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ABSTRACT

In this study, a high-order implicit least squares-based finite difference-finite volume (ILSFD-FV) method with a lattice Boltzmann flux solver is
presented for the simulation of two-dimensional incompressible flows on unstructured grids. In this method, a high-order polynomial based on
Taylor series expansion is applied within each control cell, where the unknown spatial derivatives at each cell center are approximated by the least
squares-based finite difference scheme. The volume integral of the high-order polynomial over the control cell results in a pre-multiplied coeffi-
cient matrix in the time-dependent term. This makes the high-order method be implicit in nature. With this feature, a high-order implicit
Runge–Kutta time integration scheme, namely, the explicit first-stage singly diagonally implicit Runge–Kutta (ESDIRK) scheme, is applied to
obtain the time-accurate solutions for flow problems. The non-linear system of equations arising from each ESDIRK stage except for the first
explicit stage is solved by a dual time stepping approach. A matrix-free lower-upper symmetric Gauss–Seidel solver is then used to efficiently
march the solution in the pseudo time. The present high-order ILSFD-FV method is verified and validated by both steady and unsteady 2D
incompressible flow problems. Numerical results indicate that the developed implicit method outperforms its explicit counterpart in terms of the
convergence property and computational efficiency. The speedup ratio of the computational effort is about 3–22.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047192

I. INTRODUCTION

High-order numerical methods have attracted great interest in
studying turbulence, aeroacoustics, and many viscosity-dominated
flows, such as boundary layer flows, vortical flows, shock-boundary
layer interactions, and heat flux transfers. In comparison with low-
order methods which have played an important role in engineering
applications due to their robust and reliable characteristics, high-order
methods become competitive since they can provide higher accuracy
with similar cost. In addition, the desire to solve practical flow prob-
lems with complex geometries has prompted the development of
high-order methods on unstructured grids.

In the past two decades, there have been various high-order meth-
ods on unstructured grids developed in the computational fluid dynam-
ics (CFD) community and they are successfully applied to solve diverse
flow problems. Representative ones are the high-order finite volume
(FV) method,1–4 essentially non-oscillatory (ENO) and weighted essen-
tially non-oscillatory (WENO) method,5–9 discontinuous Galerkin

(DG) method,10–16 spectral difference (SD) method,17,18 spectral vol-
ume (SV) method,19–23 and correction procedure via reconstruction
(CPR) method.24,25 These methods all apply a high-order polynomial to
approximate the solution function within each control cell. However,
the respective technique for approximating the unknowns in the high-
order polynomial is clearly distinctive. Specifically, the DG method
increases the number of discrete equations to that of the unknowns by
weighted integrations of governing equations over the control cell. After
solving the resultant equation system, the unknowns can be approxi-
mated. The SV/SD method adopts a different technique, in which addi-
tional degrees of freedom are constituted by cell subdivision or solution
point distributions in a proper manner inside each control cell. Based
on the functional values at the subcells or solution points, a high-order
polynomial in the control cell is established and then is applied to the
subcell or solution point for discretization of governing equations.
Apart from DG and SV/SD methods, one pioneering high-order finite
volume method is k-exact method.26 In this method, a modified Taylor
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series expansion is applied to guarantee high-order solution approxima-
tion within each cell. To determine the unknowns, namely, the spatial
derivatives at the cell center, the Taylor series expansion needs to be
integrated over the current cell and its neighboring cells, respectively.
Then, the unknowns can be calculated by solving the resultant equation
system with the mean values of the solution function at the current cell
and its neighboring cells.

Recently, Shu and his coworkers proposed a straightforward
high-order FV method on the unstructured grid, called least squares-
based finite difference-finite volume (LSFD-FV) method.27 In the
LSFD-FV method, a Taylor series expansion is applied within each
control cell and this Taylor polynomial is used as the interpolation
function directly to approximate the solution with required accuracy.
The unknown spatial derivatives are approximated by the mesh-free
least squares-based finite difference (LSFD) scheme using the func-
tional values at centers of current cell and its neighboring cells. In the
time-dependent term, the volume integral of solution function over
the control cell results in a pre-multiplied coefficient matrix. This
matrix connects the functional values at cell centers of the current cell
and its neighboring cells. As a consequence, the resultant equation sys-
tem is implicit in nature. In the work of Ref. 27, the point iterative
method is applied to solve the equation system due to its easy imple-
mentation and modest memory requirement. The corresponding
results show that, in comparison with k-exact method, the high-order
LSFD-FV method is slightly more accurate and efficient. However, the
point iterative method also suffers from low computational efficiency.
In addition, the implicit nature of the LSFD-FV method has not been
fully considered when the point iterative method is applied. Therefore,
for practical applications, it is desirable to develop a more efficient
LSFD-FV method which takes full advantage of its implicit nature.

The implicit time-stepping methods are well developed and they
have been applied in high-order methods to solve various flow prob-
lems. For steady problems, the implicit lower-upper symmetric
Gauss–Seidel (LU-SGS) scheme28–30 has drawn amounts of attention
due to its simplicity and fast convergence. Even for unsteady problems,
the LU-SGS scheme is also widely used to efficiently march the solu-
tion in the pseudo time constructed by the dual time stepping (DTS)31

method. For example, the DTS method coupled with the LU-SGS
scheme was applied in the high-order compact CPR method devel-
oped by Cox et al.32 In their work, the LU-SGS scheme with backward
Euler discretization was used to compute the solution in pseudo time,
while a second-order backward difference formulation (BDF2) was
used to march in physical time. However, BDF2 only has the second-
order of accuracy so the physical time step has to be chosen as a small
constant to ensure that the total accuracy does not degrade due to the
large errors resulting from the temporal discretization. Thus, even
though LU-SGS offers the high computational efficiency in the pseudo
time step, the whole unsteady computation process is still time-
consuming. In order to match the temporal accuracy with the spatial
accuracy, high-order implicit time integration algorithms become
fashionable. One representative scheme is the explicit first stage, singly
diagonally implicit Runge–Kutta (ESDIRK) method,33 which has vari-
ous applications34,35 with its temporal accuracy well validated.
Moreover, it is proven that the ESDIRK method is more efficient than
the explicit Runge–Kutta method. Thus, in this study, the ESDIRK
method and the LU-SGS method are applied in the LSFD-FV method
on unstructured grids for solving two-dimensional incompressible

flow problems. The efficiency and convergence behavior of the current
implicit least squares-based finite difference-finite volume (ILSFD-FV)
method are investigated in detail. As shown in this paper, a significant
speed-up relative to the explicit LSFD-FVmethod is demonstrated.

II. HIGH-ORDER IMPLICIT LEAST SQUARE-BASED
FINITE DIFFERENCE-FINITE VOLUME (ILSFD-FV)
METHOD
A. Governing equations and spatial discretization
for high-order LSFD-FVmethod

In this work, the lattice Boltzmann flux solver (LBFS)38,39 will be
applied to simultaneously evaluate the viscous and inviscid fluxes of
the weakly compressible Navier–Stokes (N–S) equations. Specifically,
through the Chapman–Enskog expansion analysis, the weakly com-
pressible N–S equations can be derived from the lattice Boltzmann
equation (LBE) in continuum flow regime.40–42 When the density vari-
ation is small and the Mach number (Ma) is low (Ma<0.3), incom-
pressible flows can be well simulated. For two-dimensional simulation,
the recovered governing equations based on mass and momentum
conservation laws in the lowMach number limit are

@q
@t

þr � quð Þ ¼ 0; (1)

@qu
@t

þr � quuþ pIð Þ ¼ �r � rquþ rquð ÞT
h i

; (2)

where q is the density, u ¼ ðu; vÞ is the velocity vector, and p and �
are, respectively, the pressure and kinematic viscosity of the fluid flow.
In this weakly compressible model, the pressure is calculated by the
equation of state, i.e., p ¼ qc2s , where cs denotes the sound speed which
has the value of cs ¼ 1=

ffiffiffi
3

p
for the nine-velocity model.38,43,44 The

kinematic viscosity of fluid is related to the relaxation parameter s via
� ¼ ðs� 0:5Þc2s dt through Chapman–Enskog expansion analysis.38,39

dt is the streaming distance which is solely used during the local
reconstruction of the LBE solution at the cell interface. The details of
these parameters can refer to the references.27,38–42 I is the unit tensor.
Equations (1) and (2) can be written in a conservative form as

@W
@t

þr � F ¼ 0; (3)

where the vector of conservative variablesW and the vector of fluxes F
are given by

W ¼ q
qu

� �
; F ¼ Fq

Fqu

� �
: (4)

