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Abstract

Sparse coding and dictionary learning have seen their
applications in many vision tasks, which usually is formu-
lated as a non-convex optimization problem. Many iterative
methods have been proposed to tackle such an optimiza-
tion problem. However, it remains an open problem to have
a method that is not only practically fast but also is glob-
ally convergent. In this paper, we proposed a fast proximal
method for solving `0 norm based dictionary learning prob-
lems, and we proved that the whole sequence generated by
the proposed method converges to a stationary point with
sub-linear convergence rate. The benefit of having a fast
and convergent dictionary learning method is demonstrated
in the applications of image recovery and face recognition.

1. Introduction
In recent years, sparse coding has been widely used

in many applications [23], e.g., image recovery, machine
learning, and recognition. The goal of sparse coding is to
represent given data by the linear combination of few el-
ements taken from a set learned from given training sam-
ples. Such a set is called dictionary and the elements of
the set are called atoms. Let D = {dk}mk=1 ⊂ Rn denote
an over-complete dictionary composed of m(≥ n) atoms.
Then, for a signal y ∈ Rn, its sparse approximation over
D is about finding a linear expansion Dc =

∑m
k=1 ckdk

using the fewest elements that approximates y with an error
bound ε. The sparse approximation for an input signal can
be formulated as the following optimization problem:

min
c∈Rm

‖c‖0, subject to ‖y −Dc‖22 ≤ ε, (1)

where ‖ · ‖0 denotes the pseudo-norm that counts the num-
ber of non-zeros. The problem (1) is a challenging NP-
hard problem and only sub-optimal solutions can be found
in polynomial time. Most existing algorithms either use
greedy algorithms to iteratively select locally optimal so-
lutions (e.g. orthogonal matching pursuit (OMP) [24]), or
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Figure 1. Convergence behavior: the norms of the increments of
the coefficient sequence Ck generated by the K-SVD method and
the proposed method.

replace the non-convex `0 norm by its convex relaxation `1
norm (e.g. basis pursuit [7]).

The dictionary for sparse approximation is usually
learned from given training sample to maximizes the ef-
ficiency of sparse approximation in terms of sparsity de-
gree. More concretely, given a training set of p signals
Y := {yi}pi=1 ⊂ Rn, the dictionary learning is often for-
mulated as the following minimization problem:

min
D,{ck}pk=1

p∑
k=1

1

2
‖yk −Dck‖22 + λ‖ck‖0, (2)

subject to ‖dk‖2 = 1, k = 1, 2, . . . ,m, where C =
{ck}pk=1 denotes the sparse coefficients of training set Y
and D denotes the learned dictionary.

1.1. Motivation

The minimization problem (2) is a non-convex problem
whose non-convexity comes from two sources: the sparsity-
prompting functional `0 norm and the bi-linearity between
the dictionary D and the codes {ck}pk=1. Most existing
approaches (e.g. [1, 16, 13, 17]) take an alternating iteration
between two modules: sparse approximation for updating
{ck}pk=1 and dictionary learning for updating dictionary D.

Despite the success of these alternating iterative meth-
ods in practice, to best of our knowledge, none of them es-
tablished the global convergence property, i.e., the whole
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sequence generated by the method converges to a station-
ary point of (2). These schemes can only guarantee that
the functional values are decreasing over the iterations, and
thus there exists a convergent sub-sequence as the sequence
is always bounded. Indeed, the sequence generated by the
popular K-SVD method [1] is not convergent as its incre-
ments do not decrease to zero. See Fig. 1 for an illustration.
The global convergence property is not only of great the-
oretical importance, but also likely to be more efficient in
practical computation as many intermediate results are use-
less for a method without global convergence property.

1.2. Main contributions

In this paper, we proposed an alternating proximal lin-
earized method for solving (2). The main contribution of
the proposed algorithm lies in its theoretical contribution to
the open question regarding the convergence property of `0
norm based dictionary learning methods. In this paper, we
showed that the whole sequence generated by the proposed
method converges to a stationary point of (2). Moreover,
we also showed that the convergence rate of the proposed
algorithm is at least sub-linear. To the best of our knowl-
edge, this is the first algorithm with global convergence for
solving `0 norm based dictionary learning problems.

The proposed method can also be used solve other vari-
ations of (2) with small modifications, e.g. the ones used in
discriminative K-SVD based recognition methods [28, 15].
Compared to many existing methods including the K-SVD
method, the proposed method also has its advantage on
computational efficiency. The experiments showed that the
implementation of the proposed algorithm has comparable
performance to the K-SVD method in two applications: im-
age de-noising and face recognition, but is noticeably faster.

2. Related work

In this section, we give a brief review on dictionary learn-
ing and related applications. Based on the used sparsity
prompting functional, the existing dictionary learning meth-
ods can be classified into the following three categories.

