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The outwardly propagating spherical flames in premixed gas containing water droplets are theoretically 

studied in this work. The correlations between the flame propagation speed, droplet distribution and 

flame radius are derived, based on the large activation energy and quasi-planar flame assumptions. With 

this, flame bifurcation and multiplicity are analysed, focusing on the effects of initial droplet mass load- 

ing, evaporative heat loss and Lewis number. Meanwhile, the model can predict different gaseous flame 

types and liquid droplet distributions, as well as the bifurcations and transitions between them. It is 

shown that the spherical flame propagation is strongly affected by water droplet properties. When initial 

loading and/or heat loss coefficient are small, there is only one normal stable flame. Two stable flames 

arise when they increase, i.e. normal and weak flames. Increased droplet loading mainly affects the weak 

flame, resulting in decreased propagation speed, increased values of evaporation onset and completion 

fronts. However, increased heat loss affects both normal and weak flames, and flame bifurcation is ob- 

served for large heat loss. Droplet properties also greatly influence the weak flame transition between 

different regimes. Our results also show that Lewis number has significant influence on droplet-laden 

spherical flame propagation, in terms of flame bifurcation and regime transition. The Lewis number 

would affect the flame propagation jointly with the positive stretch rate and/or the evolving temper- 

ature gradients near the flame front through the interactions with the dispersed evaporating droplets. 

Furthermore, the magnitudes of Markstein length of the normal flames decrease when Lewis number 

approaches unity. However, those of the weak flames are mostly negative, indicating the enhancement 

over the shown Lewis number range. The larger magnitudes of Markstein length of weak flames show 

stronger sensitivity to stretch than those of normal flames. Finally, different flame types seen from our 

theoretical analysis are summarised. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fire suppression systems and extinguishing media have at-

racted wide attention because of frequent fire and explosion haz-

rds from industrial, civil and aerospace sectors. As a clean and

conomic agent, water mist is effective for fire suppression, and

as been adopted for commercial practice (e.g. fire sprinklers)

 Naito et al., 2011 ; Yang et al., 2004 ). Grant et al. (20 0 0) and

iu and Kim (20 0 0) review the state of the art regarding the ap-

lications of water spays in fire protection engineering. Scientif-

cally, fires or flames laden with sprayed water mist would in-

olve complex two-phase combustion dynamics, due to the inter-
∗ Corresponding author at: Department of Mechanical Engineering, Faculty of En- 

ineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576. 
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hase exchanges of mass, momentum, energy and chemical species

 Lentati and Chelliah, 1998 ; Mitani, 1982a ). The interpretation for

heir coupling can be made based on the thermal, physical and

hemical effects from the dispersed water droplets. It is known

hat vaporization of liquid water to vapour can extract thermal

nergy (i.e. thermal effects) from the gas environment, and large

uantities of water vapour may also reduce the oxygen concentra-

ion of the surrounding atmosphere (i.e. dilute effects) ( Grant et al.,

0 0 0 ). Either of them is expected to considerably change the

ombustion characteristics of practical fire systems. Regarding the

hemical effects, the water droplet can inhibit ( Lentati and Chel-

iah, 1998 ) or promote ( Babushok et al., 2015 ) the homogeneous

hemical reaction pathways somehow. For instance, water vapour

s expected to have higher three-body collision efficiency com-

ared to other species (e.g. nitrogen), and hence enhances the rad-

cal recombination, which further weakens the combustion process

 Lentati and Chelliah, 1998 ). However, overall, the chemical effects

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103220
http://www.ScienceDirect.com
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Nomenclature 

A pre-exponential factor of Arrhenius law 

C p gas heat capacity 

d droplet diameter 

D gas molecular diffusivity 

D th gas thermal diffusivity 

E activation energy 

H evaporation heat loss 

K stretch rate 

L Markstein length 

l th flame thickness of an adiabatic planar flame 

Le Lewis number 

m mass 

N d droplet number density 

q v latent heat of vaporization 

q c chemical reaction heat release 

Q ignition energy 

R 0 universal gas constant 

R f flame radius 

R v vaporization front 

s d droplet surface area 

t, r temporal and spatial coordinates 

T temperature 

T b flame temperature of an adiabatic planar flame 

T v boiling point 

u b laminar flame speed of an adiabatic planar flame 

U flame propagation speed 

Y gas mass fraction 

Y d droplet mass loading 

Z Zel’dovich number 

Greek letters 

ρ density 

ω v heat transfer rate 

ω c chemical reaction rate 

λg gas heat conductivity 

η moving coordinate attached to the propagating 

flame front 

ηv location of evaporation front in the moving coordi- 

nate 

ηcp location of evaporation completion front in the 

moving coordinate 

� heat exchange coefficient 

σ thermal expansion ratio 

δ initial droplet mass loading 

Superscripts 

~ dimensional quantity 

Subscripts 

d corresponding to the liquid phase 

f at the flame front 

g corresponding to the gas phase 

v at the front of onset vaporization 

0 in the fresh mixture 

U unburned zone 

B burned zone 

Acronym 

ECF Evaporation Completion Front 

EOF Evaporation Onset Front 

FF Flame Front 

from the dispersed water droplets are relatively minor, compared

to the other two ( Lentati and Chelliah, 1998 ; Seshadri, 1978 ). 
There have been some experimental ( Ingram et al., 2013 ;

adilla et al., 2018 ; Sakurai et al., 2013 ; Sasongko et al., 2016 ;

icariotto and Dunn, 2018 ; Yoshida et al., 2015 ; Yoshida et al.,

013 ) and numerical ( Lee et al., 2017 ; Modak et al., 2006 ;

arkar et al., 2019 ; Yang and Kee, 2002 ) studies on gaseous flames

ith water mists. For instance, Sakurai et al. (2013) experimen-

ally investigate extinguishment of propane/air co-flowing diffu-

ion flame by fine water droplets and their emphasis is laid

n the effects of the water droplets on the flame base struc-

ures. Yoshida et al. (2015 , 2013 ) conduct a series of experi-

ents over a wider range of water mist diameters to investi-

ate their influences on inhibition of counterflow methane/air dif-

usion flames. Their findings show that stretch rate and water

ass fraction would jointly affect the flame extinction dynamics.

odak et al. (2006) and Yang and Kee (2002) simulate freely prop-

gating hydrogen-, methane- and propane-air flames laden with

ater droplets. Based on their results, the optimum droplet size

or reducing the burning velocity is about 2 μm for hydrogen,

hile it is around 10 μm for methane and propane. Recently,

ee et al. (2017) computationally investigate the extinction lim-

ts of counterflow non-premixed water-droplet-laden methane/air

ames at various pressures. These observations, subject to specific

uels and droplet properties, are insightful to understand the influ-

nces of the water droplets in various flame configurations. 

Through theoretical analysis, more general studies are con-

ucted on the effects of droplet evaporation on the fundamen-

al droplet-laden combustion processes. Dvorjetski and Greenburg

nvestigate the effects of polydispersed water spray on extinc-

ion of counterflow polydispersed spray flames and gaseous dif-

usion flames ( Dvorjetski and Greenberg, 20 02 , 20 04 ). In their

ork, the effects of spray polydispersity on optimal flame sup-

ression conditions are discussed. Blouquin and Joulin (1998) use

symptotic analysis to obtain a relation between the changes

n burning rate, initial amount and size distribution of water

roplets, and the gas properties/composition for steady planar

ames. Belyakov et al. (2018) use linear stability analysis to anal-

se the laminar flame propagation and extinction in the gas mix-

ure with monodispersed water mist by considering water droplet

vaporation in pre-flame and post-flame zones. 

In particular, due to the simple one-dimensional configuration,

he spherical flame has been popularly investigated by asymp-

otic analysis to understand the general flame dynamics, e.g. in

efs. Chen and Ju (2007) , Chen (2010) , He (20 0 0) , Zhang and

hen (2011) and Zhang et al. (2013b ). About two-phase situations,

or example, Greenberg (2007) develops a theoretical model to

valuate the finite-rate fuel evaporation and droplet drag effects on

pherical flame with liquid fuels. Then, Han and Chen (2015) ap-

ly the model suggested by Greenberg (2007) to investigate the

ffects of finite-rate fuel droplet evaporation on ignition and prop-

gation of premixed spherical spray flame. Recently, Zhuang and

hang (2019) derive a simplified theory for initiation, propagation

nd extinction of spherical flames with water droplets. Two scenar-

os are considered therein, corresponding to two different spatial

istributions of water droplets. Significant phenomena are seen, for

nstance, regarding flame bifurcation and flammability limit result-

ng from the dispersed liquid droplets ( Zhuang and Zhang, 2019 ). 

In the above-mentioned investigations (except Ref.

elyakov et al., 2018 ), the dispersed droplets are always as-

umed to exist in the entire domain of interest. However, in

ractical situations, different properties of water droplets and local

as atmosphere may result in diverse droplet distributions and

nteractions with the local gas mixture ( Grant et al., 20 0 0 ). For

xample, small droplets are readily (fully) vaporized before the

ame and their interactions with the reaction front are expected

o be weak. Large droplets, however, may survive in the whole

omain, and therefore simultaneously affect the hot burned zone
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Fig 1. Schematic of outwardly propagating spherical flame with water droplet evap- 

oration. The red line denotes the flame front ( R f ), whereas the open circles are the 

water droplets. The green solid and dashed lines respectively represent the fronts 

( R cp ) at which the droplets completely vaporize behind or before the flame front. 

