber, R.W. Thatcher, and A.A. Shah, Flame balls with thermally sensitive
intermediate kinetics, Combust. Theor. Model. 7 (2003), pp. 175–203.

[10] I.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, Mathematical Theory of Combustion and
Explosions, Consultants Bureau, New York, 1985.

[11] A. Linan, F.A. Williams, Fundamental Aspects of Combustion, Oxford University Press, New
York, 1993.

http://orcid.org/0000-0001-7341-6099


18 H. Li et al.

[12] H. Zhang and Z. Chen, Spherical flame initiation and propagation with thermally sensitive
intermediate kinetics, Combust. Flame 158 (2011), pp. 1520–1531.

[13] H. Zhang, P. Guo, and Z. Chen, Critical condition for the ignition of reactant mixture by radical
deposition, Proc. Combust. Inst. 34 (2013), pp. 3267–3275.

[14] H. Zhang and Z. Chen, Bifurcation and extinction limit of stretched premixed flames with chain-
branching intermediate kinetics and radiative loss, Combust. Theor. Model. 22 (2018), pp.
531–553.

[15] B. Bai, Z. Chen, H. Zhang, and S. Chen, Flame propagation in a tube with wall quenching of
radicals, Combust. Flame 160 (2013), pp. 2810–2819.

[16] H. Zhang and Z. Chen, Effects of heat conduction and radical quenching on premixed
stagnation flame stabilised by a wall, Combust. Theor. Model. 17 (2013), pp. 682–706.

[17] V.V. Gubernov, H.S. Sidhu, and G.N. Mercer, Combustion waves in a model with chain
branching reaction and their stability, Combust. Theor. Model. 12 (2008), pp. 407–431.

[18] V.V. Gubernov, H.S. Sidhu, G.N. Mercer, A.V. Kolobov, and A.A. Polezhaev, The effect of
Lewis number variation on combustion waves in a model with chain-branching reaction, J.
Math. Chem. 44 (2008), pp. 816–830.

[19] V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, and H.S. Sidhu, Stability of combustion waves
in the Zeldovich–Liñán model, Combust. Flame 159 (2012), pp. 1185–1196.

[20] V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, and H.S. Sidhu, Analysing the stability of pre-
mixed rich hydrogen–air flame with the use of two-step models, Combust. Flame 160 (2013),
pp. 1060–1069.

[21] G.J. Sharpe, Effect of thermal expansion on the linear stability of planar premixed flames for a
simple chain-branching model: The high activation energy asymptotic limit, Combust. Theor.
Model. 12 (2008), pp. 717–738.

[22] G.J. Sharpe, Thermal-diffusive instability of premixed flames for a simple chain-branching
chemistry model with finite activation energy, SIAM J. Appl. Math. 70 (2009), pp. 866–884.

[23] V.V. Gubernov, V.I. Babushok, and S.S. Minaev, Phenomenological model of chain-branching
premixed flames, Combust. Theor. Model. (2018). In press. DOI:10.1080/13647830.2018.
1520305.

[24] P.L. Simon, S. Kalliadasis, J.H. Merkin, and S.K. Scott, Inhibition of flame propagation by an
endothermic reaction, IMA J Appl Math 68 (2003), pp. 537–562.

[25] B.F. Gray, S. Kalliadasis, A. Lazarovici, C. Macaskill, J.H. Merkin, and S.K. Scott, The sup-
pression of an exothermic branched–chain flame through endothermic reaction and radical
scavenging, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 458 (2002), pp. 2119–2138.

[26] A. Lazarovici, S. Kalliadasis, J.H. Merkin, and S.K. Scott, Flame quenching through endother-
mic reaction, J. Eng. Math. 44 (2002), pp. 207–228.

[27] V.V. Gubernov, J.J. Sharples, H.S. Sidhu, A.C. McIntosh, and J. Brindley, Properties of com-
bustion waves in the model with competitive exo- and endothermic reactions, J. Math. Chem.
50 (2012), pp. 2130–2140.

[28] V.V. Gubernov, S.S. Minaev, V.I. Babushok, and A.V. Kolobov, The effect of depletion of
radicals on freely propagating hydrocarbon flames, J. Math. Chem. 53 (2015), pp. 2137–2154.

[29] C.P. Please, F. Liu, and D.L.S. McElwain, Condensed phase combustion travelling waves with
sequential exothermic or endothermic reactions, Combust. Theor. Model 7 (2003), pp. 129–
143.

[30] C. Qian, H.S. Sidhu, J.J. Sharples, I.N. Towers, and V.V. Gubernov, Combustion waves from
a sequential exothermic and endothermic reaction, 19th International Congress on Modelling
and Simulation, Perth, Australia, 2011.

[31] F.N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-Höinghaus, C.K. Law, and F. Qi, Advances
and challenges in laminar flame experiments and implications for combustion chemistry, Prog.
Energy Combust. Sci. 43 (2014), pp. 36–67.

[32] Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spher-
ical flames: Methane/air at normal temperature and pressure, Combust. Flame 162 (2015), pp.
2442–2453.

[33] M. Faghih and Z. Chen, The constant-volume propagating spherical flame method for laminar
flame speed measurement, Sci. Bull. 61 (2016), pp. 1296–1310.

[34] B. Lewis, G. Von Elbe, Combustion, Flames and Explosions of Gases, Elsevier, New York,
2012.

https://doi.org/10.1080/13647830.2018.1520305


Combustion Theory an Modelling 19

[35] P.D. Ronney, Laser versus conventional ignition of flames, Opt. Eng. 33 (1994), pp. 510–522.
[36] G. Joulin and P. Clavin, Linear stability analysis of nonadiabatic flames: Diffusional-thermal

model, Combust. Flame 35 (1979), pp. 139–153.
[37] P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog.

Energy Combust. Sci. 11 (1985), pp. 1–59.
[38] H. Zhang, P. Guo, and Z. Chen, Outwardly propagating spherical flames with thermally

sensitive intermediate kinetics and radiative loss, Combust. Sci. Technol. 185 (2013), pp.
226–248.

[39] Z. Chen, M.P. Burke, and Y. Ju, On the critical flame radius and minimum ignition energy for
spherical flame initiation, Proc. Combust. Inst. 33 (2011), pp. 1219–1226.

[40] C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, 2010.
[41] Z. Chen, X. Gou, and Y. Ju, Studies on the outwardly and inwardly propagating spherical flames

with radiative loss, Combust. Sci. Technol. 182 (2010), pp. 124–142.
[42] W. Han and Z. Chen, Effects of finite-rate droplet evaporation on the ignition and propagation

of premixed spherical spray flame, Combust. Flame 162 (2015), pp. 2128–2139.
[43] Z. Chen, Effects of radiation and compression on propagating spherical flames of methane/air

mixtures near the lean flammability limit, Combust. Flame 157 (2010), pp. 2267–2276.


	1. Introduction
	2. Mathematical model
	3. Theoretical analysis
	4. Results and discussion
	4.1. Effects of endothermicity on spherical flame propagation
	4.2. Effects of endothermicity on spherical flame initiation

	5. Numerical validation
	6. Conclusions
	Disclosure statement
	Funding
	ORCID
	References



