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Abstract

Many blind motion deblur methods model the motion
blur as a spatially invariant convolution process. However,
motion blur caused by the camera movement in 3D space
during shutter time often leads to spatially varying blurring
effect over the image. In this paper, we proposed an effi-
cient two-stage approach to remove spatially-varying mo-
tion blurring from a single photo. There are three main
components in our approach: (i) a minimization method of
estimating region-wise blur kernels by using both image in-
formation and correlations among neighboring kernels, (ii)
an interpolation scheme of constructing pixel-wise blur ma-
trix from region-wise blur kernels, and (iii) a non-blind de-
blurring method robust to kernel errors. The experiments
showed that the proposed method outperformed the existing
software based approaches on tested real images.

1. Introduction

The image created by the camera represents the integra-
tion of all positions of the scene over the exposure time.
If there is a relative motion between the camera and the
scene during the exposure time, the resulting image will
look blurry, known as motion blurring in digital photog-
raphy. Blind motion deblurring is then about recovering a
clear image with sharp edges from the input motion-blurred
image without knowing all information of the blurring pro-
cess. Camera shake is one common cause of motion blur-
ring which means the camera moved during the exposure.

Most existing blind motion deblurring methods for cor-
recting blurred images caused by camera shake (e.g. [2, 8,
16,18,22,28]) assume that the relative movements between
all point of the scene and the camera are the same. Such a
motion blurring process is then modeled as the convolution
of a clear image with a blur kernel plus noise:

f = k ∗ g + n, (1)

where the symbol ∗ denotes the convolution operator, g
denotes the clear image for recovery, f denotes the given

blurry image, k denotes the motion-blur kernel and n de-
notes the image noise. The convolution model (1) holds
true only when the camera translates along the image plane
and the scene is nearly flat and parallel to the image plane.

However, as illustrated in [19, 27], the motion blur
caused by camera shake is often due to camera rota-
tions which lead to different movements for different scene
points. Also, the assumption that the scene is nearly paral-
lel to the image plane is often satisfied in practice. In other
words, the motion blurring caused by camera shake often is
a spatially varying process. Mathematically speaking, such
a spatially varying blurring process can be expressed in a
matrix-vector form:

f = Kg + n (2)

where f , g, n denote the column-wise vector forms of f , g
and n respectively, and the matrix K denotes the blurring
matrix. For spatially invariant blurring process, each row
of K corresponds to the same low-pass filter up to a spatial
shift while each row of K may correspond to a different
low-pass filter for spatially invariant blurring process.

This paper aims at developing an efficient blind motion
deblurring method for removing spatially varying blind mo-
tion blurring from a single photograph. A two-stage ap-
proach is proposed in this paper which first estimates the
pixel-wise blur matrix K of the spatially-varying blurring
process; and then deblurs the image using a robust non-
blind deblurring technique in the presence of the unavoid-
able system error in K.

1.1. Related work

Image deblurring is one long-last problem in image pro-
cessing with an abundant research literature. There are two
tightly coupled sub-problems: (a) estimating the blur kernel
k or the blurring matrix K); and (b) estimating a clear image
g using the kernel k or the matrix K. The so-called blind
image deblurring refers to how to solve both sub-problems
and non-blind image deblurring only refers to how to solve
the second sub-problem. Due to the limitation of the space,
we only discuss the most related software-based non-blind
and blind deblurring techniques.



Non-blind image deblurring is an ill-conditioned prob-
lem such that simply reversing the blurring process will am-
plify the noise. Early works either suppress the impact of
noise in the frequency domain using the Wiener filter or take
a Bayesian-based iterative procedure to deblur images, e.g.
the Richardson-Lucy (RL) method [21]). In recent years,
regularization-based methods have been more popular for
better performance, which rely on certain priors of clear
images. The Tikhonov regularization is proposed in [26]
to enforces the smoothness of the underlying image. To-
tal variation (TV) and its variations (see e.g. [4, 5, 22]) are
developed to keep image edges sharper as the Tikhonov reg-
ularization tends to smooth out image edges. The sparsity
regularization of images under wavelet transform also are
used to regularize image deblurring (e.g., [3]). Recently,
some non-blind image deblurring methods have been pro-
posed to handle the images blurred by a spatially varying
blurring process. The RL method is adapted in [25] to
model the spatially varying motion blurring. Hirsch et al.
in [12] introduced a so-called efficient filter flow technique
of filtering images in a spatially varying fashion.

