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Abstract

It is well known that Navier-Stokes equations are not valid for those high-Knudsen and high-Mach flows, in which the 
local thermodynamically non-equilibrium effects are dominant. To extend the non-equilibrium describing the ability of 
macroscopic equations, Nonlinear Coupled Constitutive Relation (NCCR) model was developed from Eu’s generalized 
hydrodynamic equations to substitute linear Newton’s law of viscosity and Fourier’s law of heat conduction in 
conservation laws. In the NCCR model, how to solve the decomposed constitutive equations with reasonable 
computational cost is a key ingredient of this scheme. In this paper, an analytic method is proposed firstly. Compared to 
the iterative procedure in the conventional NCCR model, the analytic method not only obtains exact roots of the 
decomposed constitutive polynomials, but also preserves the nonlinear constitutive relations in the original framework 
of NCCR methods. Numerical tests to assess the efficiency and accuracy of the proposed method are conducted for 
argon shock structures, Couette flows, two-dimensional hypersonic flows over a cylinder and three-dimensional 
supersonic flows over a three-dimensional sphere. These superior advantages of the current method are expected to 
render itself a powerful tool for simulating the hypersonic rarefied flows and microscale flows of high Knudsen number 
for engineering applications.
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1.  Introduction

A deep reform has been taking place in the field of 
fluid mechanics in the past half century, during which 
the scope of fluid mechanics is extended from macro to 
micro and also from the ground to the space. As the 
altitude increases, the air density decreases gradually 
and the mean free path of the air molecules can be 
comparable to the relevant characteristic length scale of 
the studied problems. The Knudsen number (Kn), 
defined as the ratio of molecule mean free path to 
characteristic length, can be used to divide four 

different flow regimes, i.e. continuum regime, slip 
regime, transition regime and free molecular flow 
regime, corresponding to Kn ≤ 0.01, 0.01 < Kn ≤ 0.1, 
0.1 < Kn ≤ 10, and Kn >10, respectively1. In continuum 
regime and slip regime, Navier-Stokes (N-S) equations 
are always employed on the wall with slip boundary 
conditions to account for the local rarefied effect. 
However, as the mean free path continuously increases, 
N-S equations would be not valid in the transition and 
free molecular flow regimes. It indicates that the linear 
constitutive relations in conjunction with the slip 
boundary condition are not sufficient to capture the 
nonlinear velocity distribution within the Knudsen layer 
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and the multi-scale flows2-4 away from wall such as the 
strong shock wave structure5, 6, microscale flow, flow 
separation and wake flows.

Boltzmann equation is the core of study in the 
rarefied nonequilibrium flow. It describes the statistical 
behaviour of a thermodynamic system deviating from 
equilibrium state and thus can describe all of the four 
flow regimes mentioned above. However, there are 
many challenges in solving the Boltzmann equation 
because of its complex collision term. To accurately 
simulate the non-equilibrium dynamics, many effective 
theories and numerical methods are proposed based on 
Boltzmann equation. One of them is stochastic particle 
methods, such as Direct Simulation Monte Carlo 
(DSMC)7, 8 method which has always been used as a 
standard for validating other methods in numerical 
simulations. DSMC is recognized as the most reliable 
method for flows of high Knudsen number. However, 
DSMC faces stochastic fluctuation in low-speed flows 
and prohibitively high computational costs in the 
near-continuum regime due to the limitation of time 
steps and cell sizes. The others include deterministic 
method, such as Discrete Velocity Method (DVM)9, 10, 
Fast Spectral Method (FSM)11, Unified Gas-Kinetic 
Scheme (UGKS)12-14, Discrete Unified Gas Kinetic 
Scheme (DUGKS)15, 16 and Gas-Kinetic Unified 
Algorithm (GKUA)17-19. There is no stochastic 
fluctuation issue in these methods, but heavy 
computational cost caused by velocity space 
discretization inhibits its wide engineering application, 
especially for hypersonic flows.

Chapman-Enskog expansion method20-22 and 
moment method23-27 extend the scope of N-S equations 
from the continuum regime to those flows which are 
not far from the equilibrium. Burnett equations and 
Grad-type equations are the most representative ones of 
them25, 28, 29. However, Grad’s 13-moment equations 
encounter non-physical sub-shock problems beyond a 
critical Mach number30, 31 and conventional Burnett 
equations are contradictory to Gibbs relation32, 33 in 
some terms. They also violate the second law of 
thermodynamics, and encounter computational 
instability under some unfavorable conditions. These 
unsatisfactory properties limit their prediction ability in 
high-speed and low-density flow regimes. Some 
measures were also taken to remedy these 
methodologies, for example, the Simplified 
Conventional Burnett (SCB) for multidimensional 
hypersonic flow22, the regularized 13-moment 
equations23 (R13) and regularized 26 moment 
equations34 (R26). However, many problems still exist, 
e.g. complex additional higher boundary conditions. 

To minimize the deficiency of the N-S equations in 
the rarefied regime and overcome the instability and 
efficiency problems of other methods, Eu proposed 
Generalized Hydrodynamic Equations (GHEs)35-38. In 
Eu’s theory, the kinetic theory is strictly connected to 

extended irreversible thermodynamics. Through 
constructing a non-equilibrium canonical distribution 
function to connect entropy production with dissipative 
evolution of macroscopic non-conserved variables, the 
GHE is strictly enforced to be consistent with the 
second law of thermodynamics, which includes a set of 
evolution equations based on the distribution function 
within the framework of 13 moments. GHE has been 
successfully applied to calculate the shock structure 
profile for high Mach numbers and it gave results in 
good agreement with experiments39. A linearized 
version of GHE was also used to study sound wave 
absorption and dispersion in molecular gases40, which 
yielded good agreement with experimental data in 
nitrogen, hydrogen, deuterium, and HD 
(hydrogen-deuterium). However, it is very difficult to 
extend GHE to multi-dimensional problems because of 
the existence of the highly nonlinear coupled 
complicated terms for non-conserved variables, which 
limits its application in modern computational fluid 
dynamics. 

To solve multidimensional problems efficiently, Eu 
and Myong simplified GHE to a nonlinear algebraic 
system using adiabatic assumption39 and balance 
closure41, which is called as Nonlinear Coupled 
Constitute Relations (NCCRs). By decoupling NCCR 
into two directions, i.e. the compression expansion 
direction and the shear direction, the decomposed 
algebraic system can be solved by the iterative 
method42. One-dimensional shock wave structure and 
two-dimensional flat plate flow problems for 
monatomic gases have been used to validate the 
capability of the NCCR model in capturing the flow 
physics of high-speed and low-density flow regions43. 