By incorporating the divergence theorem and Gaussian quadra-
ture, the integral form of Eq. (3) over a control cell Xi can be semi-
discretized as

d
dt

ð
Xi

WdX
� �

¼ �
Xnedge
edge¼1

XnGQp
GQp¼1

Fedge;GQp � nedgeð ÞAedgewGQp; (5)

where nedge ¼ ðnx; nyÞ represents the unit normal vector of the cell
interface in the global Cartesian coordinate system, nGQp denotes the
number of Gaussian quadrature points on each edge, nedge is the
number of cell edges of the cell Xi, A is the interface area, and wGQP

denotes a quadrature weight.
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In the high-order LSFD-FV method,27 in order to get higher-
order numerical solutions of flow variables within the control cell, a
high-order polynomial which is also used to interpolate functional
value at the quadrature points along the cell interface for evaluation of
numerical fluxes is applied. For the cubic approximation in the 2D
case, this high-order polynomial can be given by applying the Taylor
series expansion to the flow variable at the reference point i, i.e., the
cell center of the control cell Xi, as

Wðx; yÞ ¼ W i þ @W
@x

����
i

ðx � xiÞ þ @W
@y

����
i

ðy � yiÞ

þ @2W
@x2

����
i

ðx � xiÞ2
2

þ @2W
@y2

����
i

ðy � yiÞ2
2

þ @2W
@x@y

����
i

ðx � xiÞðy � yiÞ þ @3W
@x3

����
i

ðx � xiÞ3
6

þ @3W
@y3

����
i

ðy � yiÞ3
6

þ @3W
@x2@y

����
i

ðx � xiÞ2ðy � yiÞ
2

þ @3W
@y2@x

����
i

ðy � yiÞ2ðx � xiÞ
2

: (6)

Equation (6) indicates that the functional value of arbitrary points inside
the control cell Xi can be approximated with the fourth-order of accu-
racy. When Eq. (6) is substituted into Eq. (5), it involves 10 unknowns at
the cell center (1—functional value, 2—first-order derivatives, 3—
second-order derivatives, and 4—third-order derivatives). In fact, inte-
grating Eq. (6) over the control cellXi gives the following equation:

ð
Xi

W x; yð ÞdX ¼ XiW i þ dWT
i Ci; (7)

with

dWT
i ¼ @W

@x

����
i

;
@W
@y

����
i

;
@2W
@x2

����
i

;
@2W
@y2

����
i

;
@2W
@x@y

����
i

;

"

@3W
@x3

����
i

;
@3W
@y3

����
i

;
@3W
@x2@y

����
i

;
@3W
@y2@x

����
i

�
;

CT
i ¼ x1y0 i; x

0y1 i;
x2y0 i
2

;
x0y2 i
2

; x1y1 i;
x3y0 i
6

;

"

x0y3 i
6

;
x2y1 i
2

;
x1y2 i
2

#
;

(8)

where xnym i ¼
Ð
Xi
ðx � xiÞnðy � yiÞmdX. Equation (7) has 10

unknowns but Eq. (5) only provides one equation for each cell.
Obviously, the problem is not well-posed. As indicated in the LSFD-
FV method,27 the unknown derivatives in Eq. (7) can be approximated
by the meshless LSFD method,36,37 which is also based on the two-
dimensional Taylor series expansion as shown in Eq. (6). By applying
Eq. (6) to 9 neighboring cells of Xi, the following linear equation sys-
tem with 9 derivatives as unknowns can be obtained:

SidW i¼DW i; (9)

where the matrix S andDW are

Si ¼

Dxi1 Dyi1
Dx2i1
2

Dy2i1
2

Dxi1Dyi1
Dx3i1
6

Dy3i1
6

Dx2i1Dyi1
2

Dy2i1Dxi1
2

Dxi2 Dyi2
Dx2i2
2

Dy2i2
2

Dxi2Dyi2
Dx3i2
6

Dy3i2
6

Dx2i2Dyi2
2

Dy2i2Dxi2
2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Dxi9 Dyi9
Dx2i9
2

Dy2i9
2

Dxi9Dyi9
Dx3i9
6

Dy3i9
6

Dx2i9Dyi9
2

Dy2i9Dxi9
2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

Dxij ¼ xj � xi; Dyij ¼ yj � yi; j ¼ 1;…; 9;

DWT
i ¼ W i1 �W i;W i2 �W i;…;W ij �W i½ �;

(10)

where W ij is the functional value at the center of the jth neighboring
cell to the current cell i. By solving equation system (9), the expression
of the derivative vector dW can be obtained in terms of DW .
However, due to unstructured cell distribution for a general case, the
equation system may be ill-conditioned or even singular. To overcome
this difficulty, the local scaling technique and least squares optimiza-
tion were introduced, where Eq. (6) is applied at more than 9 neigh-
boring points. The details of these techniques can be referred to the
work of Ding et al.36 Following the derivations in the work of Liu
et al.,27 the unknown derivatives can be computed by

dW ¼ �D �STWe�S
� 	�1

�STWe

h i
DW ¼ KDW; (11)

where

�ST ¼ s1; s2;…; sN½ �; N > 9

sj ¼ D�xj;D�yj;
D�x2j
2

;
D�y2j
2

;D�xjD�yj;
D�x3j
6

;
D�y3j
6

;
D�x2j D�yj

2
;
D�y2j D�xj

2

� �
;

j ¼ 1;…;N:

(12)

In Eqs. (11) and (12), the distance relations are
ðD�x;D�yÞ ¼ ðDx=d0;Dy=d0Þ, locally scaled by the radius d0 which is
the farthest Euclidean distance from the reference point i. The scaling
matrix �D only contains diagonal elements of the inverse scaling.We is
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the N � N diagonal matrix formed by applying the weighting function
at N supporting points. The weighting coefficient matrix K is related
to the grid uniquely. When static grids are used, the mesh point distri-
bution does not change. Therefore, K is computed for only one time
and then stored for the following calculations, which can save the
computational effort.

Once the derivatives are approximated by the LSFD scheme, Eq.
(6) can be used to interpolate the functional values at corresponding
locations. Then, following the process in the LSFD-FV method,27 the
numerical fluxes at the cell interface can be evaluated by LBFS38,39

which evaluates the inviscid and viscous fluxes simultaneously.
Moreover, after substituting Eq. (7) into Eq. (5), the resultant ordinary
differential equations are solved to update the conservative variables at
the cell center by implicit time marching techniques. The details will
be discussed in Sec. II B.

B. Implicit time integration scheme for high-order
LSFD-FVmethod

As shown in Eq. (7), when Taylor series expansion form (6) is
substituted into the volume integral of solution function over the con-
trol cell i, we have

ð
Xi

W x; yð ÞdX ¼ XiW i þ dWT
i Ci ¼ XiW i þ

X9
k¼1

Ci
kdW

i
k: (13)

Equation (13) involves functional value W i and its spatial derivatives.
As shown in Eq. (11), the spatial derivatives can be approximated by
the LSFD scheme in terms of differences between the functional values
at the centers of current cell i and its neighboring cells. Thus, we have

ð
Xi

W x; yð ÞdX ¼ XiW i þ
X9
k¼1

Ci
k

XN
j¼1

Ki
k;jDW ij

¼ XiW i þ
X9
k¼1

Ci
k

XN
j¼1

Ki
k;jðW ij �W iÞ

¼ Xi�
X9
k¼1

Ci
k

XN
j¼1

Ki
k;j

0
@

1
AW i þ

XN
j¼1

X9
k¼1

Ci
kK

i
k;j

 !
W ij

¼ Mi;iW i þ
XN
j¼1

Mi;jW ij: (14)

As a result, the following matrix form can be obtained from Eq. (5)
when Eq. (14) is applied to all control cells,

M
@W
@t

¼ �R Wð Þ; (15)

whereW and R are, respectively, the solution vector and the vector of
flux contribution for all control cells, andM is a sparse matrix formed
by coefficients on the right hand side of Eq. (14). Apparently, the
appearance of the matrix M endows the high-order LSFD-FV method
with the implicit nature.

