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ABSTRACT
One-dimensional numerical simulations based on the hybrid Eulerian–Lagrangian approach are performed to investigate the interactions
between propagating shock waves and dispersed evaporating water droplets in two-phase gas–droplet flows. Two-way coupling for interphase
exchanges of mass, momentum, and energy is adopted. A parametric study on shock attenuation, droplet evaporation, motion, and heating is
conducted, through considering various initial droplet diameters (5 μm–20 μm), number densities (2.5 × 1011/m3–2 × 1012/m3), and incident
shock Mach numbers (1.17–1.9). It is found that the leading shock may be attenuated to the sonic wave and even to the subsonic wave when
the droplet volume fraction is large and/or the incident shock Mach number is low. Attenuation in both strength and propagation speed of
the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed
in the evaporation region, whereas pressure loss results from shock compression, droplet drag, and pressure gradient force behind the shock
front. Recompression of the region between the leading shock and the two-phase contact surface is observed when the following compression
wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However,
the recompression phenomenon is sensitive to the droplet volume fraction and may vanish with high droplet loading. For an incident shock
Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 × 10−5.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035968., s

I. INTRODUCTION

The interactions between propagating shock waves and evapo-
rating droplets are fundamental but challenging multi-phase prob-
lems. Studies on such topics have been performed for decades in
different fields, e.g., aerospace propulsion,1–3 internal combustion
engine,4–6 and shock tube.7–9 Due to the simplicity in geometry and
convenience for a parametric study, shock–droplet or shock–particle
interactions have been extensively investigated in shock tube facil-
ities. A series of shock tube experiments have been conducted to
study the influence of a cloud of water droplets on the propaga-
tion of a planar shock wave.8 Although wall pressure data have been
recorded for further analysis on shock attenuation, details on droplet
evaporation and movement as well as interphase interactions were
not attainable due to the limitations of experimental measurement.
The interactions of a shock wave and a single water droplet with
inside vapor cavitation have been experimentally studied in a shock
tube.9 The evolutions of both the droplet and the vapor cavity have

been recorded with a high-speed imaging technique. However, the
focus has been laid on the droplet deformation and cavity collapse.
As in other shock tube experiments,10,11 more detailed information
is difficult to be measured due to the limitations of measurement
techniques, e.g., evolutions of shock strength and Mach number,
droplet volume fraction, response timescales, and interphase cou-
pling. Therefore, the effects of shock waves on dispersed droplets
and the interphase exchanges of mass, momentum, and energy are
still not well understood in shocked two-phase flows.

A methodology for simulating two-phase flows considering
two-way coupling has been developed to investigate the effect of
droplet mass and heat transfer on one-dimensional (1D) shock
waves.7 However, the focus was on the shock attenuation, instead of
detailed evolutions of droplet properties, e.g., diameter and tempera-
ture. Recently, the effect of shock waves on the dispersion character-
istics of a particle cloud has been investigated both numerically and
analytically.12 A one-dimensional one-way coupling analytical study
is conducted to estimate the cloud topology in the wake of a shock
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wave. Moreover, a two-way formalism is developed, through further
considering post-shock gas deceleration due to dispersed particles.
However, evaporation, pressure gradient force (PGF), heat transfer,
and gas viscosity are all neglected in the above work. The only cou-
pling between the two phases is the particle momentum equation
with drag force.

In this work, numerical studies are performed with a hybrid
Eulerian–Lagrangian method to investigate the interactions between
a propagating shock wave and evaporating water droplets. The two-
way interphase coupling of mass, momentum, and energy is con-
sidered. To better describe the kinematic effects of a shock wave
on dispersed droplets, the PGF is considered in our model, besides
the drag force. The objectives are two-fold. First, the interactions
between dispersed evaporating droplets and shock waves are inves-
tigated under a range of operating conditions. Shock attenuation in
both strength and Mach number, droplet temperature, velocity, and
diameter variations are studied. This differs from the previous work,
e.g., in Refs. 7–11, which are mainly focused on shock attenuation
or droplet breakup. Second, the evolutions of the two-phase interac-
tions are discussed in detail, which allows detailed demonstrations
of the unsteady process with novel two-phase flow phenomena, e.g.,
gas recompression in the droplet-laden area. The rest of this paper
is organized as follows. Numerical approaches, including governing
equations and numerical schemes, are described in Sec. II. Physical
models and mesh sensitivity analysis are given in Secs. III and IV,
respectively. The results and discussion are presented in Sec. V, and
the conclusions are drawn in Sec. VI.

II. GOVERNING EQUATION AND NUMERICAL METHOD
A. Governing equations for gas phase

The governing equations for compressible multi-component
flows include the conservation laws of mass, momentum, energy,
and species mass fraction.13 They read as

∂ρg
∂t

+
∂

∂xi
(ρgug,i) = Sm, (1)

∂

∂t
(ρgug,i) +

∂

∂xj
(ρgug,jug,i + pgδij − τij) = SM,i, (2)

∂

∂t
(ρgEg) +

∂

∂xi
(ρgEgug,i − qi − τijug,i + pug,i) = Se, (3)

∂

∂t
(ρgYm) +

∂

∂xi
(ρgYmug,i) −

∂

∂xi
(ρgDg

∂Ym

∂xi
) = SYm , (4)

respectively, where t is the time and x is the spatial coordinate. ρg
is the gas density, ug,i is the gas velocity component, pg is the gas
pressure, δij is the Kronecker delta function, and τij is the viscous
stress tensor. Eg is the total energy, which is calculated as Eg = es,g
+∑3

i=1 u
2
g,i, with es,g being the sensible internal energy. Ym is the mass

fraction of mth species, Dg is the molecular diffusion coefficient, and
Dg = μg/(ρg Le), where Le is the Lewis number (assumed to be unity
in this work) and μg is the dynamic viscosity. qi is the ith compo-
nent of the heat flux q = −kg▽Tg , with kg being the gas thermal

conductivity and Tg being the gas temperature. In addition, the
pressure is updated from the ideal gas equation of state,

pg = ρgRgTg , (5)

where Rg = R0/Mg is the specific gas constant, with
R0 = 8.314 J/(mol K) being the universal gas constant and Mg being
the molecular weight of the gas.

The source terms, Sm, SM,i, Se, and SYm, in Eqs. (1)–(4) denote
the exchanges of mass, momentum, energy, and species between the
gas and liquid phases. They are estimated as

Sm = −
1
Vc
∑

Ndc

1 ṁd, (6)

SM,i = −
1
Vc
∑

Ndc

1 (−ṁdud,i + Fd,i + Fp,i), (7)

Se = −
1
Vc
∑

Ndc

1 (Q̇c + Q̇lat), (8)

SYm = {
Sm for the liquid species
0 for other species. (9)

Here, Vc is the volume of a CFD cell, Ndc is the droplet number in
the cell, ṁd is the evaporation rate of a single droplet and is given
later in Eq. (15), and ud,i is the velocity component of the droplet in
the ith direction. −ṁdud,i represents the rate of momentum transfer
because of droplet evaporation, while Fd,i and Fp,i are the drag and
PGF exerted on the droplet in the ith direction, respectively, and are
given in Eqs. (24) and (26). For Eq. (7), other forces (e.g., gravity and
Magnus lift force) are not considered in the present work. In Eq. (8),
Q̇c is the convective heat transfer rate between the droplet and gas
phases, while Q̇lat is the evaporation-induced heat transfer relating
to latent heat of droplet vaporization.