Subsequently, the NCCR model was extended to a 
diatomic gas by considering excess normal stress 
associated with the bulk viscosity of gas and was 
adopted successfully in the two-dimensional hypersonic 
rarefied flow around a blunt body44. More 
investigations45-51 have been performed, including a 
discontinuous Galerkin method on unstructured grid 
developed for NCCR model49-51, an undecomposed 
NCCR solver developed by Jiang et al. in 
three-dimensional implicit Finite-Volume Method 
(FVM) framework52-56 and a new enhanced wall 
boundary condition based on NCCR model for 
micro-Couette flow57. Even though NCCR model is 
considerably simplified compared to original GHE, it is 
still difficult to be implemented and solved. One has to 
use iterative method to solve NCCR because of its high 
nonlinearity, which leads to the twice to three times 
higher computational cost compared to that of N-S 
equations.

In the present work, to overcome the foregoing 
complexity and inefficiency of the NCCR iterative 
solver, we aim to develop a simplified analytical 
method for the NCCR model. It is realized by 
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expanding the nonlinear factor of the NCCR model 
around the equilibrium state and retaining the relevant 
terms until the second order of accuracy. After the 
simplification, the traditional nonlinear coupled 
constitutive relations can be solved by analytical 
method instead of the iterative one. Therefore, the new 
method is more efficient and also preserves the 
capability of describing non-equilibrium flows. The rest 
of the paper is structured as below. Nonlinear coupled 
constitutive relations and conventional iterative method 
are introduced in Section 2. The expansion and 
truncation of the nonlinear factor are then presented in 
Section 3 to obtain the analytical method and 
comparison with the iterative method. In Section 4, 
benchmark test cases are conducted to assess the 
accuracy and efficiency of the proposed model, which 
are followed by the conclusions in Section 5.

2. Governing equation

2.1. Generalized hydrodynamic equations and 
nonlinear coupled constitutive relations

The governing equations of conserved variables (i.e. 
,  and  in Eq.(1)) and non-conserved  u E

variables (i.e.  and  in Eqs. (2) and (3)) for Π Q
monatomic gases, i.e. Eu’s generalized hydrodynamic 
equations36, read
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Here t is time,  is the divergence and      D / Dt
is the material derivative.  is the density,  is the  u
velocity vector of the fluid,  is the pressure,  is p T
the temperature,  is the unit tensor,  is the total I E
energy per unit mass,  is the shear stress tensor, Π

 is the heat flux vector,  is the specific heat Q pc
capacity,  is the thermal conductivity,  is the  

dynamic viscosity, and  and  are the 2 3

higher-order moments36, 42.  in Eq. (3) is the  q 
nonlinear factor related to entropy production38, 42, 
which takes the following form:

 (4)   sinh
q
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where  can be specified as a Rayleigh dissipation 
function36
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Here  is related to the degree of nonequilibrium47, m 
is the mass of a molecule, kB denotes the Boltzmann 
constant, and d is the mean diameter of the molecule. 
Also, in Eq. (5), “:” means the double inner product of 
two second-order tensors.

Based on Eu’s closure40 and Myong’s balanced 
closure41, the unclosed high-order terms  and 2

 in Eqs. (2) and (3) are assumed to be zero. 3
Moreover, since the non-conserved variables evolve 
faster than the conserved variables40, the steady-state 
assumption can be introduced for the equations of the 
non-conserved variables, i.e. Eqs. (2) and (3). 
Meanwhile, the conserved variables can be assumed to 
be constant within the time scale of change of 
non-conserved variables. This is adiabatic 
approximation40. Hence, we can neglect the material 
derivative terms, i.e. the first terms on the left-hand 
side of Eqs. (2) and (3). Following Myong’s work43, 44, 
the terms  and  can also be Q u ( ) /p  I Π Π
neglected in Eq.(3) for simplicity. In fact, it has been 
confirmed that these two terms have relatively small 
influence on predictions of the one-dimensional shock 
wave structures58. Therefore, based on the assumptions 
mentioned above, the algebraic equations of the 
non-conserved variables  and , i.e. NCCR Π Q
model, can be derived for monatomic gas from Eqs. (2) 
and (3) as

 (6)
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The following dimensionless variables and 
parameters are introduced:
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where  is the reference length,  is the speed of 0L a
sound,  is the total enthalpy per unit mass,  is h R
the specific gas constant, and  is the specific heat 
ratio. Here quantities with subscripts “ ” represent the 
inflow parameters, whilst the superscript of the 
asterisks denotes the dimensionless parameters, which 
will be omitted below for brevity. 

With Eq. (7), the dimensionless governing equations 
of the conserved variables, i.e. Eq. (1), for monatomic 
gas read
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where U is the solution vector of conserved variables, 
Fc is the inviscid flux vector, and Fv is the flux vector 
related to the non-conserved variables.  and  N 
are given by
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The Prandtl number Pr in Eq. (9) is assumed to be 
constant, and for monatomic gases, . The 2 3Pr /
Mach number (Ma) and Reynolds number (Re) are 
defined as

  (10)0u LuMa , Re
a




 

 

 

With Eq. (7), the NCCR model, i.e. Eq. (6), can be 
recast into the following non-dimensional form:
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Here c is a variable determined by the type of gas 
molecules42; for a rigid elastic spherical molecule, 

; for argon, ; for a Maxwellian 1.1908c  1.0179c 
molecule, .  in Eq. (4) is recast into 1.0138c   q 

. The quantities with carets in Eq. (11) are ˆq cR
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Moreover,  and  in Eq.(11) respectively 0Π̂ 0Q̂
represent the trace-free shear stress from linear 
Newtonian law and the heat conduction from linear 
Fourier’s law, whose original forms without caret are

 (13) 2
0 02 , T     Π u Q

2.2. Decomposed algebraic system for NCCR model

The dimensionless NCCR model, i.e. Eq. (11), is a set 
of algebraic equations with high nonlinearity and is 
difficult to be solved, even though it has been greatly 
simplified from GHE36. A decomposed nonlinear 
algebraic system of the NCCR model was proposed by 
Myong42, which can be solved by an iterative method. 
The iterative process of the NCCR model does not 
need to solve a coupled hyperbolic system with 
higher-order variables such as Grad’s 13-moment 
equations25, but only requires an additional procedure 
to calculate the stress and heat flux from the 
decomposed nonlinear algebraic system separately and 
then implement them in the equations of the conversed 
variables, i.e. Eq. (8), which shares a similar feature 
with the traditional N-S equation to solve the five 
components of conserved moments. Although Jiang et 
al. developed an undecomposed hybrid algorithm for 
NCCR54, its intrinsic complexity renders it difficult to 
be implemented. Also, its convergence characteristic 
has not been tested and therefore is still not clear. 
Nevertheless, Myong’s decomposed solver can be 
mathematically proved to be converged and seems easy 
for implementation. Therefore, the decomposed solver 
by Myong42 will be adopted in the current work.