In order to update the solution, the equation system (15) has to
be solved. When a steady state problem is considered, the time accu-
racy is of no importance and the widely used implicit LU-SGS28–30

method can be applied to improve the efficiency of this high-order

LSFD-FV method. In the implementation of the implicit LU-SGS
method, Eq. (15) should be rewritten as

M
Wnþ1 �Wn

Dt
¼ �Rnþ1 Wð Þ; (16)

where Dt denotes the time step which is determined by the Courant-
Friedrichs-Lewy (CFL) condition. The superscript “n” and “n+1” rep-
resent the current time level at time t and the new time level at time t
+Dt, respectively. Then, the residual Rnþ1 is linearized about the cur-
rent time level n as

Rnþ1 � Rn þ @R
@W

� �n

DWn; (17)

where DWn¼Wnþ1 �Wn and @R=@W is the flux Jacobian. After
substituting Eq. (17) into Eq. (16), the following equation is obtained:

M
Dt

þ @R
@W

� �n
" #

DWn ¼ �RnðWÞ: (18)

The term in the square bracket on the left-hand side of Eq. (18) is
referred to as the implicit operator. Apparently, this implicit operator
contains two parts which are the coefficient matrix M and the flux
Jacobian @R=@W . These two parts constitute a large, sparse, and non-
symmetric system matrix with dimensions equal to the total number
of cells. Thus, the implicit nature of the high-order LSFD-FV method
is combined into the implicit operator naturally and conveniently and
they can be treated together. Generally, the direct matrix inversion for
this term is expensive in terms of the computational effort and the vir-
tual memory. To solve Eq. (18), in the LU-SGS framework, the implicit
operator is factorized into the diagonal and off diagonal terms, i.e.,

M
Dt

þ @R
@W

� �n
" #

DWn ¼ Dþ Lð ÞD�1 Dþ Uð ÞDWn; (19)

where L, U, and D are the matrices of strictly lower triangular, upper
triangular, and diagonal terms, respectively. Equation (18) is then
replaced by the following equation:

Dþ Lð ÞD�1 Dþ Uð ÞDWn ¼ �RnðWÞ: (20)

In practical implementation, the system matrix of implicit operator
in Eq. (18) can be simplified. For the term of the coefficient matrixM, as
indicated in our previous work,27 it can be replaced by the identity
matrix or the diagonal matrix which shares the diagonal elements with
the coefficient matrixM. In addition, since steady state solutions are the
only concerns and in order to reduce the numerical complexity, the flux
Jacobian matrix @R=@W is not evaluated analytically but approximated
by a simplified formulation. For illustrative purpose, on unstructured
grids, we take the control cell Xi as the reference cell and Xj represents
its neighboring cells. Hence, the flux Jacobian is approximately evaluated
by the flux splitting method with the spectral radius via

@Ri

@W
DW ¼

X
j2C ið Þ

@Ri

@W j
DW j ¼

X
j2N ið Þ

1
2

h
DFc;i þ DFc;j
� 	 � nij

þ Kij þ K̂ ij


 �
DW i � DW j
� 	i

Aij; (21)

where C(i) is the set of cell i and its neighbor cells and N(i) is the set
of neighbor cells of cell i. Fc is the convective flux and
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DFc;j¼FcðW j þ DW jÞ � FcðW jÞ. Kij ¼ jV ij � nijj þ csij represents the
maximal eigenvalue of the convective flux Jacobian. Here, the sub-
script ij denotes the face which is shared by control cell i and j. V and
cs denote the velocity vector and the sound speed, respectively. The
factor K̂ ij ¼ 1

rij
½maxð 4

3qij
; c
qij
Þ lijPr� reflects the maximum viscous eigen-

value, where c is the ratio of specific heat coefficient, Pr denotes the
Prandtl number, l represents the dynamic viscosity, and rij is the dis-
tance between the barycenter of cells i and j.

With the simplifications for the coefficient matrixM and the flux
Jacobian @R=@W , the operators L, U, and D for unstructured grids
can be given as

L ¼
X
j2L ið Þ

1
2

DFc;j

DW j
� nij � Kij þ K̂ ij


 �
I

" #
Aij;

U ¼
X
j2U ið Þ

1
2

DFc;j

DW j
� nij � Kij þ K̂ij


 �
I

" #
Aij;

D ¼ Mi;i

Dt
þ 1
2

X
j2N ið Þ

Kij þ K̂ ij


 �
Aij

" #
I;

(22)

where LðiÞ and UðiÞ denote the nearest neighbors of cell i which
belong to the lower and upper matrices, respectively. Finally, Eq. (20)
can be solved by the following forward and backward sweep proce-
dures for the reference cell Xi:

DW�
i ¼D�1 �Rn

i �
X
j2L ið Þ

1
2
DF�

c;j �nij� KijþK̂ ij


 �
IDW�

j

h i
Aij

( )
;

DWn
i ¼DW�

i �D�1
X
j2U ið Þ

1
2
DFn

c;j �nij� KijþK̂ij


 �
IDWn

j

h i
Aij

( )
;

(23)

with

DF�
c;j¼Fc Wn

j þ DW�
j

� 	� Fc Wn
j

� 	
;

DFn
c;j¼Fc Wn

j þ DWn
j

� 	� Fc Wn
j

� 	
;

(24)

where DW� is the intermediate solution in the forward sweep. Once
the solution correction DWn is obtained, the macroscopic flow varia-
bles can be updated byWnþ1 ¼ DWn þWn.

For unsteady flow simulation, the temporal accuracy is also of
great importance. In order to reflect the implicit characteristic of
this LSFD-FV method and improve its efficiency, the third-order

four-stage ESDIRK method with DTS approach is applied to simulate
the unsteady flow problems. The details of the ESDIRK method are as
follows:

Wk ¼ Wn � Dt
Xk
j¼1

akjM
�1RðW jÞ; k ¼ 1; 2;…; a; (25)

Wnþ1 ¼ Wn � Dt
Xa
j¼1

bjM
�1RðW jÞ; (26)

where a is the number of stages, akj are the stage weights (cf. Table I),
and bj are the weights. The vectors Wk, Wn, and Wnþ1 are the solu-
tions at stage k, the previous time level n, and the next time level n+1,
respectively. Note that, for this ESDIRK scheme used in our case, the
last stage gives the solution at the new time level, i.e., Wnþ1 ¼ Wa.
Therefore, it is unnecessary to carry out computation through Eq.
(26). However, the residuals of every stage have to be stored. In order
to advance Wk from the time level n to n+1, we have to solve the
sequential set of a – 1 nonlinear algebraic equations defined in Eq.
(25). By applying such an a-stage ESDIRKmethod, at each stage k, Eq.
(15) can be discretized as

M
Wk �Wn

Dt
¼ �akkRðWkÞ �

Xk�1

j¼1

akjRðW jÞ; k ¼ 1;…; a: (27)

Generally, it is difficult to solve Eq. (27) in its present form. To solve
this problem, the DTS approach is used. The pseudo time term
@Wk=@s is added to Eq. (27), yielding the expression

M
dWk

ds
þM

Wk �Wn

Dt
¼ �akkRðWkÞ �

Xk�1

j¼1

akjRðW jÞ: (28)

Then the time integration scheme for one pseudo time step is

M
Wk;sþ1�Wk;s

Ds
¼�M

Wk;sþ1�Wn

Dt
�akkRðWk;sþ1Þ�

Xk�1

j¼1

akjRðW jÞ

¼�R�ðWk;sþ1Þ; (29)

where Ds is the pseudo time step, s is the step of the pseudo time, and
R�ðWk;sþ1Þ is the unsteady residual. Note that the subscript “i” has
been removed for simplicity in Eqs. (28) and (29). In this way, the
solution at each stage of ESDIRK method can be obtained by treating
Eq. (29) as a steady-state problem, where the matrixM on the left side

TABLE I. Butcher tableau for ESDIRK scheme.

a1j 0 0 0 0

a2j 1 767 732 205 903
4 055 673 282 236

1 767 732 205 903
4 055 673 282 236

0 0

a3j 2 746 238 789 719
10 658 868 560 708

�640 167 445 237
6 845 629 431 997

1 767 732 205 903
4 055 673 282 236

0

a4j 1 471 266 399 579
7 840 856 788 654

�4 482 444 167 858
7 529 755 066 697

11 266 239 266 428
11 593 286 722 821

1 767 732 205 903
4 055 673 282 236

bj a41 a42 a43 a44
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can be simplified by the diagonal matrix without affecting the
accuracy.