The blue line ( R v ) represents the front where the droplets start to evaporate. The 

shaded area corresponds to the burned zone. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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nd fresh mixture zone. Furthermore, from the perspective of

ransient analysis, when the reaction front propagates, the droplet

ay preferentially finish the evaporation in some locations due

o, e.g. the comparatively high local temperature and/or droplet

eynolds number. Obviously, this would lead to time-varying and

patially partial distributions of evaporating droplets before or

ehind the propagating flame front. Therefore, the interactions

e.g. evaporative heat loss) between the moving flame front and

artially dispersed droplets are expected to be complicated, char-

cterized by significant local and/or unsteady behaviours. Based

n cloud bomb experiments, Bradley et al. (2014) analyse the

elation between the spatial progress of droplet evaporation (i.e.

hether droplets are fully vaporized in unburned or burned zone)

nd flame speed variations. Thimothée et al. (2017) experimentally

nvestigate the passage of fuel droplets through a spherical two-

hase flame and they find that the droplet size and the droplet

nter-distance are the most important parameters which control

he possibility for the droplet to penetrate the burnt gases. How-

ver, investigations on this problem are still limited, and therefore

ow the flame responds to the evolving distributions of the liquid

roplet phase is not fully understood. 

The present work aims to conduct the theoretical analysis

ased on premixed spherical laminar flames with water droplets.

he focus is to examine the flame bifurcation and multiplicity
ig 2. Schematic of four zones and the distributions of temperature and mass fractions 

ehind the flame front (regime 1) and (b) droplets completely vaporize before the flame 
f the foregoing two-phase premixed reaction system, subject to

he effects of droplet evaporation heat loss, initial mass loading

nd gas phase Lewis number. Compared to our previous analy-

is in Ref. Zhuang and Zhang (2019) and other theoretical studies

 Greenberg, 2007 ; Han and Chen, 2015 , 2016 ), the novelty of this

ork is that we consider the continuously evolving (therefore, fully

r partially dispersed) distributions of evaporating droplets when

he spherical flame propagates. The rest of the paper is structured

s below. Mathematical model and theoretical analysis are pre-

ented in Sections 2 and 3 , respectively. Results from the theoreti-

al analysis will be discussed in detail in Section 4 . Section 5 closes

he paper with the main conclusions. 

. Mathematical model 

The physical model and the typical flame structures in our work

re shown in Figs. 1 and 2 , respectively. A brief interpretation is

resented below for the current physical model through comparing

t with our previous models in Ref. Zhuang and Zhang (2019) . 

1) Firstly, different from the previous models with three

zones ( Greenberg, 2007 ; Han and Chen, 2015 ; Zhuang and

Zhang, 2019 ), our model includes four zones (see Fig. 2 ) to

describe droplet evaporation and fuel combustion, which are

demarcated by the Evaporation Onset Front (EOF) R v , Flame

Front (FF) R f and Evaporation Completion Front (ECF) R cp .

It should be noted that for R v and R cp , the term “front” is

loosely used here to identify the locations where the droplets

critically start and finish vaporization in our model. In Refs.

Greenberg (2007) , Han and Chen (2015) and Zhuang and

Zhang (2019) , only EOF and FF are considered. 

2) Secondly, as the spherical flame propagates, the above char-

acteristic fronts and their relative distance can continuously

evolve, subject to the instantaneous coupling of the two phases.

Specifically, in Fig. 1 , EOF R v corresponds to the location where

the droplet starts to evaporate, which is defined when the

droplet temperature reaches the boiling temperature. Note that

EOF at R v is always before the FF at R f . Various evaporation

capacities of water droplets may be presented in practical sit-

uations, depending on the droplet characteristics (e.g. diame-

ter and mass loading) and evaporation rate ( Belyakov et al.,

2018 ). As such, the ECF R cp may lie before or after the FF R f ,

i.e. 0 ≤ R cp < R f (solid green line in Fig. 1 ) or R cp > R f (dashed

green line in Fig. 1 ). Behind ECF, no droplets are left. For the

former, it is termed as regime 1 hereafter, whereas for the
in an outwardly propagating spherical flame with (a) droplets completely vaporize 

front (regime 2). 
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latter, it is regime 2. Their flame structures are schematically

demonstrated in Fig. 2 (a) and (b), respectively. 

3) Thirdly, this model can generally describe the evolutions of ECF

through quantifying its movement initially from the spherical

centre, leading to the transition from fully dispersed to partially

dispersed droplet distributions in a propagating spherical flame.

In Ref. Zhuang and Zhang (2019) , this transition is not included,

and the two cases studied in our previous work are the special

solutions (i.e. R cp = 0 and R cp = R f , respectively) of the current

model. 

These three new features are expected to provide more de-

tailed descriptions of droplet dynamics in the theoretical analysis,

thereby rendering our model more general and flexible. 

2.1. Governing equations 

Eulerian descriptions are adopted for the droplet phase

( Crow et al., 2011 ), in which case the droplet phase can be treated

as an inter-penetrating medium. Like previous theoretical studies

( Belyakov et al., 2018 ; Han and Chen, 2015 , 2016 ; Blouquin and

Joulin, 1998 ), the liquid droplets in the fuel-lean gaseous mix-

ture with constant atmospheric pressure considered here are di-

lute, and therefore the interactions among them are negligible.

Also, the inter-phasic kinetic equilibrium is assumed, and hence

the droplets have the same velocities as gas phase. These simpli-

fications were validated and popularly used in the previous ana-

lytical studies of gas-droplet reaction systems ( Greenberg, 2007 ;

Greenberg et al., 1996 ). Furthermore, in zone 1 (pre-vaporization)

presented in Fig. 2 , thermal equilibrium between droplets and

fresh pre-mixture is assumed, and hence they have the same tem-

perature ( Belyakov et al., 2018 ; Han and Chen, 2015 , 2016 ). Droplet

evaporation critically occurs at the EOF R v with boiling temper-

ature. Behind this front, the droplet temperature maintains the

boiling point and evaporation continues ( Belyakov et al., 2018 ;

Han and Chen, 2015 , 2016 ). In addition, the droplet is assumed to

be spherical and monodispersed. Note that, in this work, the pos-

sible droplet-induced flame front instability and the resultant vari-

ations of flame properties are not considered, which is typically

caused by the full coupling between the gas and droplet phases. 

The governing equation for droplet mass loading

 d ( ≡ ˜ N d ˜ m d / ̃  ρg ) , one can obtain the Eulerian equation for Y d 

∂ 

∂ ̃  t 

(
˜ N d ˜ m d 

˜ ρg 

)
= 

∂ Y d 
∂ ̃  t 

= − ˜ ω m 

˜ ρg 
, (1)

in which ˜ ρg is density of the local gaseous mixture, ˜ ω m 

is droplet

evaporation rate and 

˜ N d is droplet number density. Here we fur-

ther assume that the heat transferred from the surrounding gas to

the droplets is completely used for phase change, which is related

to the latent heat of evaporation ˜ q v ( Hayashi and Kumagai, 1975 ;

Belyakov et al., 2018 ; Zhuang and Zhang, 2019 ). Therefore, ˜ ω m 

in

Eq. (1) can be estimated from the heat transfer rate ˜ ω v 

˜ ω m 

= 

˜ ω v 

˜ q v 
= 

1 

˜ q v 
˜ N d ̃

 h ̃

 s d 
(

˜ T − ˜ T v 
)
. (2)

Here ˜ s d = π ˜ d 2 is the droplet surface area with 

˜ d being the

droplet diameter. ˜ T is the gas temperature, whilst ˜ T v is the boiling

temperature. ˜ h is the heat transfer coefficient, which is estimated

using the following correlation from Ranz and Marshall (1952) 

Nu = 

˜ h ̃

 d 

˜ λg 

= 2 . 0 + 0 . 6 Re 1 / 2 P r 1 / 3 , (3)

where ˜ λg is the thermal conductivity. Nu, Pr and Re are the Nus-

selt number, Prandtl number and droplet Reynolds number, respec-

tively. Here Re is defined as Re = ˜ ρd 
˜ d | ̃  u g − ˜ u d | / ̃  μg , where ˜ ρd is the
roplet material density, ˜ μg is the gaseous mixture dynamic vis-

osity and ˜ u g and ˜ u d are the velocities for gas and liquid phases,

espectively. We can neglect the effects of droplet Reynolds num-

er in Eq. (3) due to the assumption of kinetic equilibrium and

herefore Nu ≈ 2 is assumed. Accordingly, the evaporation rate ˜ ω m 

n Eq. (2) can be rewritten as ˜ ω m 

= 2 ̃  N d 
˜ λg ̃  s d ( ̃  T − ˜ T v ) / ( ̃  q v ˜ d ) . 

