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Abstract

Most existing video denoising algorithms assume a sin-
gle statistical model of image noise, e.g. additive Gaussian
white noise, which often is violated in practice. In this pa-
per, we present a new patch-based video denoising algo-
rithm capable of removing serious mixed noise from the
video data. By grouping similar patches in both spatial
and temporal domain, we formulate the problem of remov-
ing mixed noise as a low-rank matrix completion problem,
which leads to a denoising scheme without strong assump-
tions on the statistical properties of noise. The resulting nu-
clear norm related minimization problem can be efficiently
solved by many recently developed methods. The robust-
ness and effectiveness of our proposed denoising algorithm
on removing mixed noise, e.g. heavy Gaussian noise mixed
with impulsive noise, is validated in the experiments and
our proposed approach compares favorably against some
existing video denoising algorithms.

1. Introduction

With today’s advances in sensor design, the image/video is
relatively clean for high-end digital cameras at low sensitiv-
ities, but it remains noisy for low cost cameras at high sensi-
tivities, e.g., low light condition, high ISO setting and high
speed rate. The problem of removing image noise is still of
acute and in fact growing importance with the prevalence
of webcams and mobile phone cameras. In general, video
data tend to be more noisy than single image due to high
speed capturing rate of video camera. Video denoising aims
at efficiently removing noise from all frames of a video by
utilizing information in both spatial and temporal domains.
Such an integrated approach is more optimal than indepen-
dently applying a single-image denoising method on each
frame of the video, as there exist high temporal redundan-
cies in a video compared to a single image.

Most existing image/video denoising techniques rely on
a single statistical model of image noise, such as i.i.d. Gaus-

sian noise, which is often violated in practice. For exam-
ple, five major sources of image noise with different sta-
tistical distributions have been identified in [14]: fixed pat-
tern noise, amplifier noise, photon shot noise, dark current
noise and quantization noise. As a result, the performance
of most existing denoising techniques will severely degrade
when applied on those real noisy images with noises from
multiple sources.

This paper aims at developing a robust video denois-
ing algorithm capable of removing mixed noise from image
sequences. The proposed video denoising method is built
upon the same methodology “grouping and collaboratively
filtering” as many patch-based methods (e.g. [2, 4, 10, 11])
do. Different from existing methods, our proposed algo-
rithm is derived with minimal assumptions on the statisti-
cal properties of image noise. The basic idea is to convert
the problem of removing noise from the stack of matched
patches to a low rank matrix completion problem, which
can be efficiently solved by minimizing the nuclear norm
(`1 norm of all singular values) of the matrix with linear
constraints. It is shown in the experiments that our low rank
matrix completion based approach can efficiently remove
complex noise mixed from multiple statistical distributions.

1.1. Related work

There have been an abundant research literature on im-
age denoising methods. In this section, we will only discuss
the most related denoising techniques and interesting read-
ers are referred to [3, 21] for a comprehensive review of the
literature. In recent years, patch-based non-local scheme
has emerged as one promising approach with very impres-
sive denoising results (e.g. [2, 10, 12, 13, 19]). Although
differing from details, these method are built on the same
methodology which essentially groups the similar patches
together followed by a collaboratively filtering. Take the
well-known BM3D ([10]) as a sample. In BM3D, simi-
lar image blocks is stacked in a 3D array based on the `2
norm distance function between different patches. Then a
shrinkage in 3D transform domain such as wavelet shrink-
age or Wiener filter are applied on the 3D block stack. The



denoised image is then synthesized from denoised patches
after inversing 3D transform. The result can be further im-
proved by iteratively doing grouping and collaboratively fil-
tering.

Video denoising is different from single image denois-
ing as video sequences usually have very high temporal re-
dundancy which should be effectively used for better per-
formance (e.g., [4, 26, 9, 15, 11, 28]). The basic idea of
patch-based image denoising can also be applied on the
video by matching similar patches both within the image
and over multiple images. The concept of BM3D is gen-
eralized to video denoising in [11] by using a predictive
search block-matching over time and combined with col-
laborative Wiener filtering on patch stacks. In [28], a more
robust patch matching are proposed by using the depth as
a constraint in the matching process and the patch stack
is denoising by both PCA (principle component analysis)
and Tensor analysis. The idea of sparse coding in a patch
dictionary has also been applied on video denoising (e.g.
[22, 19]), where the denoised image patches are found by
seeking for the sparsest solution in a patch dictionary.