Based on Myong’s decomposed algorithm42, 
three-dimensional problem can be decoupled 
approximately into three one-dimensional problems in 
x, y and z directions, i.e., 

 is  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , ,ˆ
xx xy xz yy yz zz x y zQ Q Q     

decomposed into, ,  ˆ ˆ ˆ, ,xx xy xz  

 and . In x  , , ˆˆ ˆ ˆ ,xy yy yz yQ    , , ˆˆ ˆ ˆ ,xz yz zz zQ  

direction, the shear stress and heat flux components 
 on a surface in three-dimensional  ˆˆ ˆ ˆ, , ,xx xy xz xQ  
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finite volume method induced by thermodynamic forces 
 can be approximated as the sum of two  , , ,x x x xu v w T

decomposed solvers: one on  describing  , ,0 0,x xu T
the compression and expansion flows, and the other on 

 and  describing shear flows.  0, 0, ,0xv  0,0, ,0xw
In order to give a brief decomposed solution process 
for three-dimensional monatomic NCCR model, we 
take a unified notation here54 and a rotation index is 
introduced firstly in Table 1.

Table 1  Description of unified notation and rotation index.

i xi ui j xj uj k xk uk

1 x u 2 y v 3 z w
2 y v 3 z w 1 x u
3 z w 1 x u 2 y v

2.2.1. Compression and expansion solver

The decomposed solver in the normal direction i of  ix
plane is given by
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Variables with the subscript 0 correspond to stress from 
linear Newtonian law and the heat conduction from 
linear Fourier’s law.

2.2.2. Shear flow solver

The decomposed solver in the two shear directions j 
and k of  plane isix
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2.2.3 Recombination of two decomposed solvers

The two decomposed solvers can be solved with the 
iterative method proposed by Myong and more details 

can be found in Refs.42, 54 After obtaining the iterative 
solutions in three dimensions, all non-conserved 
variables (e.g.  and ) are summed at the ˆ xu
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current time step as
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                (20)
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Then substitute these variables back into the 
conserved variable equation, i.e. Eq. (8), to continue 
the time marching.

3. Analytical NCCR model

Although the NCCR model has been simplified and 
decomposed compared to the Eu’s original equations42, 
its numerical solution is still not straightforward to be 
obtained due to its high nonlinearity. Conventional 
iterative algorithms include the fixed-point iterative 
method, Newton’s method, and coupled method54. 
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However, all these methods need numerous iteration 
steps to obtain the converged solutions from the initial 
conditions and may diverge under some unfavorable 
conditions. 

To overcome the deficiency of the iterative method, 
we will develop an analytical method for the NCCR 
model in this work. Since c is a positive value close to 
1 and  can be used to measure the degree of R̂
nonequilibrium47, we start with the Taylor expansion at 

 for the nonlinear factor  in Eqs. (2) ˆ 0cR   ˆq cR

and (3), i.e., 

 (21)
       3

2
sinh

1
6

ˆ ˆR Rˆ ˆq R Rˆ
c

c
R

c
c

c
     

 


where  is hyperbolic sine function and sinh

 means a higher order infinitesimal of  3
cR̂ 

  


. 3
cR̂

For flows in near space or in 
micro-electro-mechanical systems where the rarefaction 
and non-equilibrium effects are not as strong as those in 
highly transitional flows and free molecular flows1, the 
higher-order terms at the left-hand side of Eq. (21) can 
be truncated, and only the first- and second-order terms 
are retained, i.e.

 (22)   2ˆ
ˆ 1

6

cR
q cR  

Fig. 1.  Function curves of nonlinear factor  and its  ˆq cR
truncated version.

As we can see from Fig. 1, for continuum and slip 
regimes, the truncated  in Eq. (22) agrees well  ˆq cR

with the original  in Eq. (21). Note that the  ˆq cR

truncated factor in Eq. (22) is acceptable only under 
moderate nonequilibrium conditions. According to Liu 
et al.59, the nonlinear factor  is overestimated  ˆq cR

when  is large, which would under-predict the ˆcR
numerical stress and heat flux. Therefore, with the 
above analytical simplification, the NCCR solvers for 
both normal and tangential directions mentioned in 
Section 2.2 can be re-written as below.

3.1. Compression and expansion solver

Substituting Eq. (15) and Eq. (22) into Eq. (14), we can 
obtain

 0
0 0
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2 3
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 
    
 


 
  
 
  

 (23)

 (24),

,
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ˆ
ˆ ˆ

ˆ
i i i

i i ii i

i i

x u
x x xu

x x

Q
Q 




Eq. (23) is a cubic equation with respect to , and ,ˆ i i

i i

u
x x

we can show that there is a unique real root when 
 is satisfied. Exact root exists for Eq. , ,

,0 0ˆ ˆi i i i

i i i i

u u
x x x x  

(23) (see Appendix A) and therefore the real roots of 
 can be found. After substituting  into ,ˆ i i

i i

u
x x ,ˆ i i

i i

u
x x

Eq.(24),  is also obtained.ˆ
ixQ

3.2. Shear flow solver

Likewise, after substituting Eqs. (18) and (22) into Eqs. 
(16) and (17), a quintic equation with respect to  ,ˆ j i

i i

u
x x

can be derived

 (25)
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,
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2 2
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     
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

However, there is no algebraic expression for the 
solutions of general quintic equations over the 
rationals. As a result, Eq. (25) cannot be solved 
analytically. Alternatively, an approximation method is 
introduced to obtain the solutions instead of 
conventional iterative methods. Specifically, combining 
Eqs. (16) and (17) yields 

 (26) , , ,2 3ˆ ˆ ˆ 1 0
2

j i j i j i

i j i i i i

u u u
x x x x x x    

through which we can further derive
 (27),1 0ˆ j i

i i

u
x x  

Therefore, our goal is to obtain an approximate 
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analytical solution on the interval  for Eq. (25).  1,0
According to Abel-Ruffini theorem60, there is no 
solution in radicals to general polynomial equations of 
degree five or higher with arbitrary coefficients. Thus 
we can re-construct a quartic equation for 

, the leading orders of Eq. (25), with the , ,5 42ˆ ˆj i j i

i i i i

u u
x x x x 

least-square method. Excellent agreement between the 
fitting polynomial  and  on the 42.904433x 5 42x x
interval  is found in Fig. 2. Finally, the  1,0
approximate quartic equation on the interval 

 is obtained as,1 0ˆ j i

i i

u
x x  

 (28)
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Fig. 2.  Comparison between  and 5 42x x
 on the interval .42.904433x  1,0

Similarly, it is shown that there is a unique real 
root for Eq. (28) if  . Exact root can be ,1 0ˆ j i

i i

u
x x  

derived from Eq. (28) and the interested readers can 
see Appendix B for the detailed information.

3.3. Comparison with Myong’s decomposed solver

In Sections 3.1 and 3.2, a new analytical method for 
decomposed NCCR system is proposed. Compared to 
the conventional iterative methods used for Myong’s 
decomposed solver42, the analytical method is expected 
to be more efficient since the exact roots of the 
decomposed constitutive polynomials can be directly 
achieved. Meanwhile, it also preserves the nonlinear 
constitutive relations in the framework of the NCCR 
method. 