It should be noted that differences exist between the cur-

ent evaporation model (i.e. Eq. 2 ) and those presented in Ref.

azhin (2006) , in which ˜ ω m 

is typically a function of Sherwood

umber, Spalding mass transfer number, as well as gas and droplet

roperties (density and diameter). For the studied problems in this

ork, since the kinetic equilibrium assumption is adopted, and

ence it can be expected that the effects of the Sherwood number

s small. Furthermore, since it is assumed that evaporation pro-

eeds at the boiling temperature and constant atmospheric pres-

ure, the water vapour at the droplet surface is relatively constant

nd hence the Spalding number would change slightly. Differently,

he current model, Eq. (2) , is based on the assumption of energy

alance between phase change and heat transfer with the gaseous

ixture. Essentially, it also considers the various effects of the gas

nd liquid phase properties and hence is physically comprehen-

ive. In this work, only the evaporative cooling on the dynamics

f fuel-lean flames will be studied, see Eqs. (4) and (5) . Therefore,

he current evaporation model is expected to be sufficient. This can

lso be confirmed by the previous theoretical work with the same

odel ( Belyakov et al., 2018 ; Zhuang and Zhang, 2019 ), from which

he physically sound critical flame phenomena have been unveiled.

For gas phase, we adopt the well-known diffusive-thermal

odel ( Joulin et al., 1979 ), according to which the density, ther-

al and transport properties are assumed to be constant. The va-

idity of the constant thermal property assumption has been con-

rmed in the previous detailed numerical simulations of gaseous

ropagating spherical flames ( Chen and Ju, 2007 ; Li et al., 2018 ;

hang and Chen, 2011 ; Zhang et al., 2013a ). Furthermore, since

he liquid droplets are dilute and their mass concentration is suf-

ciently small, the transport properties are assumed to be not af-

ected by their presence ( Belyakov et al., 2018 ; Greenberg, 2007 ;

an and Chen, 2015 ). Hence, the gas motion induced by thermal-

xpansion and droplet evaporation are neglected. These simplifica-

ions were also used in previous analytical studies of both gaseous

ames and two-phase flames with dispersed liquid droplets

 Chen and Ju, 2007 ; Chen et al., 2009 ; Han and Chen, 2015 , 2016 ;

e, 20 0 0 ; Zhang and Chen, 2011 ; Zhang et al., 2013b , a ; Chen et al.,

011 ) and reasonable results are obtained for the general features

f spherical flames with droplets. As such, the governing equations

or temperature and fuel mass fraction of gas phase respectively

re 

˜ g ̃  C p 
∂ ̃  T 

∂ ̃  t 
= 

1 

˜ r 2 
∂ 

∂ ̃  r 

(
˜ r 2 ˜ λg 

∂ ̃  T 

∂ ̃  r 

)
+ 

˜ q c ̃  ω c − ˜ ω v , (4)

˜ g 
∂ ̃  Y 

∂ ̃  t 
= 

1 

˜ r 2 
∂ 

∂ ̃  r 

(
˜ r 2 ˜ ρg ̃  D 

∂ ̃  Y 

∂ ̃  r 

)
− ˜ ω c , (5)

here ˜ r is the radius, and 

˜ Y is the fuel mass fraction. ˜ ρg , ˜ C p and
˜ 
 are the density, heat capacity and molecular diffusivity of the

aseous fuel, respectively. ˜ q c is chemical reaction heat release per

nit mass of fuel. ˜ ω c is the reaction rate for one-step irreversible

eaction and is calculated as 

˜  c = ˜ ρg ̃
 A ̃

 Y exp 

(
− ˜ E / ̃  R 

0 ˜ T 
)
, (6)

here ˜ A is the pre-exponential factor of Arrhenius law, ˜ E is the

ctivation energy, and 

˜ R 0 is the universal gas constant. Besides, ra-

iation heat transfer is not included in this work. 
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We introduce the following non-dimensional variables 

 = 

˜ u 

˜ u b 

, r = 

˜ r 

˜ l th 

, t = 

˜ t 
˜ l th 

˜ u b 

, Y = 

˜ Y 

˜ Y 0 
, T = 

˜ T − ˜ T 0 
˜ T b 

. (7)

Here ˜ T 0 and 

˜ Y 0 denote the temperature and fuel mass fraction in

he fresh mixture, respectively. ˜ u b , ˜ T b = ˜ q c ̃  Y 0 / ̃  C p , ˜ l th = 

˜ D th / ̃  u b are the

aminar flame speed, flame temperature and flame thickness of an

diabatic planar flame without water mist addition, respectively.
˜ 
 th = ̃

 λg / ( ̃  ρg ̃  C p ) is the gas thermal diffusivity. 

As shown in the previous theoretical analysis for both gaseous

ames and two-phase flames with dispersed liquid droplets

hen and Ju, 2007 ; Chen et al., 2009 ; Han and Chen, 2015 , 2016 ;

e, 20 0 0 ; Zhang and Chen, 2011 ; Zhang et al., 2013b , a ; Chen et al.,

011 ), it is reasonable to adopt the quasi-steady state assumption

n the moving coordinate system attached to the stably propagat-

ng flame front R f ( t ), i.e. η = r − R f (t) . This assumption has been

alidated by transient numerical simulations for gaseous spherical

ames without droplets ( Chen and Ju, 2007 ; He, 2000 ; Li et al.,

018 ; Zhang and Chen, 2011 ), in which the unsteady effects are

ound to have a negligible influence in light of the overall balance

etween diffusion, reaction and convection processes in stably

ropagating spherical flames. Due to relatively dilute water droplet

oncentration and the chemically inert characteristics, the influ-

nces of water droplets on the flame zone thickness are small and

herefore gaseous combustion still dominates in the studied prob-

em ( Belyakov et al., 2018 ; Han and Chen, 2015 ). In addition, due to

he kinetic equilibrium between two phases, the droplets approx-

mately follow the motion of the gas phase. Therefore, the quasi-

teady state assumption in η coordinate system will be adopted for

oth gas and droplet equations in the present analysis. The non-

imensional form of the gas and droplet equations, i.e. Eqs. (3) –

 (5) , under the quasi-steady state assumption ( ∂ /∂ t = 0 ), reads 

U 

dT 

dη
= 

1 (
η + R f 

)2 

d 

dη

[(
η + R f 

)2 dT 

dη

]
+ ω c − ω v , (8) 

U 

dY 

dη
= L e −1 1 (

η + R f 

)2 

d 

dη

[(
η + R f 

)2 dY 

dη

]
− ω c , (9) 

U 

d Y d 
dη

= −ω v 

q v 
, (10) 

here U = d R f (t ) / d t is the non-dimensional flame propagating

peed and Le = 

˜ D th / ̃
 D is the Lewis number. The normalized latent

eat of vaporization is q v = ˜ q v / ( ̃  C p ̃  T b ) , and the chemical reaction is

 c = ̃

 l th ̃  ω c / ( ̃  ρg ̃  u b ̃  Y 0 ) . Additionally, the non-dimensional interphase

eat transfer rate ω v is 

 v = �( T − T v ) . (11) 

Here T v is the non-dimensional boiling temperature, the heat

xchange coefficient � in Eq. (10) is 

= π ˜ N d Nu ̃

 d ̃  D 

2 
th ̃  u 

−2 
b 

. (12) 

As shown in Eq. (12) , the non-dimensional parameter � essen-

ially is a gross parameter affected by both gas and droplet proper-

ies ( Belyakov et al., 2018 ; Zhuang and Zhang, 2019 ). To avoid the

onlinearity in Eq. (10) , note that we do not include the depen-

ence of � on Y d ( � ~ Y d 
1/3 ) and consider d as a constant, which

s also done by Belyakov et al. (2018) . 

In the current work, propagation of the droplet-laden spher-

cal flames under moderate and weak stretch rate conditions

ill be considered. Therefore, like Refs. Bechtold et al. (2005) ,

echtold and Matalon (1987) , Law (2006) , Chen et al. (2009) ,

hung and Law (1988) , Frankel and Sivashinsky (1984) , Ronney and

ivashinsky (1989) and Zhang et al. (2013b ), we assume that the
eactive-diffusive structure of the propagating spherical flame is

uasi-planar ( R f >> 1) in this study. Therefore, Eqs. (8) –(10) can

e reduced to 

d 2 T 

d η2 
+ 

(
2 

R f 

+ U 

)
dT 

dη
+ ω c − ω v = 0 , (13)

d 2 Y 

d η2 
+ 

(
2 

R f 

+ LeU 

)
dY 

dη
− Le ω c = 0 , (14) 

U 

d Y d 
dη

= −ω v 

q v 
. (15) 

The validity of the above assumption ( R f >> 1) in studying

he spherical flame propagation has been confirmed in Refs.

echtold et al. (2005 ), Bechtold and Matalon (1987 ), Law (2006 ),

hen et al. (2009 ), Chung and Law (1988 ), Frankel and Sivashinsky

1984 ), Ronney and Sivashinsky (1989 ) and Zhang et al. (2013b ),

hrough comparing the flame propagating speeds predicted by

ore detailed theories or numerical simulations. 

.2. Jump and boundary conditions 

The non-dimensional boundary conditions for both gas phase

 T and Y ) and droplet phase ( Y d ) equations at the spherical centre

 η = −R f ) and in the fresh mixture ( η → ∞ ) are 

= −R f : 
dT 

dη
= 0 , 

dY 

dη
= 0 , Y d = 0 . (16)

→ ∞ : T = 0 , Y = 1 , Y d = δ. (17)

Here δ is the initial mass loading of the water droplets in the

resh mixture. 

