
Scale-space texture description on SIFT-like textonsI

Yong Xua, Sibin Huanga,b, Hui Jib, Cornelia Fermüllerc

aSchool of Computer Science & Engineering, South China Univ. of Tech., Guangzhou, 510006, China
bDepartment of Mathematics, National University of Singapore, Singapore 117543

cInstitute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.

Abstract

Visual texture is a powerful cue for the semantic description of scene structures that ex-
hibit a high degree of similarity in their image intensity patterns. This paper describes
a statistical approach to visual texture description that combines a highly discrimina-
tive local feature descriptor with a powerful global statistical descriptor. Based upon
a SIFT-like feature descriptor densely estimated at multiple window sizes, a statistical
descriptor, called the multifractal spectrum (MFS), extracts the power-law behavior of
the local feature distributions over scale. Through this combination strong robustness
to environmental changes including both geometric and photometric transformations
is achieved. Furthermore, to increase the robustness to changes in scale, a multi-scale
representation of the multi-fractal spectra under a wavelet tight frame system is de-
rived. The proposed statistical approach is applicable to both static and dynamic tex-
tures. Experiments showed that the proposed approach outperforms existing static tex-
ture classification methods and is comparable to the top dynamic texture classification
techniques.

Key words: Texture, multi-fractal analysis, image feature, wavelet tight frame

1. Introduction

Visual texture has been found a powerful cue for characterizing structures in the
scene, which give rise to certain patterns that exhibit a high degree of similarity. Clas-
sically, static image texture was used for classification of materials, such as cotton,
leather or wood, and more recently it has been used also on unstructured parts of the
scene, such as forests, buildings, grass, trees or shelves in a department store. Dynamic
textures are video sequences of moving scenes that exhibit certain stationary properties
in time, such as sequences of rivers, smoke, clouds, fire, swarms of birds, humans in

IY. Xu was partially supported by Program for New Century Excellent Talents in University(NCET-
10-0368), the Fundamental Research Funds for the Central Universities(SCUT 2009ZZ0052) and National
Nature Science Foundations of China 60603022 and 61070091. Cornelia Fermüller gratefully acknowledges
the support of the European Union under the Cognitive Systems program (project POETICON++) and the
National Science Foundation under the Cyberphysical Systems Program.

Email addresses: yxu@scut.edu.cn (Yong Xu), maths@nus.edu.sg (Sibin Huang),
matjh@nus.edu.sg (Hui Ji), fer@umiacs.umd.edu (Cornelia Fermüller)

Preprint submitted to Elsevier May 8, 2012

crowds, etc. A visual texture descriptor becomes useful for semantic description and
classification, if it is highly discriminative and at the same time robust to environmental
changes ([52]). Environmental changes can be due to a wide range of factors, such as
illumination changes, occlusions, non-rigid surface distortions and camera viewpoint
changes.

Starting with the seminal work of [21], static image texture has been studied in the
context of various applications ([15]). Earlier work was concerned with shape from
texture (e.g. [1, 16, 28]), and most of the recent works are about developing efficient
texture representations for the purpose of segmentation, classification, or synthesis.
There are two components to texture representations: statistical models and local fea-
ture measurements. Some widely used statistical models include Markov random fields
(e.g. [11, 44]), joint distributions, and co-occurrence statistics (e.g. [22, 23, 37]). Lo-
cal measurements range from pixel values over simple edge responses to local feature
descriptors and filter bank responses (e.g. [7], [19], [24], [25], [30], [31], [33], [44],
[47], [48]).

Approaches employing sophisticated local descriptors usually compute as statistics
various texton histograms based on some appearance based dictionary. Depending on
the percentage of pixel information used in the description, these approaches can be
classified into two categories: dense approaches and sparse approaches. Dense ap-
proaches apply appearance descriptors to every pixel. For example, Varma et al [44]
used the responses of the MR8 filter bank, consisting of a Gaussian, a LOG filter and
edges in different directions at a few scales. In contrast, sparse approaches employ
appearance-based feature descriptors at a sparse set of interest points. For example,
Lazebnik et al [24] obtained impressive results by combining Harris & Laplacian key-
point detectors and RIFT & Spin image affine-invariant appearance descriptors. Both
the sparse and dense approaches have advantages and disadvantages. The sparse ap-
proaches achieve robustness to environmental changes because the features are nor-
malized. However, they may lose some important texture primitives by using only a
small percentage of the pixels. Also, there are stability and repeatability issues with the
keypoint detection of existing point or region detectors. By using all pixels, the dense
approaches provide rich information for local texture characterizations. However, on
the negative side, the resulting descriptions tend to be more sensitive to significant
environmental changes, such as changes in viewpoint, which will change the local ap-
pearance of image pixels. To rectify the local appearance, we would need adaptive
region processes. However, such processes require strong patterns in the local regions
of image pixels, which are not available for most image points. Thus, rectification,
which is standard for sparse sets of image points, cannot be adapted for dense sets.

In addition to the static texture in single images, dynamic texture analysis also
considers a stochastic dynamic behavior in the temporal domain. Chetverikov and
Péteri [5] gave a brief survey of methods on dynamic texture description and recogni-
tion. Earlier dynamic texture classification systems (e.g. [34, 10, 39, 46]) often explic-
itly modeled the underlying physical process, and then distinguished different dynamic
textures by the values of the associated model parameters. For example, Doretto et al.
[10] used linear dynamical system (LDS) to characterize dynamic texture processes.
The LDSs of the different textures were then compared in a space described by Stiefel
manifolds using the Martin distance. Ghanem and Ahuja [18] introduced a phase-

2

based model for dynamic texture recognition and synthesis. Dynamic characteristics
of dynamic texture were measured in Fazekas and Chetverikov [13] using optical flow
based statistical measurements. However, it appears that so far no universal physical
process has been found that can model a large set of dynamic textures. Thus, recently,
appearance based discriminative methods have become more popular for dynamic tex-
ture classification ([3, 38, 45, 51]). Wildes and Bergen [45] constructed spatiotemporal
filters to qualitatively classify local motion patterns into a small set of categories. The
descriptor proposed by Zhao and Pietikäinen [51] is based on local spatio-temporal
statistics, specifically an extension of the local binary pattern (LBP) in 2D images to
the 3D spatio-temporal volumes. To compare different descriptors efficiently the co-
occurrence of LBPs was computed in three orthogonal planes. Ravichandran et al. [38]
combined local dynamic texture structure analysis and generative models. They first
applied the LDS model to local space-time regions and then constructed a bag-of-words
model based on these local LDSs. Chan and Vasconcelos [3] used kernel PCA to learn
a non-linear kernel dynamic texture and applied it for video classification.