To discretize the pseudo-time derivative with an implicit solver,
the unsteady residual R�ðWk;sþ1Þ given in Eq. (29) is linearized with
respect to the known pseudo-time level s at stage k as

R�ðWk;sþ1Þ � R�ðWk;sÞ þ @R�

@W

� �k;s

DWk;s

¼ R�ðWk;sÞ þ M
Dt

þ akk
@R
@W

� �k;s
" #

DWk;s; (30)

where DWk;s5Wk;sþ1 �Wk;s. By substituting Eq. (30) into Eq. (29),
the implicit integration in the pseudo time with the ESDIRK method
is obtained in a non-factorized form as

M
Ds

þ M
Dt

þ akk
@R
@W

� �k;s
" #

DWk;s ¼ �R�ðWk;sÞ; k ¼ 1;…; a;

(31)

where

R�ðWk;sÞ ¼ M
Wk;s

Dt
þ akkR Wk;sð Þ þ �M

Wn

Dt
þ
Xk�1

j¼1

akjRðW jÞ
2
4

3
5:
(32)

It is noteworthy that the matrix M in R�ðWk;sÞ cannot be simplified
to preserve the accuracy while M in the implicit operator on the left-
hand side of Eq. (31) can be simplified to combine with the LU-SGS
method. Based on the factorization of the implicit operator in Eq. (31)
and the simplifications stated above, at the kth stage of the ESDIRK
method, the operators L, U, andD read

L ¼
X
j2L ið Þ

1
2

DFc;j

DW j
� nij � Kij þ K̂ ij


 �
I

" #
Aij;

U ¼
X
j2U ið Þ

1
2

DFc;j

DW j
� nij � Kij þ K̂ij


 �
I

" #
Aij;

D ¼ Mi;i

Ds
þMi;i

Dt
þ akk

2

X
j2N ið Þ

Kij þ K̂ ij


 �
Aij

" #
I:

(33)

Then, the following two-step inversion procedure is obtained, i.e.,

DW 1ð Þ
i ¼D�1 �R�ðWs

iÞ�
X
j2L ið Þ

1
2
DFð1Þ

c;j �nij� KijþK̂ij


 �
IDW 1ð Þ

j

h i
Aij

( )
;

DW s
i ¼DW 1ð Þ

i �D�1
X
j2U ið Þ

1
2
DFs

c;j�nij� KijþK̂ij


 �
IDW s

j

h i
Aij

( )
;

(34)

with

DFð1Þ
c;j ¼Fc W s

j þ DWð1Þ
j


 �
� Fc W s

j
� 	

;

DFs
c;j¼Fc W s

j þ DW s
j

� 	� Fc W s
j

� 	
;

(35)

where DWð1Þ is the intermediate solution correction. Note that the
subscript “k” has been omitted for simplicity in Eqs. (33)–(35). Once

W s at the stage kmeets the convergence tolerance of the pseudo steady
state solution,W s will be set as the original value for the computation
at the next stage k+1.

III. NUMERICAL EXAMPLES

In this section, the performance of the developed high-order
ILSFD-FV method is validated by both steady and unsteady incom-
pressible flow problems on arbitrary grids. In the simulation, for solv-
ing Eq. (15), both implicit method and explicit method are applied in
order to assess the speedup ratio. Specifically, for steady flow problems,
the matrix-free LU-SGS scheme is adopted as the implicit method
while the explicit method refers to the Euler explicit scheme. For calcu-
lating the unsteady flow problems, the implicit ESDIRK time integra-
tion scheme introduced above and the total variation diminishing-
Runge-Kutta (TVD-RK)12 scheme are used as the implicit method
and the explicit method, respectively. Unless otherwise stated, the CFL
number for steady computations by the implicit LU-SGS method is
taken as 100. For the unsteady flow problem, the physical time step is
determined based on different flow problems and not restricted by the
CFL condition. Basically, the physical time step is set as one value cor-
responding to a maximal CFL number of about 150. In each physical
time step, the CFL number for the local pseudo-time iterations is taken
as 5 for stability and these inner iterations are performed until conver-
gence is achieved. The convergence criterion for the inner iteration is a
drop of five orders of magnitude of the unsteady residual for the veloc-
ity field. All simulations are done on a personal computer (PC) with
2.30GHz central processing unit (CPU).

A. Decaying vortex flow on unstructured mesh

First, the decaying vortex flow problem45,46 is solved to conduct
the convergence study for the developed ILSFD-FV method. For refer-
ence purpose, the explicit TVD-RK method is also performed to com-
pare with the implicit counterpart. The analytical solution of this
problem satisfying the 2D unsteady incompressible N–S equation reads

uðx; y; tÞ ¼ �U cos ðpx=LÞ sin ðpy=LÞe�2p2Ut=ðReLÞ;

vðx; y; tÞ ¼ U sin ðpx=LÞ cos ðpy=LÞe�2p2Ut=ðReLÞ; (36)

qðx; y; tÞ ¼ q0 �
q0U

2

4c2s
cos ð2px=LÞ þ cos ð2py=LÞ½ �e�4p2Ut=ðReLÞ;

where U and q0 are the initial velocity amplitude and the reference
density. The relaxation parameter s is chosen as 0.8, and q0 is set as 1.
The computation is conducted on a square domain ½�L; L� � ½�L; L�
at Re ¼ UL=� ¼ 10. Periodic boundary condition is imposed on all
boundaries. Solutions at the non-dimensional time t ¼ L=U ¼ 1 are
extracted to compute the relative error of velocity component u using
the L2 norm and L1 norm which are defined as

L1 uð Þ ¼ 1
Ncell

XNcell
i¼1

���� ui � uei
U

����
 !

;

L2 uð Þ ¼ 1
Ncell

XNcell
i¼1

ui � uei
U

� �2
 !1

2

;

(37)

where ui and uei refer to the numerical result and the analytical solu-
tion, respectively. Ncell denotes the number of the cell.
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In the computation, four regular triangular grids with the mesh
size h¼ 2/20, 2/30, 2/40, and 2/80 are used. The physical time step is
chosen as a Dt ¼ 0:7h. The CFL number for the local pseudo time
step is 5 and the convergence criterion for pseudo steady state per

physical time step is a drop of five orders of magnitude of the unsteady
residual R� in velocity.

The velocity contours obtained by the ILSFD-FV method and its
explicit counterpart on the regular triangular grids of h ¼ 2=40 are
shown in Fig. 1. L1 and L2 norm of errors of the velocity component u
and the rates of convergence are tabulated in Table II. The linearly fit-
ted lines of the high-order ILSFD-FV method in Fig. 2 reveal slopes of
4.055 and 4.050 for L1 and L2 norm errors, respectively. Such an out-
come demonstrates the fourth-order of accuracy of the present
ILSFD-FV method for the incompressible flows.

Besides, the effects of the physical time step and the pseudo time
step are also investigated in this unsteady case. First, the physical time
steps of 0.005, 0.015, 0.03, 0.06, 0.08, and 0.16 are used, respectively.
The comparative study is conducted on the mesh with h¼ 2/30 and
the CFL number for the local pseudo time step is fixed as 5. Table III
compares the corresponding L1 and L2 norm of errors of the velocity
component u and a very small difference between them can be seen.
This observation illustrates that the accuracy of the present scheme is
not affected by the physical time step as long as it is within a reason-
able range (e.g., Dt � t=10). Then the results of various pseudo time

FIG. 1. Velocity contours obtained by the implicit LSFD-FV method (left) and the explicit LSFD-FV method (right) on the regular triangular grid where h¼ 2/40 for decaying
vortex flow problem at t¼ 1 and Re¼ 10.

TABLE II. Relative errors of velocity component u and accuracy order of different
methods for decaying vortex flow on regular triangular grids.

Scheme Grid size L1 errors Order L2 errors Order

Explicit
method

2/20 2.00 � 10−3 2.24 � 10−3

2/30 4.06 � 10−4 3.933 4.55 � 10−4 3.933
2/40 1.27 � 10−4 4.028 1.43 � 10−4 4.032
2/80 7.34 � 10−6 4.117 8.23 � 10−6 4.115

Implicit
method

2/20 1.89� 10−3 2.12 � 10−3

2/30 3.94 � 10−4 3.869 4.41 � 10−4 3.868
2/40 1.25 � 10−4 3.990 1.40 � 10−4 3.991
2/80 6.93 � 10−6 4.173 7.81 � 10−6 4.164

FIG. 2. Convergence studies for 2D decaying vortex flow at t¼ 1. The numbers in the figures denote the slopes of the linearly fitted lines.
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steps that correspond to the CFL numbers of 3, 5, 6, and 7 for inner
iterations at each physical time step are quantitatively compared in
Table IV. Note that, in this comparison, the mesh with h¼ 2/30 is
used and the physical time step is fixed at Dt ¼ 0:05. From the tabu-
lated errors of the velocity component u, the pseudo time step would
not affect the accuracy. However, too large pseudo time step would
result in serious stability problem. Meanwhile, the relatively large
pseudo time step would lead to a fast convergence rate for the pseudo
steady computation at each physical time step.