B. Governing equations for liquid droplet phase
The monodispersed liquid phase is modeled as a large num-

ber of spherical droplets tracked by using the Lagrangian method.14

The interactions between droplets are neglected since dilute spray
is studied in this work, in which the volume fraction of dispersed
droplets is typically less than 0.1%.15 The droplet breakup is not con-
sidered here since in our simulations, the droplet Weber number is
generally less than 12. This is lower than the critical Weber number
for the droplet breakup estimated by Tarnogrodzki.16 The governing
equations of mass, momentum, and energy for individual droplets
take the following form:

dmd

dt
= ṁd, (10)

dud,i

dt
=
Fd,i + Fp,i

md
, (11)

cp,d
dTd

dt
=
Q̇c + Q̇lat

md
, (12)

respectively, where md is the mass of a single droplet and can be cal-
culated as md = πρdd3

d/6 for spherical droplets, with ρd and dd being
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the droplet density and diameter, respectively. cp,d is the droplet
heat capacity, and Td is the droplet temperature. Both ρd and cp,d
are functions of droplet temperature Td to account for the thermal
expansion when the droplet is heated,17

ρd(Td) =
a1

a1+(1−Td/a3)a4

2

, (13)

cp,d(Td) = b1 + Td{b2 + Td{b3 + Td[b4 + Td(b5 + Tdb6)]}}, (14)

where a1, a2, a3, a4 and b1, b2, b3, b4, b5, b6 are the species-specific
constants.17

The evaporation rate, ṁd, in Eq. (10) is estimated through18

ṁd = −πρsddShDab ln(1 + BM), (15)

where ρs = psMd/R0Ts is the vapor density at the droplet surface.
ps and Ts are the vapor pressure and temperature at the droplet
surface, respectively, Md is the molecular weight of the vapor. Ts
is estimated using the two-third rule, i.e., Ts = (2Td + Tg)/3.18 The
Spalding mass transfer number,18 BM , is given as

BM =
Ys − Yg

1 − Ys
, (16)

where Y s and Yg are the vapor mass fractions at the droplet surface
and in the ambient gas phase, respectively. Y s can be calculated as

Ys =
MdXs

MdXs + Med(1 − Xs)
, (17)

whereMed is the averaged molecular weight of the mixture excluding
the vapor at the droplet surface and Xs is the mole fraction of the
vapor at the droplet surface, which is calculated using Raoult’s law,

Xs = Xliq
psat
ps

, (18)

in which Xliq is the mole fraction of the liquid species in the liquid
mixture. psat is the saturated vapor pressure and is estimated as a
function of droplet temperature,17

psat(Td) = pg ⋅ exp(c1 +
c2

Td
+ c3 lnTd + c4Tc5

d ), (19)

where c1, c2, c3, c4, and c5 are constants.17 Equation (19) is a modi-
fied version of the classical Clausius–Clapeyron equation, and it fits
the data accurately even much above the normal boiling point.17

Hence, it is expected to handle the droplet evaporation more accu-
rately in shocked or reactive flows.19 Similarly, the vapor pressure at
the droplet surface ps is a function of droplet surface temperature Ts,
i.e.,

ps(Ts) = Xliqpg ⋅ exp(c1 +
c2

Ts
+ c3 lnTs + c4Tc5

s ). (20)

The vapor mass diffusivity in the gaseous mixture in Eq. (15),
Dab, is modeled as20

Dab = 10−3 T1.75
s

ps

√
1
Md

+
1
Mg
/(V1/3

1 + V1/3
2 )

2
, (21)

where V1 and V2 are constants.21 Equation (21) has comparable
accuracy to the classical Chapman–Enskog kinetic theory but is

more universal since the latter necessitates empirical parameters and
simplifications.21

The Sherwood number in Eq. (15), Sh, is22 given as

Sh = 2.0 + 0.6Re1/2
d Sc1/3, (22)

where Sc is the Schmidt number of the gas phase. The droplet
Reynolds number in Eq. (22), Red, is defined based on the slip
velocity between two phases, i.e.,

Red ≡
ρgdd∣ug,i − ud,i∣

μg
. (23)

The Stokes drag in Eq. (11), Fd,i, is modeled as (assuming that
the droplet is spherical)23

Fd,i =
1
8
πd2

dρgCd∣ug,i − ud,i∣(ug,i − ud,i), (24)

where Cd is the drag coefficient and is estimated as23

Cd =

⎧⎪⎪
⎨
⎪⎪⎩

24
Red
(1 + 1

6Re
2/3
d ), Red ≤ 1000,

0.424, Red > 1000.
(25)

It has been shown from the studies by Cheatham and Kailasanath24

that the estimations in Eq. (25) can accurately predict the velocity
distributions of shock-containing flow fields.

The pressure gradient force in Eq. (11), Fp,i, accounts for the
strong local pressure variation at the rarefaction waves or shock
discontinuities. It is given as

Fp,i = −
1
6
πd3

d
∂pg
∂xi

. (26)

The convective heat transfer rate, Q̇c, in Eq. (12) is given as

Q̇c = hcAd(Tg − Td), (27)

where Ad = πdd2 is the droplet surface area. hc is the convective heat
transfer coefficient calculated from the Nusselt number Nu using the
Ranz and Marshall correlation,22

Nu =
hcdd
kg
= 2.0 + 0.6Re1/2

d Pr1/3, (28)

where Pr = μg ⋅cp,g/kg is the Prandtl number of the gas and cp,g is the
heat capacity at constant pressure.

The evaporation-induced heat transfer, Q̇lat , in Eq. (12) is given
as

Q̇lat = −ṁdhd(Td), (29)

where hd(Td) is the latent heat of vaporization (or specific enthalpy
of vaporization) at the droplet temperature Td and is approximated
with25

hd(Td) = d1 ⋅ (1 − Tr)
[(d2 ⋅Tr+d3)⋅Tr+d4]⋅Tr+d5 , (30)

where d1, d2, d3, d4, and d5 are species-specific constants and Tr
= Td/Tcr , with Tcr being the critical temperature.
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C. Numerical method
The governing equations of gas and liquid phases are solved

by using a two-phase multi-component compressible flow solver,
RYrhoCentralFoam.26 It is developed from a rhoCentralFoam solver
in an OpenFOAM 5.0 package.27 The cell-centered finite volume
method is used to discretize the gas phase equations [Eqs. (1)–(4)].
An implicit second-order Crank–Nicolson scheme is used for tem-
poral discretization. A second-order central differencing scheme28

is applied for calculating diffusive fluxes, whereas the semi-discrete
Kurganov, Noelle, and Petrova (KNP) scheme29 with a minmod
flux limiter30 is used for convective fluxes. The Lagrangian equa-
tions for the droplet phase [Eqs. (10)–(12)] are integrated with
a first-order Euler implicit method. The gas phase quantities at
the droplet location, e.g., pg in Eq. (19), ug,i and μg in Eq. (23),
are linearly interpolated from the gas phase results solved from
Eqs. (1)–(5). The exchange terms in the gas and droplet equations
are updated at each time step with two-way coupling of the two
phases. The Courant–Friedrichs–Lewy (CFL) number of the gas
phase equations is 0.02, which corresponds to the physical time step
of about 10−8 s.