In order to achieve good robustness necessary for semantic classification, both com-
ponents of texture description, the local appearance descriptors and the global statis-
tical characterization, should accommodate environmental changes. In the past, very
robust local feature descriptors have been developed, such as the widely used SIFT
feature ([27]) in image space. Most approaches making use of these feature points use
histograms for global statistical characterization. However, such histograms are not
invariant to global geometrical changes. Furthermore, important information about the
spatial arrangement of local features is lost. An interesting statistical tool, the so-called
MFS (multi-fractal spectra) was proposed in [48] as an alternative to the histogram.
The advantage of the MFS is that it is theoretically invariant to any smooth transform
(bi-Lipschitz geometrical transforms), and it encodes additional information regard-
ing the regularization of the spatial distribution of pixels. A similar concept was used
also in other texture applications, for example in texture segmentation [6]. In [48] the
MFS was applied to simple local measurements, the so-called local density function.
Although the MFS descriptor proposed in [48] has been demonstrated to have strong
robustness to a wide range of geometrical changes including viewpoint changes and
non-rigid surface changes, its robustness to photometric changes is weak. The main
reason is that the local feature description is quite sensitive to photometric changes.
Moreover, the simple local measurements have limited discriminative information. On
the other hand, local feature descriptors, such as SIFT [27], have strong robustness to
photometric changes as has been demonstrated in many applications. In particular, the
gradient orientation histogram used in SIFT and variations of SIFT has been widely
used in many recognition and classification tasks including texture classification (e.g.
[24]).

Here we propose a new statistical framework that combines the global MFS statisti-
cal measurement and local feature descriptors using the gradient orientation histogram.
The new framework is applicable to both static and dynamic textures. Such a combina-
tion will lead to a powerful texture descriptor with strong robustness to both geometric
and photometric variations. Fig. 1 gives an outline of the approach for static image
textures. First, the scale-invariant image gradients are derived based on a modifica-
tion of the scale-selection method introduced in [26]. Next, at every pixel multi-scale

3

291 2(, , ,)d d d  

…

291 2(, , ,)d d d  

Texture image

Scale-invariant
Image gradient field

Multi-scale local
orientation histograms

Pixel classification and
MFS pyramid

Texture description in
wavelet frame domain

…

H0

H1

H2

…
3 ×3 11 ×11

Figure 1: Outline of the proposed approach.

gradient orientation histograms are computed with respect to multiple window sizes.
Then, using a rotation-invariant pixel classification scheme defined on the orientation
histograms, pixels are categorized, and the MFS is computed for every window size.
The MFSs corresponding to different window sizes together make up an MFS pyra-
mid. The final texture descriptor is derived by sampling the leading coefficients (that
is, coefficients of large magnitude) of the MFS pyramids under a tight wavelet frame
transform ([8]).

The approach for dynamic textures is essentially the same as that for static textures
with the 2D image SIFT feature replaced by the 3D SIFT feature proposed in Scovanner
et al. [41]. Our approach falls in the category of appearance-based discriminative
approaches. Its main advantage stems from its close relationship to certain stochastic
self-similarities existing in a wide range of dynamic processes capable of generating
dynamic textures.

The rest of the paper is organized as follows. Section 2 gives a brief review of the
basic tools used in our approach. Section 3 presents the algorithm in detail, and Section
4 is devoted to experiments on static and dynamic texture classification. Section 5
concludes the paper.

4

2. Preliminaries: Multi-fractal analysis

In this section, we give a brief review on multi-fractal analysis. A review on tight
framelet systems is given in Appendix A. Multi-fractal analysis ([12]) is built upon
the concept of the fractal dimension, which is defined on point sets. Consider a set
of points E in the 2D image plane with same value of some attribute, e.g., the set of
image points with same brightness. The fractal dimension of such a point set E is a
statistical measurement that characterizes how the points in E are distributed over the
image plane when one zooms into finer scales. One definition of the fractal dimension,
associated with a relatively simple numerical algorithm, is the so-called box-counting
fractal dimension, which is as follows: Let the image plane be covered by a square
mesh of total n× n elements. Let #(E, 1

n) be the number of squares that intersect the
point set E. Then the box-counting fractal dimension, denoted as dim(E), is defined
as

dim(E) = lim
n→∞

log#(E, 1
n)

− log 1
n

. (1)

In other words, the box-counting fractal dimension dim(E) measures the power law
behavior of the spatial distribution of E over the scale 1/n:

#(E,
1

n
) ∝ (1/n)− dim(E).

In a practical implementation, the value of n is bounded by the image resolution, and
dim(E) is approximated by the slope of the line fitted to

log#(E,
i

N
) with respect to − log

i

N
for i = 1, 2, . . . ,m,m < N,

with N denoting the image resolution. In our implementation we use the least squares
method at points at i = 4, 5, 6, 7 to estimate the slope.

Multi-fractal analysis generalizes the concept of the fractal dimension. One ap-
proach of applying multi-fractal analysis to images is to classify the pixels in the image
into multiple point sets according to some associated pixel attribute α. For each value
of α in its feasible discretized domain, let E(α) be the collection of all points with the
same attribute value α. The MFS of E then is defined as the vector dim(E(α)) vs α.
In other words,

MFS = [dim(E(α1)),dim(E(α2)), . . . ,dim(E(αn)].

For example, in [48] the density function (a function describing the local change of the
intensity over scale) was used as the pixel attribute. The density was quantized into n
values, and then the fractal dimensions of n sets associated with these n values were
concatenated to a MFS vector.

3. Main components of the texture descriptor

Our algorithm, taking as input a static texture image, consists of four computational
steps:

5

1. The first step is to calculate scale-invariant image gradients in the scale-space of
the texture image. At each point the scale is determined by the maximum of the
Laplacian measure resulting in a scale-invariant image gradient field.

2. Next, using as input the scale-invariant image gradient field, at every pixel local
orientation histograms are computed over m window sizes (m = 5 in our imple-
mentation). Similar as in the SIFT feature approach, we use 8 directions in the
orientation histogram. Two types of orientation histogram are used: one simply
counts the number of edges in each direction and the other uses the summation
of edge energy in each direction. Thus, in total we obtain 2 ∗ m sets of local
orientation histograms for the given image.

3. Then the MFS pyramid is computed. The orientation histograms are discretized
into n (n = 29 in our implementation) classes using rotation-invariant templates,
and an MFS vector is computed on this classification. We then combine the m
MFS vectors corresponding to the m window sizes into an MFS pyramid. At the
end of this step, we have 2 MFS pyramids of size m× n.

4. Finally, a sparse tight framelet coefficient vector of each MFS pyramid is esti-
mated, by keeping only the frame coefficients of largest magnitude and setting
to 0 all others.

The algorithms for static texture images and dynamic texture sequences are similar,
but a SIFT-type descriptor in 2D image space is used in the former case and a SIFT-
type descriptor in 3D spatio-temporal volume (see [41]) in the latter. Next, we give a
detailed description of every step described in the algorithm above.