Among these patch-based video denoising techniques,
most assume data noise is only additive i.i.d. Gaussian
noise (e.g., [4, 11, 22]). The image noise mixed with both
Gaussian noise and Poisson shot noise are considered in
[28]. Regarding impulsive noise, there have been many
research works on removing impulsive noise (or salt-and-
pepper noise) from a single image (e.g. [27, 6]).

1.2. The motivation and our work

The performance of a denoising method is highly dependent
on how close the real noise in the given data fits the sta-
tistical noise model assumed by the method. Most existing
image/video denoising techniques consider the i.i.d additive
Gaussian noise model, which often is violated in practice.
This fact actually prevents these noise removal techniques
from being more widely used in practical applications. Ac-
cording to [14], there are five major sources of image noise:
fixed pattern noise, amplifier noise, photon shot noise, im-
pulsive noise and quantization noise. Thus, practical im-
age noise is very likely to be the noise mixed from multiple
sources. Most existing noise removers are quite sensitive to
the noise model violation as they are heavily tuned for one
specific type of noise, i.e., the existence of other types of
random noise will severely degrade the performance of the
noise remover. Thus, sequentially removing different type
of random noise using existing techniques is not a working
approach. All these inspire us to develop a robust denoising
algorithm capable of removing mixed noise from the given
video data.

The basic idea of our proposed approach is to only keep
those pixels with high reliability and throw away all other
un-reliable pixels. In other words, the used patches stack

in our approach will be incomplete with many missing el-
ements. Since all the matched image patches should have
similar underlying image structures, the noiseless and com-
plete version of these matched patches lie in a low dimen-
sional subspace. Thus, if we re-arrange the stack of matched
patches to a matrix, such a matrix become a noisy version
of a low-rank matrix with many missing elements. As a re-
sult, the problem of denoising patch stacks is converted to
the problem of recovering a complete low rank matrix from
its noisy and incomplete observation.

Recently there have been great progresses on solving the
problem of low rank matrix completion. As the rank of ma-
trices is not a convex function, the nuclear norm of matrix
is used to approximate the rank of matrices, which leads to
a convex minimization problem with many efficient meth-
ods available (e.g. [5, 18, 23]). In our implementation, we
use a fixed point iterative algorithm to find a complete low-
rank matrix approximation to the given noisy in-complete
matrix by minimizing the nuclear norm of the matrix with
linear constraints (See [5, 18] for more details).

The structure of the paper is as follows. In Section 2, we
describe our formulation of video denoising based on low
rank matrix completion. Section 3 discusses the detailed al-
gorithm of our proposed video denoising. The experimental
evaluation of the proposed method are given in Section 4.
Section 5 summarizes and concludes the paper.

2. Problem formulation and solution overview
Let F = {fk}Kk=1 be the image sequence with K frames.
each image fk is a sum of its underlying clean image gk and
the noise nk:

fk = gk + nk. (1)

The goal of video denoising is to recover G = {gk}Mk=1 by
removing nk from fk. To exploit the temporal redundancy
in a video, we take a patch-based approach to jointly re-
move image noise nk for all image frames. For each image
fk, consider one image patch pj,k of size n×n (say n = 8)
centered at pixel j. We set this patch as a reference patch
and search for patches that are similar to pj,k in all other
images and within the neighborhood of the image fk itself.
How to find accurate patch matching is not a easy task when
there exist significant image noise and we will elaborate this
more in Section 3. Temporarily, we assume that m patches
{pi,j,k}Mi=1 similar to pj,k are found in both spatial and tem-
poral domain. If we represent each patch pi,j,k as a vector
pi,j,k ∈ Rn2

by concatenating all columns of the patch, we
define a n2 ×m matrix Pj,k as follows.