At the EOF, η = ηv = R v − R f , the temperature T , fuel mass frac-

ion Y and droplet mass loading Y d satisfy the following jump con-

itions ( Belyakov et al., 2018 ; Han and Chen, 2015 , 2016 ) 

 = T v , [ Y ] = [ T ] = 

[
dY 

dη

]
= 

[
dT 

dη

]
= 0 , [ Y d ] = 0 . (18)

At the ECF, η = ηcp = R cp − R f , the temperature T , fuel mass

raction Y and droplet mass loading Y d satisfy the following jump

onditions ( Belyakov et al., 2018 ) 
 

 

 

 

 

 

 

[ Y ] = [ T ] = 

[
dY 

dη

]
= 

[
dT 

dη

]
= 0 , [ Y d ] = 0 , i f ηcp > 0 

[ T ] = 0 , 
d T + 

dη
= 0 , [ Y d ] = 0 . i f ηcp < 0 

(19) 

The superscript “+ ” denotes the value from the side of on-

oming gas flow. As mentioned above, in our previous work

 Zhuang and Zhang, 2019 ), the ECF is assumed to coincide with the

ame front or the spherical centre, and therefore the above jump

onditions, i.e. Eq. (19) , are not enforced. 

In the limit of large activation energy, chemical reactions in gas

hase are confined at an infinitesimally thin flame sheet (i.e. η = 0 )

 Chen and Ju, 2007 ; Joulin et al., 1979 ). Therefore, the correspond-

ng jump conditions at FF, i.e. η = 0 , are ( Han and Chen, 2015 ,

016 ) 

 = T f , Y = 0 , [ Y d ] = 0 , −
[

dT 

dη

]
= L e −1 

[
dY 

dη

]

= 

[
σ + ( 1 − σ ) T f 

]2 
exp 

[
Z 

2 

(
T f − 1 

σ + ( 1 − σ ) T f 

)]
, (20) 

here T f is the flame temperature, σ is the thermal expansion

atio and Z is the Zel’dovich number. In Eq. (20) , Y = 0 is seen

s the appropriate condition for the present nonadiabatic flame

heet model with evaporative heat loss. The square brackets, i.e.

 f ] = f ( η+ ) − f ( η−) , denote the difference between the variables

t two sides of the EOF ( η = ηv ) or ECF ( η = ηcp ) or FF ( η = 0 ). 
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3. Theoretical analysis 

Eqs. (13) - (15) with proper jump and boundary conditions in

Section 2.2 are solved analytically in zones 1, 2, 3 and 4 (as shown

in Fig. 2 ), respectively. They will be presented below in terms of

the solutions of the above system, as well as the correlations be-

tween flame propagating speed and radius. 

3.1. Distributions of fuel mass fraction, droplet mass loading and 

temperature 

The solutions for fuel mass fraction, Y , in zones 1–4 are (Note

that the subscripts for Y denote the zone indices shown in Fig. 2 ,

which also applies for Y d and T ) 

 1 , 2 = 1 − exp 

(
−2 + Le R f U 

R f 

η

)
, (21)

 3 , 4 = 0 . (22)

The solutions for droplet mass loading, Y d , in zones 1 – 4 are 

 d1 = δ, (23)

 d2 = δ + T v 
�

U q v 

2 + R f U 

R f ( γa − γb ) 

×
{

exp [ γb ( η − ηv ) ] − 1 

γb 

− exp [ γa ( η − ηv ) ] − 1 

γa 

}
, (24)

 d3 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 , i f ηcp > 0 

�

U q v 

T f − T v 
exp ( −γa ηcp ) 

γa 
− exp ( −γb ηcp ) 

γb 

·
{

exp [ γa ( η − ηcp ) ] − 1 

γa γa 
− exp [ γb ( η − ηcp ) ] − 1 

γb γb 

}
, i f ηcp < 0 

(25)

 d4 = 0 , (26)

where γa,b = 0 . 5[ − 2 
R f 

− U ±
√ 

4� + 

( 2+ R f U ) 2 
R 2 

f 

] . 

The solutions for gas temperature, T , in zones 1 – 4 are 

T 1 = T v exp 

[
−2 + R f U 

R f 

( η − ηv ) 

]
, (27)

T 2 = T v − T v 
2 + R f U 

R f ( γa − γb ) 
{ exp [ γa ( η − ηv ) ] − exp [ γb ( η − ηv ) ] } , 

(28)

T 3 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

T v − T v 
2 + R f U 

R f ( γa − γb ) 
{ exp [ γa ( ηcp − ηv ) ] − exp [ γb ( ηcp − ηv ) ] }

+ T v 
1 

γa − γb 

{ γa exp [ γa ( ηcp − ηv ) ] − γb exp [ γb ( ηcp − ηv ) ] } 
·
{

exp 

[
2 + R f U 

R f 

( ηcp − η) 

]
− 1 

}
, i f ηcp > 0 

T v + 

T f − T v 
exp ( −γa ηcp ) 

γa 
− exp ( −γb ηcp ) 

γb 

{
exp [ γa ( η − ηcp ) ] 

γa 
− exp [ γb ( η

γb

T 4 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

T f , i f ηcp > 0 

T v + 

T f − T v 
exp ( −γa ηcp ) exp ( −γb ηcp ) 

{
1 

γa 
− 1 

γ

}
. i f ηcp < 0 

(30)
γa 
− γb 

b T  
 

) ] 
}

, i f ηcp < 0 

(29)

.2. Correlations for propagating spherical flames with water droplets

Based on the jump conditions in Eq. (20) , one obtains the fol-

owing algebraic system for the correlations between flame tem-

erature T f , flame propagating speed U , flame radius R f , EOF ηv and

CF ηcp : 

If the droplets evaporate completely in the combustion prod-

cts, i.e. −R f ≤ ηcp < 0 in regime 1, then the correlation reads 

 v 
2 + R f U 

R f ( γa − γb ) 
{ γa exp [ γa ( −ηv ) ] − γb exp [ γb ( −ηv ) ] } 

+ 

T f − T v 
exp ( −γa ηcp ) 

γa 
− exp ( −γb ηcp ) 

γb 

{ exp [ γa ( −ηcp ) ] − exp [ γb ( −ηcp ) ] } 

= 

2 + Le R f U 

Le R f 

= 

[
σ + ( 1 − σ ) T f 

]2 
exp 

[
Z 

2 

T f − 1 

σ + ( 1 − σ ) T f 

]
, (31)

 f = T v − T v 
2 + R f U 

R f ( γa − γb ) 
{ exp [ γa ( −ηv ) ] − exp [ γb ( −ηv ) ] } , (32)

+ T v 
�

U q v 

2 + R f U 

R f ( γa − γb ) 

{
exp [ γb ( −ηv ) ] − 1 

γb 

− exp [ γa ( −ηv ) ] − 1 

γa 

}

= 

�

U q v 

T f − T v 
exp ( −γa ηcp ) 

γa 
− exp ( −γb ηcp ) 

γb 

{
exp [ γa ( −ηcp ) ] − 1 

γa γa 

− exp [ γb ( −ηcp ) ] − 1 

γb γb 

}
. (33)

If the droplets evaporate completely before the FF, i.e. ηcp > 0

n regime 2, then the correlation reads 

 v 
2 + R f U 

R f ( γa − γb ) 
{ γa exp [ γa ( ηcp − ηv ) ] − γb exp [ γb ( ηcp − ηv ) ] } exp 

(
2 + R f U 

R f 
ηcp 

)

= 

2 + Le R f U 

Le R f 
= 

[
σ + ( 1 − σ ) T f 

]2 
exp 

[
Z 

2 

T f − 1 

σ + ( 1 − σ ) T f 

]
, (34)

 f = T v − T v 
2 + R f U 

R f ( γa − γb ) 
{ exp [ γa ( ηcp − ηv ) ] − exp [ γb ( ηcp − ηv ) ] } 

+ T v 
1 

γa − γb 

{ γa exp [ γa ( ηcp − ηv ) ] 

− γb exp [ γb ( ηcp − ηv ) ] } 
{

exp 

(
2 + R f U 

R f 

ηcp 

)
− 1 

}
, (35)

+ T v 
�

U q v 

2 + R f U 

R f ( γa − γb ) 

{
exp [ γb ( ηcp − ηv ) ] − 1 

γb 

− exp [ γa ( ηcp − ηv ) ] − 1 

γa 

}
= 0 . 

(36)

Eqs. (31) –(33) , as well as Eqs. (34) –(36) , describe the correla-

ions between flame propagation speed U , radius R f , temperature

 f , EOF ηv and ECF ηcp when the droplet-laden spherical flames
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Fig. 3. Change of flame propagation speed with the heat transfer coefficient at dif- 

ferent initial droplet mass loadings and Le = 1.0 in planar flames. The open circle 

indicates the turning point. The shaded area corresponds to the solutions of regime 

1, whereas the unshaded one regime 2. Solid lines: stable flames; dashed lines: un- 

stable flames. 
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ropagate outwardly with −R f ≤ ηcp < 0 (regime 1) and ηcp > 0

regime 2), respectively. Note that due to the existence of the ECF

ocation ηcp in the current model, the system of the correlation

ould have four equations, instead of three in our previous work

 Zhuang and Zhang, 2019 ). For droplet dynamics, this theory can

escribe the evolutions from fully dispersed to partially dispersed

onditions, and also the transitions from regime 1 to regime 2

or the interactions between ECF and FF in propagating spherical

ames. Various parameters are included in the foregoing equations,

ncluding Lewis number ( Le ), heat exchange coefficient ( �), and

nitial droplet mass loading ( δ). Therefore, their effects on prop-

gation of spherical flames can be discussed through numerically

olving Eqs. (31) - (36) . 