The rhoCentralFoam solver has been validated by Greenshields
et al.27 and Zhang et al.31 with various canonical tests, includ-
ing Sod’s shock tube problem, forward-facing step, supersonic
jet, and shock–vortex interaction. The results show that the KNP
scheme can capture flow discontinuities (e.g., shocks and rarefaction
waves) accurately. Furthermore, its accuracy in predicting multi-
component gaseous flows has been validated in various reacting
or non-reacting cases.32–34 The RYrhoCentralFoam solver and the
implementation of droplet submodels (e.g., droplet evaporation and
multi-species diffusion) have been verified and validated with a
series of benchmark cases against the analytical solution and/or
experimental data in our recent work.19,35

III. PHYSICAL PROBLEM
According to the experimental work of Hanson et al.,36 with

spatially uniform aerosols, the flow behind the shock is nomi-
nally one-dimensional. Hence, one-dimensional shock wave prop-
agation in water droplet mists is considered in this work. The one-
dimensional simplification is also widely used for particle12,37,38 or
droplet7,11,39 laden flows with shock waves. Figure 1(a) shows the
schematic of the one-dimensional computational domain (which is
4.2 m in length and starts at x = −0.2 m) and the initial distribu-
tion of the water droplets. It should be noted that computational
domains are treated as three-dimensional in RYrhoCentralFoam.
For one-dimensional scenarios, the reduced directions (e.g., y- and
z-directions in this study) are discretized with one cell, and the
“empty” condition is applied (hence, no numerical fluxes).35 How-
ever, the lengths of the computational domain in these directions
(0.2 mm for both the y- and z-directions in our simulations) are still
relevant for two-phase flow simulations, to determine the droplet
phase quantities (e.g., number density and volume fraction) and
their effects on the gas phase [e.g., Eqs. (6)–(9)].

The carrier gas is an O2/N2 mixture with the mass fractions of
0.233 and 0.767, respectively. The right propagating shock is ini-
tiated at x = −0.1 m, with a high-pressure spot at x < −0.1 m.
In the pre-shock region (x > −0.1 m), the initial gas temperature

FIG. 1. Schematic of shock wave propagation in water droplet mists (a) before
and (b) after the shock enters the two-phase region. Msf,0 is the Mach number
of the incident shock initiated at x = −0.1 m, and dd,0 is the initial diameter of
water droplets. Msf , Mcs, and Mcw are the Mach numbers of leading shock, contact
surface, and compression wave. Circles: water droplets.

and pressure are 275 K and 66 kPa, respectively. These conditions
are chosen consistently with the study of Goossens et al.40 and
Kersey et al.7 Different incident shock Mach numbers are inves-
tigated, i.e., Msf,0 = 1.17–1.9. The droplets are monodispersed and
uniformly distributed in the region of x > 0 (i.e., the two-phase sec-
tion). The considered initial diameters and number densities are
5 μm–20 μm and 2.5 × 1011/m3–2 × 1012/m3, respectively. The ini-
tial density, heat capacity, and temperature of the water droplets
are 1000.9 kg/m3, 4222.4 J/kg/K, and 275 K, respectively. Mean-
while, the water droplets are quiescent at t = 0. Figure 1(b) shows
an instantaneous scenario after the shock propagates into the two-
phase gas–droplet region. Three characteristic fronts are observ-
able from our simulations, i.e., the leading shock, contact surface
(interface of the purely gaseous and droplet-laden regions), and
compression wave (interface of the expansion wave and shocked
gas).

IV. MESH SENSITIVITY ANALYSIS
The domain in Fig. 1 is discretized with three meshes of 4200,

14 000, and 42 000 cells. They correspond to uniform cell sizes of
1.0 mm, 0.3 mm, and 0.1 mm, termed meshes M1, M2, and M3,
respectively. One droplet-laden case with a shock Mach number
of Msf,0 = 1.5 and an initial droplet diameter of dd,0 = 5 μm is
selected for mesh sensitivity analysis, which are detailed in Table I.
Nc is the number of CFD cells, ΔL is the uniform cell size, and
Ndc,0 is the initial droplet number in the cell. Note that although
the initial numbers of the droplet per CFD cell are different, the

TABLE I. Mesh sensitivity analysis.

Cases # M1 M2 M3

ΔL (mm) 1.0 0.3 0.1
Nc 4200 14 000 42 000
Ndc,0 10 3 1
Nd,0 (/m3) 5 × 1011
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FIG. 2. Comparisons of (a) tempera-
ture and (b) velocity of gas and droplet
phases with meshes M1, M2, and M3; (c)
and (d) are enlarged views for A and B in
Fig. 2(b). Msf,0 = 1.5, dd,0 = 5 μm.

total number and the distributions of droplets in the entire domain
are identical in the three cases, and the sensitivity of the statisti-
cal average in Eqs. (6)–(9) with respect to grid resolution will be
studied.

Figure 2 shows the profiles of the temperature and velocity
for both the carrier gas and droplets at t = 2.0 ms and 5.0 ms for
cases M1–M3. All the shown variables are from the Lagrangian
results (Tg and ug are interpolated to the droplet position). The
near-shock regions [zones A and B in Fig. 2(b)] for t = 2.0 ms and
5.0 ms are enlarged in Figs. 2(c) and 2(d). It is seen that the dif-
ferences in the temperature and velocity of two phases (Tg , Td, ug ,
and ud) with different meshes are negligible. This is also true for
other gas and droplet properties, e.g., gas viscosity, density, pres-
sure, and droplet diameters. Closer inspection of the profiles at
t = 2.0 ms and 5.0 ms in Figs. 2(c) and 2(d) reveals that with coarser
mesh resolution, the shock front gets slightly smoother. Neverthe-
less, all meshes accurately capture the shock front. Hence, both
gas and droplet behaviors are not sensitive to the Eulerian mesh
resolutions.