3.1. Scale-invariant image gradient field

The texture measurement of the proposed method is built upon the image gradients
of the given image. To suppress variations of image gradients caused by possible scale
changes, we compute the image gradients in scale-space. Given an image I(x, y),
its linear scale-space L(x, y;σ) is obtained by convolving I(x, y) with an isotropic
Gaussian smoothing kernel of standard deviation σ:

g(x, y;σ) =
1

2πσ2
e−(

x2+y2

2σ2
), (2)

such that
L(x, y;σ) = (g(·, ·;σ) ∗ I)(x, y) (3)

with a sequence of σ = {1, . . . ,K} ranging from 1 to K (K = 10 in our implementa-
tion). Then, at each pixel (x, y), its associated image gradient is calculated as

[∂xL(x, y;σ∗(x, y)), ∂yL(x, y;σ∗(x, y))]

for a particular standard deviation σ∗(x, y). The value σ∗(x, y) is determined by the
scale selection method proposed in [26] which selects at every point the scale at which

6

0

2

4

6

8

10

(a) Sample texture region (b) Scale σ∗ (c) Image gradient

Figure 2: (a) Sample texture region. (b) Selected scale σ∗ based on the maximum of the Laplacian
measure in scale-space with the scale ranging from 1 to 10. (c) Corresponding image gradient
field, where the circle at a point denotes the size of the Gaussian smoothing kernel (defined by
σ∗) when computing the gradient.

some image measurement takes on the extreme value. We use the Laplacian measure-
ment, defined as

ML = σ4(Lx2 + Ly2) (4)

with Lxmyn(x, y;σ) = ∂xmyn(L(x, y;σ)). In our implementation, the Prewitt filters
are used for computing the partial derivatives in scale-space. Then, the scale is derived
by taking the maximum value of the Laplacian measurement over scale. The gradient
magnitude and orientation are computed by applying the finite difference operator to
L(x, y;σ∗). See Fig. 2 for an illustration of the scale selected at each pixel and the
corresponding image gradients.

3.2. Multi-scale local orientation histograms

Our proposed local feature descriptor relies on the local orientation histogram of
image pixels, which also is used in SIFT ([27]) and similar features. Its robustness
to illumination changes and invariance to in-plane rotations has been demonstrated
in many applications. For each image gradient field computed in the previous step,
at every pixel, two types of local orientation histograms are computed. One simply
counts the number of orientations; the other weighs them by the gradient magnitude.
The gradient orientations are quantized into 8 directions, covering 45 degrees each. To
capture information of pixels in a multi-scale fashion, for each pixel, we compute the
orientation histograms at 5 window sizes ranging from 3×3 to 11×11. The orientation
histograms, as in SIFT, are rotated to align the dominant orientation with a canonical
direction.

3.3. Pixel classification and the MFS

The next step is to compute the MFS vector. The MFS vector depends on how
the pixels are classified. To obtain a reasonable statistics of the spatial distribution of
pixels, the number of pixels in each class needs to be sufficiently large, and thus the
number of classes needs to be appropriate. We thus need a meaningful way of dis-
cretizing the very large amount of possible orientation histograms. Our approach is to

7

(a) (b)

Figure 3: (a) Representative elements for each of the 29 classes of orientation histogram tem-
plates. (b) All the elements in one orientation histogram template class, which are obtained from
the possible mirror-reflections and rotations of the basic element.

introduce a fixed bin partitioning scheme based on a set of basic orientation histogram
templates.

First, the estimated orientation histograms are quantized as follows. For each bin
of both orientation histograms, the value is set to 0 if the magnitude is less than 1

8 of
the overall magnitude and to 1 otherwise. We then define a partitioning scheme based
on the topological structure of orientation histograms, with a total of 29 classes. See
Fig. 3 (a) and (b) for an illustration. The proposed templates are defined on the basis of
the number of significant image gradient orientations and their relative positions. Each
template class contains the basic element shown in Fig. 3 (a) and all of its rotated and
mirror-reflected copies as shown in Fig. 3 (b) for one of the elements.

Next, for each window size the corresponding MFS feature vector is calculated as
follows: For each template class (out of 29 classes), a binary image is derived by setting
the value of the pixel to 1 if its associated template falls into the corresponding template
class and to 0 otherwise (see Fig. 4). Thus, there are 29 binary images. For each binary
image the box-counting fractal dimension is computed, and the fractal dimensions are
concatenated into a 29-dim MFS vector. The MFS feature vectors corresponding to
different window sizes are then combined into a multi-scale MFS pyramid. The size of
this MFS pyramid is 5× 29.

It is noted that the box-counting fractal dimension amounts to fitting the slope of
the line in the co-ordinate space of log#(E, i

N) vs. − log i
N . Thus, the validity of

the MFS largely depends on how applicable such linearity assumption is for the given
data. In our application we used four points only (corresponding to four window sizes)
in the computation, and we found the variance in the fitting reasonably small to justify
the fitting. Fig. 5 (a) and (b) (the forth row) illustrate the behavior of the linear fitting
in log-log co-ordinates for three images each from two of the classes in the UMD
dataset [48], which represent one of the best and one of the worst cases in the set,
with variances of 0.05 and 0.11 respectively. The last row in Fig. 5 illustrates the

8

(a) (b) (c) (d) (e)

Figure 4: (a) Two texture images in UIUC dataset ([27]). (b)–(e) Examples of binary images with
respect to pixel classification based on the orientation histogram templates.

corresponding MFSs. As can be seen, both for (a) and (b), the the MFS pyramids of
the three textures are almost the same, demonstrating that the MFS descriptor captures
well the identity of texture classes.

It is easy to see that the orientation histogram templates provide a pixel classi-
fication scheme which is invariant to rotation and mirror-reflection; in addition, the
robustness to illumination changes is guaranteed by the orientation histogram itself
([27]). Using the MFS as the replacement of the histogram for statistical characteriza-
tion leads to better robustness to global geometric changes (see [48] for more details).

3.4. Robustifying the texture descriptor in the wavelet frame domain

The final step is to construct the texture descriptor by only taking the leading co-
efficients of the MFS pyramids in a wavelet frame domain. The purpose is to further
increase the robustness of the texture descriptor to environmental changes. The con-
struction is done as follows: We first decompose the MFS pyramid using the 1D un-
decimal linear-spline framelet transform ([8]), as it has been empirically observed that
the corresponding tight frame coefficients tend to be highly relevant to the essential
structure of textures.

Let the matrixE(s, n) denote the MFS pyramid where s denotes the scale (window
size of local orientation histogram) and n denotes the index of the template class. Let
F denote the L-level decomposition of E(s, n) under a 1D tight framelet system with
respect to s defined as

F(j, s, n) := AE(s, n),

where A is the frame decomposition operator, and j denotes the level of the frame
decomposition. See Appendix A for more details on the frame decomposition oper-
ator A. The multi-dimensional matrix F consists of two kinds of components: one
low-pass framelet coefficient component H0, the output of applying the low-pass h0

9

2 4 6 8 10
4

6

8

10

12

14

16

2 4 6 8 10
4

6

8

10

12

14

16

2 4 6 8 10
4

6

8

10

12

14

16

2 4 6 8 10
4

6

8

10

12

14

16

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

(a) σ = 0.05 (b) σ = 0.11 (c) σ = 0.01 (d) σ = 0.04

Figure 5: Illustration of the MFS and the linear fitting behavior when computing the fractal di-
mensions for 2 static texture classes in (a, b) and 2 dynamic texture classes in (c, d). The sample
static textures are from the UMD dataset [48] and the sample dynamic textures are from [9]. For
each class, the first three rows show three sample static texture images, or key frames of three
sample dynamic textures. The forth row shows for one particular orientation histogram template,
the graph of linear fitting in the co-ordinates of log #(E, i

N
) vs. − log i

N
, i = 4, . . . , 7. The

mean variances of the line fitting were found as 0.05, 0.11, 0.01 and 0.04 respectively. The fifth
row shows the MFS pyramids (as vectors) of the corresponding texture images and dynamic
texture sequences.