To illustrate the different nonlinear properties of the 
analytical and iterative methods, the constitutive 
relations for compression and expansion as well as 

shear flow problems (c = 1.0179) are respectively 
shown in Fig. 3 and Fig. 4. The N-S stresses from the 
linear constitutive relation are also added for 
comparison. In general, the solutions from the 
analytical method are close to those from Myong’s 
decomposed solver for both normal and shear 
directions. They share the same mathematical 
properties as those of the solutions achieved through 
the iterative method for NCCR model by Myong42, i.e. 

(1)  only when .,ˆ 0i i

i i

u
x x  ,

,0
ˆ 0i i

i i

u
x x 

(2) The unique solution  exists for all ,ˆ i i

i i

u
x x

.,
,0

ˆ i i

i i

u
x x

(3) The curve  is tangent to the  , ,
,0

ˆ ˆi i i i

i i i i

u u
x x x x 

Navier–Stokes curve  at ., ,
,0

ˆ ˆi i i i

i i i i

u u
x x x x  ,

,0
ˆ 0i i

i i

u
x x 

(4)  is always true.,ˆ 1 0i i

i i

u
x x  

(5)  when ., ,
,0

ˆ ˆ/ d 0d i i i i

i i i i

u u
x x x x   ,

,0
ˆ i i

i i

u
x x  

Fig. 3.  Comparison of solutions from analytical and 
iterative method of NCCR model with N-S linear constitutive 
relation for compression and expansion problem (c=1.0179).
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Fig. 4.  Comparison of solutions from analytical and 
iterative methods with the N-S linear constitutive relation for 

shear flow problem (c=1.0179).

Moreover, Fig. 1 shows that the analytical method 
over-predicts the normal stress  when  is ,ˆ i i

i i

u
x x ,

,0
ˆ i i

i i

u
x x

larger than zero. It is shown that59 the conventional 
NCCR model overestimates  in prediction and  ˆq cR

large value of  may lead to a dramatic decrease  ˆq cR

of stress and heat flux unphysically. However, the 
analytical method relieves this deficiency to some 
extent, which can be further confirmed by numerical 
cases in the next section.

Fig. 5 compares the number of iteration steps under 
different initial conditions for the iterative and 
analytical methods. Note that for the latter only one 
step is needed as shown in Fig. 5. For the iterative 
NCCR model, it generally takes at least 6-13 iterations 
for compression and expansion solver whilst takes 2 
iterations for shear flow solver. Generally, the 
analytical method reduces total computational time 
considerably due to its non-iterative calculation.

Fig. 5.  Computational cost of analytical and iterative 
NCCR methods.

3.4. Summary of analytical NCCR model

The entire essence of the analytical NCCR method is 
described in a detailed flowchart as shown in Fig.6. 
Briefly summarizing, Eu developed the generalized 
hydrodynamic equations from Boltzmann equation 
based on a nonequilibrium canonical distribution 
function and a cumulant expansion of the collisional 
integral36, and next, with adiabatic assumption36 and 
balanced closure41, NCCR model was developed. A 
decomposed nonlinear algebraic system of the NCCR 
model was then proposed by Myong, and by 
performing iterative method, the nonlinear algebraic 
system can be solved42. In this paper, by expanding the 
NCCR nonlinear factor around the equilibrium state 
and retaining the relevant terms until the second order 
of accuracy, we can solve the NCCR model with 
analytical method. Finally, we have the analytical 
NCCR method.

4. Results and discussion

In this section, several typical nonequilibrium flows, 
including shock wave structure (1D), Couette flow 
(quasi-1D), hypersonic flow past a cylinder (2D) and 
supersonic flow past a sphere (3D), are selected to 
validate the computational accuracy and stability of the 
proposed analytical NCCR method.

4.1. Shock wave structure of argon

The one-dimensional steady shock wave structure of 
argon gas is a benchmark case for validation of 
non-equilibrium models58. The initial conditions in the 
upstream and downstream of shock wave can be 
determined by the Rankine–Hugoniot relations58, i.e. 
(Note that the subscripts “0” and “1” indicate the states 
before and after the shock, respectively)

 (29)
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The dynamic viscosity of argon is estimated using 
the inverse power law54, i.e.

 (30)ref
ref

s
T

T
 

 
  

 
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where ,  and s are reference temperature, refT ref
reference dynamic viscosity and temperature exponent, 

respectively. The properties of argon used in the 
computations are given in Table 258. 

Fig. 6.  Flowchart showing derivation process of analytical NCCR method

Table 2 Physical properties of argon58.

Parameter Pr  -1 -1)(J kg KR   γ ref (K)T -2
ref (N s )m  

Value 0.667 208 5/3 300 2.272×10-5

In order to evaluate the performance of the 
analytical NCCR model, a series of test cases are 
investigated, which are characterized by different Mach 
numbers, ranging from Ma = 1.2 (the N-S equations are 
still valid) to 9.0 (the strong non-equilibrium effects are 
dominant). 

Simulations based on Myong’s iterative method and 
the developed analytical method are firstly conducted 
for the hard-sphere molecules at Ma = 1.2, 2.0 and 3.0. 
Ohwada’s full Boltzmann equation solutions61 and N-S 
solutions are also added for comparison. The exponent 
s in Eq. (30) is assumed as 0.5 and the constant c in 
NCCR model is 1.190858. Fig. 7 shows the 
non-dimensional density, temperature, stress, and heat 
flux inside a shock layer for Ma = 1.2, 2.0 and 3.0. 
They respectively take the following forms: 

 (31)
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ˆ

ˆ xx
xx
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
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
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

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

where the quantities with subscript “0” represent the 
upstream parameters of the shock wave. The horizontal 
axis is normalized by mean free path . In Fig. 7(a), 0l
with Ma = 1.2, both NCCR and Boltzmann solutions 
are almost the same as N-S results since the flow is not 
far from equilibrium. As the Mach number increases to 
2.0 and 3.0, the NCCR model performs better than the 
N-S equations when both solutions are compared to the 
Boltzmann counterparts, especially in shock rising 
position. Moreover, the results of the analytical NCCR 
model are close to those from the NCCR iterative 
method, which indicates that the approximation of the 
analytical algorithm is reasonable in the calculation of 
one-dimensional shock wave structure and it has nearly 
the same performance with the iterative model under 
the studied Mach number conditions.
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Fig. 7.  Comparison of analytical and iterative NCCR models for argon shock waves 

The shock wave structure of argon at higher Mach 
numbers, i.e. Ma = 8.0 and 9.0, are investigated based 
on the two NCCR models. The exponent s in Eq.(30) is 
assumed as 0.72 and the constant c in the NCCR model 

is 1.017958. The solutions of the non-dimensional 
density, temperature, stress and heat flux inside a shock 
layer are shown in Fig. 8, and the solutions evaluated 
by Bird’s 1D DSMC code62 and experimental 
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measurements63, 64 are also presented for reference. The 
scaled density and temperature are obtained through

 (32)
1 0

0 0

10

ˆˆ , T T T
T T

 
 





 


where the quantities with subscript “1” represent the 
downstream parameters of the shock wave. Stress and 
heat flux are normalized with Eq.(31). The maximum 
gradient-length local Knudsen number, which is 
proposed by Boyd et al. as a continuum breakdown 
parameter65, 66, is introduced to describe the degree of 
non-equilibrium state, i.e.