B. Steady plane Poiseuille flow on uniformmesh

The Poiseuille viscous flow47 driven by a uniform pressure gradi-
ent is a classic benchmark test for the steady incompressible flow. Its
analytical solutions can be easily derived, which provides flexibility to
investigate the accuracy of the high-order ILSFD-FV method. From
the N–S equations, the analytical solution of the velocity profile for
this problem reads

uðyÞ ¼ ðy2 � hyÞ
2l

@p
@x

; (38)

where @p=@x denotes the pressure gradient. In this simulation, the
computational domain is set as ½0; 1� � ½0; 1�. The height h¼ 1, the
dynamic viscosity l¼ 0.05 and @p=@x ¼ �0:001, is applied. For
comparison purpose, three uniform quadrilateral grids with the size
h¼ 1/10, 1/20, and 1/40 are used. On the inlet and outlet of the chan-
nel, a uniform pressure boundary condition is given. In addition, on
the upper and lower solid boundaries, a no-slip boundary condition is
enforced.

Results of the u-component profiles obtained by this high-order
ILSFD-FV method on different grids are shown in Fig. 3. Note that all
the numerical results match the analytical solution perfectly even using
the coarsest grid with h¼ 1/10. These results prove that the ILSFD-FV
method can capture the velocity distribution accurately. Furthermore,
as the comparison of convergence history in Fig. 4, on the same mesh
h¼ 1/40, the implicit method can converge with less iterations and
less CPU time used than the explicit one. Additionally, Table V lists
the computational effort of the implicit method and the explicit
method on three sets of grids. Overall, the iteration steps of the
implicit method are less than one-third of the explicit method.
Moreover, the speedup ratio of the run time reaches 4.

C. Lid-driven cavity flow on unstructured mesh

The two-dimensional lid-driven flow48,49 in a square cavity is one
important benchmark case for incompressible viscous flows and this
steady case is employed to test the accuracy and efficiency of the pre-
sent high-order ILSFD-FV method on unstructured grids.

The physical configuration of this case is that the viscous flow in
a two-dimensional square cavity is driven by the moving lid with the
velocity U0 to form a circulation flow while other three solid walls
keep static with the no-slip boundary condition. In the simulation, the
Reynolds number is defined as Re ¼ U0L=�, where L denotes the ref-
erence length of the square cavity and L ¼ 1. The unstructured grid
used is shown in Fig. 5.

First, the constant velocity of the moving lid is set as U0¼ 0.1
and the CFL number for the implicit temporal discretization is taken
as 1000. Figure 5 shows the computed streamlines at Re¼ 1000 by the
high-order ILSFD-FV method. Obviously, the flow structures obtained
agree well with the results in the literature.38,50 Figure 6 presents the
comparisons of the u-velocity and v-velocity profiles along the vertical
and horizontal central lines obtained by the present high-order LSFD-
FV method coupled with the implicit method and the explicit method,

TABLE III. Relative errors of velocity component u and accuracy order of different
physical time steps for decaying vortex flow on regular triangular grids of the mesh
size h¼ 2/30 with the CFL number set as 5 for the pseudo-time iteration.

Physical time
size Dt

Maximum inner
iteration number L1 errors L2 errors

0.16 1541 4.83 � 10−4 4.32 � 10−4

0.08 822 4.38 � 10−4 3.91 � 10−4

0.06 632 4.51 � 10−4 4.03 � 10−4

0.03 339 4.48 � 10−4 4.00 � 10−4

0.015 198 4.48 � 10−4 4.00 � 10−4

0.005 98 4.50 � 10−4 4.02 � 10−4

TABLE IV. Relative errors of velocity component u of different pseudo time steps for
decaying vortex flow on regular triangular grids of the mesh size h¼ 2/30 with the
physical time step set as Dt¼ 0.05.

CFL
number

Maximum inner
iteration number CPU time L1 errors L2 errors

3 1169 427.02 4.410 � 10−4 3.938 � 10−4

5 535 200.02 4.411 � 10−4 3.939 � 10−4

6 428 151.42 4.410 � 10−4 3.938� 10−4

>7 Diverge Diverge � � � � � �
FIG. 3. u-component profiles given by the ILSFD-FV method on the uniform quadri-
lateral grids. The solid line denotes the analytical solution. Symbols are computed
with different mesh points.
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against the benchmark data of Ghia et al.51 at three Reynolds numbers
of Re¼ 1000, 3200, and 5000. Furthermore, the corresponding conver-
gence history curves are compared in Fig. 7 and Table VI lists the iter-
ation steps and the CPU time used by the implicit method and the

explicit method. From these results, it is clear that the high-order
ILSFD-FV method converges at less iteration steps and the corre-
sponding computation time ranges from one-ninth to one-fourteenth
of the explicit one.

FIG. 4. Comparison of convergence history (left) and CPU time (right) for different temporal discretization methods on uniform quadrilateral grids of h¼ 1/40.

TABLE V. Comparison of the CPU time between the explicit and implicit methods for steady plane Poiseuille flow.

Cells of mesh

Explicit method Implicit method

Iteration steps CPU time (s) L2 errors Iteration steps CPU time (s) L2 errors Speedup

100 4265 2.2 3.42 � 10−4 1163 0.5 3.42 � 10−4 4.4
400 14 610 26.1 1.96 � 10−4 4077 7.1 1.96 � 10−4 3.7
1600 50 083 383.2 1.55 � 10−4 14 409 114.5 1.54 � 10−4 3.3

FIG. 5. Lid-driven cavity flow: the unstructured mesh of 2734 cells (left) and streamlines (right) for the high-order ILSFD-FV method at Re¼ 1000.
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FIG. 6. Comparison of u-velocity (left) and v-velocity (right) profiles along vertical and horizontal central lines of different temporal discretization methods for 2D lid-driven cavity
flow at (a) Re¼ 1000, (b) Re¼ 3200, and (c) Re¼ 5000 on the mesh of 2734 cells.
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FIG. 7. Comparison of convergence history (left) and CPU time (right) of different temporal discretization methods for 2D lid-driven cavity flow at (a) Re¼ 1000, (b)
Re¼ 3200, and (c) Re¼ 5000 on the mesh of 2734 cells.
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TABLE VI. Comparison of the CPU time between the explicit and implicit methods for lid-driven cavity flow.

Reynolds numbers

Explicit method Implicit method

SpeedupIteration steps CPU time (s) Iteration steps CPU time (s)

1000 423 685 3 310.6 28 279 229.3 14.4
3200 974 911 8 800.0 108 857 898.1 9.8
5000 1 504 234 12 897.1 171 322 1411.6 9.1

FIG. 8. Comparison of u-velocity (left) and v-velocity (right) profiles along vertical and horizontal central lines of different lid velocities for 2D lid-driven cavity flow at Re¼ 1000
on the mesh of 2734 cells. (a) Velocity profiles along the central lines. (b) Convergence history.

FIG. 9. Comparison of (a) velocity profiles along the central lines and (b) convergence history of different CFL numbers for 2D lid-driven cavity flow at Re¼ 1000 on the mesh
of 2734 cells.
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Furthermore, the effects of the Mach number and time step
are also investigated in this classical problem. Since the dimension-
less Mach number is defined by Ma ¼ U0=cs, where the sound
speed cs is 1=

ffiffiffi
3

p
as introduced in Sec. II A, the different velocities

of the moving lid correspond to different Mach numbers. In addi-
tion, the time step in the implicit temporal discretization for this
steady case is determined by the CFL number. Thus, different time
steps would be taken if different CFL numbers are chosen.
Specifically, three sets of lid velocity, i.e., U0¼ 0.05, 0.1, and 0.15

corresponding to the Mach numbers Ma� 0.087, 0.173, and 0.260
which are all within the low Mach number limit (Ma < 0.3), are
tested. Meanwhile, three CFL numbers of 100, 500, and 1000 are
used to determine the effect of the time step. All these comparative
investigations are conducted at Re¼ 1000 on the mesh shown in
Fig. 5.

The computed results of different velocities U0 are compared in
Fig. 8. Clearly, these results are consistent and they all agree well with
the reference data. This outcome confirms that, within the low Mach

FIG. 10. Streamlines (left) and comparison of velocity distributions along radial and azimuthal directions of different temporal discretization methods (right) for polar cavity flow
at Re¼ 350 on the (a) uniform quadrilateral mesh and (b) unstructured triangular mesh.
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number limit, the Mach number does not affect the accuracy of the
solution. Figure 9 compares the results obtained with different time
steps. Basically, the same results in good accordance with the bench-
mark data are obtained, which reveals the independence of the solu-
tion precision from the time step. Additionally, the comparison of the

convergence history using different time steps in Fig. 9 further verifies
that the computational efficiency remains high when a large time step
is used. However, no significant improvement of the convergence rate
would be achieved with the CFL number increased when the CFL
number is large enough (e.g., CFL¼ 100).