10

O
ri

g
in

a
l

M
F

S

Glass Feature Sample

5 10 15 20 25

2
4
6
8

10

H
0

5 10 15 20 25

2
4
6
8

10

H
1

5 10 15 20 25

2
4
6
8

10

H
2

5 10 15 20 25

2
4
6
8

10

O
ri

g
in

a
l

M
F

S

Plaid Feature Sample

5 10 15 20 25

2
4
6
8

10

H
0

5 10 15 20 25

2
4
6
8

10

H
1

5 10 15 20 25

2
4
6
8

10

H
2

5 10 15 20 25

2
4
6
8

10

(a) (b)

Figure 6: Illustration of the framelet coefficient components of the MFS vector at a single scale, including the
low-pass framelet coefficient component H0 and two high-pass framelet coefficient components {H1, H2}.
(a) Framelet features of the glass image in Fig. 4 for maximum of Laplacian measure. (b) Framelet features
of the plaid image in Fig. 4 for maximum of Laplacian measure. In each component of the frame coefficients,
the first five rows are corresponded to gradient orientation, and the last five rows are corresponded to gradient
magnitude.

on the pyramid at the scale 2−L; and multiple high-pass framelet coefficient compo-
nents H1, . . . ,Hr, the outputs of applying high pass filters h1, · · · , hr on the pyramid
at multiple levels ranging from 2−1, · · · , 2−L. Each high-pass framelet coefficient
component has three variables: scale 2−j , j = 1, · · · , L, level s, s = 1, · · · , 5 and
bin index n, n = 1, 2, · · · , 29. See Fig. 6 for an illustration of the single level frame
coefficients of the sample images in Fig. 4.

Recall that the un-decimal framelet tight frame is a redundant transform, and thus
the information encoded in the framelet coefficients of F is redundant. In contrast
to orthogonal mappings, redundant transforms are likely to yield sparse leading co-
efficients with large magnitude. The next step then involves extracting these leading
coefficients such that the resulting descriptor provides strong robustness to inter-class
texture variations. In our approach, we simply keep the 70% leading coefficients with
largest amplitude and set all others to 0. The final texture descriptor then consists of
only leading framelet coefficients of all MFS pyramids. The final dimension of the re-
sulting descriptor for 2D texture image in our implementation is 3× 2× 5× 29 = 870.

3.5. Dynamic texture

Dynamic textures are image motion sequences that not only vary in the spatial
distribution of texture elements, but also vary in their dynamics over time. Dynamic
texture can be regarded as a 3D volume of data, which encodes both spatial distribution
and temporal variations of texture pixels. To capture the spatio-temporal nature of
dynamic texture, the 3D SIFT descriptor [41] is used in our approach. The procedure

11

is essentially the same as the one for 2D image textures. Thus, in this section, we only
highlight the differences in the four steps.

In our approach, a dynamic texture is viewed as a 3D volume of data with three
orthogonal axes, i.e. two spatial axes (x- axis and y- axis) and a time axis (t- axis).
For Step 1 (Sec. 3.1), the spatiotemporal gradients of each pixel (x, y, t) in 3D volume,
denoted by Lx, Ly and Lt, are computed using the finite difference operator. As there
are not large scale changes in most dynamic textures, the step of calculating scale-
invariant image gradients are omitted for computational efficiency. Instead, we just use
the standard image gradients.

The main difference lies in Step 2 (Sec. 3.2). We need to define local orientation
histograms that capture the spatio-temporal aspect of dynamic textures. Following
[41], for a given point in 3D volume, we parameterize its orientation by the angle
vector [φ, ψ] defined as {

φ = tan−1
Ly
Lx

ψ = tan−1 Lt√
L2
x+L2

y

,

with the two angles ranging from 0◦ to 360◦. To reduce the computational cost, we
use the orientation variable ψ only in the orientation histogram templates. This vari-
able captures the temporal information of dynamic textures. Using the the orientation
histogram templates described in Sec. 3.2 with respect to ψ, we obtain the orienta-
tion histograms for the 3D volume data. The procedure of computing dynamic texture
descriptor is as follows.

1. For each pixel, we compute the orientation histograms with respect to parameter
ψ at 5 windows (3D cubes) ranging in size from 3× 3× 3 to 11× 11× 11. For
each scale, we compute two types of local orientation histograms, one based on
the number of orientations, the other based on the gradient magnitude.

2. Then we classify the volumetric windows into 29 classes based on the 29 orien-
tation histogram templates described in Sec. 3.2.

3. Based on this classification we calculate using the 3D box-counting fractal di-
mension (1) the MFS vectors, and concatenate the MFS feature vectors of dif-
ferent window sizes into a multi-scale MFS pyramid.

It is noted that the last step used in the computation of static textures (Sec. 3.3) is not
used here, as it leds to very minor improvements in the classification experiments. The
final dimension of the 3D dynamic texture descriptor is 2 × 5 × 29 = 290. Fig. 5 (c)
and (d) illustrate the estimated MFS and the fitting of the line for one 3D orientation
histogram template on a good and a bad case, demonstrating the variance sufficiently
small to justify the linearity assumption in the estimation of the fractal dimension.

4. Experimental evaluation

The performance of the proposed texture descriptor is evaluated for static and dy-
namic texture classification.

12

4.1. Static texture
We evaluated the performance of texture classification on two datasets, the UIUC

dataset ([27]) and the high-resolution UMD dataset ([48]). Sample images of these
datasets are shown in Fig. 7. The UIUC texture dataset consists of 1000 uncalibrated
and unregistered images: 40 samples for each of 25 textures with a resolution of
640× 480 pixels. The UMD texture dataset also consists of 1000 uncalibrated and un-
registered images: 40 samples for each of 25 textures with a resolution of 1280× 900
pixels. In both datasets significant viewpoint changes and scale differences are present,
and the illumination conditions are uncontrolled.

In our experiments, the training set is selected as a fixed size random subset of the
class, and all remaining images are used as the test set. A final texture description is
based on a two-scale framelet-based representation. The reported classification rate is
the average over 200 random subsets. An SVM classifier (Tresp et al [42]) is used,
which was implemented as in Pontil et al [36]. The features of the training set are
used to train the hyperplane of the SVM classifier using RBF kernels as described in
Scholkopf et al [40]. The optimal parameters are discovered by cross-validation.

The approach was implemented in Matlab 2011b and run on a laptop computer
with Intel Core 2 Duo with 2.10 GHz and 4GB memory. For each image in the UIUC
dataset, the running time of the proposed feature extraction is about 10 seconds. Since
our proposed approach does not require expensive clustering, the classification is very
efficient. The average running time is around 16 seconds for classifying 750 images
of 25 classes from the UIUC dataset using the SVM-based classifier with 10 training
samples for each class.

To understand the influence of applying the the wavelet transform on feature vec-
tors, we compared the average classification rates of the proposed texture descriptor
with and without wavelet frame robustification, referring to Figure 8, it can be seen
that the wavelet robustification provides a small amount of improvement, although not
significant.