Figure 3 shows the profiles of exchange terms in mass, momen-
tum, and energy equations [Eqs. (6)–(8)] for cases M1–M3. The
numbers of droplets per cell (normalized by the corresponding
Ndc,0) are also shown. For Sm, SM,i, and Se, the results from M3 have
strong fluctuations in the regions between the leading shock and
the contact surface, respectively, indicated by dashed lines C and
D, although their averaged profiles are close with different meshes.
Here, the average is based on the number of droplets per cell, i.e.,
divided by Ndc. The fluctuations of Sm, SM,i, and Se are caused by
the variations of Ndc. For finest mesh M3, droplet movement may
cause a significant change in the droplet number in a cell. This is
confirmed by Ndc distribution in Fig. 3(a), where the fluctuations
in Ndc increase with mesh resolution. These findings are also true
for other shock Mach numbers. Based on Figs. 2 and 3, further

decreasing the mesh resolution based on M1 would lead to a
smoother shock front, whereas increasing it results in stronger fluc-
tuations of interphase exchanges. Therefore, M1 is used for the
following analyses.

FIG. 3. Comparisons of the (a) number of droplets per cell and mass exchange
term and (b) momentum and energy exchange terms with meshes M1, M2, and
M3. Msf,0 = 1.5, dd,0 = 5 μm.
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V. RESULTS AND DISCUSSION
A. Effects of initial droplet diameter

The effects of the initial water droplet diameter are studied in
this section. Four diameters are considered, i.e., dd,0 = 5 μm, 10 μm,
15 μm, and 20 μm. The shock Mach number and droplet number
density are fixed to be Msf,0 = 1.17 and Nd,0 = 5 × 1011/m3, respec-
tively. The resulting initial droplet volume fractions are V fd,0 = 0.82
× 10−5, 6.55 × 10−5, 22.09 × 10−5, and 52.36 × 10−5, respectively.
Figures 4(a) and 4(b) show the profiles of the temperature and veloc-
ity for both gas and droplets at a representative instant, i.e., t = 5 ms.
The results from the droplet-free case are also shown for compar-
ison. It is seen that Tg is more significantly decreased in the post-
shock region [i.e., behind the arrows in Fig. 4(a), which indicate the
shock positions] with increased dd,0. This is because larger droplets
can absorb more heat from the gas phase, due to convective heat
transfer and droplet evaporation. Note that the droplet equilibrium
temperature near the two-phase contact surface is close for different
cases, but it takes a longer time to reach the equilibrium value for
larger dd,0. The gradient ofTg near the leading shock also gets weaker
with an increased droplet size, and the original shock degrades to a
sonic wave when dd,0 = 20 μm. Note that there is a local increase
in Tg in the locations marked by ellipse A in Fig. 4(a). This corre-
sponds to the traveling compression wave between the expansion
wave and shocked gas, which is originated from x =−0.1 m at t = 0 s
[see Fig. 1(a)]. Therefore, higher (lower) total pressure and lower
(higher) total temperature of this compressive wave can be observed,
relative to its right (left) side. A similar increase in the gas tempera-
ture near the contact surface has also been observed by Kersey et al.7

A more thorough examination of the wave structures in the flow field
resulting from the interaction of a planar shock (two-dimensional)
with a cloud of droplets has been performed by Chauvin et al.8 In
their work, more complex wave structures and wave–droplet inter-
actions are caused by the end-walls of the shock tube facility, e.g.,
extra expansion waves from the driver end-wall and reflected shock
or compression waves from the driven end-wall. However, basic

FIG. 4. Comparisons of the (a) temperature and (b) velocity for gas and droplet
phases and (c) droplet thermal and (d) momentum response timescales at
t = 5 ms for different droplet diameters.

wave structures, including incident shock, compression wave, and
contact surface, are similar to ours.

It is seen from Fig. 4(b) that the shock is little affected by
small droplets (e.g., 5 μm), due to the low volume fraction. For
larger droplets (e.g., 20 μm), even the equilibrium gas velocity
ug,eq (the final velocity at the two-phase contact surface) can-
not be recovered to that of the droplet-free case. The veloc-
ity equilibrium also takes a longer distance with increased dd,0.
The gradient for the gas velocity at the shock front is con-
siderably reduced, indicating the pronounced shock attenuation.
This is confirmed by Fig. 5, which shows the evolutions of the
instantaneous shock wave strength (Ssf , measured as the maximum
magnitude of pressure gradient, |▽pg |max) and Mach number (Msf ,
calculated as the propagation velocity of the leading shock divided by
the local speed of sound). It is seen from Fig. 5(a) that the strength
of the propagating shock decreases in the droplet-laden gas, which
is more remarkable for larger droplets. This can be confirmed by
the consistently reduced shock Mach number. When dd,0 = 20 μm,
the leading shock is reduced to an acoustic wave with Msf ≈ 1 when
x > 2.3 m.

Figures 4(c) and 4(d) show the characteristic timescales for
thermal and momentum responses for all the droplets at t = 5 ms,
respectively. For a droplet in saturated gas, there is no evapora-
tion, and hence, only convective heat transfer proceeds. Based on
Eqs. (12), (27), and (28), the droplet temperature equation is reduced
to

cp,d
dTd

dt
=

6Nu ⋅ kg
ρd ⋅ d2

d
(Tg − Td). (31)

Integration of Eq. (31) yields the thermal response time,

τthermo =
cp,d ⋅ ρd ⋅ d2

d

6Nu ⋅ kg
. (32)

FIG. 5. Evolutions of the (a) shock strength and (b) Mach number.
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For a droplet with Red ≪ 1, based on Eqs. (11) and (24)–(26), the
momentum response time is expressed as

1
τmom

=
18μg
ρd ⋅ d2

d
−

1
ρd
(
∂p
∂x
⋅

1
ug − ud

). (33)

In Figs. 4(c) and 4(d), for the unperturbed droplets in front of the
leading shock [i.e., before points a′–d′ in Fig. 4(c)], their charac-
teristic timescales are proportional to the square of diameters, as
seen in Eqs. (32) and (33). Note that the pressure gradient is zero
for these droplets. At the shock front, there is a sharp decrease in
both τthermo and τmom, mainly due to the increased Nusselt number
[Red increases; see Eq. (28)] and the pronounced PGF at the shock
front, respectively. After then [e.g., after points a–d in Fig. 4(c)],
τthermo and τmom increase and gradually level off with an increased
off-shock distance. Hence, the effects of leading shock on the char-
acteristic timescales only lie in a narrow region [e.g., a–a′ for dd,0
= 5 μm in Fig. 4(c)], and the width of this region decreases with dd,0.
In some work,37,38,41,42 such a region is termed “relaxation zone,” in
which significant momentum and energy exchanges occur between
the two phases until the equilibrium is reached. Furthermore, τthermo
is generally 4–6 times larger than τmom for the same droplet in these
cases, indicating that, for dispersed droplets, accommodation of the
velocity to that of the continuous phase is generally much faster than
that of temperature. This can be further confirmed in Figs. 7 and 9
later.