Pj,k = (p1,j,k,p2,j,k, . . . ,pm,j,k). (2)

Then, we can re-write (1) in the form of patch matrix:

Pj,k = Qj,k +Nj,k, (3)



where Qj,k denote the patch matrix from the clean image
gk and Nj,k denote the noise.

The image noise nk or Nj,k is usually modeled as some
random variable with certain statistical properties. Since
there are many noise sources (five noise sources are identi-
fied in [14]) with different statistical properties, developing
the denoising algorithm using strong statistical characteri-
zations of image noise certainly is not an optimal approach
in the presence of noise mixed from multiple statistical dis-
tributions. The goal of this paper is then to develop an ap-
proach which only assumes minimal statistical properties of
image noise.

If the data is free of noise and patch matching is also
perfect, all column vectors in Qj,k have similar underlying
image structures, the rank of Qj,k should be low and the
variance of each row vector in Pj,k should be very small. In
such an ideal case, a good estimation of Qj,k may be found
easily by simply running the standard SVD (singular value
decomposition) on Pj,k. In the presence of complex noise,
the SVD approach does not yield satisfactory results as it
is sensitive to many types of noises. In this paper, we pro-
pose a more efficient two-stage approach to robustly esti-
mate Qj,k which is based on the fact that a complete matrix
can be exactly recovered from a small amount of elements
under mild conditions ([8]). In other words, since only a
small amount of elements are needed to recover the full ma-
trix, we only keep those elements that considered to be very
reliable and discard all other elements. In our approach,
those matrix elements of Pj,k far away from the mean of
its corresponding row vector are considered as highly un-
reliable elements to be discarded. These elements could
be the pixels damaged by impulsive noise, corrupted by
Gaussian/Poisson noise with large amplitude or from mis-
matched patches.

Before we introduce our approach, we first define some
notations for the simplicity of discussion. The Frobenious
norm of a matrix X is defined as:

‖X‖F := (
∑
i,j

|xi,j |2)1/2.

The nuclear norm of X is defined as

‖X‖∗ :=
∑
i

(σi(X)),

where σi(X) denotes the ith largest singular value. Let
X = UΣV T be the SVD for X . The ”soft shrinkage” op-
erator Dτ (X) is defined as ([5]):

Dτ (X) = UΣτV
T , (4)

where Στ = diag(max(σi − τ, 0)). Let Ω be an index
set and let X|Ω denotes the vector including elements in Ω
only.

In the first stage of our proposed approach, the reliable
elements in Pj,k are identified based on their deviation to
the mean of all elements in same row. Let Ω denote the
index set of all such elements. The main task in the second
stage of the proposed approach is then to recover Qj,k from
the incomplete version of Pj,k, denoted by Pj,k|Ω, which
is actually a matrix completion problem. That is, how to
recovering Qj,k from its noisy and incomplete observation
Pj,k|Ω under the constraint that the rank of Qj,k is small. In
this paper, we consider the approach to estimate Qj,k from
Pj,k|Ω by solving the following minimization problem :

minQ ‖Q‖∗
s.t. ‖Q|Ω − P |Ω‖2F ≤ #(Ω)σ̂2,

(5)

where ‖ · ‖∗ is the nuclear norm, #(Ω) is the size of the set
Ω, and σ̂ is the estimate of standard deviation of noise from
the noisy observations in Ω. It is noted that many works
on PCA method with missing pixels (e.g. [24, 25]) also
can be used to solve the matrix completion problem. The
main reason we choose the above minimization approach is
for its rigorous mathematical background (e.g. [8, 5]) and
the implementation simplicity of some available numerical
schemes for solving (5).