The proposed texture descriptor is compared against three other texture descrip-
tors: Lazebnik et al [24], Varma et al [43], and Xu et al [48]. The first one ([24]) is the
so-called (H+L)(S+R) texture descriptor, which is based on a sophisticated point-based
texture representation. The basic idea is to first characterize the texture by clusters of
elliptic regions. The ellipses are then transformed to circles such that the local descrip-
tor is invariant to affine transforms. Two descriptors (SPIN and SIFT) are defined on
each region. The resulting texture descriptor is the histogram of clusters of these local
descriptors, and the descriptors are compared using the EMD distance. The second
method is the VG-fractal method by Varma and Garg [43], which uses properties of the
local density function of various image measurements resulting in a 13 dimensional
descriptor. The resulting texture descriptor is the histogram of clusters of these local
descriptors. The third method, the MFS method by Xu et al [48], derives the MFSs of
simple local measurements (the local density function of the intensity, image gradient
and image Laplacian). The texture descriptor is a combination of the three MFSs. The
results on the UIUC dataset using the SVM classifier for the (H+L)(S+R) method is
from [24]. The other results are obtained from our implementations. We denote our
approach as OTF method. Fig. 9 shows the classification rate vs. the number of train-
ing samples on the UIUC dataset. Fig. 10 shows the classification percentage vs. the

13

(a) 25 sample static textures from the UIUC dataset.

(b) 25 sample static textures from the UMD dataset.

Figure 7: Sample static texture images.

14

5 10 15 20
60

70

80

90

100

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

14 16 18 20
97

97.5

98

98.5

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

Laplacian
Laplacian+Frame

Laplacian
Laplacian+Frame

Figure 8: Comparison of the average classification rates vs. number of training samples of the proposed
descriptor with and without wavelet robustification. The experiment was run on the UMD dataset using
SVM classification.

0 5 10 15 20
0.6

0.7

0.8

0.9

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1 0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1

(a) (b) (c)

Figure 9: Classification rate vs. number of training samples for the UIUC dataset based on SVM classifica-
tion. Four methods are compared: the (H+L)(S+R) method in Lazebnik et al[24], the MFS method in Xu et
al [48], the VG-Fractal method in Varma et al[43] and our OTF method. (a) Classification rate for the best
class. (b) Mean classification rate for all 25 classes. (c) Classification rate of the worst class.

index of classes on the UIUC dataset based on 20 training samples. Fig. 11 and Fig. 12
show the results of the UMD dataset using the same experimental evaluation.

From Fig. 9 – Fig. 12, it is seen that our method clearly outperformed the VG-fractal
method and the MFS method on both datasets. Also our method obtained better results
than the (H+L)(S+R) method. We emphasize that heavy clustering is needed in both,
the VG-fractal method and the (H+L)(S+R) method, which is very computationally
expensive. In contrast, our approach is much simpler and efficient without requiring
clustering.

4.2. Dynamic texture
There are three public dynamic texture datasets that have been widely used: the

UCLA dataset [10], the DynTex dataset [35] and the DynTex++ dataset [17]. We ap-
plied our dynamic texture descriptor for dynamic texture classification on these three
datasets and compared the results with those from a few state-of-the-art dynamic tex-
ture classification approaches.

15

0 10 20
0

20

40

60

80

100
97.02

Cl
as

si
fic

at
io

n
ra

te
(%

)

The Nth class of UIUC dataset
0 10 20

0

20

40

60

80

100
92.74

Cl
as

sf
ic

at
io

n
ra

te
(%

)

The Nth class of UIUC dataset

(a) (b)

0 10 20
0

20

40

60

80

100
92.31

Cl
as

si
fic

at
io

n
ra

te
(%

)

The Nth class of UIUC dataset
0 10 20

0

20

40

60

80

100
97.44

The Nth class of UIUC dataset

Cl
as

si
fic

at
io

n
ra

te
(%

)

(c) (d)

Figure 10: Classification percentage vs. index of classes for the UIUC dataset based on SVM classification.
The number of training samples is 20. The number on the top of each sub-figure is the average classification
percentage of all 25 classes. (a) Result of the (H+L)(S+R) method. (b) Result of the MFS method. (c) Result
of the VG-Fractal method. (d) Result of our OTF method.

0 5 10 15 20
0.6

0.7

0.8

0.9

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1 0 5 10 15 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of training samples

C
la

ss
ifi

ca
tio

n
ra

te

(H+L)(S+R)
MFS
VG−fractal
OTF

1

(a) (b) (c)

Figure 11: Classification rate vs. number of training samples for the UMD dataset using SVM classification.
Four methods are compared: the (H+L)(S+R) method, the MFS method, the VG-Fractal method and our
OTF method. (a) Classification rate for the best class. (b) Mean classification rate for all 25 classes. (c)
Classification rate of the worst class.

16

0 10 20
0

20

40

60

80

100
96.95

Cl
as

sif
ica

tio
n r

ate
(%

)

The Nth class of UM dataset
0 10 20

0

20

40

60

80

100
93.93

The Nth class of UM dataset

Cl
as

sif
ica

tio
n r

ate
(%

)

(a) (b)

0 10 20
0

20

40

60

80

100
96.36

Cl
as

sif
ica

tio
n r

ate
(%

)

The Nth class of UM dataset
0 10 20

0

20

40

60

80

100
98.42

The Nth class of UM dataset
Cl

as
sif

ica
tio

n r
ate

(%
)

(c) (d)

Figure 12: Classification percentage vs. index of classes for the UMD dataset based on SVM classification.
The number of training samples is 20. The number on the top of each sub-figure is the average classification
percentage of all 25 classes. (a) (H+L)(S+R) method. (b) MFS method. (c) VG-Fractal method. (d) OTF
method.

4.2.1. UCLA dataset
One popular dynamic texture benchmark for performance evaluation is the UCLA

dataset (e.g. [9, 17, 39, 38, 46]). The original UCLA dataset consists of 50 dynamic
textures. Each dynamic texture is given in terms of four grayscale image sequences
captured from the same viewpoint, resulting in a total of 200 sequences, each of which
consists of 75 frames of size 110*160. The literature does not agree on a ground truth
regarding the classification of the UCLA dataset. In [9, 17, 38] the following five
classifications, termed DT-50, DT-SIR, DT-9, DT-8 and DT-7, were considered:

1. DT-50 [9, 17]. All 50 classes are used for classification.

2. DT-SIR (Shift-invariant recognition) [9]. Each of the original 200 video se-
quences is spatially cut into non-overlapping, left and right halves resulting in
a total of 400 sequences. The “shift-invariant recognition” was used to elimi-
nate the effects due to biases in identical viewpoint selection. Nearest-neighbor
classification was applied in the recognition process.

3. DT-9 [17]. The dataset is divided into 9 classes: boiling water (8), fire (8),
flowers (12), fountains (20), plant (108), sea (12), smoke (4), water (12) and
waterfall (16), where the number in parentheses denotes the number of elements
of each class. Sample frames are shown in Fig. 13. In our experiments we used
the original images of size 110*160.

17

Figure 13: Samples images from the dynamic textures in the DT-9 dataset.

4. DT-8 [38]. This dataset is obtained from DT-9 by discarding the large class
“plants”, and considering only the eight other classes.