FIG. 11. Comparison of convergence history (left) and CPU time (right) of different temporal discretization methods for polar cavity flow at Re¼ 350 on the (a) uniform quadri-
lateral mesh and (b) unstructured triangular mesh.

TABLE VII. Comparison of the CPU time between the explicit and implicit methods for Polar cavity flow.

Cells of mesh

Explicit method Implicit method

SpeedupIteration steps CPU time (s) Iteration steps CPU time (s)

Structured mesh 2500 88 657 824.2 6841 66.7 12.4
Unstructured mesh 1790 97 339 535.8 13 540 73.3 7.3

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053601 (2021); doi: 10.1063/5.0047192 33, 053601-14

Published under license by AIP Publishing

https://scitation.org/journal/phf


D. Polar cavity flow on unstructured mesh

To further examine the accuracy and efficiency of the present
ILSFD-FV method for the incompressible flow problem with curved
boundary, the lid-driven flow in a polar cavity is carried out. Its physi-
cal configuration is that a sector with the angle of one radian (h¼ 1) is
bounded by two straight walls and two curved walls at the radius of Ri

and Ro.
39 The flow pattern is governed by the non-dimensional

Reynolds number defined as Re ¼ UhðRo � RiÞ=�, where Uh is the
azimuthal velocity on the inner curved wall with radius of Ri. In this
simulation, Ri ¼ 1.0, Ro ¼ 2.0, and Uh ¼ 0.1. Since the boundaries are
curved in this problem, for comparison purposes, two grids are used.
One is the unstructured mesh which has 1790 triangle cells and 35
points on each side of the flow domain. The other is the structured
one which has the 51� 51 uniform grids.

Figure 10 depicts the comparison of streamlines and velocity dis-
tributions along radial and azimuthal directions at Re¼ 350 with the

uniform structured mesh and unstructured triangular mesh. The
numerical results obtained by the high-order LSFD-FV method cou-
pled with the explicit method and the implicit method are validated by
the data fromWang et al.39 and Tavakoli et al.52 It is evidently proven
that the ILSFD-FV method on the structured mesh or the unstruc-
tured mesh can be applied to solve the problems with the curve-
boundary. Furthermore, from the comparison of the convergence his-
tory in Fig. 11 and the comparison of the iteration steps and the CPU
time used in Table VII, it is clear that the implicit method is more effi-
cient than the explicit one. The corresponding speedup ratio is from 7
to 12.

E. Viscous flow past a stationary circular cylinder
on unstructured meshes

To further demonstrate the capability of the present high-order
ILSFD-FV method for solving steady flow problems with curved

FIG. 12. Unstructured mesh (left) and its partial view (right) for the viscous flow past a circular cylinder. 65 grid points on the cylinder; 11 626 cells.

TABLE VIII. Comparison of drag coefficients, recirculation lengths, and separation angles for steady flow past a stationary circular cylinder at Re¼ 20 and 40.

Re References Cd Ls=D hsZ Iteration steps CPU time (s)

20 Dennis and Chang55 2.05 0.94 43.7
Shukla et al.56 2.07 0.92 43.3
Pellerin et al.54 2.003 0.92 43.32
Explicit method 2.003 0.911 43.31 143 922 6 905.3
Implicit method 2.073 0.92 43.69 11 462 451.5

Speedup 15.3
40 He and Doolen58 1.499 2.245 52.84

Pellerin et al.54 1.502 2.260 53.29
Shu et al.38 1.53 2.24 52.69

Explicit method 1.511 2.242 52.56 120 794 5 258.8
Implicit method 1.509 2.247 53.13 6166 233.2

Speedup 22.6
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boundary and the performance of the ESDIRK method adopted for
the unsteady flow problems, validation on the viscous flow past a
stationary circular cylinder53 is conducted at various Reynolds
numbers (Re¼ 20, 40, and 100). Physically, the configuration of
this problem is the uniform incoming viscous fluid flowing over a
stationary circular cylinder. The flow pattern of this case is charac-
terized by the Reynolds number Re ¼ U0L=�, where L is the diame-
ter of the circular cylinder. To satisfy the incompressible limit, the
free-stream velocity is chosen as U0¼ 0.1. The lift coefficient Cl ,
drag coefficient Cd , and Strouhal number St are useful parameters
and commonly used to check the accuracy of numerical results.
They are defined as

Cl ¼ Fl
q0U

2
0=2

; Cd ¼ Fd
q0U

2
0=2

; St ¼
fqL

U0
; (39)

where q0 denotes the free-stream density, Fl denotes the lift force, Fd
represents the drag force, and fq is the vortex shedding frequency.
Furthermore, the geometrical quantities of the eddies, such as the
recirculation length Ls and the separation angle hs, are also measured
for steady flows.

For the steady simulation of Re¼ 20, 40 and the unsteady simu-
lation of Re¼ 100, an unstructured mesh (see Fig. 12) with 65 grid
points on the cylinder wall and 11 626 cells in total is used with the
far-field boundary at 55L away from the center of the cylinder. For
quantitative comparison, the drag coefficient Cd , the length of the
recirculation zone Ls, the separation angle hs, and the CPU time used
for the implicit method and the explicit method in steady cases are
tabulated and compared with the reference data,38,54–58 as shown in
Table VIII. In this table, it is clear that the present results are in good
agreement with the reference data, which further validates the

FIG. 13. Comparison of convergence history (left) and CPU time (right) of different temporal discretization methods for steady viscous flow around cylinder at (a) Re¼ 20 and
(b) Re¼ 40.
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accuracy and the ability of the present high-order ILSFD-FV method
in solving the steady flow problems with curved boundaries.
Furthermore, the comparisons of convergence history of the implicit
method and the explicit method for steady simulation at Re¼ 20 and
40 are presented in Fig. 13. Such outcomes in Table VIII and Fig. 13
indicate that the ILSFD-FV method is more efficient and the implicit
method can provide more than one order of magnitude improvement
in the computation time. For the unsteady case at Re¼ 100, the calcu-
lations perform until t¼ 500. The time step for the explicit scheme is
Dt ¼ 0:000 5 and the physical time step for the implicit scheme is cho-
sen as a constant Dt ¼ 0:1. The CFL number for the local pseudo time
step is 5. The comparisons of dynamic parameters against the refer-
ence data38,54,59,60 are presented in Table IX. Additionally, the evolu-
tion of the lift and drag coefficient of the explicit method and the
implicit method for the unsteady flow problem at Re ¼100 is shown
in Fig. 14. Moreover, Fig. 15 depicts the comparisons of the evolution
of the lift and drag coefficients for these two different methods. As can
be seen, on the same mesh, the results of ILSFD-FV method and the
explicit one are all within the range of reference data and the implicit
one outperforms the explicit one in terms of the computation time
used. In addition, it is noteworthy that the mesh used in this test is
coarser than ones in previous implementation38,54 with the second-
order of accuracy while comparable results are obtained. These

validate the accuracy, efficiency, and the flexibility on unstructured
grids of the present high-order ILSFD-FV method for solving the
unsteady flow problems with curved boundaries.

IV. CONCLUSIONS

This paper presents an efficient high-order implicit least
squares-based finite difference-finite volume method on arbitrary
grids for incompressible flow simulation. The essence of this method
lies in the effective combination of the efficient implicit time integra-
tion algorithms and the high-order spatial LSFD-FV method which
has an implicit nature. By introducing the implicit LU-SGS and
ESDIRK schemes to the high-order LSFD-FV method, the conver-
gence speed is accelerated greatly and the computation effort is
reduced significantly.

This space-time high-order method has been validated by repre-
sentative steady and unsteady benchmark cases, including decaying
vortex flow, plane Poiseuille flow, lid-driven cavity flow, polar cavity
flow, and flow past a stationary circular cylinder. Numerical results
evidently prove the high-order of accuracy and high computational
efficiency of the developed method as well as its capability of handling
unstructured mesh. Compared with the explicit counterpart, the
implicit one has the better computational efficiency. As such, this

TABLE IX. Comparison of dynamic parameters for unsteady flow past a stationary circular cylinder at Re¼ 100.

Re References Cl Cd St Iteration steps CPU time (s)

100 Braza et al.59 60.30 1.286 0.02 0.16
Liu et al.60 60.339 1.3506 0.02 0.164
Shu et al.38 60.33 1.3346 0.02 0.164

Pellerin et al.54 60.325 1.325 0.164
Explicit method 60.326 1.3226 0.013 0.164 1 000 000 149 554.0
Implicit method 60.324 1.3226 0.013 0.164 5000 24 038.2

Speedup 6.2

FIG. 14. Evolution of the lift and drag coefficients computed by the explicit method (left) and the implicit method (right) for the flow past a cylinder at Re ¼100.
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high-order ILSFD-FV method may provide a promising way to solve
practical problems of engineering interest.