3. Detailed Algorithm
In this section, we present our two-stage video denoising
algorithm in details.

3.1. Patch matching and grouping

Matching similar patches over time is an important prob-
lem in video processing with a wide range of applica-
tions, e.g., motion estimation, tracking and video compres-
sion. There have been extensive research works on effi-
cient patch matching algorithms for motion estimation, (e.g.
[17, 20]). Given a reference patch, exhaustive search for
similar patches could be very time consuming. As there is a
built-in outlier remover in our denoising algorithm, our al-
gorithm is not very sensitive to the accuracy of patch match-
ing. Thus, we adopt a fast three-step hierarchical search al-
gorithm in [17] for its implementation simplicity and com-
putational efficiency.

When the video data is seriously corrupted by image
noise, directly applying patch matching algorithms on noisy
data is not suitable as the results can be very unreliable.
In particular, the performance of patch matching will seri-
ously degrade in the presence of serious impulsive noise. As
the pixel corrupted by impulsive noise will be either mini-
mum or maximum intensity (i.e. 0 or 255), the large dis-
tortion on pixel value will cause the match score between
two patches highly unreliable. Thus, a pre-processing of re-
moving impulsive noise before patch matching will greatly
improve the quality of the group of similar patches. In our



implementation, we adopt the adaptive median filter pro-
posed in [16] to identify the pixel corrupted by impulsive
noise and replace those damaged pixels by the median of its
small neighborhood. In the presence of other types of im-
age noise, the quality of recovered pixel by adaptive mean
filter is not good, but adequate for the purpose of patching
matching, as observed in our experiments.

Similar to the VBM3D method ([10]), we don’t ap-
ply patch matching algorithm directly on the raw video
data. Instead, a basic (intermediate) estimate of the video
data is first obtained by using either some existing denois-
ing technique or using the proposed algorithm, then the
patch matching is done by using the intermediately de-
noised video data, which improves the accuracy of patch
matching compared to that using raw un-denoised data.

3.2. Denoising patch matrix

For each patch, similar patches are found in both spatial and
temporal domain by using the patch matching algorithm de-
scribed in the previous section to form the matrix Pj,k. The
set of missing elements of Pj,k have two subsets: the first
subset are those pixels corrupted by impulsive noise using
the adaptive median filter based impulsive noise detector
([16]). The second subset includes the pixels whose value
differs from the mean of the corresponding row vector by
the amount larger than a pre-defined threshold. Then Ω is
formed by including the index of all remained pixels.

As we discussed in Section 2, Qj,k is recovered from
its incomplete observation Pj,k|Ω by solving the following
minimization problem:

minQ ‖Q‖∗
s.t. ‖Q|Ω − P |Ω‖2F ≤ #(Ω)σ̂2,

(6)

where σ̂ is the estimate of standard deviation of noise,
which is obtained by calculating the average of the vari-
ances of all elements ∈ Ω on each row.

Instead of solving (6) directly, we solve its Lagrangian
version:

min
Q

1

2
‖Q|Ω − P |Ω‖2F + µ‖Q‖∗, (7)

which is equivalent to (6) for some value of µ by the stan-
dard duality theory. In this unconstrained formulation (7),
the parameter µ should be chosen in such a way that the
solution of (7) satisfies:

‖Q|Ω − P |Ω‖2F ≈ #(Ω)σ̂2.

Following the heuristic arguments discussed in [7] (See [7]
for more details), we set

µ = (
√
n1 +

√
n2)
√
pσ̂,

where n1×n2 is the size of patch matrix (n1 = n2 and n2 =
m in our case) and p is the ratio of the number of pixels in
Ω over the total number of pixels in the patch matrix. .

There are many available efficient algorithms to solve the
above minimization (7), the fixed point iterative algorithm
(See [5, 18] for more details) is used in our implementa-
tion for its simplicity in the implementation. The detailed
algorithm is described in Algorithm 1.

Algorithm 1 Fixed point iteration for solving the minimiza-
tion (7)

1. Set Q(0) := 0.

2. Iterating on k till ‖Q(k) −Q(k−1)‖F ≤ ε,{
R(k) = Q(k) − τPΩ(Q(k) − P ),

Qk+1 = Dτµ(R(k)),
(8)

where µ and 1 ≤ τ ≤ 2 are pre-defined parameters, D
is the shrinkage operator defined in (4) and PΩ is the
projection operator of Ω defined by

PΩ(Q)(i, j) =

{
Q(i, j), if (i, j) ∈ Ω;
0, otherwise.