Blind image deblurring is a more challenging problem
due to the loss of information on both the image and the
blurring process. In recent years, there have been great
progresses on removing spatially invariant motion blurring
caused by camera shake from images. Most uniform blind
motion deblurring methods relies on certain priors on the
image/kernel to regularize the estimation of both the clear
image and the blur kernel. In [8, 16, 18], certain heavy
tailed probabilistic distributions on the image edges of a
clear image are first proposed to derive the blur kernel from
a single image. The total variation (TV) and its variations
(e.g. [4,5,22,28]) are used in blind motion deblurring to reg-
ularize the clear image, the blur kernel, or both of them. The
normalized TV of images is used in [17] for more accurately
regularizing images with sharp edges. The wavelet tight
frame based sparsity prior for both the image and the ker-
nel is used in [2] to remove uniform motion blurring from a
single image.

There has been relatively little work on spatially vary-
ing blind motion blurring. Some existing approaches either
use additional information source such as alpha map in Dai
et al. [6] or require user interactions for came motion cues
(e.g., Shan et al. [23]). The approach proposed by Levin et
al. [18] is used to deblur spatially varying motion-blurred
images by segmenting the image into several areas with dif-
ferent motion blurring effects and then individually deblur-
ring each region. A multi-frame patch-based deblurring ap-
proach is developed by Hirsch et al. in [12] to deblur images
with spatially varying motion blurring effects,

Another promising approach to spatially varying blind
motion deblurring is not to directly estimate spatially-
varying blur kernels, but to recover the camera motion from

which the blur kernels is then derived. Whyte et al. [27]
proposed a 3-dimensional rotational camera motion model
to model the spatially varying motion blur. Gupta et al.
[10] introduced the motion density function to represent a
a different set of 3D camera motions (in-plane rotation and
translations) and assume there is no significant depth vari-
ations in the scene. Then the spatially varying kernel func-
tion is derived from the estimated motion density function.
Also, such ideas are applied in [11] to their multi-frame
patch-based deblurring approach.

1.2. Motivation and outline of our approach

This paper focuses on how to remove spatially varying
motion blur from a single photograph without using any
additional information source. The available methods un-
der the similar problem settings have both their own advan-
tages and disadvantages. The methods proposed by Whyte
et al. [27] and Gupta et al. [10] effectively reduced the di-
mension of the space of spatially varying kernels by only
considering a subset of all possible 3D camera motions.
Then the pixel-wise spatially varying blurring model can
be derived from the estimated camera motion. The impres-
sive results are reported in both [27] and [10] for sufficiently
long focal lengths. But at short focal lengths, the results of
these two methods are not very satisfactory owing to the
large errors when approximating the actual camera motion
using their camera motion models.

The direct motion de-blurring methods proposed by [18]
takes a region-wise spatially invariant model and deblurring
each region separately. There are several limitations in the
method by Levin [18]. One is the poor handling of bound-
aries between areas with different blur kernels; and the other
is instability of local kernel estimation due to the lack of suf-
ficient image details in some local regions. As a result, the
visual quality of the results from [18] are not as good as that
from [27] and [10]. However, the direct method is still an
attractive approach since it is not restricted to any particular
type of camera motions.

Thus, in this paper, we take a new direct deblurring
approach to spatially varying blind motion deblurring
which does not have the limitations existing in the existing
approaches. The outline of our tow-stage approach is as
follows. After partitioning the image into multiple regions,

Stage 1: Estimation of pixel-wise motion-blur matrix K.

1. Initializing the estimation of region-wise blur kernels
by running some existing uniform blind deblurring
method on each region.

2. Identify erroneous local kernels and re-estimating
them by utilizing both the associated image region in-
formation and the correlations among the estimating
kernel and the kernels of the neighboring regions.

3. Synthesizing the pixel-wise blur function K using an
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Figure 1. Outline of the proposed spatially varying blind image deblurring approach.

interpolation scheme designed for kernel interpolation.

Stage 2: Deblurring the image globally via a non-blind im-
age deconvolution technique that is robust to errors in the
estimated blur matrix K.