 (33)GLL
d
d

lK
Q

Q
l

n 

where l is the mean free-path and Q is a variable of 
interest, such as density, temperature or pressure. 
Higher value of  represents higher degree of GLLKn
non-equilibrium. Based on Fig. 8,  reaches its GLLKn
peak value at upstream region of shock wave (i.e. 

), where the strong non-equilibrium effect 0/ 3x l  
exists. In the upstream region of shock wave, the results 
from our analytical method are closer to the DSMC and 
experimental results than the iterative method results, 
whose shock profiles rise later. In addition, the 
underestimation of both stress and heat flux in the 
iteration NCCR method is observed in the upstream 
region and the analytical method alleviates it to some 
degree. This may be due to the fact that the original 
nonlinear factor  of NCCR model is not quite  ˆq cR

physical in very strong non-equilibrium regimes59. In 
the downstream region of the shock wave where the 
non-equilibrium effect is relatively weak (i.e. smaller 

), the results from the iterative and analytical GLLKn
methods are similar. As we noted earlier, DSMC has 
been used as a standard, and Fig.8 shows that DSMC 
results agree with the experimental data very well. 
Moreover, there are limited experiments in low-density 
monatomic gas flows. Hence, DSMC simulations will 
serve as benchmarks for the following cases.

Fig. 8.  Comparison of analytical and iterative NCCR models for argon shock wave (DSMC results are evaluated with Bird’s 1D 
DSMC code62).
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4.2. Couette flow

Here the Couette flow problem67 is selected to examine 
the capability of the analytical NCCR method for 
low-speed flows. The Couette flow is driven by two 
infinite flat plates moving parallel to opposite 
directions with constant speed . The temperature of 0u
each wall is  and the distance between the two flat wT
plates is L. The global Knudsen number is used to 
represent the degree of non-equilibrium effect67, i.e. 

 (34)0 /Kn l L

Here  and  are adopted, 0 50 m/su  w 273 KT 
while L is varied based on different Knudsen numbers.
Enhanced NCCR-based slip boundary conditions 
proposed by Jiang et al.57 are adopted for the walls, 
which read
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(35)

The subscript w indicates the quantities of the 
wall.  denotes the tangential shear stress along NCCR
the surface and  denotes the heat flux NCCRyQ
perpendicular to the surface. They are both calculated 
from the analytical NCCR method.  and 1 0u . 

 are used in the following cases.1 0T . 
In order to keep the numerical stability, a 

relaxation method is used to obtain the velocity slip and 
temperature jump at the walls67, 

 （36）
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Here  is the relaxation factor and is set to be fR
2.0×10-6 suggested by Jiang et al.57 Argon is used to 
simulate the Couette flow. The exponent s in Eq.(30) is 
assumed as 0.75 and the constant c in the NCCR model 
is 1.0179 42.

Fig. 9 shows the velocity distribution of Couette flow 
predicted by different methods for Kn = 0.012, 0.10, 
0.25, 0.50, 0.75 and 1.00. They represent different 
non-equilibrium situations from continuum regime to 
transition regime. The DSMC and R13 results by Refs. 
24, 68 are also demonstrated for comparison. At Kn = 
0.012 and 0.1, Figs. 9(a) and 9(b) show that the 
velocity profiles predicted with R13, analytical NCCR 
method and N-S equations are in excellent agreement 
with the DSMC results. As the Knudsen number 

increases, the predicted velocity profiles of the 
foregoing methods show pronounced difference from 
those from the DSMC approach, which indicate an 
underlying non-equilibrium phenomenon in the 
micro-Couette flow. Weakly nonlinear velocity profiles 
can be observed in Figs. 9(d)-9(f), where all the models 
fail to capture except DSMC. However, the velocity 
profiles predicted by analytical NCCR method and the 
R13 model are closer to DSMC results than those by 
N-S equations. The profiles obtained by the analytical 
NCCR are very close to those by the R13 model, even 
though R13 model is the evolution equations of 13 
moments and the analytical NCCR method is much 
simpler evolution equations of 5 moments.

The temperature distribution of Couette flow 
predicted by different methods is shown in Fig. 10. As 
can be seen from Figs. 10(d)-10(f), the linear N-S 
equations with first-order Maxwell slip boundary 
conditions do not capture the non-equilibrium effects at 
walls for Knudsen number above 0.5. The R13 and 
NCCR profiles are closer to the DSMC results than the 
linear N-S results, although their results start to diverge 
from the DSMC profiles at Kn = 0.25, where the R13 
overestimates and the NCCR model underestimates the 
temperature in the central region of the Couette flow. 
For , the temperature decrease predicted by 0.5Kn 
the analytical NCCR method is much closer than those 
of the R13 and N-S. However, the limitation of the 
analytical NCCR method is also shown in the central 
regions for Knudsen number above 0.1, because it 
gives lower temperature at these regions. The behavior 
of the analytical NCCR method is more like the linear 
NS equations in these regions, but it performs better at 
walls and gives better temperature jump values than the 
R13 and the N-S equations when compared to the 
DSMC results.

Since a better performance of the analytical NCCR 
method is shown in the above results, its capability still 
deserves to be investigated more carefully. The normal 
heat flux and shear stress distribution of Couette flow 
predicted by different methods over a range of Knudsen 
numbers from 0.1 to 1.0 are shown in Fig. 11. Because 
of the symmetry of the flow field in Couette flow, only 
the upper-half distribution of the heat flux and shear 
stress profiles is plotted. At Kn = 0.1, normal heat flux 
and shear stress from all the methods agree well with 
the DSMC results. However, with increased Knudsen 
number, the degree of nonequilibrium increases. 
Difference arises among the results from different 
methods. In the transition regime, Fig. 11 presents 
constant shear stresses across the domain for the planar 
Couette flow. The deviation between the three 
continuum-based hydrodynamic models and the DSMC 
method increases as the flow deviates from the thermal 
equilibrium with about 7% overestimation at Kn = 
0.25, 0.5 and 9% overestimation at Kn = 1.0. For 
normal heat flux, the results predicted by the linear N-S 
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equations deviate from the DSMC results for Kn > 0.1. 
However, both the R13 and analytical NCCR methods 
show fairly good agreement with the DSMC results for 
Kn < 1.0, except for the nonlinear behavior near the 
wall. For Kn = 1.0, all the three continuum-based 

hydrodynamic models deviate from the DSMC results, 
but the R13 and the analytical NCCR methods perform 
much better than the N-S equations.