`0 norm based methods. The most popular `0 norm based
dictionary learning method is the K-SVD method [1] which
used the model (2) for image denoising. Using many image
patches from the input image as the training set, the K-SVD
method alternatively iterates between sparse approximation
and dictionary updating. The sparse approximation is based
on the OMP method and the dictionary is estimated via se-
quential column-wise SVD updates.

The K-SVD method showed good performance in im-
age de-noising and is also used in face/object recognition
by adding some additional fidelity term in (2). For exam-
ple, the so-called discriminative K-SVD method in [28, 15]
seeks the sparse code that minimizes both reconstruction er-

ror and classification error as follows,

min

D,W , {ck}pk=1

p∑
k=1

1

2
‖yk−Dck‖22+

p∑
k=1

β

2
‖lk−Wck‖22,

(3)
subject to ‖cj‖0 ≤ τ, ‖wk‖2 ≤ 1, ‖dk‖2 ≤ 1, j =
1, 2, . . . , p, k = 1, 2, . . . ,m, where W = [w1, ...wk] de-
notes the linear classifier learned from the training set and
lj denotes the binary encoded class label of the jth sample.
Both dictionary update and sparse approximation is done
via calling the K-SVD method. Also using the `0 norm re-
lated optimization model, a fast method is proposed in [6]
for learning a tight frame, which has closed form solutions
for both sparse approximation and dictionary update.
Convex relaxation methods. As a convex relaxation of
`0 norm, the `1 norm has been used in many dictionary
learning methods to improve the computational feasibility
and efficiency of sparse coding; see e.g. [16, 13, 17, 26].
All these methods also take an alternating scheme between
sparse coding and dictionary updating. In the stage of
sparse approximation which requires solving a `1 norm re-
lated minimization problem, various methods have been
used in different applications, including the accelerated gra-
dient method [25] or fast iterative shrinkage thresholding
algorithm [4] in [13]; the fixed point method [12] in [17].
In the stage of dictionary update, the atoms are either up-
dated one by one or are simultaneously updated. One-by-
one atom updating is implemented in [16, 13] as it has
closed form solutions. The projection gradient method is
used in [17] to update the whole dictionary together. The
convergence analysis is provided for the proximal method
proposed in [26] for the `1 norm based dictionary learning.
Non-convex relaxation methods. As shown in [9, 27], the
`1 norm penalty tends to have biased estimation for large co-
efficients and sometimes results in over-penalization. Thus,
several non-convex relaxations of `0 norm are proposed for
better accuracy in sparse coding. For example, the non-
convex minimax concave (MC) penalty [27] is used in [21]
for sparse dictionary learning. For other non-convex relax-
ations, e.g. smoothly clipped absolute deviation [9] and log
penalty [10], the proximal methods have been proposed in
[2, 22] to solve the minimization problems with these non-
convex regularization terms. The convergence property of
these methods is limited to the subsequence convergence.

3. Algorithm and convergence analysis
3.1. Problem formulation

The following definitions and notations are used for dis-
cussion. We use bold upper letters for matrices, bold lower
letters for column vectors and regular lower letter for el-
ements. For example, yj denotes the j-th column of the
matrix Y and yi denotes the i-th element of the vector y.



For a matrix Y , its Frobenius norm is defined as ‖Y ‖2F =
(
∑
i.j |Yij |2)1/2, its `0 norm ‖Y ‖0 is defined as the number

of nonzero entries in Y , and its uniform norm is defined as
‖Y ‖∞ = maxi,j |yi,j |. Given a matrix Y , the hard thresh-
olding operator Tλ(Y ) is defined as [Tλ(Y )]ij = Yij if
|Yij | > λ and [Tλ(Y )]ij = 0 otherwise.

The original model (2) does not impose any constraint
on the code {ck}. When a dictionary with high redundancy
is adopted, some elements of the sparse coefficient vector
could have unusual large values, which in general are not
correct. Thus, we slightly modify the model (2) by adding
a bound constraint on {ck}. Then, the minimization model
considered in this paper is defined as follows,

min
D,{ck}pk=1

1

2

p∑
k=1

‖yk −Dck‖22 + λ‖ck‖0

s.t. ‖dk‖2 = 1, 1 ≤ k ≤ m; ‖ck‖∞ < M, 1 ≤ k ≤ p,
(4)

where M is a pre-defined upper-bound for all elements of
{ck}. It is noted that the bound constraint on {ck}k is
mainly for improving the stability of the model (2), which
can be set to a sufficiently large value to avoid any negative
impact on the accuracy of the coefficients. For the simplic-
ity of discussion, let Y = [y1, . . . ,yp] denote the training
sample matrix and let C = [c1, . . . cp] denote the coeffi-
cient matrix. Let X = {D ∈ Rn×m : ‖dk‖2 = 1, 1 ≤
k ≤ m} denote the feasible set for the dictionary D, and let
C = {C ∈ Rm×p : ‖ck‖∞ ≤ M, 1 ≤ k ≤ p} denote the
feasible set for the coefficient matrix C. Then the model (4)
can be expressed in the following compact form:

min
D∈Rn×m
C∈Rm×p

1

2
‖Y −DC‖2F + λ‖C‖0, (5)

subject to D ∈ X ,C ∈ C. In the next, we will present
an alternating proximal method for solving (5), as well as
provide the convergence analysis.