The current model can recover the correlations for droplet-free

pherical flames ( Chen and Ju 2007 ) in the limit of δ → 0. In

ddition, when the flame radius tends to be infinite ( R f → + ∞ ),

he current model can be reduced into that for two-phase planar

ames from Ref. Belyakov et al. (2018) . In particular, when ηcp = 0

i.e. ECF critically lies at FF), Eqs. (31) –(33) and Eqs. (34) –(36) can

e simplified into the unified form, i.e. 

 v 
2 + R f U 

R f ( γa − γb ) 
{ γa exp [ γa ( −ηv ) ] − γb exp [ γb ( −ηv ) ] } 

= 

2 + Le R f U 

Le R f 

= 

[
σ + ( 1 − σ ) T f 

]2 
exp 

[
Z 

2 

T f − 1 

σ + ( 1 − σ ) T f 

]
, (37) 

 f = T v − T v 
2 + R f U 

R f ( γa − γb ) 
{ exp [ γa ( −ηv ) ] − exp [ γb ( −ηv ) ] } , (38) 

+ T v 
�

U q v 

2 + R f U 

R f ( γa − γb ) 

{
exp [ γb ( −ηv ) ] − 1 

γb 

− exp [ γa ( −ηv ) ] − 1 

γa 

}
= 0

(39) 

Eqs. (37) - (39) are the same as the correlations in which the

roplets are critically completely vaporized in the reaction sheet,

.e. case 1 in our previous analysis ( Zhuang and Zhang, 2019 ) under

he quasi-planar assumption of R f >> 1. Besides, case 2 in our pre-

ious analysis ( Zhuang and Zhang, 2019 ) can also be captured by

he present model, i.e. when initial droplet mass loading δ is rel-

tively large, the droplets are fully distributed in the burned zone,

nd therefore the ECF remains in the spherical centre in the early

tage of flame propagation, i.e. ηcp = −R f . 

. Results and discussion 

The constants of the correlations used for the following anal-

sis include ( Belyakov et al., 2018 ; Chen and Ju, 2007 ): Zel’dovich

umber Z = 10, thermal expansion ratio σ = 0.15, normalized boil-

ng point of water T v = 0.222, normalized latent heat of water

vaporation q v = 1.256. Note that these values of T v and q v cor-

espond to the properties of liquid water at atmospheric pressure

 Belyakov et al., 2018 ). Noted that in the present study the influ-

nce of the properties of the fuel-air mixture on the q v is not con-

idered as done by Belyakov et al. (2018) and Han and Chen (2015) .

.1. Droplet-laden propagating planar flames 

The planar flame ( R f → + ∞ ) is the limiting case of the mod-

rately or weakly stretched spherical flame studied in this work,

nd therefore understanding the behaviours of the former would

e conducive for our ensuring analysis of the latter. The depen-

encies of flame propagation speed U on heat transfer coefficient

at different mass loadings δ with Le = 1.0 for the planar flame

re shown in Fig. 3 . These solutions are obtained by assuming the

ame radius is infinite large (i.e. R f → + ∞ ) in the correlations

rom Section 3.2 . 
For relatively small δ = 0.01, with increased Ω , U first slightly

ecreases in regime 1 (shaded areas, ECF behind the FF), whilst

eeps unchanged in regime 2 (i.e. ECF before the FF). For higher

(e.g. 0.05 or 0.1 in Fig. 3 ), this decrease is more pronounced in

egime 1, but in regime 2 U is still almost constant with lower U .

hen δ is 0.2-0.3, planar flame speed bifurcates and Z -shaped so-

utions are observable. There exist three branches, i.e. upper sta-

le (normal) flame with high speed, middle unstable flame and

ower stable (weak) flame with low speed. The first two always

ie in regime 1, while the last one may in regime 1 or 2. The jump

rom upper stable flame to lower stable one occurs (denoted by

he arrow in Fig. 3 ), which is also observed from the experimen-

al, numerical and theoretical work in two-phase systems ( Ju and

aw, 20 0 0 ; Li et al., 2019 ; Mitani, 1982b ; Modak et al., 2006 ;

louquin and Joulin, 1998 ). The turning points of the reversed C -

haped curves are always located in regime 1 and approximately

orresponds to the burning velocity between 0.5 and 0.6, close to

he values corresponding to flammability limits predicted by the

heoretical analysis ( Blouquin and Joulin, 1998 ) and numerical sim-

lation of two-phase flames ( Modak et al., 2006 ; Yang and Kee,

002 ), and also gaseous non-adiabatic flames ( Ju et al., 2001 ). 

For even higher δ (e.g. 0.4 or 0.5), the reversed C -shaped

ranches are gradually clustered in regime 1, while the lower

eak flame branch tends asymptotically to zero (that for δ = 0 . 5

s not shown in Fig. 3 ). The low-speed weak flame is also observed

rom the theoretical analysis on planar flames with dispersed wa-

er mists ( Belyakov et al., 2018 ) and solid particles ( Ju and Law,

0 0 0 ), thereby confirming the correctness of our model. As shown

n Fig. 3 , the weak flame is mainly in regime 2, in which it is

aused by the evaporative heat loss effects in unburned zones,

hich is quantified by the pronounced temperature gradients near

he FF. With larger δ and/or �, the lower flame branches become

eaker, and the gas temperature distributions in the fresh mix-

ures are more distributed. Accordingly, the temperature gradients

ear the FF are smaller in the unburned zone ( Belyakov et al.,

018 ), which leads to slower thermal runaway from the chemical

eactions and hence a new balance can be established between rel-

tively weak heat release and slow thermal diffusive transport. In

he current non-radiative configuration, the planar flame does not

how a flammability limit, which is consistent with the findings

ade by Ju and Law (20 0 0) , and Ju et al. (2001) . Note that this

an be established within the unsteady formulation of the prob-

em. Generally, the droplet properties, i.e. δ and �, have significant
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Fig. 4. Flame propagation speed (a), temperature (b), evaporation onset front (c) and completion front (d) as functions of flame radius for regime 1 and regime 2 at 

δ = 0 . 25 , � = 0 . 02 and Le = 1.0. Four points in (a), I-IV, are selected for comparisons of their flame structures in Fig. 5 . Blue and red lines denote flames in regimes 1 

and 2, respectively. The shaded region in (d) corresponds to regime 1 and the remaining region is in regime 2. The continuity of regime 1 and regime 2 is denoted by a 

black diamond symbol. Solid lines: stable flames; dashed lines: unstable flames. Dashed-dotted line (i.e. a-a’ ): fully dispersed droplet distribution. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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influences on planar flame propagation. Since they are the limiting

solutions of spherical flames, the results in Fig. 3 would act as the

guidance to further explore the bifurcation and multiplicity of two-

phase spherical flames based on the model derived in Section 3 . 

4.2. General bifurcation behavior and structure of droplet-laden 

spherical flames 

Fig. 4 a–d show typical results of droplet-laden spherical flames,

about U, T f , ηv and ηcp as functions of R f with δ = 0 . 25 , � = 0 . 02

and Le = 1.0. In Fig. 4 a, an upper normal flame branch and a lower

C -shaped branch exist. The former is also observed in the previ-

ous theoretical analysis of gaseous-droplet flame in Refs. Han and

Chen (2015 ), Blouquin and Joulin (1998 ) and Zhuang and Zhang

(2019 ), whilst the latter is new. Based on the fold bifurcation the-

ory ( Ju et al., 1997 ; Thompson and Stewart, 2002 ), lines a-b and c-

e-f are stable, while line c-d unstable. Meanwhile, the blue curves

(i.e. a-b, c-d, c-e ) correspond to regime 1, while the red ( e-f ) regime

2. We first look at regime 1. Along line a-b, U monotonically in-

creases with R f and finally tends to be approximately 0.766 at large

R f ( U ≈ 0.767 close to that of planar flame with δ = 0 . 25 and

� = 0 . 02 in Fig. 3 ). The upper flame branch corresponds to the up-

per branch of flame temperature T f and lower branches of EOF and

ECF (i.e. ηv and ηcp ), see lines a-b respectively in Fig. 4 b–d. The

evaporation front evolutions with respect to the FF are the new re-

sults from our model and have not been included in the previous

theoretical analysis, e.g. ( Belyakov et al., 2018 ; Han and Chen, 2015 ;

Blouquin and Joulin, 1998 ; Zhuang and Zhang, 2019 ). It can be seen

that the higher T f , the smaller ηv , indicating that the droplets start

to evaporate closer to the FF, consistent with the findings from

Refs. Belyakov et al. (2018) and Zhuang and Zhang (2019) . It is no-
iceable that along the dash-dotted line a-a’ in Fig. 4 d, ηcp is al-

ays equal to −R f , indicating that the evaporating droplets fully

istributed in the domain when the flame radius is still small ( <

0). In this case, zone 4 shown in Fig. 2 a does not exist. Gradually,

CF arises at the spherical centre in the burned zone, moves out-

ardly and concentrically with the FF and finally ηcp tends to be -

0. This implies that the residual droplets only exist behind the FF

ith a finite distance for stably propagating spherical flames. For

revity, the upper stable flame branch will be termed as “normal

ame” hereafter. 