It is shown in the experiments that the proposed method
is efficient and performs better than the two state-of-art
methods developed in [27] and [10] on the tested image data
set, including the images from both [10, 27] and ours.

2. Preliminaries on wavelet tight frame
Wavelet tight frame theory is the main tool used in our

approach. In this section, we give a very brief review on
wavelet tight frame. The readers are referred to [7, 24] for
in-depth theoretical analysis and numerical implementation.

A wavelet frame system is a redundant system that
generalizes the orthonormal wavelet basis. Wavelet tight
frames have greater flexibility than orthonormal bases by
sacrificing orthonormality and linear independence while
keeping the same perfect reconstruction as orthonormal
wavelet bases. The filters associated wavelet frame systems
have many attractive properties for representing image, not
present in orthonormal wavelet systems: e.g., symmetry
(anti-symmetry), smoothness, and shorter support, which
make it a powerful tool for image restoration.

A MRA-based wavelet frame system is based on a single
scaling function φ ∈ L2(R) and several wavelet functions
{ψ1, . . . , ψr} ⊂ L2(R) that satisfy the following refinable
equation:{

φ(t) =
√

2
∑
k h0(k)φ(2t− k);

ψ`(t) =
√

2
∑
k h`(k)φ(2t− k), ` = 1, 2, . . . , r.

Let φk(t) = φ(t − k) and ψk,j,` = ψ`(2
jt − k). Then

for any square integrable function f ∈ L2(R), we have a
multi-scale wavelet frame decomposition of f :

{ck = 〈f, φk〉; dk,j,` = 〈fψk,j,`〉, j, k ∈ Z, j ≥ 0, 1 ≤ ` ≤ r},
(3)

where {ck} and {dk,j,`} denote the low-pass and high-pass
wavelet frame coefficients respectively. The wavelet tight
frame has the so-called perfect reconstruction property that
allows the exact recovery of f from its wavelet coefficients:

f =

∞∑
k=−∞

ckφk(t) +

r∑
`=1

∞∑
j=0

∞∑
k=−∞

dk,j,`ψk,j,`, (4)

The wavelet coefficients can be efficiently calculated by a
so-called cascade algorithm (see e.g. [20]). In this paper,
we use the linear wavelet frame developed in [7]:

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

In this paper, we use the implementation of the 2D tensor
un-decimal multi-level framelet transform same as Cai et
al [1]. Interesting readers are referred to [1] for more imple-
mentation details. In the remains of this paper, we denote
the wavelet frame decomposition (3) by a rectangular ma-
trixW of size m×n with m >> n. Thus, given any signal
f ∈ Rn, the discrete version of (4) is expressed as

f =W>(c) =W>(Wf),

where c ∈ Rm is the frame coefficient vector of f . It is
noted that we have W>W = In but WW> 6= In un-
less the tight framelet system degenerates to an orthonormal
wavelet system. We need to mention here that there exist
fast algorithms for calculating Wf and W>c, which only
involve the convolutions of images by a couple of filters.

3. Main algorithm

In this section, we give a detailed discussion on our pro-
posed spatially varying blind motion deblurring approach.
The alternating scheme that iteratively updating the estima-
tion of the blur kernel and the clear image used by most
uniform blind motion deblurring method is too slow in our
case. Thus we take a more efficient two-stage approach.
See Fig. 1 for the outline of the main approach. The details
on each step is given as follows.

3.1. Stage I: Estimating point-wise blur matrix K

Given a blurry image, we first partition it into multi-
ple over-lapping image regions, denoted by {Pi}ni=1. For
each image region, we run a uniform blind motion deblur-
ring method to generate an initial guesss on region-wise blur
kernels. There have been great progresses on uniform blind
motion deblurring with many powerful methods available,
e.g. [2, 8, 16, 18, 22, 28]. Owing to its computational effi-
ciency, the two-stage method proposed by Xu et al. [28] is
used in our implementation for estimating the blur kernel ki
associated with each image region Pi. Its basic idea is to



first estimate the support of the blur kernel and then alterna-
tively refine the estimation of the clear image and the blur
kernel using the TV based regularization in the iterations.

3.1.1 Finding and correcting erroneous local kernels

A significant number of local kernels initialized by the
uniform blind motion deblurring are erroneous. The reason
is either the image regions do not provide enough image
edges needed by the uniform blind deblurring method to
reliably estimate the kernel, or the actual blurring process in
those regions is not well approximated by the convolution
model (1). We will deal with the later case in Stage 2. This
step is to correct the wrongly estimated kernels associated
with image regions without sufficient edge information.