5. DT-7 [9] The original sequences in the dataset are split spatially into left and
right halves resulting in 400 sequences, which were classified into seven seman-
tic categories: flames (16), fountain (8), smoke (8), turbulence (40), waves (24),
waterfall (64) and vegetation (240).

We compared our method using both NN(Nearest-neighbor) and SVM classifiers to
the methods in [9], [17] and [38] on the five categorizations (DT-7, DT-8, DT-9, DT-50
and DT-SIR). See Table 1 for a comparison of these methods. As can be seen from
Table 1 our method outperformed the other three state-of-the-art methods. We also

Table 1: Classification results (in %) for the UCLA dataset. Note: Superscript “M” is used to denote results
using maximum margin learning (followed by 1NN) [17] ; “–” means “not available”.

Method DT-7 DT-8 DT-9 DT-50 DT-SIR
Classifier 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN

[38] – – 70.00 80.00 – – – – –
[9] 92.30 – – – – – 81.00 – 60.00
[17] – – – – 95.60M – 99.00M – –

3D-OTF 96.11 98.37 95.80 99.50 96.32 97.23 99.25 87.10 67.45

18

10 20 30 40 50

10

20

30

40

500

20

 40

60

80

100

0 10 20 30 40 50
0

20

40

60

80

100
99.25

10 20 30 40 50

10

20

30

40

500

20

40

60

80

100

0 10 20 30 40 50
0

20

40

60

80

100
87.10

Figure 14: Confusion matrices for DT-50 for classification. The upper is using a NN classifier, and the lower
is using an SVM classifier.

19

10 20 30 40 50

10

20

30

40

500

20

 40

60

80

100

0 10 20 30 40 50
0

 20

40

60

80

100
67.45

Figure 15: Confusion matrix for DT-SIR for classification using NN classifier.

boiling water fire flowers foutains plants sea smoke water waterfall

boiling
 water

fire

flowers

foutains

plants

sea

smoke

water

waterfall

96.75

0.2

1.65

0.13

1.12

0.15

0.05

97.51

0.44

0.33

1.67

95.47

4.53

0.01

92.08

4.52

3.39

0.09

0.98

0.47

98.46

100

11.97

88.03

100 1.4

98.6

boiling water fire flowers foutains sea smoke water waterfall

boiling
 water

fire

flowers

foutains

sea

smoke

water

waterfall

96.5

1.1

0.7

0.2

1.5

96.42

0.4

3.18

100 1.3

94.94

0.02

3.74

100

6

6.45

80.15

4.8

2.6

100

0.11

1.44

98.45

flames fountain smoke turbulence waves waterfall vegetation

flames

fountain

smoke

turbulence

waves

waterfall

vegetation

90.35

9.2

0.2

0.25

100

4.75

87.15

0.5

7.6

98.4

1.36

0.24

0.13

99.86

0.01

0.65

0.55

1.76

97.04

100

(a) DT-9: NN (b) DT-8: NN (c) DT-7: NN
boiling water fire flowers foutains plants sea smoke water waterfall

boiling
 water

fire

flowers

foutains

plants

sea

smoke

water

waterfall

95

3.75

1.25

100

86.67

13.33

2

96

2

0.09

99.91

100

97.5

2.5

100

100

boiling water fire flowers foutains sea smoke water waterfall

boiling
 water

fire

flowers

foutains

sea

smoke

water

waterfall

100

100

100

96

4

100

100

100

100

flames fountain smoke turbulence waves waterfall vegetation

flames

fountain

smoke

turbulence

waves

waterfall

vegetation

96.25

1.25

2.5

100

100

96.5

3.5

99.92

0.08

0.93

3.13

95.94

100

(d) DT-9: SVM (e) DT-8: SVM (f) DT-7: SVM

Figure 16: Confusion matrices for UCLA DT-9, DT-8 and DT-7 for classifications, the upper is using NN
classifier, and the lower is using SVM classifier.

20

Table 2: Results in leave-one-group-out test (%) on DynTex dataset
LBP-TOP [51] 3D-OTF

non-weighting 95.71 95.89
best-weighting 97.14 96.70

included the so-called confusion matrix to show the details of the performance of the
proposed method for each class. Each column of the confusion matrix represents the
instances in a predicted class and each row represents the instances in an actual class.
The confusion matrices of the proposed method for DT-50, DT-SIR, DT-9, DT-8 and
DT-7 are shown in Fig. 14–16 respectively.

4.2.2. DynTex dataset
The DynTex dataset ([35]) consists of various kinds of videos of dynamic texture,

including struggling flames, whelming waves, sparse curling smoke, dense swaying
branches, and so on. The sequences are in color and of dimension 400 × 300 in space
and consisting of 250 frames (over 10 seconds) de-interlaced with a spatio-temporal
median filter.

The DynTex dataset has been used in [14, 17, 51] with different experimental con-
figurations. Here we follow the settings in [51], and we compare to the method de-
scribed there, which achieved very good recognition performance using the so-called
LBP-TOP [51] method. This method in essence extends the so-called 2D LBP de-
scriptor (a qualitative local statistical descriptor, that codes for a point which pixels
in its neighborhood have larger value and which have smaller value than the point) to
spatio-temporal domain by applying the LBP descriptors in three orthogonal planes.
The classification was implemented using the leave-one-group-out scheme. Table 2
reports the average performance over 2000 runs. It can be seen from Table 2 that our
method performs better than the method in [51] when not using weighting, but per-
forms worse when weighting is used. The confusion matrix is shown in Fig. 17, and
the classification rate for individual classes is shown in Fig. 18.

4.2.3. DynTex++ dataset
The DynTex++ dataset([17]) provides a rich and reasonable benchmark for dy-

namic texture recognition. This challenging dynamic texture dataset contains 36 classes
of dynamic textures, each of which contains 100 sequences of size 50× 50× 50. The
DL-PEGASOS method proposed in [17] is chosen for comparison, which is based on
the maximum margin distance learning (MMDL) method. Good performance is ob-
tained on the UCLA dataset and the DynTex++ dataset by learning class-independent
and class-dependent weights. We used the experimental setting in [17]. SVM was used
as a classifier, with 50% of the dataset used for training and the rest for testing. Table 3
summarizes the comparison. Our 3D-OTF descriptor obtained an average recognition
rate of 89.17%, which is noticeably better than the 63.7% achieved by the method in
[17]. The confusion matrix is shown in Fig. 17, and the classification rate on each class
of the DynTex++ dataset is shown in Fig. 19.

21

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35
0

20

40

60

80

100

Figure 17: Confusion matrices by our method 3D-OTF on the DynTex (left) and DynTex++ (right) datasets.

Figure 20: Confusion matrices by our method 3D-OTF on the DynTex (left) and DynTex++ (right) datasets.

100 91.5 90.5 100 89 100 88.5

78.5 100 100 100 79 100 100

100 100 100 100 100 100 100

99 93.5 100 86.5 100 85.5 100

74.5 100 100 100 100 100 100

Figure 21: Classification rate (%) on each class of the DynTex dataset.

23

Figure 18: Classification rate (in %) for the different classes of the DynTex dataset.