ACKNOWLEDGMENTS

The research is partially supported by the Ministry of
Education (MOE) of Singapore and the National Numerical Wind
Tunnel Project of China (Grant No. NNW2019ZT2-B28).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1T. J. Barth, “Recent developments in high-order k-exact reconstruction on
unstructured meshes,” AIAA Paper No. 93-0668, 1993.
2T. J. Barth, “Aspects of unstructured grids and finite-volume solvers for the
Euler and Navier–Stokes equations,” AGARD Report No. 787, 1992.

3Q. Wang, Y. X. Ren, and W. Li, “Compact high order finite volume method on
unstructured grids II: Extension to two-dimensional Euler equations,”
J. Comput. Phys. 314, 883–908 (2016).

4Q. Wang, Y. X. Ren, J. Pan, and W. Li, “Compact high order finite volume
method on unstructured grids III: Variational reconstruction,” J. Comput.
Phys. 337, 1–26 (2017).

5O. Friedrich, “Weighted essentially non-oscillatory schemes for the interpola-
tion of mean values on unstructured grids,” J. Comput. Phys. 144, 194–212
(1998).

6C. F. Ollivier-Gooch, “Quasi-ENO schemes for unstructured meshes based on
unlimited data-dependent least-square reconstruction,” J. Comput. Phys. 133,
6–17 (1997).

7R. Abgrall, “On essentially non-oscillatory schemes on unstructured meshes:
Analysis and implementation,” J. Comput. Phys. 114, 45–58 (1994).

8C. Hu and C. W. Shu, “Weighted essentially non-oscillatory schemes on trian-
gular meshes,” J. Comput. Phys. 150, 97–127 (1999).

9R. Abgrall, “An essentially non-oscillatory reconstruction procedure on finite-
element type meshes: Application to compressible flows,” Comput. Methods
Appl. Mech. Eng. 116, 95–101 (1994).

10F. Bassi and S. Rebay, “A higher-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier–Stokes equa-
tions,” J. Comput. Phys. 131, 267–279 (1997).

11F. Bassi and S. Rebay, “A higher-order accurate discontinuous finite element
solution of the 2D Euler equations,” J. Comput. Phys. 138, 251–285 (1997).

12B. Cockburn and C. W. Shu, “The Runge–Kutta discontinuous Galerkin
method for conservation laws V: Multidimensional system,” J. Comput. Phys.
141, 199–224 (1998).

13J. Qiu and C. W. Shu, “Hermite WENO schemes and their application as limit-
ers for Runge–Kutta discontinuous Galerkin method: One-dimensional case,”
J. Comput. Phys. 193, 115–135 (2004).

14J. Zhu, J. Qiu, C. W. Shu, and M. Dumbser, “Runge–Kutta discontinuous
Galerkin method using WENO limiters II: Unstructured meshes,” J. Comput.
Phys. 227, 4330–4353 (2008).

15J. Zhu, X. Zhong, C. W. Shu, and J. Qiu, “Runge–Kutta discontinuous Galerkin
method using a new type of WENO limiters on unstructured meshes,”
J. Comput. Phys. 248, 200–220 (2013).

16R. Hartmann, “Numerical analysis of higher order discontinuous Galerkin finite ele-
ment methods,” in VKI Lecture Series, edited by H. Deconinck (Von Karman
Institute for Fluid Dynamics, RhodeSaint Gen�ese, Belgium, 2008), Vol. 8, pp. 13–17.

17Z. J. Wang, Y. Liu, G. May, and A. Jameson, “Spectral difference method for
unstructured grids II: Extension to the Euler equations,” J. Sci. Comput. 32,
45–71 (2007).

18C. Ma, J. Wu, and T. Zhang, “A high order spectral difference-based phase field
lattice Boltzmann method for incompressible two-phase flows,” Phys. Fluids
32, 122113 (2020).

19Z. J. Wang and Y. Liu, “Spectral (finite) volume method for conservation laws
on unstructured grids II: Extension to two dimensional scalar equation,”
J. Comput. Phys. 179, 665–697 (2002).

20Z. J. Wang and Y. Liu, “Spectral (finite) volume method for conservation laws
on unstructured grids III: One-dimensional systems and partition optimiza-
tion,” J. Sci. Comput. 20, 137–157 (2004).

21Z. J. Wang and Y. Liu, “Spectral (finite) volume method for conservation laws
on unstructured grids IV: Extension to two dimensional systems,” J. Comput.
Phys. 194, 716–741 (2004).

22Y. Sun, Z. J. Wang, and Y. Liu, “Spectral (finite) volume method for conserva-
tion laws on unstructured grids VI: Extension to viscous flow,” J. Comput.
Phys. 215, 41–58 (2006).

23Z. J. Wang, “Spectral (finite) volume method for conservation laws on unstruc-
tured grids: Basic formulation,” J. Comput. Phys. 178, 210–251 (2002).

24Z. J. Wang and H. Gao, “A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods for
conservation laws on mixed grids,” J. Comput. Phys. 228, 8161–8186 (2009).

25H. Gao and Z. J. Wang, “A conservative correction procedure via reconstruc-
tion formulation with the chain-rule divergence evaluation,” J. Comput. Phys.
232, 7–13 (2013).

26T. J. Barth and P. Frederichson, “Higher order solution of the Euler equations
on unstructured grids using quadratic reconstruction,” in 28th Aerospace
Sciences Meeting, Paper No. 90-0013 (1990).

27Y. Y. Liu, C. Shu, H. W. Zhang, and L. M. Yang, “A high order least square-
based finite difference-finite volume method with lattice Boltzmann flux solver
for simulation of incompressible flows on unstructured grids,” J. Comput.
Phys. 401, 109019 (2019).

28H. Luo, J. D. Baum, and R. L€ohner, “A fast, matrix-free implicit method for
compressible flows on unstructured grids,” J. Comput. Phys. 146, 664–690
(1998).

29M. Cheng, G. Wang, and H. H. Mian, “Reordering of hybrid unstructured grids
for an implicit Navier–Stokes solver based on openMP parallelization,”
Comput. Fluids 110, 245–253 (2015).

30R. F. Chen and Z. J. Wang, “An improved LU-SGS scheme with faster convergence
for unstructured grids of arbitrary topology,”AIAA Paper No. 99-0935, 1999.

31A. Jameson, “Time dependent calculations using multigrid with applications to
unsteady flows past airfoils and wings,” AIAA Paper No. 1991-1596, 1991.

32C. Cox, C. Liang, and M. W. Plesniak, “A high-order solver for unsteady
incompressible Navier–Stokes equations using the flux reconstruction method
on unstructured grids with implicit dual time stepping,” J. Comput. Phys. 314,
414–435 (2016).

33H. Bijl, M. H. Carpenter, V. N. Vatsa, and C. A. Kennedy, “Implicit time inte-
gration schemes for the unsteady compressible Navier–Stokes equations:
Laminar flow,” J. Comput. Phys. 179, 313–329 (2002).

FIG. 15. Comparison of the evolution of the lift and drag coefficients computed by
the explicit method and the implicit method for the flow past a cylinder at Re ¼100.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053601 (2021); doi: 10.1063/5.0047192 33, 053601-18

Published under license by AIP Publishing

https://doi.org/10.1016/j.jcp.2016.03.048
https://doi.org/10.1016/j.jcp.2017.02.031
https://doi.org/10.1016/j.jcp.2017.02.031
https://doi.org/10.1006/jcph.1998.5988
https://doi.org/10.1006/jcph.1996.5584
https://doi.org/10.1006/jcph.1994.1148
https://doi.org/10.1006/jcph.1998.6165
https://doi.org/10.1016/S0045-7825(94)80012-X
https://doi.org/10.1016/S0045-7825(94)80012-X
https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1006/jcph.1997.5454
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1016/j.jcp.2003.07.026
https://doi.org/10.1016/j.jcp.2007.12.024
https://doi.org/10.1016/j.jcp.2007.12.024
https://doi.org/10.1016/j.jcp.2013.04.012
https://doi.org/10.1007/s10915-006-9113-9
https://doi.org/10.1063/5.0033204
https://doi.org/10.1006/jcph.2002.7082
https://doi.org/10.1023/A:1025896119548
https://doi.org/10.1016/j.jcp.2003.09.012
https://doi.org/10.1016/j.jcp.2003.09.012
https://doi.org/10.1016/j.jcp.2005.10.019
https://doi.org/10.1016/j.jcp.2005.10.019
https://doi.org/10.1006/jcph.2002.7041
https://doi.org/10.1016/j.jcp.2009.07.036
https://doi.org/10.1016/j.jcp.2012.08.030
https://doi.org/10.1016/j.jcp.2019.109019
https://doi.org/10.1016/j.jcp.2019.109019
https://doi.org/10.1006/jcph.1998.6076
https://doi.org/10.1016/j.compfluid.2014.05.003
https://doi.org/10.1016/j.jcp.2016.03.016
https://doi.org/10.1006/jcph.2002.7059
https://scitation.org/journal/phf


34V. Kazemi-Kamyab, A. H. van Zuijlen, and H. Bijl, “Analysis and application
of high order implicit Runge–Kutta schemes to collocated finite volume discre-
tization of the incompressible Navier–Stokes equations,” Comput. Fluids 108,
107–115 (2015).