Figure 6 shows the evolutions of the droplet volume fraction in
the x−t diagram with four initial droplet diameters (5 μm, 10 μm,
15 μm, and 20 μm). At the right side of lines A–D, the droplets
are intact, and hence, the volume fractions are spatially uniform.
Meanwhile, at the left side of lines A′–D′, it is droplet-free, and the
volume fraction is zero. It is interesting to find from Fig. 6(a) that
the droplets of dd,0 = 5 μm can be quickly accelerated to the local gas
speed due to their small momentum response times [see Fig. 4(d)
and Eq. (33); the first term on RHS of Eq. (33) is large for small

FIG. 6. x–t diagram of the droplet volume fraction with droplet diameters of
(a) 5 μm, (b) 10 μm, (c) 15 μm, and (d) 20 m. A–D: leading shock; A′–D′: contact
surface.

FIG. 7. x–t diagram of the momentum exchange term with droplet diameters of (a)
5 μm, (b) 10 μm, (c) 15 μm, and (d) 20 μm. The description for dashed lines is the
same as in Fig. 6.

dd,0], which hence makes the droplet volume fraction high imme-
diately behind the leading shock. For dd,0 = 10 μm in Fig. 6(b), the
droplets that freshly enter the shocked region have responded slowly
to the local gas speed, due to the increased momentum response time
[see Fig. 4(d)]. This leads to a transition distance with unchanged
droplet volume behind the leading shock. However, further down-
stream, the volume fraction is almost uniform, which means that the
droplets are propagating at the close velocities. For larger droplets
(dd,0 = 15 μm), the above transition distance is wider. This is more
obvious when dd,0 = 20 μm, in which most of the droplets are
accumulated at the contact surface [line D′ in Fig. 6(d)].

Figure 7 shows the evolutions of the momentum exchange
term [SM ,i in Eq. (7)] for the gas phase in the x−t diagram for
the above-mentioned four cases. It is seen that interphase momen-
tum exchange is completed immediately behind the leading shock
when the initial droplet diameter is 5 μm. Note that SM,i ≈ 0 in
the droplet-laden region means almost no interphase velocity dif-
ference, and hence, all droplets share the same speed to the gas.
In addition, the momentum relaxation zone is narrow, and the
width is almost constant with respect to time. However, this zone
is extended for larger droplets (e.g., 10 μm, 15 μm, and 20 μm).
This leads to almost uniform distribution of the droplet volume frac-
tion after some distance of the leading shock in Fig. 6, especially
for dd,0 = 5 μm and 10 μm. In Figs. 7(c) and 7(d), the momentum
relaxation becomes more distributed. One feature, different from
that with small-sized droplets, is that the momentum exchange [par-
ticularly, the intensity, as shown in Figs. 7(c) and 7(d)] varies with
time. This is caused by the evolving response of the droplets to the
gradually weakened shock waves in these two cases, as indicated in
Fig. 5.

Figure 8 shows the evolutions of the mass exchange term [i.e.,
volumetric evaporation rate, Sm in Eq. (6)] in the x–t diagram when
dd,0 = 5 μm, 10 μm, 15 μm, and 20 μm. For dd,0 = 5 μm, strong evap-
oration occurs closely behind the leading shock and decreases grad-
ually in the post-shock region. This is caused by the slow decrease in
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FIG. 8. x–t diagram of the mass exchange term with droplet diameters of (a) 5 μm,
(b) 10 μm, (c) 15 μm, and (d) 20 μm. The description for dashed lines is the same
as in Fig. 6.

temperature after the leading shock [see Fig. 4(a)] and small inter-
phase velocity difference [see Fig. 7(a)], which would result in mod-
erate interphase heat transfer [shown in Fig. 9(a) later] for droplet
evaporation. In the work of Watanabe et al.,43 the front where evap-
oration first occurs behind the leading shock is termed evaporation
front. It is also observable in our cases as significant evaporation gen-
erally lags behind the leading shock in Fig. 8. For dd,0 = 10 μm and
15 μm, droplet evaporation becomes strong after a finite distance
behind the leading shock. The distributions of the evaporation zones
are almost constant with respect to time. For dd,0 = 20 μm, within
the shown period, droplet evaporation is considerably reduced, due
to much lower gas temperature (see Fig. 4). The carrier gas cannot
provide sufficient energy for droplet evaporation when the droplet
volume fraction is sufficiently high.

FIG. 9. x–t diagram of the energy exchange term with droplet diameters of (a)
5 μm, (b) 10 μm, (c) 15 μm, and (d) 20 μm. The description for dashed lines is the
same as in Fig. 6.

Figure 9 shows the evolutions of the energy exchange term
[Se in Eq. (8)] in the x−t diagram. Generally, considerable energy
transfer occurs earlier than the mass exchange when the shock wave
sweeps. This is because droplet heating toward the saturated temper-
ature occurs due to convective heat transfer, which takes a finitely
long period. When the droplets reach the saturated temperature,
significant evaporation can be observed. Therefore, with the same
droplet size, the energy exchange zones with high |Se| (e.g., above
8 MW/m3 for dd,0 = 5 μm and 16 MW/m3 for dd,0 = 10 μm, 15 μm,
and 20 μm) are closer to the leading shock front than the droplet
evaporation zone. Meanwhile, the energy exchange zone is remark-
ably narrower than the mass exchange zone for the droplets of
dd,0 = 5 μm, 10 μm, and 15 μm. This implies that once the droplets
are heated to high temperatures (relative to their initial tempera-
ture), they become self-sustainable and continuously evaporate with
large Sm but with low |Se|.

The spatial and temporal differences of interphase mass,
momentum, and energy exchanges are worthy for further discus-
sion. For fine water droplets (e.g., 5 μm), the timings for these
exchanges are close. For large water droplets (e.g., dd,0 = 10 μm and
15 μm), the difference between onsets of energy and momentum
exchanges, as well as mass exchange, is more pronounced. This is
because SM,i mainly depends on the motions of gas and droplets.
Note that the contribution to SM,i from the first term (the momen-
tum transfer from the evaporated vapor) on the RHS of Eq. (7) is
small compared to the other two terms, as the volumetric evapora-
tion rate Sm is generally four orders of magnitude smaller than that
of |SM,i| (see Figs. 7 and 8). However, variations of Sm and Se depend
on different local conditions, e.g., vapor saturability, interphase tem-
perature difference, and droplet heating. This indicates that when
the leading shock interacts with the droplets, the interphase momen-
tum exchange is the major reason of shock attenuation, as consider-
able mass and energy exchanges lag remarkably farther behind the
shock front. Hence, the shock attenuation is mainly affected by the
instantaneous amount of droplets it interacts with.