3. Output Q := Q(k).

3.3. From denoised patches to denoised image

By applying the two-stage algorithm described above on
each patch of inputed image frames, we can effectively re-
move most noises from all patches. The last step is to syn-
thesize the denoised image from these denoised patches. In
our implementation, the image patches are sampled with
overlapping regions. Thus, each pixel is covered by several
denoised patches. Then, the value of each pixel in images
is determined by taking the average of denoised patches at
this pixel which will suppress the possible artifacts in the
neighborhood of the boundaries of patches.

4. Experiments
In this section, we evaluate the performance of the pro-
posed method on several video samples corrupted by dif-
ferent types of mixed noise. All the video data used in the
experiments can be downloaded from the website ([1]). By
default, we use K = 50 image frames, set patch size to be
8 × 8 pixels, sample references patches with sample inter-
val 4×4 pixels. Set the range of image intensity to [0, 255].
For each reference patch, 5 most similar patches are used
in each image frame based on `1 norm distance function.
Thus, totally 250 patches are stacked for the reference patch



and the column dimension of the matrix in the matrix com-
pletion algorithm is 250. The threshold used in selecting
reliable pixels from patch matrix is chosen to be 2σ̄, where
σ̄ is an estimation of standard deviation of noise which can
be obtained in a similar way as σ̂. In the matrix comple-
tion algorithm, the stopping criterion is either the tolerance
ε ≤ 10−5 or the maximal number of iterations 30 being
reached, whichever is reached first.

4.1. Input image data with mixed noise

Since some types of image noises are either much smaller
than other noise such as quantization noise or can be pre-
calibrated such as fixed pattern noise, we synthesize nk in
the experiments by the summation of the following three
representative type of noise

nk = ngk + npk + nik, (9)

where ngk ∼ N (0, σ2I) denote the Gaussian noise (ampli-
fier noise) with zero mean and pixel independent variance
σ2I , np denotes the Poisson noise (shot noise) with zero
mean and variance κgk , ni denotes impulsive noise by dead
pixels, converter or transmission errors and etc. The impul-
sive noise is modeled as:

fk(i, j) =

{
{0, 255}3 with prob. s,
(gk + ngk + npk)(i, j), with prob. 1− s,

(10)
where {0, 255}3 means that intensity value is either 0 or 255
for all the three channels (color videos are used in our ex-
periments). Noisy image frames with different mixed noise
levels are then synthesized by different configurations of the
parameters of the above three types of noise: (σ, κ, s).

An experiment is carried out in this section to investigate
how the performance of our algorithm varies with respect to
different noise levels. As the single Gaussian image noise
is not the main focus of this paper, we fixed the Gaussian
noise level at σ = 10 in this experiment, and varied the
Poisson noise level κ in the range of [5, 30] and impulsive
noise level s in the range of [10%, 40%] respectively. See
Fig. 4.1 (a) for the illustration of one frame, its noisy version
and initial denoised result. The results are measured by its
PSNR value defined by

PSNR(fr) = 10 log10

2552

‖f − fr‖22
, (11)

where f is the original data and fr is the recovered result.
The PSNR values of one denoised images are listed in

Table 1. It is seen from the table that for a fixed Poisson
noise level, the PSNR value of the recovered image de-
creases very little when the impulsive noise level s increases
from 10% to 40%, which implies that our algorithm is quite
robust to impulsive noise. In contrast, the PSNR values of

(a) Sequence 1 (b) Sequence 2

Figure 1. From top to bottom are two original image frames of
two video sequences, the corresponding noisy image frames and
the initial denoised results after running median filter. The noise
level is (σ = 20, κ = 5, s = 30%) on the left, (σ = 30, κ =
15, s = 20%) on the right .

s \ κ 5 10 20 30
10% 30.59 28.41 26.28 24.88
20% 30.51 28.37 26.22 24.87
30% 29.83 28.18 25.69 24.36
40% 29.15 27.49 25.03 24.03

Table 1. the PSNR values of the denoised images with respect to
different noise levels of Poisson noise and impulsive noise. Gaus-
sian noise level is fixed at σ = 10.

recovered image will decrease noticeably when the impul-
sive noise level is fixed and the Poisson noise level κ in-
creases from 5 to 30.