Along line c-e, U and T f gradually decrease with R f , whereas ηv 

nd ηcp have the opposite tendency. The lower the flame tempera-

ure T f , the farther the EOF in the unburned zone, with respect to

he FF. In the meantime, the ECF in the burned zone becomes close

o the FF. At R f ≈ 70 (i.e. the critical point “e ” shown in Fig. 4 ),

he local droplets critically complete the evaporation at the FF. In

he present model, the critical point “e ” can be determined with

qs. (37) - (39) . Further outward expansion of the flames leads to

he transition from regime 1 to regime 2, and in the latter case

he droplets have finished evaporation before they directly inter-

ct with the FF. The flame can still propagate to larger radius, with

onotonically decreased U and T f , as well as increased ηv and ηcp 

see lines e-f shown in Fig. 4 a–d). For this branch in regime 2, U fi-

ally tends to 0.067 at R f = 10 3 , which equals to the value for pla-

ar flame when δ = 0 . 25 and � = 0 . 02 as predicted in Fig. 3 . We

ill term the solutions of both lines c-e and e-f as “weak flames”

n the following analysis, although they may respectively belong to

egime 1 and 2 demarcated with the diamond symbol in Fig. 4 .

ote that here we term them as “weak flames” because they have

ower flame propagation speed U and temperature T f , compared to

he branch a-b . 
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Fig. 5. Distributions of temperature and droplet mass loading for points I-IV shown 

in Fig. 4 a. Bold dashed lines: flame fronts ( η = 0); Dashed lines: evaporation fronts 

( ηv and ηcp ). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 6. (a) Flame propagation speed, (b) evaporation onset front and (c) completion 

front as functions of flame radius for different δ at � = 0 . 02 and Le = 1.0. Legend 

same as those in Fig. 4 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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To compare the flame structures in regimes 1 and 2 in Fig. 4 ,

he spatial distributions of gas temperature and droplet mass load-

ng at four selected solutions (I, II, III and IV marked in Fig. 4 a) are

lotted in Fig. 5 . Note that I is normal flame solution, whilst the

est correspond to the weak flame solutions. Also, I and II are in

egime 1, IV in regime 2, and III lies at the transition point. For I,

he droplet is fully dispersed in both burned and unburned zones,

ut the loading Y d is comparatively high near the FF. As a normal

ame, it has high flame temperature (slightly less than unity), but

onsiderable temperature gradients in both zones. Particularly, for

ame I, the high temperature in unburned zone is localized, i.e.

< 5 in Fig. 5 . For the shown weak flames, the droplets are par-

ially distributed close to the FF in the unburned zone (e.g. II) or

nly in unburned zone (e.g. IV). Furthermore, the flame tempera-

ure is reduced gradually from II to IV, all of which are lower than

hat of the normal flame I. This is consistent with the tendency re-

ealed from Fig. 4 b. The temperature gradients in the burned zone

f the weak flames are small or even zero, which implies that the

hermal diffusivities towards there would be much smaller than

he normal flame. For the unburned zone, temperature gradients

lso decrease but are still finite. The temperature far from the FF in

he unburned zone ( η > 1) increases from I to IV. Accordingly, the

OFs ηv in flames I-IV gradually become far from the FF, as marked

n Fig. 5 . The similar observations are also made by Belyakov et al.

2018) based on droplet-laden planar flames. Therefore, different

egimes are responsible for different heat transport characteristics

aused by the distributions of the water droplets. This leads to new

eatures of the droplet-laden spherical flames, particularly weak

ames, which will be further discussed in the following. It can also

e found from our results (not presented here) that from regime 1

o regime 2 around III, the flame structures smoothly, not abruptly,

volve. Generally, the results in Figs. 4 and 5 confirm the ability

f our model to predict the general characteristics of consistently

ropagating FF and evaporation fronts, as well as the transition be-

ween different regimes and droplet distributions. 

.3. Spherical flame propagation 

.3.1. Effects of initial droplet mass loading and evaporative heat loss 

Fig. 6 a–c show the dependencies of flame propagation speed U ,

OF ηv and ECF ηcp on flame radius R f for � = 0 . 02 and Le = 1.0.

he effects of various initial droplet mass loadings δ are discussed,

nd the results of δ = 0 . 25 from Fig. 4 are also added for com-

arisons. The upper (lower) normal flame branch in Fig. 6 a cor-
esponds to the lower (upper) branches for ηv and ηcp in Fig. 6 b

nd c, respectively. When δ is relatively small (e.g. 0.1), only nor-

al flame solutions can be observed. With δ ≥ 0.2, besides that,

 C -shaped curve arises, with intermediate unstable solutions and

ower stable weak flame solutions. The turning points of these C -

haped curves are their critical flame radii, at which the outwardly

ropagating spherical flames can be initiated. The critical flame

adii decrease with increased initial droplet loading. This is prob-

bly because the larger loading can result in stronger temperature

radient around the FF, and therefore the new balance around the

F between the heat release and the heat diffusive transport can

e established in a smaller radius (i.e. with lower volumetric heat

oss). For the C -shaped branch, when δ ≥ 0.25, regime transition

ccurs at the critical locus (denoted with symbols in Fig. 6 ), and

egime 2 can exist at smaller radius due to increased δ. Also, along

he weak flame branch, U is smaller and decreases more quickly

ith R f at larger δ. This is justifiable since the stronger cooling

ffect from larger droplet mass loading would reduce the flame

ropagation speed. 

The EOFs ηv of the normal flames are almost unchanged with δ
see Fig. 6 b), while their ECFs ηcp are closer to the FF with smaller

(see Fig. 6 c). This can be explained by the fact that when the

nitial mass loading is smaller, droplets in a larger domain around

he spherical centre can finish the evaporation for the same flame

adius. Similar to line a-a’ in Fig. 4 , the dash-dotted line in Fig. 6 c

ndicates that at the early phase of spherical flame propagation,

roplets can survive in the entire domain at larger flame radius
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Fig. 7. (a) Flame propagation speed, (b) evaporation onset front and (c) completion 

front as functions of flame radius for different � at δ = 0 . 25 and Le = 1.0. The 

arrow in (a) indicates the flame jump transition. Legend same as those in Fig. 4 . 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) Flame propagation speed, (b) evaporation onset front and (c) completion 

front as functions of flame radius for different heat exchange coefficients � at small 

δ. Legend same as those in Fig. 4 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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with higher δ, say about ηcp = −40 when δ is 0.4. However, for the

weak flames, ηv increases with δ, due to the decreased flame tem-

perature and increased fresh gas temperature (see Fig. 5 ). For their

ECFs ηcp , the magnitudes (i.e. the distance off the FF) first decrease

(in regime 1) and then increase (in regime 2) when the initial

loading is increased. This is because the higher δ leads to weaker

flames (parameterized by lower U and T f ) due to evaporative heat

loss, which correspond to more distributed gas temperatures than

those of normal flames, as demonstrated in Fig. 5 . This would di-

rectly result in longer evaporation time for the droplets subject to

their temperature above boiling point, and therefore larger ECFs

ηcp . Therefore, the initial droplet mass loading considerably influ-

ences the flame multiplicity, regime variation as well as the weak

flames. 

Likewise, Fig. 7 a–c show the dependencies of flame propagation

speed U , EOF ηv and ECF ηcp on flame radius R f for a fixed value of

δ = 0 . 25 at Le = 1.0. Here the effects of heat exchange coefficients

� are discussed. In contrast to the δ effects on U-R f solutions, �

influences both the upper and lower C -shaped branches, i.e. nor-

mal and weak flames. Regimes 1 and 2 co-exist in the weak flames

in all the shown cases except � = 0 . 06 , which is entirely in regime

2. As shown in Fig. 7 a, with increased � from 0.01 to 0.0249, the

normal flame and the C -shaped branch become close to each other.

When � = 0 . 02498 , they merge into a new τ -shaped curve, lead-

ing to flame bifurcation (indicated by the arrow in Fig. 7 a). Specif-

ically, at the turning point, U experiences a jump from the nor-
al flame to the weak flame. Note that this bifurcation occurs

n regime 1. This process acts as the re-establishment of the en-

rgy balancing between thermal runaway and diffusive transport

n regime 1 (heat loss in both burned and unburned zones) and

egime 2 (only in unburned zone). This new U − R f pattern for

ame propagation has not been observed from the previous the-

retical analysis in Refs. Han and Chen (2015) and Zhuang and

hang (2019) for gas-droplet spherical flames. Moreover, the τ -

haped curve also exists with � = 0 . 025 , beyond which ( � = 0.03

nd 0.06 in Fig. 7 ) it degrades into a single weak flame branch.

hese weak flames can propagate at very small radii (e.g. η = 10)

nd therefore sustain high stretch. However, whether they evolve

rom a flame ball, an igniting kernel, or a self-sustaining spherical

ame close to flammability limit, as indicated in Refs. Chen and Ju

20 07) , He (20 0 0) , Zhang and Chen (2011) , Zhang et al. (2013a) and

huang and Zhang (2019) , cannot be predicted based on the cur-

ent model. 