Table 3: Results (%) on DynTex++ dataset
Method DL-PEGASOS [17] 3D-OTF

Classification rate 63.70% 89.17%

22

100 100 92 100 86 78 100 96 60 100 100 82

94 98 100 100 96 98 100 100 100 100 94 94

98 28 24 100 86 100 100 82 86 64 100 74

Figure 19: Classification rate (%) on each class of the DynTex++ dataset.

[5] A. Conci and L. H. Monterio, “Multifractal characterization of texture-based segmenta-
tion”, ICIP, pp. 792-795, 2000.

[6] K. Dana and S. Nayar, “Histogram model for 3d textures”, CVPR, pp. 618-624, 1998.

[7] I. Daubechies, B. Han, A. Ron and Z. Shen, “Framelets: MRA-based constructions of
wavelet frames”, Applied and Computational Harmonic Analysis, 14, pp. 1-46, 2003.

[8] K. G. Derpanis and R. P. Wildes, “Dynamic texture recognition based on distributions of
spacetime oriented structure”, CVPR, 2010.

[9] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic texture”, IJCV, 2003.

[10] G. Doretto, D. Cremers, P. Favaro and S. Soatto, “Dynamic texture segmentation. ICCV,
2003.

[11] A. Efros and T. Leung, “Texture synthesis by non-parametric smapling, ICCV, pp. 1039-
1046, 1999.

[12] K. J. Falconer, Techniques in Fractal Geometry, John Wiley, 1997.

[13] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2002.

[14] J. Garding and T. Lindeberg, “Direct computation of shape cues using scale-adapted spatial
deriative operators”, IJCV, 17(2), pp. 163-191, 1996.

[15] B. Ghanem and N. Ahuja, “Maximum margin distance learning for dynamic texture recog-
nition”, ECCV, 2010.

[16] E. Hayman, B. Caputo, M. Fritz and J. O. Eklundh, “On the significance of real-world
conditions for material classification”, ECCV, pp. 253-266, 2004.

[17] B. Julesz, “Texture and visual perception, Science America, 212, pp. 38-48, 1965.

[18] C. Kervrann and F. Heitz, “A Markov random field model-based approach to unsupervised
texture segmentation using local and global spatial statistics, IEEE Trans. on Image Process,
Vol. 4(6), pp. 856-862, 1995.

20

Figure 19: Classification rate (in %) for the different classes of the DynTex++ dataset.

5. Summary and Conclusions

In this paper, we proposed a new texture descriptor, which applies the global MFS
to local gradient orientation histograms. The proposed descriptor has strong robustness
to both local and global illumination changes and is robust to many geometric changes.
Locally, robustness to illumination changes and geometric variations is achieved by us-
ing templates of local gradient orientation histograms; robustness to local scale changes
is achieved by using scale-invariant image gradient fields. Globally, the multi-fractal
spectrum ([48]) and its sparse approximation in a wavelet frame system are employed
to obtain further robustness to global environmental changes. Our texture descrip-
tion is rather efficient and simple to compute without feature detection and clustering.
Experiments on static and dynamic texture classifications showed that our approach
performed well. In future research, we would like to investigate how to apply the
proposed framework to other recognition tasks including object recognition and scene
understanding.

Appendix

A. Wavelet frame system

Instead of directly using the MFS vector as the texture descriptor, we decompose
it under a shift-invariant wavelet frame system and only take the leading wavelet co-
efficients (coefficients with large magnitude). The reason for doing so is to further
increase the robustness of the resulting texture descriptor by removing insignificant co-
efficients which are sensitive to environmental changes. In this section, we give a brief
review on wavelet frame systems. For an in-depth theoretical analysis and practical
implementation, see for example [2, 8].

A wavelet frame system is a redundant system that generalizes the orthonormal
wavelet basis (see [8] for more details). Wavelet tight frames have greater flexibil-
ity than orthonormal bases by sacrificing orthonormality and linear independence, but

23

φ ψ
1

ψ
2

Figure 20: Piecewise linear wavelet frame system ([8]).

they have the same efficient decomposition and reconstruction algorithms as orthonor-
mal wavelet bases. The filters used in wavelet frame systems have many attractive
properties, not present in those used in orthonormal wavelet systems: e.g., symmetry
(anti-symmetry), smoothness,and shorter support. These nice properties make wavelet
frame systems ideal for building a descriptors with strong robustness.

An MRA-based wavelet frame system is based on a single scaling function φ ∈
L2(R) and several wavelet functions {ψ1, . . . , ψr} ⊂ L2(R) that satisfy the following
refinable equation:

φ(t) =
√
2
∑
k

h0(k)φ(2t− k); ψ`(t) =
√
2
∑
k

h`(k)φ(2t− k), ` = 1, 2, . . . , r.

Let φk(t) = φ(t−k) and ψk,j,` = ψ`(2
jt−k). Then for any square integrable function

f ∈ L2(R), we have a multi-scale representation of f as follows:

f =

∞∑
k=−∞

ckφk(t) +

r∑
`=1

∞∑
j=0

∞∑
k=−∞

dk,j,`ψk,j,`, (5)

where ck =
∫
R f(t)φk(t)dt and dk,j,` =

∫
R f(t)ψk,j,`(t)dt. Equation (5) is called

the perfect reconstruction property of wavelet tight frames. The coefficients {ck}
and {dk,j,`} are called low-pass and high-pass wavelet coefficients respectively. The
wavelet coefficients can be efficiently calculated by a so-called cascade algorithm (see
e.g. [29]). In this paper, we use the piece-wise linear wavelet frame developed in ([8]):

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

See Fig. 20 for the corresponding φ and ψ1, ψ2. We follow [2] for a discrete imple-
mentation of the multi-scale tight frame decomposition without downsampling. For
convenience of notation, we denote such a linear frame decomposition by a rectangular
matrix A of size m × n with m > n. Thus, given any signal f ∈ Rn, the discrete
version of (5) is expressed as follows:

f = ATw = AT (Af),

where w ∈ Rm is the wavelet coefficient vector of f . It is noted that we haveATA = I
but AAT 6= I unless the tight framelet system degenerates to an orthonormal wavelet
system.

24

References

[1] J. Aloimonos, “Shape from texture”, Biological Cybernetics, 58, pp. 345-360, 1988.

[2] J. Cai, R. H. Chan, and Z. Shen, “A framelet-based image inpainting algorithm”, Applied
and Computational Harmonic Analysis, 24(2), pp. 131-149, 2008.

[3] A. Chan and N. Vasconcelos, “Classifying video with kernel dynamic textures”, CVPR,
2007.

[4] Y. W. Chen and C. J. Lin, “Combining SVMs with various feature selection strategies”,
Feature Extraction, Foundations and Applications, Springer, 2006.

[5] D. Chetverikov and R. Péteri, “A brief survey of dynamic texture description and recog-
nition”, Proc. 4th Int. Conf. on Computer Recognition Systems, Springer Advances in Soft
Computing, pp. 17-26, 2005.

[6] A. Conci and L. H. Monterio, “Multifractal characterization of texture-based segmentation”,
ICIP, pp. 792-795, 2000.

[7] K. Dana and S. Nayar, “Histogram model for 3d textures”, CVPR, pp. 618-624, 1998.

[8] I. Daubechies, B. Han, A. Ron, and Z. Shen, “Framelets: MRA-based constructions of
wavelet frames”, Applied and Computational Harmonic Analysis, 14, pp. 1-46, 2003.