3.2. Alternating proximal method

The proposed algorithm is based on the proximal method
[14] for solving the following non-convex problem:

min
x,y

H(x,y) = F (x) +Q(x,y) +G(y), (6)

where F (x), G(y) are proper lower semi-continuous func-
tions, and Q(x,y) is a smooth function with Lipschitz gra-
dient on any bounded set. The proximal method proposed in
[14] updates the estimate of (x,y) via solving the following

proximal problems:

xk+1 ∈ arg min
x

F (x) + 〈x− xk,∇xQ(xk,yk)〉

+
t1k
2
‖x− xk‖22;

yk+1 ∈ arg min
y

G(y) + 〈y − yk,∇yQ(xk+1,yk)〉

+
t2k
2
‖y − yk‖22,

(7)

where t1k and t2k are two appropriately chosen step sizes.
Using the so-called proximal operator [19] defined as

ProxFt (x) := arg min
u

F (u) +
t

2
‖u− x‖22, (8)

the minimizations (7) are equivalent to the following proxi-
mal problem:

xk+1 ∈ ProxFt1k
(xk − 1

t1k
∇Q(xk,yk)),

yk+1 ∈ ProxGt2k
(yk − 1

t2k
∇Q(xk+1,yk)).

(9)

Remark Without the convexity assumption, it is shown in
[14] that for any proper and lower semicontinuous function
bounded below, the proximal map (8) is nonempty and com-
pact for any t ∈ (0,+∞).

The minimization problem (5) can be expressed in the
form of (6) by setting F (C) = ‖C‖0 + IC(C);

Q(C,D) = 1
2‖Y −DC‖2F ;

G(D) = IX (D),
(10)

where IX (D) denotes the indicator function of D that satis-
fies IX (D) = 0 if D ∈ X and +∞ otherwise. Then using
proximal operators, we propose the following alternating
iterative scheme for solving (5): let D(0) be the initial dic-
tionary, then for ` = 0, 1, · · · ,

1. sparse approximation: given the dictionary D(`),
find the sparse code C(`) that satisfies

C(`) ∈ ProxFλ`/λ(C(`−1)− 1

λ`
∇CQ(C(`−1),D(`))),

(11)
where λ` is an estimated step size (more on this later).

2. dictionary update: given the sparse code C(`), update
the dictionary D(`+1) = {d(`+1)

k }mk=1 atom by atom:

d
(l+1)
k ∈ Prox

G(D̂
(`)
k )

µk`
(d

(`)
k −

1

µkl
∇dkQ(C(`+1)), D̃(`))),

(12)



where{
D̂

(`)
k = [d

(`+1)
1 , · · · ,d(`+1)

k−1 ,dk,d
(`)
k+1, · · · ,d

(`)
n ];

D̃
(`)
k = [d

(`+1)
1 , · · · ,d(`+1)

k−1 ,d
(`)
k ,d

(`)
k+1, · · · ,d

(`)
n ],

and µ`k is a step size need to be estimated.

Each iteration above requires solving two optimization
problems (11) and (12). In the next, we show that both have
closed form solutions. Define{

T
(`)
C = C(`−1) − 1

λ`
∇CQ(C(`−1),D(`));

S
(`)
k = d

(`)
k −

1
µ`k
∇dkQ(C(`)), D̃

(`)
k ).

Then by a direct calculation, two optimization problems
(11) and (12) are equivalent to{

C(`) ∈ arg minC∈C
λ`
2λ‖C − T

(`)
C ‖2F + ‖C‖0,

d
(`)
k ∈ arg min‖dk‖2=1

1
2‖dk − S

(`)
k ‖, 1 ≤ k ≤ m.

(13)

Proposition 3.1 Suppose that M is chosen such that M >√
2λ/λ`, two minimization problems in (13) have the

closed form solutions given by{
C(`) = min{T√

2λ/λ`
(T

(`)
C ),M};

d
(`)
k = S

(`)
k /‖S(`)

k ‖2, 1 ≤ k ≤ m.
(14)

Proof The proof of the solution to the second problem in
(13) is trivial. The first is easy to obtain as it can be de-
composed into the summation of independent minimization
problems with respect to each variable.