B. Effects of droplet number density
The effects of droplet number density on the propagating shock

wave will be examined in this section. Figure 10 shows the evolutions
of gas phase total pressure (pg,tot) in the x−t diagram with four differ-
ent droplet number densities, i.e., Nd,0 = 2.5 × 1011/m3, 5 × 1011/m3,
1 × 1012/m3, and 2 × 1012/m3. Their corresponding droplet vol-
ume fractions are 3.27 × 10−5, 6.55 × 10−5, 13.09 × 10−5, and 26.18
× 10−5, respectively. Here, the shock Mach number and the initial
droplet diameter are Msf,0 = 1.35 and dd,0 = 10 μm, respectively. In
Figs. 10(a)–10(d), the total pressure in the regions between lines A′

and A
′′

, B′–B
′′

, C′–C
′′

, and D′–D
′′

(here, A′–D′ denote the contact
surfaces, and A

′′

–D
′′

denote the compression waves) is continuous
to that behind lines A

′′

–D
′′

. This means that the contact surface, not
the compression wave, is a jump interface for gas phase total pres-
sure. In addition, pg,tot monotonically increases in the droplet-laden
areas, e.g., from A to A′. This is caused by the total pressure recov-
ery from droplet evaporation, which acts as mass addition to the gas
phase. Moreover, the larger droplet number density leads to stronger
recovery, as can be seen from Figs. 10(a)–10(d). This can be further
confirmed by the contours of YH2O in Fig. 12. However, the total
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FIG. 10. x–t diagram of gas total pressure with droplet number densities of (a) 2.5
× 1011/m3, (b) 5 × 1011/m3, (c) 10 × 1011 /m3, and (d) 20 × 1011/m3. A–D: leading
shock; A′–D′: contact surface; A

′′

− D
′′

: compression wave.

pressure pg,tot is relatively low immediately after the leading shock
(lines A–D). This is caused by two factors, i.e., the shock-induced
and droplet-induced (due to both drag and pressure gradient forces)
gas pressure loss. Specifically, the initially quiescent droplets act as
strong aerodynamic barriers to the incident shock. Furthermore, the
droplet-induced pressure loss becomes stronger with increased Nd,0.
This is because both drag and pressure gradient forces from droplets
increase with droplet numbers that immediately interact with the
shock front [see Eqs. (24) and (26), respectively]. Note that although
pressure can be recovered to some extent due to droplet evaporation,
however, it cannot reach the original value, i.e., pg,tot in the droplet-
laden area is always lower than that of the driver gas (left to lines
A
′′

–D
′′

).
Figure 11 shows the evolutions of gas phase total temperature

(Tg,tot) in the x−t diagram for the same cases as in Fig. 10. When the
droplet number density is Nd,0 = 2.5 × 1011/m3, Tg,tot varies slightly

FIG. 11. x–t diagram of gas total temperature with droplet number densities of
(a) 2.5 × 1011/m3, (b) 5 × 1011/m3, (c) 10 × 1011/m3, and (d) 20 × 1011/m3. The
description for dashed lines is the same as in Fig. 10.

behind the leading shock (almost constant around 363 K). This is
because of relatively weak heat exchange between the two phases.
As Nd,0 further increases, Tg,tot is considerably reduced due to heat
transfer to the dispersed droplets. Meanwhile, with larger Nd,0, a
more significant Tg,tot reduction is observable at the end of the post-
shock evaporation zone. This would slow down droplet evaporation
and interphase heat transfer. Furthermore, Tg,tot also decreases due
to shock attenuation (Mag ↓ is not shown here as already demon-
strated in Fig. 5 and will be further confirmed in Fig. 14), droplet
heat absorption (Tg ↓), and vapor mass addition (γg ↓) based on that
Tg,tot = Tg(1 + γg−1

2 Ma2
g), with Mag and γg being the Mach number

and the specific heat ratio of the carrier gas, respectively.
Figure 12 shows the evolutions of the H2O mass fraction in the

x−t diagram. Generally, YH2O increases toward the contact surface,
which is accumulated from continuous evaporation. For Nd,0 = 2.5
× 1011/m3 and 5 × 1011/m3, the volumetric evaporation rate Sm [see
Fig. 13(a), at t = 5.0 ms, for example] is relatively low, whereas the gas
is unsaturated even at t = 5.0 ms [see Fig. 13(b)]. However, for Nd,0
= 1 × 1012/m3 and 2 × 1012/m3, considerable vaporization (hence,
Sm) is found in the shocked gas, and water vapor concentration near
the contact surface is high, as seen in Fig. 13. This is particularly
true when Nd,0 = 2 × 1012/m3 in Fig. 12(d), in which most of the
area between D and D′ is filled with H2O vapor of high concentra-
tion. This can be confirmed by the shorter distance between where
remarkable water concentration exists and the leading shock front
(indicated by lines A–D in Fig. 12).

It is observed from Figs. 10–12 that the compression wave (A
′′

–
D
′′

) is always on the left side of the contact surface (A′–D′) that
separates the two-phase region from the pure gas region, and there-
fore, the droplets cannot cross the compression waves. This is due to
the following reasons. First, all the droplets have been accelerated to
the local gas speed near the left end of the droplet-laden region (i.e.,
lines A′–D′ in the x–t diagrams above). Hence, there is no slip veloc-
ity between the compression waves and the local droplets. Second,
the compression wave results in a strong positive pressure gradi-
ent, which would act on and therefore accelerate the droplets if the
droplets approach the compression wave.

FIG. 12. x–t diagram of the H2O mass fraction with droplet number densities of
(a) 2.5 × 1011/m3, (b) 5 × 1011/m3, (c) 10 × 1011/m3, and (d) 20 × 1011/m3. The
description for dashed lines is the same as in Fig. 10.
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FIG. 13. Comparisons of the (a) mass exchange term and (b) H2O mass fraction
at t = 5 ms for different droplet number densities.

The shock attenuation by the dispersed droplets is shown in
Fig. 5. For a specific droplet volume fraction, the shock velocity is
attenuated to the same value at the same location when it propa-
gates downstream, regardless of the droplet size.39 Figure 14 further
studies this effect, through visualizing the shock Mach numbers at
different streamwise locations, subject to various initial droplet vol-
ume fractions. For V fd,0 < 10−4, the shocks are slightly attenuated
when they propagate, as Msf at different locations are quite close.
Obvious shock attenuation occurs when V fd,0 > 10−4. It is found
from Fig. 14(a) that, with an initial Mach number of Msf,0 = 1.17,
Msf quickly decays to less than 1.0 for x > 1.0 m when V fd,0 > 4
× 10−3. For higher V fd,0 (e.g., V fd,0 > 8 × 10−3), Msf is lower than
1.0 even before x = 0.5 m. For Msf,0 = 1.35 in Fig. 14(b), Msf > 1 for
x = 0 m–3.0 m when V fd,0 < 4 × 10−3. With further increased V fd,0,
the shocks finally evolve to pressure waves. Similar observation has
been reported by Kersey et al.,7 in which an incident shock with
Msf,0 = 1.25 is attenuated to a subsonic wave when the droplet mass
loading is above 0.63. From Fig. 14, it is also seen that the shocks
with higher Msf,0 can propagate farther downstream with larger V fd,0
before they are attenuated to sonic waves.