Detecting erroneous initial guesses of region-wise
kernels. For each patch Pi, let ki denote the kernel
obtained from the previous step. We use the residual
ri := ‖ki ∗ ui − Pi‖2 to measure its accuracy and set the
accuracy threshold ε by ε := 3

2 × median{r1, r2, . . . , rn}.
Then any local kernel whose residual ri larger than the
accuracy threshold ε is considered as wrongly estimated
kernel and discarded.

Re-estimating erroneous local kernels. To re-estimate
the discarded local blur kernels, we need some additional
information outside these regions to help the estimation of
blur kernels as these regions by themselves do not have suf-
ficient image content for a reliable kernel estimation. It is
observed that the blur kernels of neighboring regions are
usually correlated unless the depths of the scene vary sig-
nificant and fragmented. See Fig. 2 for an illustration. This
motivates us to combine the local image information and
the correlation among the kernel to estimate and the avail-
able kernels in its neighborhood.

The basic idea is as follows. For each image region P
with discarded blur kernel, let k̂ denotes the blur kernel of
its nearest neighboring image region with a well-estimated
kernel. Then we explore the likely correlation by assuming
the kernel k can be well approximated by applying an affine
transform on k̂. By modeling the kernel k using the kernel
k̂ up to an affine transform, we significantly reduce the di-
mension of unknowns of the kernel. As a result, the image
information contained in the region P could be sufficient
for estimating such a small number of unknowns.

To estimate the parameters of the affine transformation,
we used the normalized `1 norm of image gradients to fa-
cilitate the estimation. It is first shown by Krishnan et al.
in [17] that an image of sharp edges tends to minimize the
normalized TV measure. It is also true for normalized `1
norm of high-pass wavelet coefficients (see [13]). For an
image region u, the normalized `1 norm of wavelet coeffi-

(a) (b) (c)
Figure 2. An illustration of the high correlation of neighboring ker-
nels up to an affine transform. (a) Blurry Image; (b) nine region-
wise kernels obtained by the hardware in [15]; (c) eight kernels
generated by applying affine transform on the kernel at the center.

cients is defined as ( [13]):

L[u] := (
∑
i6=0

‖Wiu‖1)/(
∑
i6=0

‖Wiu‖2), (5)

whereWiu denote the wavelet tight frame coefficients of u
in each high-pass channel.

The above observation leads to a very simple yet effec-
tive approach for our purpose. That is, we only need to
find the affine transform parameters such that the image de-
blurred using the corresponding kernel has the minimal nor-
malized `1 norm of wavelet coefficients. LetA~α denotes the
affine transform parameterized by ~α that maps the kernel k̂
to k, i.e., k = A~αk̂. Then we estimate the parameter vector
~α by minimizing the following function:

min
~α
L[g(A~αk̂) ∗ P ], (6)

where g(A~αk̂) denote the Wiener filter for P with respect
to the blur kernel A~αk̂. To solve the minimization (6), we
generate a set of random samples of parameters from the
Gaussian distribution and then search for the one giving the
minimal value of (6) over all the samples. See Fig. 4 (b)–(c)
for an illustration of the erroneous kernel correction of one
image region. It is noted that although the kernel correction
in this step improved the initialized kernels, the corrected
one is not perfect as there are still noticeable artifacts in
the result. Such remained kernel error will be effectively
addressed in Stage 2.

3.1.2 Synthesizing pixel-wise blurring matrix K

Region-wise convolution model is still a very rough approx-
imation to the spatially varying motion blurring. We need
to estimate the pixel-wise spatially varying blur matrix K
defined by (2). Considering the fact that millions of ker-
nels are involved when generating K, we take an interpola-
tion scheme to efficiently synthesize the matrix K from the
region-wise blur kernels obtained in the previous step.