[9] K. G. Derpanis and R. P. Wildes, “Dynamic texture recognition based on distributions of
spacetime oriented structure”, CVPR, 2010.

[10] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic texture”, IJCV, 2003.

[11] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling”, ICCV, pp. 1039-
1046, 1999.

[12] K. J. Falconer, Techniques in Fractal Geometry, John Wiley, 1997.

[13] S. Fazekas and D. Chetverikov, “Analysis and performance evaluation of optical flow fea-
tures for dynamic texture recognition”, Signal Processing: Image Communication, Special
Issue on Content-Based Multimedia Indexing and Retrieval, 22(7-8), pp. 680-691, 2007.

[14] S. Fazekas and D. Chetverikov, “Normal versus complete flow in dynamic texture recogni-
tion: A comparative study”, Workshop on Texture Analysis and Synthesis, 2005.

[15] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2002.

[16] J. Garding and T. Lindeberg, “Direct computation of shape cues using scale-adapted spatial
derivative operators”, IJCV, 17(2), pp. 163-191, 1996.

[17] B. Ghanem and N. Ahuja, “Maximum margin distance learning for dynamic texture recog-
nition”, ECCV, 2010.

[18] B. Ghanem and N. Ahuja, “Phase based modelling of dynamic textures”, ICCV, 2007.

[19] E. Hayman, B. Caputo, M. Fritz, and J. O. Eklundh, “On the significance of real-world
conditions for material classification”, ECCV, pp. 253-266, 2004.

25

[20] D. J. Heeger and J. R. Bergen, “Pyramid based texture analysis/synthesis”, Computer
Graphics Proceedings, pp. 229-238, 1995.

[21] B. Julesz, “Texture and visual perception”, Science America, 212, pp. 38-48, 1965.

[22] C. Kervrann and F. Heitz, “A Markov random field model-based approach to unsupervised
texture segmentation using local and global spatial statistics”, IEEE Trans. on Image Pro-
cess, 4(6), pp. 856-862, 1995.

[23] S. M. Konishi and A. L. Yuille, “Statistical cues for domain specific image segmentation
with performance analysis”, CVPR, pp. 1125-1132, 2000.

[24] S. Lazebnik, “Local semi-local and global models for texture, object and scene recogni-
tion”, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2006.

[25] T. Leung and J. Malik, “Representing and recognizing the visual appearance of materials
using three-dimensional textons”, IJCV, 43(1), pp. 29-44, 2001.

[26] T. Lindeberg, “Automatic scale selection as a pre-processing stage for interpreting the vi-
sual world”, FSPIPA, 130, pp. 9-23, 1999.

[27] D. Lowe, “Distinctive image features from scale invariant keypoints”, IJCV, 60(2), pp.
91-110, 2004.

[28] J. Malik and R. Rosenholtz, “Computing local surface orientation and shape from texture
for curved surfaces”, IJCV, 23(2), pp. 149-168, 1997.

[29] S. Mallat, A Wavelet Tour of Singapore Processing, Third Edition: The Sparse Way, Aca-
demic Press, 2008.

[30] B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, CA: Freeman, 1982.

[31] B. S. Manjunath, J. R. Ohm, V. V. Vasudevan, and A. Yamada, “Color and texture de-
scriptors”, IEEE Trans. on Circuits and Systems for Video Technology, 11(6), pp. 703-715,
2001.

[32] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detectors”, IJCV,
60(1), pp. 63-86, 2004.

[33] F. Mindru, T. Tuytelaars, L. Van Gool, and T. Moons, “Moment invariants for recognition
under changing viewpoint and illumination”, CVIU, 94(1-3), pp. 3-27, 2004.

[34] R. C. Nelson and R. Polana, “Qualitative recognition of motion using temporal texture”,
Computer Vision, Graphics, and Image Processing. Image Understanding, 56 (1), pp. 78-89,
1992.

[35] R. Péteri, S. Fazekas and M. J. Huiskes, “DynTex: A comprehensive database of dynamic
texture”, Pattern Recognition Letters, 31(12), pp. 1627-1632, 2010.

[36] M. Pontil and A. Verri, “Support vector machines for 3D object recognition”, PAMI, 20(6),
pp. 637-646, 1998.

[37] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of
complex wavelet coefficients”, IJCV, 40(1), pp. 49-71, 2000.

26

[38] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant dynamic texture recognition
using a bag of dynamical systems”, CVPR, 2009.

[39] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture recognition”, CVPR, II, pp.
58-63, 2001.

[40] B. Scholkopf and A. Smola, Learning with kernels: Support Vector Machines, regulariza-
tion, optimization and beyond, MIT Press, Cambridge, MA, 2002.

[41] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional SIFT descriptor and its application to
action recognition”, ACM Multimedia, 2007.

[42] V. Tresp and A. Schwaighofer, “Scalable kernel systems”, Proceedings of ICANN 2001,
Lecture Notes in Computer Science 2130, pp. 285-291, Springer Verlag, 2001.

[43] M. Varma and R. Garg, “Locally invariant fractal features for statistical texture classifica-
tion”, ICCV, 2007.

[44] M. Varma and A. Zisserman, “Classifying images of materials: Achieving viewpoint and
illumination independence”, ECCV, 3, pp. 255-271, 2002.

[45] R. P. Wildes and S. R. Bergen, “Qualitative spatiotemporal analysis using an oriented en-
ergy representation”, ECCV, pp. 768-784, 2000.

[46] F. Woolfe and A. Fitzgibbon, “Shift-invariant dynamic texture recognition”, ECCV, II, pp.
549-562, 2006.

[47] J. Wu and M. J. Chantler, “Combining gradient and albedo for rotation invariant classifica-
tion of 2D surface texture”, ICCV, 2, pp. 848-855, 2003.

[48] Y. Xu, H. Ji, and C. Fermuller, “Viewpoint invariant texture description using fractal anal-
ysis”, IJCV, 83(1), pp. 85-100, 2009.

[49] Y. Xu, X. Yang, H. B. Ling, and H. Ji, “A new texture descriptor using multifractal analysis
in multi-orientation wavelet pyramid”, CVPR, 2010.

[50] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features and kernels for
classification of texture and object categories: A comprehensive study”, IJCV, 73(2), pp.
213-238, 2007.

[51] G. Zhao and M. Pietikäinen, “Dynamic texture recognition using local binary patterns with
an application to facial expression”, PAMI, 29(6), pp. 915-928, 2007.

[52] S. C. Zhu, Y. Wu, and D. Mumford, “Filters, random fields and maximum entropy
(FRAME): Towards a unified theory for texture modeling”, IJCV, 27(2), pp. 107-126, 1998.

27

	Introduction
	Preliminaries: Multi-fractal analysis
	Main components of the texture descriptor
	Scale-invariant image gradient field
	Multi-scale local orientation histograms
	Pixel classification and the MFS
	Robustifying the texture descriptor in the wavelet frame domain
	Dynamic texture

	Experimental evaluation
	Static texture
	Dynamic texture
	UCLA dataset
	DynTex dataset
	DynTex++ dataset

	Summary and Conclusions
	Wavelet frame system