Fig. 9.  Velocity distribution of Couette flows predicted by different methods over a range of Knudsen numbers.
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Fig. 10.  Temperature distribution of Couette flow predicted by different methods over a range of Knudsen numbers.

4.3. A hypersonic flow around a 2D cylinder for argon 
gas

The analytical method is further validated for argon gas 
flows around a 2D cylinder with radius of 0.1524 m 
where Ma = 10 and Kn = 0.004, 0.02, 0.1 (The 

characteristic length is the radius of the cylinder). The 
free-stream conditions are taken from Ref.66, where 
corresponding densities of the free-stream gas are 
1.408×10-4, 2.818×10-5 and 5.636×10-6. The first-order 
Maxwell slip boundary condition is applied at the wall 
surface and other calculation parameters are shown in 
Table 3.
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Fig. 11.  Normal heat flux and shear stress distribution of Couette flow predicted by different methods over a range of Knudsen 
numbers.

Table 3 Calculation parameters for hypersonic flow past a cylinder.

Parameter -1(m )sU  (K)T w (K)T Pr c  -1 -1)(J kg KR  ref (K)T -
ref

2(N s )m   s

Value 2624 200 500 2/3 1.0179 5/3 208.16 1000 55.081 10 0.734

Fig. 12.  Temperature and maximum gradient-length local Knudsen number  along the stagnation line of Ma = 10 cylinder GLLKn
at different Kn 
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Since the prediction of the temperature profile is 
more difficult than those of density, velocity, and 
pressure, only the temperature on the stagnation line is 
presented in Refs.59, 66 Therefore, only the temperature 
predicted from different methods are shown in Fig. 12. 
Gradient-length local Knudsen number ( ) of GLLKn
each case is also plotted for comparison. Continuum 
hypothesis is not valid if  is greater than 0.05 66. GLLKn
Therefore, the non-equilibrium effect needs to be taken 
into account inside the shock at each case.

At Kn = 0.004, which corresponds to the continuum 
flow regime, the temperature profiles predicted by N-S 
and NCCR are close to the DSMC solution. 
Nevertheless, at Kn = 0.02, which belongs to the slip 
flow regime, the results from different constitutive 
relations start to deviate from that of the DSMC, 
especially at regions inside shock wave where  GLLKn
is higher. Both of the two NCCR methods yield better 
results than the N-S constitutive relations, and they 
provide almost the same results. Moreover, at Kn = 0.1, 
which is in the transitional flow regime, both methods 
are better than N-S equations. It should be highlighted 
that the analytical method provides even better results 
than iterative one although it is an approximation of 
NCCR for the situation which is not far from the 
equilibrium. It indicates that the analytical method is a 
reliable and efficient way to solve those 
far-from-equilibrium flows.

The computational efficiency of analytical method 
and iterative method is investigated based on the same 
computer infrastructure. The average computation time 

per step of cases above for 10000 steps at 11,440 
structured grids is listed in Table 4. About 1/3 of the 
computation time on average is saved for these cases in 
the calculation of the inviscid flux and other 
computational overhead. It can be expected that more 
pronounced speed-up can be achieved when complex 
geometries discretized with millions of grids are 
considered.

Table 4 Computation time per step of each selected case.

Kn Computation time (ms)

Analytical 36.4 0.004
Iteration 58.7 
Analytical 76.0 0.02
Iteration 101.6 
Analytical 73.5 0.1
Iteration 112.8 

4.4. A supersonic flow around a 3D sphere for argon 
gas

The analytical NCCR method is validated for 
monatomic gas flows around a 3D sphere with a radius 
of 1.9 mm in slip regime. Compared to the 
two-dimensional case in Section 4.3, here we would 
like to examine the ability of the analytical NCCR 
method in predicting 3D problems. The monatomic gas 
is assumed argon with s=0.75 in the inverse power law 
and c=1.0179. The inflow parameters are given in 
Table 5.

Table 5 Calculation parameters for supersonic flow past a sphere.

Parameter Ma (K)T Kn (Pa)p w (K)T Pr  -1 -1)(J kg KR   ref (K)T -2
ref (N s )m  

Value 3.5 26.6 0.05 5 135.27 2/3 5/3 208.16 1000 55.081 10

To reduce the computational cost, a quarter of the 
computational domain is considered in this work. 
Typical structured grids of the computational domain 
are demonstrated in Fig. 13 with 80 nodes in the radial 
direction of the sphere. First-order Maxwell slip 
boundary condition is applied at the solid surface. 
DSMC result is calculated with opensource code 
Spartan69 as a benchmark. Fig. 14 shows the maximum 
gradient-length-local Knudsen number computed by the 
analytical NCCR method. It can be seen from the 
contour of  that the continuum hypothesis is not GLLKn
valid inside the stand-off shock and near the solid 
surface of the rear of the sphere, where  GLLKn
exceeds the critical value of 0.05. It is generally 
believed that N-S equation cannot obtain accurate 
predictions in these regions. Fig. 13.  Structured cell distribution.
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Fig. 14.  Contour of gradient length local Knudsen 
number.

Comparison of the density and temperature between 
N-S equation and the analytical NCCR method is made 
in Fig. 15 and Fig. 16, respectively. It is shown that the 
shock thickness predicted by the analytical NCCR 
method is slightly thicker than that by the N-S equation. 
Also, the shock stand-off distance is larger from the 
analytical NCCR method compared to the N-S 
equation. These predictions agree with each other in 
terms of the  distribution in Fig. 14 as the flow GLLKn
regions inside the shock wave are far from the 
thermodynamic equilibrium. Also, the normalized 
temperature and density distribution along the 
normalized stagnation line evaluated by DSMC, N-S 
and the analytical NCCR method are plotted for further 
analysis in Fig.15 and Fig.16. One feature which should 
be highlighted is that the analytical NCCR method 
shows better agreement with DSMC data in terms of 
density and temperature at the stagnation line. 
Nevertheless, there are still some differences between 
DSMC and the analytical NCCR method near the shock 
wave. It may imply that some key features are not 
included in the analytical NCCR method when it is 
simplified from Eu’s generalized hydrodynamic 
equations.