The straightforward functional interpolation can not be
applied to interpolate kernels. It is shown in Fig. 3 (c) that
the regular interpolation scheme like bi-linear interpolation
does not yield the result we want. Usually the supports of



(a) (b) (c) (d)
Figure 3. Illustration of the kernel interpolation. (a)–(b): Two lin-
ear motion kernels used for interpolation with the same length and
slightly different orientations; (c) the result using bi-linear inter-
polation; (d) the result using the proposed interpolation.

motion-blur kernels tend to have a dominant orientation.
Thus, for each pixel p, before we generate the associated
blur kernel, we first align the neighboring kernels to the
same mass center point and to the same dominant axis, then
use the bilinear interpolation scheme to generate the kernel.

For a given kernel k, let Ω denote the support of the ker-
nel. Then the mass center [cx(k), cy(k)] of k is defined by

~rc(k) =
∑
p∈Ω

k(~r)~r. (7)

Let S = [~r]~r∈Ω denotes the 2×nmatrix formed by concate-
nating the co-ordinate vectors of all points in Ω. Then the
dominant axis of the kernel k is defined as the first principal
component of the PCA of S. And the dominate direction
of k is defined as the angle between its dominant axis and
the horizontal axis. The detailed algorithm for synthesizing
the pixel-wise blur matrix A is given in Algorithm 1. It is
seen from the simple illustration shown in Fig. 3 (d) that the
proposed interpolation scheme yields the desired kernel.

Algorithm 1 Kernel interpolation scheme for synthesizing
pixel-wise blur matrix K

Input: the region-wise blur kernels {k1, k2, . . . , kn}
Output: the pixel-wise blur matrix K defined in (2)
Main procedure:

1. calculate the mass centers ~rc(kj) and the dominant ori-
entation θ(kj) of all region-wise kernels {ki}ni=1.

2. For each pixel p, generate its kernel k as follows,
(a) find all regions including the pixel p and denote

their kernels by {k′j}mj=1;
(b) for each kernel k′j , its weight ωj is defined via the

distance between p and the region center;
(c) define the dominant orientation θ of the kernel k

of the pixel p by θ ←−
∑m
j=1 ωjθ(k

′
j);

(d) for each kernel k′j , translate and rotate k′j such
that it centers at the original point and with the
dominant orientation θ, defined by by k̃′j .

(e) set k ←−
∑m
j=1 ωj k̃

′
j .

3. Compose the pixel-wise blur matrix A by collecting
the kernels of all pixels.

3.2. Stage 2: Robust non-blind deblurring in the
presence of kernel error

In Stage 2, we aim at deblurring the image by solving (2)
using the blur matrix K estimated in Stage 1. The error in
the estimated blur matrix K is unavoidable. However, most
existing non-blind deblurring methods do not address such
error source. By using existing deblurring methods, there
are still noticeable artifacts in the results caused by error in
the matrixA. See Fig. 4 (c) for an illustration. Let K̂ denote
the estimated blur matrix containing errors:

K̂ = K + δK

where K denotes the true blur matrix and δK denotes the
error. The EIV (errors-in-variables) model of (2) is then:

f = Kg + n = (K̂− δK)g + n (8)

Notice that the system error δK cannot be estimated from
image information anymore. Thus, there is a need to de-
velop a non-blind deblurring method which is robust to the
system error δK.

Our basic idea is similar to that of [14] but with a better
minimization strategy. Rewriting (8) as

f = (K̂− δK)g + n = K̂g − δKg + n. (9)

Notice that δK is the difference of two blur matrices which
equals to a matrix with each row representing a high-pass
filter. Thus the term δKg (9) is sparse in image domain as
shown in Fig. 5. By representing the residual term δKg as
an independent variable, we propose the following so-called
analysis-based convex regularization for solving (9):

{g∗,u∗} = argmin
g,u

1

2
‖K̂g−u−f‖22+λ1‖Wg‖1+λ2‖u‖1,

(10)
where W denote the wavelet decomposition operator. The
convex minimization model (10) simultaneously estimated
both the clear image g and the residual δKg denoted by u.
The regularization term ‖Wg‖1 in (10) is based on the as-
sumption that the cardinal wavelet coefficients of a clear im-
age is likely to be sparse, which is first used in [3] for non-
blind image deconvolution. The regularization term ‖u‖1
enforce the sparsity prior of δKg in image domain by min-
imizing its `1 norm. The model (10) differs from the one
used in [14] by adopting an analysis-based model instead of
the balanced model used in [14]. Interesting readers are re-
ferred to [24] for a more detailed discussions on these mod-
els. Also, some additional variables are introduced in [14]
to suppress the boundary effect and kernel error propagation
which is redundant in our case. Empirical studies showed
the proposed model (10) has better performance for the case
of spatially-varying blurring. The so-called Split Brega-
man method first introduced in [9] can be easily modified
to solve the minimization problem (10). The detailed algo-
rithm are given in Alg. 2.