C. Effects of incident shock Mach number
Figure 15 shows the evolutions of droplet diameters in the

x−t diagram with four incident shock Mach numbers, i.e., Msf,0
= 1.17, 1.35, 1.5, and 1.6. The corresponding initial compression
wave Mach numbers are Mcw,0 = 0.31, 0.61, 1.2, and 1.5. Apparently,
the compression wave is supersonic when Msf,0 = 1.5 and 1.6. The
initial droplet diameter, number density, and volume fraction are

FIG. 14. Shock Mach numbers with various initial droplet volume fractions: (a) Msf,0
= 1.17 and (b) Msf,0 = 1.35. Dashed lines: iso-lines of Msf = 1.0.

dd,0 = 5 μm, Nd,0 = 1 × 1012/m3, and V fd,0 = 1.64 × 10−5, respec-
tively. Generally, in the shocked gas, the droplet diameter decreases
continuously from the evaporation front. Near the leading shocks
(lines A–D), the droplet diameter is about dd = 4.95 μm, which is
slightly smaller than dd,0 = 5 μm due to the slow evaporation in the
quiescent air before the shock arrival. It is seen that dd decreases
faster with larger Msf,0 due to the increased interphase tempera-
ture difference. The smallest droplets are observed at the end of the

FIG. 15. x–t diagram of droplet diameters with incident shock Mach numbers of (a)
1.17, (b) 1.35, (c) 1.5, and (d) 1.6. The description for dashed lines is the same as
in Fig. 10.
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FIG. 16. Distributions of the (a) pressure and (b) Mach number at t = 5.0 ms for
different incident shock Mach numbers. a/b: shock front; a′/b′: compression wave;
a
′′

/b
′′

: expansion wave.

two-phase region (lines A′–D′), due to their relatively larger resi-
dence time in the shocked gas and hence longer evaporation time.
Note that the two-phase contact surfaces when Msf,0 = 1.5 and 1.6,
i.e., C′ and D′, are demarcated with a turning point (i.e., e and f)
into two sections [see Figs. 15(c) and 15(d)]. The probable reason
for this phenomenon is that the contact surface (lines C′ and D′)

and compression wave (lines C
′′

and D
′′

) behind the leading shock
are supersonic in these two cases and is explained in detail below.

The recompression phenomenon can be justified from the dis-
tributions of static pressure pg and Mach number Mag , which are
shown in Fig. 16. The results are from a representative instant of
t = 5 ms. In Fig. 16(a) with Msf,0 = 1.5 and 1.6, it is seen that pressure
behind the expansion wave [points a

′′

and b
′′

in Fig. 16(b)] is higher
than that after the shock [points a and b in Fig. 16(b)] and compres-
sion [points a′ and b′ in Fig. 16(b)] waves. The higher pressure in
the expansion wave accelerates the compression wave to catch up
with the leading shock, which is decelerated by the droplets until the
compression wave and shock wave reach a kinematic balance. After
that, the leading shock and contact surface propagate at the same
speed. This is why the leading shock is parallel to the contact sur-
face in Figs. 15(c) and 15(d), after point e in Msf,0 = 1.5 and point f
in Msf,0 = 1.6, respectively. However, this phenomenon is not seen
with lower incident Mach numbers (e.g., Msf,0 = 1.17 and 1.35). In
Fig. 16(b), it is seen that the gas after the compression wave (but
before the expansion wave) is supersonic in Msf,0 = 1.5 and 1.6 but
subsonic in Msf,0 = 1.17 and 1.35. Note that the recompression of the
leading shock is only possible when the compression wave is super-
sonic. Although there is also acceleration of the compression wave to
some extent when Msf,0 = 1.17 and 1.35 (e.g., to 0.36 Ma and 0.81 Ma
at t = 5 ms, respectively), they do not reach supersonic propaga-
tion and hence have little effects on the leading shocks. Furthermore,
the smaller the difference between Msf,0 and Mcw,0 is, the faster the
Msf attenuates to Mcw (therefore, the earlier they balance), as seen in
Fig. 15.

The interphase coupling behind the peculiar recompression
process is further discussed in Figs. 17(a)–17(c), which show the
evolutions of exchange terms for mass, momentum, and energy
equations for the gas phase from the same cases in Figs. 15 and
16. The results are volume-integrated in the droplet-laden region.
For Msf,0 = 1.17 and 1.35, Sm, SM,i, and Se change monotonically.

FIG. 17. Evolutions of volume-integrated
(a) mass, (b) momentum, and (c) energy
exchange rates in the droplet-laden
region with various incident shock Mach
numbers. (d) Profiles of the H2O mass
fraction at t = 2.5 ms (dotted lines) and
5.0 ms (solid lines). Points e and f are
the turning points in Fig. 15, and ellipses
G and H are vapor-saturated regions.
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However, for Msf,0 = 1.5 and 1.6, before their turning points (i.e.,
e and f in Fig. 17), Sm, SM,i, and Se vary in similar tendency to
those with lower shock Mach numbers. However, after the turn-
ing points, variations of Sm, SM,i, and Se are limited. It is seen that
Sm and |Se| decrease slowly and almost linearly with time after the
turning points, which indicates slightly weakened evaporation and
heat transfer. This is because the region between the leading shock
and the contact surface (i.e., the region between lines C and C′

and D and D′ in Fig. 15) approaches saturation [see the constant
H2O vapor mass fraction of about 0.0193 at t = 5 ms, circled by
ellipses G and H in Fig. 17(d)] after the turning points. This is par-
ticularly true in the region close to the contact surface due to the
higher shocked gas temperature, which develops faster to approach
the saturation condition. Hence, the main contributions to Sm and
Se come from the droplets that just enter the shocked region. How-
ever, as the water droplets continuously enter, the gas velocity and
temperature of this region slightly decrease with time, which then
leads to a slow decrease in Sm and |Se|. In addition, obvious momen-
tum exchange only comes from the droplets that freshly enter the
shocked region. The droplets well behind the shock have reached
the kinematic equilibrium with the ambient gas. Hence, |SM,i| is
quite small as only the droplets close to the shock front have to
be accelerated, and |SM,i| almost decreases linearly and weakly due
to the insignificant shock attenuation. From Figs. 15 and 17, it is
found that for these two cases, the region between the leading shock
and the contact surface reaches the steady state after the turning
point, not only in terms of its structural width but also in terms
of its two-phase interactions, e.g., mass, momentum, and energy
exchange.