4.2. Comparison to other denoising approaches

We applied our proposed denoising method on several
videos with different mixed noise levels. The results are
compared to that of two existing video denoising meth-
ods: one is the VBM3D method ([10]) using the authors’
executable code from their website; the other is the PCA-
based method by ([28]). it is noted that a depth constrained
patch matching is used in [28] to form stacks of patches of
high quality. As this paper focuses on how to denoise the



stack of patches, we only implemented the denoising part of
[28] and use our own patch matching algorithm to generate
stacks of patches. The parameters involved in both methods
are set according to the ground truth of noise levels.

In the first experiment, the video data are seriously cor-
rupted by significant mixed noise level:

(σ = 30, κ = 15, s = 20%).

One frame, its noisy version and the initial denoised result
by median filter are shown in Fig. 4.1 (b). It is noted that
both the VBM3D method ([10]) and the PCA-based method
by ([28]) have no built-in impulsive noise remover. Thus,
we not only run the unmodified version of both methods
on the test data, but also run the modified version of both
methods on the test data with a pre-process of removing
impulsive noise. The adaptive medium filter method ([16])
is used to remove impulsive noise before applying these two
methods. The denoising results are shown in Fig. 2. On the
contrary, our proposed algorithm does not use existing im-
pulsive noise remover to remove impulsive noise. Instead,
we use the existing impulsive noise detector to detect those
damaged pixels which are further refined by a census along
the row in the matched patch stack.

Clearly, neither VBM3D method nor PCA-based method
is robust to impulsive noise or outliers, as shown in
Fig. 2 (a)–(b). With the pre-processing of removing impul-
sive noise, the results from these two methods are greatly
improved, as shown in Fig. 2 (c)–(d). However, as there
exist other types of image noises in additional to impulsive
noise, the detection accuracy and the estimation accuracy of
damaged pixels unavoidably decreases, The outliers caused
by the inaccurate detection and estimate of damaged pixels
will degrade their performances of deblurring patch stacks.
On the contrary, It is seen from Fig. 2 that the proposed
approach using low-rank matrix yields most visually pleas-
ant result which is also validated by their PSNR values with
21.5dB, 21.4 dB, and 22.5 dB for the results from BM3D
method (Fig. 2 (c)), PCA-based method (Fig. 2 (d)) and our
proposed method (Fig. 2 (e)) respectively.

In the second experiments, we only compare our re-
sults to that from the methods with impulsive noise pre-
processing. Total three data sequences are tested. Each data
sequences corrupted by different types of noise. Fig. 3 com-
pared the denoised results for data corrupted by mixed noise
with dominant Gaussian noise (σ = 50, κ = 5, s = 10%),
Fig. 4 showed the denoised results for data corrupted by
mixed noise with dominant Poisson noise (σ = 20, κ =
25, s = 10%) and Fig. 5 shows the denoised results for data
corrupted by mixed noise with dominant impulsive noise
(σ = 20, κ = 5, s = 30%). It is see from three figures that
overall our proposed algorithm yielded most visually pleas-
ant denoised results. The results from VBM3D method tend
to smooth out image details and there are still many notice-

able noise left in the results from PCA-based method.

5. Conclusions
In this paper, we proposed a robust patch-based algorithm
to remove mixed noise from video data. By formulating
the video denoising problem to a low-rank matrix comple-
tion problem, our proposed algorithm does not assume any
specific statistical properties of image noise and is robust
to patch matching error. The effectiveness of our proposed
algorithm is also validated in various experiments and our
method compared favorably against two state-of-art algo-
rithms. In future, we would like to study most robust low-
rank matrix completion algorithm with respect to Poisson-
type noises. Also, we are interested in investigating the ex-
tension of our work to single image denoising.
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