(a) (b) (c) (d)
Figure 4. An illustration of kernel correction and robust deblur-
ring. The full images are shown in the first row and each of their
partitiontions are shown in the second row. (a) Blurry image; (b)
the result deblurred by the wavelet method [3] using the blur ma-
trix generated from initialized region-wise kernels; (c) the result
deblurred by the wavelet method [3] using the blur matrix gener-
ated from the region-wise kernels re-estimated by Algorithm 1; (d)
the result deblurred by Algorithm 2 proposed in Section 3.2 using
the same blur matrix as (c). The kernel associated with the zoomed
region used in (b) and (c) are shown in the top right corner.

(a) (b) (c) (d)
Figure 5. An illustration of system error δKg. The true blurring
is a rotational blurring while the input is a region-wise uniform
blurring. (a): the original image; (b) and (c): the blurry images
by the true blur matrix K and the region-wise blurring model
K̂ = K + δK; (d): the system error δKg. The values for (d)
are amplified for better illustration.

Algorithm 2 Numerical algorithm for solving (10)

(i) Set initial guesses g = f ,u = 0,d = 0,b = 0 and set
appropriate parameter λ1, λ2, µ.

(ii) For k = 0, 1, . . ., perform the following iterations until
convergence:

gk+1 = (K̂>K̂ + µI)−1[K̂>(f + uk)
+µW>(dk − bk)]

uk+1 = Tλ2
(K̂gk+1 − f)

dk+1 = Tλ1/µ(Wgk+1 + bk)
bk+1 = bk + (Wgk+1 − dk+1)

(11)

where Tλ(x)(j) = sgn(x(j)) max{0, |x(j)| − λ}.

4. Numerical experiments and conclusion

Implementation details. For a given image, we uni-
formly partition it into around 50 image regions with
half-size overlaps. When solving the minimization (6),
the standard deviation of the Gaussian distribution is
set to be 0.1 and 100 parameter samples are gener-

ated. The parameters for Alg. 2 are uniformly set as
λ1 = 1e−3, λ2 = 1e−2, µ = 1 for all experiments. The av-
erage time for processing an color image of size 768× 512
is around 30 minutes by using a MATLAB (version 7.11)
implementation on a PC with an AMD X4 3.0 Ghz CPU
and 8 GB RAM.s One spatially invariant blind image
deblurring method [28] (used to generate the initial guess
of region-wise kernels in our implementation) and two
spatially varying blind image deblurring algorithms, Whyte
et al. [27] and Gupta et al. [10], are compared to our
proposed method on various real images. They are chosen
as they have the same input requirement as ours and they
are completely software-based.

Comparison with Whyte et al. [27]. Four tested images
are either from [27] or taken by ourselves using a Canon
EOS 550D DSLR. See Fig. 6 for a visual comparison.
The results using the Whyte et al.’s method are obtained
as follows. The results for images from [27] are from the
paper and the results for our own images are from their
implementation provided in their website. From Fig. 6, it
is seen that the results from our proposed approach show
sharper edges and less artifacts.

Comparison with Gupta et al. [10] The implementation of
method by Gupta et al. [10] is not available online, and its
implementation complexity makes it hard for us to produce
an implementation with the optimal performance. Thus, we
only compared the results from [10] and our results of the
images from [10]. It is seen from Fig. 7 for a visual com-
parison that the results from our proposed method are more
visually pleasant with less artifacts.

4.1. Conclusions
In this paper, we introduced a two-stage method to re-

move spatially varying blurring caused by camera shake
from a single photograph. The proposed method is ap-
plicable to general camera motion and does not require
any auxiliary hardware-based assistance. However, the
proposed method is not applicable to the case of spa-
tially varying blurring caused by moving objects. An-
other weakness of the method is that it requires fair ini-
tial kernel estimation on a certain percentage of image
regions. In future, we would like to study how to im-
prove its robustness to initialization and its applicabil-
ity to a wider range of spatially varying blurred im-
ages.
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