Based on the above analyses, it is found that whether the
compression wave is supersonic is an indication of the recompres-
sion phenomenon. Figure 18 further shows the evolutions of the

FIG. 18. Evolutions of (a) leading shock and (b) contact surface locations under
various initial shock Mach numbers. The dashed line TP indicates the track of the
turning points in different cases.

instantaneous locations of the leading shock (xsf ) and contact
surface (xcs) under various initial shock Mach numbers. All cases
share identical the initial droplet diameter and number density in
Figs. 15–17, i.e., dd,0 = 5 μm and Nd,0 = 1 × 1012/m3. The initial lead-
ing shock and the corresponding compression wave Mach numbers
are indicated in Figs. 18(a) and 18(b), respectively. It is seen that
all cases with Mcw,0 > 1.0 can reach a balance between the leading
shock and the two-phase contact surface, i.e., their velocities (slopes
of their profiles) are almost the same after the turning points. Fur-
thermore, the larger the Msf,0 is, the earlier the turning point occurs,
and the closer the contact surface to the leading shock, which is
confirmed in Figs. 15 and 17. Note that the case with Msf,0 = 1.4
is slightly different, and the initial compression wave is subsonic
(Mcw,0 = 0.97); however, the compression wave can be accelerated
to be supersonic when the shock propagates. This acceleration is
shown in Fig. 16 for cases Msf,0 = 1.17 and 1.35, mainly caused by the
higher residual pressure in the left expansion wave than that in the
compression wave when initiating the incident shock. For cases with
Msf,0 ≤ 1.35, Mcw is subsonic throughout the computational domain
although there is also acceleration of the compression wave (e.g.,
Mcw from 0.61 initially to 0.81 at t = 5 ms for Msf,0 = 1.35, as seen
in Fig. 16), but there is no recompression phenomenon.

Finally, Fig. 19(a) shows evolutions of the distance between
the leading wave and the two-phase contact surface under

FIG. 19. Initial droplet volume fractions: (a) evolutions of the distance between the
leading shock and the contact surface and (b) the droplet volume fraction (in log-
arithmic scale) at t = 5.0 ms. The arrows in (b) indicate the instantaneous leading
waves.
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different droplet volume fractions. The incident shock Mach num-
ber is fixed to be 1.6. In Fig. 19(a), for V fd,0 = 0.82 × 10−5 (the same
case shown in Figs. 15–18 with Msf,0 = 1.6) and 1.64 × 10−5, recom-
pression is observable after their respective turning points [f and g in
Fig. 19(a)]. For V fd,0 = 3.28 × 10−5, recompression may occur after
t ≈ 5.5 ms, as circled by ellipse I in Fig. 19(a). However, this weak
recompression phenomenon is evolving (i.e., xsf - xcs does not reach
constant) even when the leading shock exits from the domain. For
V fd,0 ≥ 13.12 × 10−5, there is no recompression. Furthermore, the
onset of the recompression phenomenon occurs later with a larger
initial droplet volume fraction (no recompression may be regarded
as the turning point at t → +∞). Therefore, the initial droplet
volume fraction also affects the occurrence of the recompression
phenomenon.

Figure 19(b) shows the corresponding droplet volume fraction
at t = 5.0 ms. For V fd,0 = 0.82 × 10−5 and 1.64 × 10−5, V fd is low (e.g.,
≤ 10−7) at the contact surface (i.e., the left end of each profile). Fur-
thermore, V fd decreases rapidly from its peak value after the leading
shock [indicated by the arrow in Fig. 19(b)] to the contact surface.
Therefore, attenuation of the supersonic compression wave behind
the contact surface is weak based on Fig. 14, and recompression can
occur. For V fd,0 = 3.28 × 10−5, it is seen that V fd > 10−6 at the con-
tact surface, and this condition is critical for the occurrence of the
recompression process. For V fd,0 ≥ 13.12 × 10−5, V fd gets higher
at the contact surface, and recompression has no chance to occur.
Based on Figs. 18 and 19, one can see that the recompression phe-
nomenon is sensitive to the droplet volume fraction. For low V fd,0

= 0.82 × 10−5, recompression can occur even with a lower Mach
number, e.g., Msf,0 = 1.4 and Mcw,0 = 0.97. However, for a higher
droplet volume fraction of V fd,0 = 3.28 × 10−5, it is difficult to occur
even at Msf,0 = 1.6 and Mcw,0 = 1.5. Therefore, the condition for sta-
ble recompression is that the compression wave can be accelerated
to the supersonic condition by the followed high-pressure expansion
wave (see Fig. 16) but not attenuated excessively with high droplet
loading.

VI. CONCLUSION
The interactions between the propagating shock waves and

dilute evaporating water droplets are investigated numerically in
a one-dimensional domain. The exchanges in mass, momentum,
energy, and vapor species between the carrier gas and droplets are
considered through two-way coupling of the Eulerian–Lagrangian
approach. Emphasis is laid on shock attenuation, two-phase inter-
actions, droplet evaporation, motion, and heating dynamics. A
parametric study is performed for the initial droplet diameters of
5 μm–20 μm, initial droplet number densities of 2.5 × 1011/m3–
2 × 1012/m3, and incident shock Mach numbers of 1.17–1.9.
Three characteristic fronts are observed when the shock trav-
els in the two-phase gas–droplet medium: the leading shock
that propagates right with the fastest velocity, the contact sur-
face that separates the droplet-laden region from the droplet-free
region, and the compression wave that follows behind the contact
surface.

The variation of shock Mach numbers with droplet volume
fractions indicates that remarkable shock attenuation takes place

when the initial droplet volume fraction is relatively large. For exam-
ple, the propagating shock may be attenuated to sonic or even sub-
sonic pressure waves when the initial droplet volume fractions are
larger than 10−3 and 6 × 10−3 for incident shock Mach numbers
of 1.17 and 1.35, respectively. The attenuation is mainly caused by
the momentum loss to those droplets that interact with the shock
front and, hence, only depends on the instantaneous amount of
shocked droplets (e.g., volume fraction or mass loading). Further-
more, shock compression, drag force, and pressure gradient force
lead to remarkable total pressure loss immediately after the shock
wave.

Moreover, the interphase heat transfer and evaporation effects
of evaporative water droplets also play an important role in
the post-shock region. The heat transfer to droplets decreases
the shocked gas temperature. Droplet evaporation results in an
increased water vapor concentration in the shocked gas, which
dilutes the local mixtures behind the shock wave. Furthermore, this
also contributes to the total pressure recovery behind the shock
wave.

Gas recompression between the leading shock and the con-
tact surface is found for high incident shock Mach numbers, which
is because the attenuated leading shock reaches a balance with the
following supersonic compression wave. When the recompression
phenomenon occurs, the width of this recompressed region tends
to be constant as the velocities of the leading shock (attenuated
due to interactions with droplets) and compression wave (acceler-
ated due to the residual of the high initial pressure for initiating
the incident shock) are the same. Furthermore, the total amount
of interphase exchanges in mass, momentum, and energy in this
region also tends to be steady. The turning point in the x–t diagram,
after which the recompression phenomenon stabilizes, occurs ear-
lier with an increased incident shock Mach number. For an initial
droplet volume fraction of 1.64 × 10−5, the recompression phe-
nomenon always occurs when the incident shock Mach number
is larger than 1.4. However, it is sensitive to the droplet volume
fraction. For an incident shock Mach number of 1.6, recompres-
sion can only occur with initial droplet volume fractions below
3.28 × 10−5.

A secondary breakup may be observed subject to incident
shock waves, which may modulate the two-phase interactions, e.g.,
momentum and energy exchanges, because of the increased specific
droplet surface area. Moreover, two- or three-dimensional simula-
tions may be performed to further study the interaction between
water droplets and incident shock waves. These are the interesting
topics for our future studies.
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