5. Conclusions

To overcome the deficiency of traditional iterative 
method in solving NCCR model, an analytical method 
is proposed by expanding and truncating the nonlinear 
factor in decomposed solvers to predict nonequilibrium 
rarefied flows. Without iterative procedure, analytical 
method is more efficient and preserves the capability of 
describing non-equilibrium flows in NCCR. To validate 
its efficiency and accuracy, numerical cases including 
one-dimensional shock wave structures, Couette flow, 
two-dimensional hypersonic flows around a cylinder 
and three-dimensional supersonic flow around a sphere 
are employed. The results of these cases show that both 
analytical method and iterative method yield better 

agreement with experimental and DSMC data in 
non-equilibrium flows compared with continuum N-S 
equations. More importantly, the non-iterative feature 
of the proposed analytical method reduces the 
computational time considerably in both decomposed 
solvers, which could make NCCR method be a 
promising engineering tool for modelling rarefied 
non-equilibrium flows.
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Fig. 15.  Contour of density and normalized density 
distribution along normalized stagnation line predicted by 

N-S equations and analytical NCCR method (DSMC result is 
calculated with opensource code Spartan69).
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Fig. 16. Contour of temperature and normalized temperature 
distribution along normalized stagnation line predicted by 

N-S equations and analytical NCCR method (DSMC result is 
calculated with opensource code Spartan69)

References

1. Tsien HS. Superaerodynamics, mechanics of rarefied 
gases. Journal of the Aeronautical Sciences 1946; 
13(12):653-64.

2. Bai C, Li J, Li S, et al. Review of theoretical achievements 
for starting flow problem for all mach numbers. Chinese 
Journal of Aeronautics 2019; 32(1):78 - 91.

3. Sun X, Huang W, Ou M, et al. A survey on numerical 
simulations of drag and heat reduction mechanism in 
supersonic/hypersonic flows. Chinese Journal of 
Aeronautics 2019; 32(4):771 - 84.

4. Li Z, Xia X, Li X, et al. Numerical exploration on the 
thermal invasion characteristics of two typical gap-cavity 
structures subjected to hypersonic airflow. Chinese 
Journal of Aeronautics 2020.

5. Yang J, Liu M. Numerical analysis of hypersonic 
thermochemical non-equilibrium environment for an entry 
configuration in ionized flow. Chinese Journal of 
Aeronautics 2019; 32(12):2641 - 54.

6. Guo J, Lin G, Bu X, Li H. Sensitivity analysis of flowfield 
modeling parameters upon the flow structure and 
aerodynamics of an opposing jet over a hypersonic blunt 
body. Chinese Journal of Aeronautics 2020; 33(1):161 - 
75.

7. Bird G. Molecular gas dynamics and the direct simulation 
of gas flows. Oxford: Clarendon Press; 1994.

8. Bird GA. Aspects of the structure of strong shock waves. 
Physics of Fluids 1970; 13(5):1172-7.

9. Sharipov F. Discrete velocity method. Rarefied gas 
dynamics. New York: John Wiley & Sons, Ltd; 
2015.p.83-96.

10. Broadwell JE. Study of rarefied shear flow by the discrete 
velocity method. Journal of Fluid Mechanics 1964; 
19(3):401-14.

11. Wu L, Reese JM, Zhang Y. Solving the boltzmann 
equation deterministically by the fast spectral method: 
Application to gas microflows. Journal of Fluid 
Mechanics 2014; 746:53-84.

12. Xu K, Huang JC. An improved unified gas-kinetic 
scheme and the study of shock structures. IMA Journal of 
Applied Mathematics 2011; 76(5):698-711.

13. Xu K, Huang JC. A unified gas-kinetic scheme for 
continuum and rarefied flows. Journal of Computational 
Physics 2010; 229(20):7747-64.

14. Xu K. Direct modeling for computational fluid dynamics: 
Construction and application of unified gas-kinetic 
schemes. Singapore: World Scientific; 2015.

15. Guo Z, Xu K, Wang R. Discrete unified gas kinetic 
scheme for all knudsen number flows: Low-speed 
isothermal case. Phys Rev E Stat Nonlin Soft Matter Phys 
2013; 88(3):033305.

16. Zhu L, Guo Z, Xu K. Discrete unified gas kinetic scheme 
on unstructured meshes. Computers & Fluids 2016; 
127:211-25.

17. Li ZH, Zhang HX. Study on gas kinetic unified algorithm 
for flows from rarefied transition to continuum. Journal 
of Computational Physics 2004; 193(2):708-38.

18. Li ZH, Peng AP, Zhang HX, et al. Rarefied gas flow 
simulations using high-order gas-kinetic unified 
algorithms for boltzmann model equations. Progress in 
Aerospace Sciences 2015; 74:81-113.

19. Peng AP, Li ZH, Wu JL, et al. Implicit gas-kinetic 
unified algorithm based on multi-block docking grid for 
multi-body reentry flows covering all flow regimes. 
Journal of Computational Physics 2016; 327:919-42.

20. Balakrishnan R, Agarwal RK, Yun KY. Bgk-burnett 
equations for flows in the continuum-transition regime. 
Journal of Thermophysics and Heat Transfer 1999; 
13(4):397-410.

21. Singh N, Agrawal A. Onsager's-principle-consistent 
13-moment transport equations. Phys Rev E 2016; 
93(6):063111.

22. Zhao W, Chen W, Agarwal RK. Formulation of a new set 
of simplified conventional burnett equations for 
computation of rarefied hypersonic flows. Aerospace 
Science and Technology 2014; 38:64-75.

23. Torrilhon M, Struchtrup H. Regularized 13-moment 
equations: Shock structure calculations and comparison 
to burnett models. Journal of Fluid Mechanics 2004; 
513:171-98.

24. Gu XJ, Emerson DR. A high-order moment approach for 
capturing non-equilibrium phenomena in the transition 
regime. Journal of Fluid Mechanics 2009; 636:177-216.



Chinese Journal of Aeronautics · 19 ·

25. Grad H. On the kinetic theory of rarefied gases. 
Communications on Pure and Applied Mathematics 
1949; 2(4):331-407.

26. Mcdonald J, Torrilhon M. Affordable robust moment 
closures for cfd based on the maximum-entropy 
hierarchy. Journal of Computational Physics 2013; 
251:500-23.

27. Cai Z, Fan Y, Li R. Globally hyperbolic regularization of 
grad's moment system. Communications on Pure and 
Applied Mathematics 2014; 67(3):464-518.

28. Struchtrup H. Macroscopic transport equations for 
rarefied gas flows. Berlin: Springer; 2005..

29. Burnett D. The distribution of molecular velocities and 
the mean motion in a non-uniform gas. Proceedings of 
the London Mathematical Society 1936; 
s2-40(1):382-435.

30. Grad H. The profile of a steady plane shock wave. 
Communications on Pure and Applied Mathematics 
1952; 5(3):257-300.

31. Weiss W. Continuous shock structure in extended 
thermodynamics. Physical Review E 1995; 
52(6):R5760-R3.

32. Zhao W, Chen W, Liu H, et al. Computation of 1-d shock 
structure in a gas in rotational non-equilibrium using a 
new set of simplified burnett equations. Vacuum 2014; 
109:319-25.

33. Holway LH. Existence of kinetic theory solutions to the 
shock structure problem. Physics of Fluids 1964; 
7(6):911-3.

34. Gu XJ, Emerson DR, Tang GH. Kramers’ problem and 
the knudsen minimum: A theoretical analysis using a 
linearized 26-moment approach. Continuum Mechanics 
Thermodynamics 2009; 21(5):345.