35Y. Xia, X. Liu, H. Luo, and R. Nourgaliev, “A third-order implicit discontinu-
ous Galerkin method based on a Hermite WENO reconstruction for time-
accurate solution of the compressible Navier–Stokes equations,” Int. J. Numer.
Methods Fluids 79, 416–435 (2015).

36H. Ding, C. Shu, and K. S. Yeo, “Development of least square-based two-
dimensional finite difference schemes and their application to simulate natural
convection in a cavity,” Comput. Fluids 33, 137–154 (2004).

37H. Ding, C. Shu, K. S. Yeo, and D. Xu, “Simulation of incompressible viscous
flows past a circular cylinder by hybrid FD scheme and meshless least square-
based finite difference method,” Comput. Methods Appl. Mech. Eng. 193,
727–744 (2004).

38C. Shu, Y. Wang, C. J. Teo, and J. Wu, “Development of lattice Boltzmann flux
solver for simulation of incompressible flows,” Adv. Appl. Math. Mech. 6,
436–460 (2014).

39Y. Wang, C. Shu, and C. J. Teo, “Development of LBGK and incompressible
LBGK-based lattice Boltzmann flux solvers for simulation of incompressible
flows,” Int. J. Numer. Methods Fluids 75, 344–364 (2014).

40J. M. P�erez, A. Aguilar, and V. Theofilis, “Lattice Boltzmann methods for
global linear instability analysis,” Theor. Comput. Fluid Dyn. 31, 643–664
(2017).

41S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, “Simulation of cavity
flow by the lattice Boltzmann method,” J. Comput. Phys. 118, 329–347 (1995).

42X. He and L. S. Luo, “Lattice Boltzmann model for the incompressible
Navier–Stokes equation,” J. Stat. Phys. 88, 927–944 (1997).

43Z. Chen, C. Shu, L. M. Yang, X. Zhao, and N. Y. Liu, “Immersed boundary-
simplified thermal lattice Boltzmann method for incompressible thermal
flows,” Phys. Fluids 32, 013605 (2020).

44B. Harikrishnan, Z. Chen, and C. Shu, “A new explicit immersed boundary
method for simulation of fluid–solid interactions,” Adv. Appl. Math. Mech. 13,
261–284 (2021).

45L. M. Yang, C. Shu, W. M. Yang, and Y. Wang, “A simplified circular function-
based gas kinetic scheme for simulation of incompressible flows,” Int. J.
Numer. Methods Fluids 85, 583–598 (2017).

46L. M. Yang, C. Shu, Z. Chen, Y. Y. Liu, Y. Wang, and X. Shen, “High-order gas
kinetic flux solver for simulation of two dimensional incompressible flows,”
Phys. Fluids 33, 017107 (2021).

47Z. Chen, C. Shu, Y. Wang, L. M. Yang, and D. Tan, “A simplified lattice
Boltzmann method without evolution of distribution function,” Adv. Appl.
Math. Mech. 9, 1–22 (2017).

48Y. Sun, C. Shu, C. J. Teo, Y. Wang, and L. M. Yang, “Explicit formulations of
gas-kinetic flux solver for simulation of incompressible and compressible vis-
cous flows,” J. Comput. Phys. 300, 492–519 (2015).

49L. Q. Zhang, Z. Chen, L. M. Yang, and C. Shu, “An improved discrete gas-
kinetic scheme for two-dimensional viscous incompressible and compressible
flows,” Phys. Fluids 31, 066103 (2019).

50Z. Chen, C. Shu, and D. Tan, “Highly accurate simplified lattice Boltzmann
method,” Phys. Fluids 30, 103605 (2018).

51U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible
flow using the Navier–Stokes equations and a multigrid method,” J. Comput.
Phys. 48, 387–411 (1982).

52E. Tavakoli, B. Lessani, and R. Hosseini, “High-order pole-treatment in cylin-
drical coordinates for incompressible flow simulations with finite-difference
collocated schemes,” J. Comput. Phys. 296, 1–24 (2015).

53J. Wang and C. Zhou, “A novel immersed boundary method implemented by
imposing reconstructed velocity on virtual boundary,” Adv. Appl. Math. Mech.
13, 83–100 (2021).

54N. Pellerin, S. Leclaire, and M. Reggio, “Solving incompressible fluid flows on
unstructured meshes with the lattice Boltzmann flux solver,” Eng. Appl.
Comput. Fluid Mech. 11, 310–327 (2017).

55S. C. R. Dennis and G. Z. Chang, “Numerical solutions for steady flow past a
circular cylinder at Reynolds numbers up to 100,” J. Fluid Mech. 42, 471–489
(1970).

56R. K. Shukla, M. Tatineni, and X. Zhong, “Very high-order compact finite dif-
ference schemes on non-uniform grids for incompressible Navier–Stokes equa-
tions,” J. Comput. Phys. 224, 1064–1094 (2007).

57J. Wu and C. Shu, “Implicit velocity correction-based immersed boundary-
lattice Boltzmann method and its applications,” J. Comput. Phys. 228,
1963–1979 (2009).

58X. He and G. Doolen, “Lattice Boltzmann method on curvilinear coordinates
system: Flow around a circular cylinder,” J. Comput. Phys. 134, 306–315
(1997).

59M. Braza, P. Chassaing, and H. H. Minh, “Numerical study and physical analy-
sis of the pressure and velocity fields in the near wake of a circular cylinder,”
J. Fluid Mech. 165, 79–130 (1986).

60C. Liu, X. Zheng, and C. H. Sung, “Preconditioned multigrid methods for
unsteady incompressible flows,” J. Comput. Phys. 139, 35–57 (1998).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053601 (2021); doi: 10.1063/5.0047192 33, 053601-19

Published under license by AIP Publishing

https://doi.org/10.1016/j.compfluid.2014.11.025
https://doi.org/10.1002/fld.4057
https://doi.org/10.1002/fld.4057
https://doi.org/10.1016/S0045-7930(03)00036-7
https://doi.org/10.1016/j.cma.2003.11.002
https://doi.org/10.4208/aamm.2014.4.s2
https://doi.org/10.1002/fld.3897
https://doi.org/10.1007/s00162-016-0416-7
https://doi.org/10.1006/jcph.1995.1103
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1063/1.5138711
https://doi.org/10.4208/aamm.OA-2020-0106
https://doi.org/10.1002/fld.4398
https://doi.org/10.1002/fld.4398
https://doi.org/10.1063/5.0032488
https://doi.org/10.4208/aamm.OA-2016-0029
https://doi.org/10.4208/aamm.OA-2016-0029
https://doi.org/10.1016/j.jcp.2015.07.060
https://doi.org/10.1063/1.5050185
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1016/j.jcp.2015.04.042
https://doi.org/10.4208/aamm.OA-2019-0354
https://doi.org/10.1080/19942060.2017.1292410
https://doi.org/10.1080/19942060.2017.1292410
https://doi.org/10.1017/S0022112070001428
https://doi.org/10.1016/j.jcp.2006.11.007
https://doi.org/10.1016/j.jcp.2008.11.019
https://doi.org/10.1006/jcph.1997.5709
https://doi.org/10.1017/S0022112086003014
https://doi.org/10.1006/jcph.1997.5859
https://scitation.org/journal/phf

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	s2B
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	d29
	t1
	d30
	d31
	d32
	d33
	d34
	d35
	s3
	s3A
	d36
	d37
	f1
	t2
	f2
	s3B
	d38
	s3C
	t3
	t4
	f3
	f4
	t5
	f5
	f6
	f7
	t6
	f8
	f9
	f10
	f11
	t7
	s3D
	s3E
	f12
	t8
	d39
	f13
	s4
	t9
	f14
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	f15
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60