The upper (lower) stable flame branch in Fig. 7 a corresponds

o the lower (upper) branches for ηv and ηcp in Fig. 7 b and c, re-

pectively. The EOFs of the normal flames are negligibly affected

y variable �. However, their corresponding ECFs in Fig. 7 c de-

rease with �, since the droplets can be depleted more quickly

ith stronger evaporation rates. The dash-dotted line in Fig. 7 c in-

icates that full droplet distributions in the burned and unburned

ones can persist at larger flame radius when evaporative heat loss

s smaller. For the weak flames, both EOFs and ECFs are marginally
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Fig. 9. (a) Flame propagation speed, (b) evaporation onset front and (c) completion 

front as functions of flame radius for different heat exchange coefficients � at large 

δ. Legend same as those in Fig. 4 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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nfluenced by �, compared to the results in Fig. 6 caused by dif-

erent δ. 

To further elucidate the combined effects of various droplet

roperties, i.e. � and δ, on spherical flame propagation, Figs. 8 and

 demonstrate the U − R f , ηv − R f and ηcp − R f relations for vari-

us � at very small or very large δ. These parameter ranges loosely

orrespond to the upper and lower parts of the U − Ω plane in-

icated in Fig. 3 . As shown in Fig. 8 a, at δ = 0 . 01 , lines #1 and

2 have the similar U − R f curves, in the form of normal flames.

heir EOFs ηv are close to each other and almost constant with re-

pect to R f (see Fig. 8 b). This means that the effects of Ω on EOFs

re small, consistent with the findings from Fig. 7 b. However, it

s interesting to find from Fig. 8 c that the line #1 is in regime 1,

hile line #2 is in regime 2, although their U − R f and ηv − R f pat-

erns are similar, and both are normal flames. Note that in Figs. 4 ,

 and 7 , all the flames in regime 2 are weak, different from the

urrent line #2 in Fig. 8 . For lines #3 and #4 with larger δ and

 , their propagation speeds are lower, i.e. about 0.4, and they also

orrespond to regime 1 and regime 2, respectively. In all the cases

n Fig. 8 , the droplets are partially distributed with finite ηcp (no

ashed-dotted lines as in Figs. 6 and 7 ) due to the small initial

roplet mass loading considered here. 

Fig. 9 shows the counterpart results for relatively large δ (0.4

nd 0.5), which shows the qualitatively similar behaviours of U −
 f , ηv − R f and ηcp − R f relations as those in Figs. 6 and 7 . How-

ver, Fig. 9 a shows that the weak flames can propagate toward

arge R f in an extremely low speed. Also, different from the results
n Fig. 8 a, at the early stage of the spherical flame propagation, full

istributions of the water droplets in burned and unburned zones

re observed, as denoted with the dash-dotted line in Fig. 9 c. 

.3.2. Effects of Lewis number 

For the results discussed above, the Lewis number Le is fixed to

e unity. The effects of Lewis number on propagation of gaseous

pherical flames are important ( Chen and Ju, 2007 ; Han and Chen,

015 ; He, 20 0 0 ; Zhang et al., 2013a ; Zhuang and Zhang, 2019 ) and

herefore will be investigated in the context of two-phase flames

n Figs. 10 and 11 . Fig. 10 shows the relations of U − R f , ηv − R f 
nd ηcp − R f with Le = 0.8 and 1.2, and δ = 0.1 −0.3. The results

rom Le = 0.8 are qualitatively similar to those presented in Fig. 6 .

owever, different from Fig. 6 a, in Fig. 10 a, along the normal flame

ranch, the flame propagation speed U decreases, and tends to

.766 when R f is sufficiently large. This decrease is due to the

referential effects of flame stretch (i.e. K ≡ 2 U / R f for spherical

ames) and small Lewis number ( < 1) ( Law, 2006 ; Chen and Ju,

007 ; Zhang and Chen, 2011 ; Zhang et al., 2013b ). Meanwhile, also

ecause of the foregoing flame enhancement effects, com pared to

hose with same δ (say 0.2 or 0.3) in Fig. 6 ( Le = 1.0), the weak

ames can be initiated at larger critical radii in regime 1 (larger

olumetric heat loss) with Le = 0.8. Moreover, its propagating

peed monotonically decreases with radius, due to the gradually

ecreasing flame stretch. Meanwhile, the higher loading δ leads to

ower propagation speed U of the weak flames, whilst those of the

ormal flames are almost not affected by variable δ. The relations

etween ηv , ηcp and R f with respect to δ in Fig. 10 b and c are qual-

tatively similar to those in Fig. 6 . 

At Le = 1.2, considerable differences can be found, compared to

e = 1.0 in Fig. 6 . Note that only single regime, regime 1, exists

or δ = 0.1 and 0.2. For δ = 0.3, the normal flame is in regime

, whilst the weak one is in regime 2, as indicated in Fig. 10 c.

pecifically, only one normal flame branch is observed for δ= 0.1,

long which U monotonically increases with R f . With larger δ, e.g.

.2 and 0.3, U − R f curves have two separate branches: upper C -

haped one and a lower stable weak flame branch. For the nor-

al flames, they can only propagate beyond a critical flame radius,

ince the Lewis number effects become comparatively small. For

he weak flames discussed here, they are in ( δ= 0.2) or close to

 δ= 0.3) regime 2. Both can exist from small to large radii. Their

peeds U show monotonic increase ( δ= 0.2) or first increase and

hen decrease towards a constant value ( δ= 0.3). These are not ob-

erved in the results above, e.g. in Figs. 4 , 6 and 7 . For their ex-

stence at small radii, the flame temperature and its gradient at

he fresh gas side are relatively low. This to some degree offsets

he stronger thermal conduction caused by the larger Lewis num-

er (and therefore larger thermal diffusivity). When they further

ropagate outwardly, the effects of Lewis number and temperature

radient compete: if the former dominates, then the propagation

peed of weak flame can monotonically increase, e.g. δ= 0.2; if the

ater, it demonstrates slightly non-monotonic behaviours as seen

rom the results of δ = 0.3. 

Fig. 11 shows the results with Le = 0.8 and 1.2, but with vari-

ble evaporation heat loss coefficients Ω , i.e. 0.01 −0.03. Compared

o Fig. 7 , the effects of increased Ω on the curves of U − R f , ηv − R f 
nd ηcp − R f are similar, including the flame bifurcation and differ-

nt regimes. Nevertheless, in Fig. 11 a, the normal flame propaga-

ion speed decreases with the flame radius due to the decreasing

nhancement from the combined effects of Lewis number and pos-

tive stretch rate. Therefore, for large Ω (say 0.03), Z -shaped curve

an be seen, instead of the τ -shaped one in Fig. 7 . At the upper

urning point of this curve, the flame jumps suddenly from nor-

al flame to weak one in the same regime, i.e. regime 1, and fi-

ally transits to regime 2 at a larger radius (denoted by the sym-

ols). In fact, this kind of Z -shaped curve can also be observed for
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Fig. 10. (a) Flame propagation speed, (b) evaporation onset front and (c) completion front as functions of flame radius for different δ at � = 0 . 02 with Le = 0.8 (left) and 

1.2 (right). Legend same as those in Fig. 4 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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� = 0.025 in Fig. 11 (the turning point is beyond R f = 10 3 , hence

not shown here). Interestingly, different from that of � = 0.03,

in this scenario, the flame directly jumps from normal flame in

regime 1 into weak flame in regime 2, because the radius at the

turning point (beyond R f = 10 3 ) is larger than that at the critical

transition point ( R f ≈ 10 2 ). It can be observed from the results of

Le = 1.2 that the U − R f solutions of � = 0 . 01 are characterized

by a (unclosed) C -shaped branch and a lower weak flame branch.

However, there is only one weak flame branch for larger Ω , i.e.

0.025 and 0.03. The evolutions of EOFs and ECFs with respect to

FFs in Fig. 11 b and c for Le = 0.8 and 1.2 are generally similar to

those in Fig. 7 with unity Lewis number. 

4.4. Stretch rate and Markstein length 

Due to the multiple regimes seen from the above analysis, how

they respond to the stretch rate merits further discussion. There-

fore, the Markstein length ( L ) will be discussed in the following,

to quantitatively assess the influence of stretching on the normal

and weak droplet-laden spherical flames ( Law, 2006 ). For spheri-

cal flames with low stretch ( R f >> 1 or K << 1), the following rela-

tion holds between flame propagation speed U and flame stretch K
 Law, 2006 ; Clavin, 1985 ) 

 = U 

0 − L · K, (40)

here U 

0 is the flame speed at zero stretch rate (i.e. for planar

ame at R f → ∞ ). For spherical flames, K can be derived from

 ≡ 2 U / R f . The Markstein length L essentially is the slope of the

 - K curve when K tends to be zero. 