35. Eu BC. Nonequilibrium statistical mechanics. 
Netherlands: Springer Science & Business Media; 1998.

36. Eu BC. Kinetic theory of nonequilibrium ensembles, 
irreversible thermodynamics, and generalized 
hydrodynamics. Switzerland: Springer; 2016.

37. Eu BC, Al-Ghoul M. Chemical thermodynamics. 2nd ed. 
Singapore: World Scientific; 2018.

38. Eu BC. A modified moment method and irreversible 
thermodynamics. The Journal of Chemical Physics 1980; 
73(6):2958-69.

39. Al-Ghoul M, Eu B. Generalized hydrodynamics and 
shock waves. Physical Review E 1997; 56(3):2981-92.

40. Eu BC, Ohr YG. Generalized hydrodynamics, bulk 
viscosity, and sound wave absorption and dispersion in 
dilute rigid molecular gases. Physics of Fluids 2001; 
13(3):744-53.

41. Myong RS. On the high mach number shock structure 
singularity caused by overreach of maxwellian molecules. 
Physics of Fluids 2014; 26(5):056102.

42. Myong RS. Thermodynamically consistent hydrodynamic 
computational models for high-knudsen-number gas 
flows. Physics of Fluids 1999; 11(9):2788-802.

43. Myong RS. A computational method for eu's generalized 
hydrodynamic equations of rarefied and microscale 
gasdynamics. Journal of Computational Physics 2001; 
168(1):47-72.

44. Myong RS. A generalized hydrodynamic computational 
model for rarefied and microscale diatomic gas flows. 
Journal of Computational Physics 2004; 195(2):655-76.

45. Myong RS. Coupled nonlinear constitutive models for 
rarefied and microscale gas flows: Subtle interplay of 

kinematics and dissipation effects. Continuum Mechanics 
and Thermodynamics 2009; 21(5):389-99.

46. Myong RS. A full analytical solution for the force-driven 
compressible poiseuille gas flow based on a nonlinear 
coupled constitutive relation. Physics of Fluids 2011; 
23(1):012002.

47. Xiao H, Myong R, Singh S. A new near-equilibrium 
breakdown parameter based on the rayleigh-onsager 
dissipation function. AIP conference proceedings. 2014.

48. Myong RS. Numerical simulation of hypersonic rarefied 
flows using the second-order constitutive model of the 
boltzmann equation. Advances in some hypersonic 
vehicles technologies: IntechOpen; 2018.

49. Le NTP, Xiao H, Myong RS. A triangular discontinuous 
galerkin method for non-newtonian implicit constitutive 
models of rarefied and microscale gases. Journal of 
Computational Physics 2014; 273:160-84.

50. Xiao H, Shi Y, Shang Y, et al. Validation of nonlinear 
coupled constitutive relations in near-equilibrium gas 
flows. Manned Spaceflight 2015; (3):18.

51. Xiao H, Tang K. A unified framework for modeling 
continuum and rarefied gas flows. Sci Rep 2017; 
7(1):13108.

52. Jiang Z, Chen W, Zhao W. A new coupled computational 
method in conjunction with three-dimensional finite 
volume schemes for nonlinear coupled constitutive 
relations. arXiv preprint arXiv:161101281 2016.

53. Jiang Z, Zhao W, Chen W. A three-dimensional finite 
volume method for conservation laws in conjunction with 
modified solution for nonlinear coupled constitutive 
relations. AIP conference proceedings. 2016.

54. Jiang Z. An undecomposed hybrid algorithm for 
nonlinear coupled constitutive relations of rarefied gas 
dynamics. Communications in Computational Physics 
2019; 26(3):880-912.

55. Jiang Z, Zhao W, Yuan Z, et al. Computation of 
hypersonic flows over flying configurations using a 
nonlinear constitutive model. AIAA J; 2019; 57(12): 
1-17.

56. Yuan Z, Zhao W, Jiang Z, et al. The application and 
verification of modified nonlinear coupled constitutive 
relations model. AIAA scitech 2019 forum. Reston: 
AIAA; 2019.

57. Jiang Z, Chen W, Zhao W. Numerical analysis of the 
micro-couette flow using a non-newton–fourier model 
with enhanced wall boundary conditions. Microfluidics 
and Nanofluidics 2017; 22(1):10.

58. Jiang Z, Zhao W, Chen W, et al. Computation of shock 
wave structure using a simpler set of generalized 
hydrodynamic equations based on nonlinear coupled 
constitutive relations. Shock Waves 2019; 29(8): 1-13.

59. Liu S, Yang Y, Zhong C. An extended gas-kinetic 
scheme for shock structure calculations. Journal of 
Computational Physics 2019; 390:1-24.

60. Ayoub RG. Paolo ruffini's contributions to the quintic. 
Archive for History of Exact Sciences 1980; 
23(3):253-77.

61. Ohwada T. Structure of normal shock waves: Direct 
numerical analysis of the boltzmann equation for hard ‐
sphere molecules. Physics of Fluids A: Fluid Dynamics 
1993; 5(1):217-34.

62. Bird GA, Brady J. Molecular gas dynamics and the direct 
simulation of gas flows. Oxford: Clarendon Press; 1994.



·20 ·  Chinese Journal of Aeronautics

63. Alsmeyer H. Density profiles in argon and nitrogen shock 
waves measured by the absorption of an electron beam. 
Journal of Fluid Mechanics 1976; 74(3):497-513.

64. Steinhilper EA. Electron beam measurements of the 
shock wave structure. Part i. The inference of 
intermolecular potentials from shock structure 
experiments. Part ii. The influence of accommodation on 
reflecting shock waves[dissertation]. California:  
California Institute of Technology;1972.

65. Boyd ID, Chen G, Candler GV. Predicting failure of the 
continuum fluid equations in transitional hypersonic 
flows. Physics of Fluids 1995; 7(1):210-9.

66. Lofthouse AJ. Nonequilibrium hypersonic 
aerothermodynamics using the direct simulation monte 
carlo and navier-stokes models[dissertation]. Michigan:  
University of Michigan, 2008.

67. Bao FB, Lin JZ, Shi X. Burnett simulation of flow and 
heat transfer in micro couette flow using second-order 
slip conditions. Heat and Mass Transfer 2006; 
43(6):559-66.

68. Gu XJ, Emerson DR. A computational strategy for the 
regularized 13 moment equations with enhanced 
wall-boundary conditions. Journal of Computational 
Physics 2007; 225(1):263-83.

69. Plimpton SJ, Moore SG, Borner A, et al. Direct 
simulation monte carlo on petaflop supercomputers and 
beyond. Physics of Fluids 2019; 31(8):086101.

Appendix A: Roots formula for general 
quartic equation

The four roots  and  for the general 0 1 2, ,x x x 3x
quartic equation
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Appendix B: Roots formula for general 
cubic equation

The three roots  and  for the general cubic 10 ,x x 2x
equation are given in the following formula:
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