Fig. 12 a shows the U – K curves for different droplet mass load-

ngs δ at � = 0 . 02 . The corresponding U-R f solutions have been

iscussed in Figs. 6 and 10 . For outwardly spherical flames, the

arger the flame radius, the lower the stretch rate. When δ = 0 . 1 ,

 of the normal flames is shown to increase (decrease) with the

tretch rate for Le = 0.8 ( Le = 1.0 and 1.2), which explains the dif-

erence of U − R f solutions for Le = 0.8 (see Fig. 10 ), 1.0 ( Fig. 6 )

nd 1.2 ( Fig. 10 ) for 10 1 < R f < 10 2 . When δ increases to 0.2,

he U–K curves of the normal flames have the similar variations to

hose with δ = 0 . 1 . However, in those of weak flames with Le = 0.8

nd 1.0, there exists a maximum K , beyond which no propagat-

ng spherical flames are observable. For larger δ, e.g. 0.3, the U–K

urves are similar to those of δ = 0 . 2 . 

Fig. 12 b shows the dependence of the Markstein length, L , on

he Lewis number, Le , for different initial loadings δ at � = 0 . 02 .
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Fig. 11. (a) Flame propagation speed, (b) evaporation onset front and (c) completion front as functions of flame radius for different heat exchange coefficients � at δ = 0 . 25 

with Le = 0.8 (left) and 1.2 (right). The arrow in (a) indicates the flame jump transition. Legend same as those in Fig. 4 . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 12. (a) Flame propagating speed U as a function of stretch rate K for different droplet mass loadings δ at � = 0 . 02 ; (b) Markstein length L as a function of Lewis number 

Le for normal flame (upper) and weak flame (lower) with different droplet mass loadings δ at � = 0 . 02 . 
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Fig. 13. (a) Flame propagating speed U as a function of stretch rate K for different heat exchange coefficients � at δ = 0 . 25 ; (b) Markstein length L as a function of Lewis 

number Le for normal flame (upper) and weak flame (lower) with for different heat exchange coefficients � at δ = 0 . 25 . 
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The upper sub-figure in Fig. 12 b corresponds to the normal flame

in Fig. 12 a, and the lower one corresponds to the weak flame.

For the normal flames with different δ, L is negative at small Le ,

whereas is positive for large Le . This indicates that under small

(large) Le conditions, the flame propagation speed would be en-

hanced (reduced) compared to the unstretched flame speed U 

0 .

This observation is consistent with that from the previous work

for gaseous and two-phase spherical flames ( Han and Chen, 2015 ;

Zhang et al., 2013b ). Meanwhile, the magnitudes of L become

smaller when Le is close to unity, indicating that the extent of

enhancement or reduction tends to be small. Moreover, for small

(large) Le , with increased δ from 0.1 to 0.2, the magnitudes of L

decrease (increase). Nevertheless, for the entire range of Le , when

δ is beyond 0.2, the variation of the Markstein length is negligibly

small. 

For the weak flames, Markstein length L is mainly negative for

the considered droplet mass loading, except for Le > 1.2 when

δ = 0.2. This physically means that the propagation speed U

of the weak flame would mainly be enhanced for most of the

shown Lewis numbers. When Le increases, the magnitudes of L

decrease, and therefore the enhancement is gradually minimized.

Since most of the weak flames fall category into as regime 2,

the variations of single-sided temperature gradients near the FF

at the fresh mixture zone considerably affect the thermal dif-

fusive transport. Meanwhile, the magnitudes of L for the weak

flames are generally larger than those for the normal flames.

When it comes to the effects of initial droplet mass loading,

generally, larger δ leads to larger magnitudes of the Markstein

length L , which means the stronger stretch effects on spherical

flames. 

Similarly, Fig. 13 shows the results for different heat exchange

coefficients � at δ = 0 . 25 . The corresponding U-R f solutions have

already been shown in Figs. 7 and 11 . In Fig. 13 a, the U – K curves

with Ω = 0.01 are similar to those in Fig. 12 a. For Ω = 0.025 and

0.03, the normal flame disappears or jump to the weak flame; in-

stead, only one weak flame branch is present, as shown in Fig. 13 a.

Also, for the upper branch, it can be observed from Fig. 13 b that

L −Le relation resembles that in Fig. 12 b, although here only un-

der the condition of Ω = 0.01 have we the normal flame solutions.

However, the influence of heat exchange coefficient � on the L −Le

curves for weak flames is negligible, different from that of droplet

mass loadings δ indicated in Fig. 12 b. 
.5. Typical flame bifurcation and multiplicity 

Flame bifurcations and multiplicity have been shown in the

revious sections. The typical kinds of flame bifurcation exist in

he two-phase propagating spherical flame are summarized here.

welve patterns are identified in terms of the droplet spatial dis-

ributions (i.e. “regime”) and gases flame (i.e. “stable/unstable” as

ell as “normal/weak”) characteristics, and listed individually in

ig. 14 , which will be further interpreted below. 

Pattern (1) is normal flame in regime 1. This pattern only has

ne stable branch and it can be observed at low droplet mass load-

ng ( δ) with small heat transfer coefficient ( �). In this pattern,

he EOF is close to the FF in unburned zone, but the ECF is in

urned zone (partially dispersed droplets) or no ECFs (fully dis-

ersed droplets). 

Pattern (2) is in regime 1 with intermediate propagation speed.

ompared to pattern (1), this pattern occurs for higher δ and

. Although the EOF is relatively far from the FF, nevertheless,

roplets are still fully or partially distributed in the burned zone,

ue to larger δ. 

Pattern (3) is in regime 1, and consists of two stable flame

ranches, i.e. the upper normal and the lower weak flame (within

 C -shaped curve). Compared to pattern (2), this bifurcation occurs

or higher δ and lower �. 

Pattern (4) is in regime 1 or regime 2 with a transition point.

his pattern is a successor to pattern (3) as δ increases. Along the

ower weak branch, the flame undergoes the smooth change from

egimes 1 to 2, depending on the movement of the ECF relative to

he FF. 

Pattern (5) is in regime 1 or regime 2 as τ -shaped curve. This

attern is a successor to pattern (4) as � increases. The normal

ame jumps into the weak flame at a critical radius, but both are

n regime 1. 

Pattern (6) is in regime 1 or regime 2 and has only one lower

ame branch. Similarly, this pattern is the successor to pattern (5)

s � increases. 

Pattern (7) evolves from pattern (4) with Lewis number above

nity, whereas patterns (8) and (9) evolve from pattern (5) with

ewis number below unity (reversed S -shaped curve). In the for-

er, the normal flame jumps into weak flame in regime 1. Con-

ersely, the latter shows the bifurcation from normal flame in

egime 1 into weak flame in regime 2. Patterns (10)-(12) are
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Fig. 14. Typical kinds of flame bifurcation and multiplicity of the two-phase premixed spherical flames. The arrows in (5) , (8) and (9) indicate the flame jump. Legend same 

as those in Fig. 4 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ormal, intermediate and weak flames, respectively, and are all in

egime 2. 

. Conclusions 

In the present work, we develop a general theoretical model

or outwardly propagating spherical flames with water droplets.

orrelations describing flame propagation speed, flame tempera-

ure, droplet distribution and flame radius are derived, based on

he assumptions of constant density, quasi-steadiness, low stretch

nd large activation energy. With these correlations, the influences

f initial droplet mass loading, evaporation heat loss and Lewis

umber on droplet-laden spherical flames are investigated. Mean-

hile, our model can generally predict different flame types (weak

r normal flames), flame stability (stable or unstable flames) and

roplet distributions (full or partial dispersion), as well as the bi-

urcations and transitions between the above distinct flame solu-

ions. 

The outwardly spherical flame propagation is strongly affected

y water droplet properties, i.e. initial droplet mass loadings ( δ)

nd heat exchange coefficients ( �). When δ and � are relatively

mall, there is only one normal stable flame. For increased val-
es of δ and �, two stable flames arise: normal and weak flames,

espectively. For a fixed �, increased δ mainly affects the weak

ame, leading to decreased flame propagation speed, increased

alues of evaporation onset and completion fronts. However, for

 fixed δ, increased � affects both normal and weak flames and

ame bifurcation is observed for large �. Different droplet proper-

ies also greatly influence the weak flame transition between dif-

erent regimes. 

Our results also show that the Lewis number also has signif-

cant influence on spherical flame propagation, in terms of flame

ifurcation and regime transition. The Lewis number would affect

he flame propagation jointly with the positive stretch rate and/or

he evolving temperature gradients along the flame front through

he interactions with the dispersed evaporating droplets. In ad-

ition, the magnitudes of Markstein length of the normal flames

re shown to decrease when the Lewis number approaches unity.

owever, those of weak flames are mostly negative, indicating the

nchantment for the shown Lewis number range. The generally

arger magnitudes of Markstein length of weak flames indicate

tronger sensitivity to stretch compared to those of normal flames.

Despite the above rich findings from our model, it should be

cknowledged that assumptions (e.g. constant thermal properties
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114–129 . 
and quasi-planar flames) are introduced to perform the forego-

ing theoretical analysis. Naturally, the conclusions drawn are only

valid for the problems where these assumptions hold. As our fu-

ture work, theoretical analysis through relaxing some of the above

assumptions and/or detailed numerical simulations will be con-

ducted to investigate propagation of two-phase spherical flames. 
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