Setting of step sizes. There are two step sizes, λ` in (11)
and µk` in (12), need to be set during the iteration. The step
size λ` can be chosen as λ` = max{ρL(D(`)), `} where
` > 0 is a constant, ρ > 1 and L(D(`)) satisfies

‖∇C(Q(C1,D
(`)))−∇CQ(C2,D

(`))‖ ≤ L(D(`))‖C1−C2‖.

The step size µkl can be chosen as µkl = max{ρL(z
(`)
k ), `}

where z(`) = (C(`),D(`))−d(`)
k , ` > 0, ρ > 1 and L(z

(`)
k )

satisfies

‖∇dk(Q(z(`),d1
k)−∇CQ(z(`),d2

k)‖ ≤ L(z
(`)
k )‖d1

k−d2
k‖,

for any pair d1
k,d

2
k. Consequently, we can choose L(D`) =

‖D(`)>D(`)‖F and L(z
(`)
k ) = [C(`)C(`)>]k,k,∀k =

1, 2, · · · ,m. It can be seen that the sequence L(D(`)) is a
bounded sequence since each column in D is of unit norm.
Moreover, the sequence L(z

(`)
k ) is also a bounded sequence

since both C and D are bounded. See Alg.1 for the outline
of the proposed dictionary learning method that solves (5).

Iteration complexity. The main computational cost of our
algorithm 1 lies in the matrix product in the sparse coding
stage. So, the algorithm 1 hasO(mnp) iteration complexity
which is less thanO(mnp+K2mp), the iteration complex-
ity of the accelerated version of the K-SVD method [20],
where K is the predefined sparsity level.

Algorithm 1 Proximal method for dictionary learning
1: INPUT: Training signals Y
2: OUTPUT: Learned Dictionary D
3: Main Procedure:

1. Initialization: set dictionary D(0), ρ > 1, ` > 0.
2. For ` = 0, 1, · · ·
(a) Sparse approximation:

λ` = max{ρL(D(`)), `};

T
(`)
C = C(`−1) − 1

λ`
∇CQ(C(`−1),D(`));

C(`) = min{T√
2λ/λ`

(T
(`)
C ),M}.

(15)

(b) for k = 1, · · · ,m,

V (`) = C(`)C(`)>, L(z
(`)
k ) = V

(`)
k,k .

(c) Dictionary update: for k = 1, · · · , p,

µkl = max{ρL(z
(`)
k ), `};

S
(`)
k = d

(`)
k −

1

µkl
∇dkQ(C(`), D̃

(`)
k );

d
(`+1)
k = S

(`)
k /‖S(`)

k ‖2.

(16)

(d) L(D(`+1)) = ‖D(`+1)>D(`+1)‖F .

Remark Algorithm 1 can be further accelerated by updat-
ing its associated coefficients right after one dictionary item
is updated. The update can be done using least squares re-
gression on the same support of the previous one.1

4. Global convergence of Algorithm 1
Before proving the global convergence of Alg. 1, we

first introduce the definition of the critical points of a non-
convex function given in [14].

Definition Given the non-convex function f : Rn → R ∪
{+∞} is a proper and lower semi-continuous function and
domf = {x ∈ Rn : f(x) < +∞}.
• For x ∈ domf , its Frechet subdifferential of f is de-

fined as

∂̂f(x) = {u : lim inf
y→x,y 6=x

f(y)− f(x)− 〈u,y − x〉
‖y − x‖

≥ 0}

1The convergence analysis for the accelerated implementation can also
be done using the similar arguments for Alg. 1.



and ∂̂f(x) = ∅ if x 6∈ domf .

• The Limiting Sub-differential of f at x is defined as

∂f(x) ={u ∈ Rn : ∃xk → x, f(xk)→ f(x)

and uk ∈ ∂̂f(xk)→ u}

• The point x is a critical point of f if 0 ∈ ∂f(x).

Remark More on critical points of (5).

• If x is a local minimizer of f then 0 ∈ ∂f(x).

• If (C,D) is the critical point of (5), then we have

(D>DC)[i, j] = (D>Y )[i, j] if C[i, j] 6= 0.

Theorem 4.1 [Global convergence] The sequence gener-
ated by the algorithm 1, {(C(`),D(`))}, is a Cauchy se-
quence and converges to a critical point of (5).

Proof See Appendix A.

Remark Different from the subsequence convergence
property, the global convergence property is defined as:
(C(`),D(`))→ (C̄, D̄), as `→ +∞.

Next, we show that Alg. 1 has at least of sublinear conver-
gent rate.

Theorem 4.2 [Sub-linear convergence rate] The sequence
generated by the Alg. 1, {(C(`),D(`))}, converges to a crit-
ical point (C̄, D̄) of (5) at least in the sublinear conver-
gence rate, i.e. there exist some ω > 0, such that

‖(C(`),D(`))− (C̄, D̄)‖ ≤ ω`
1−θ
2θ−1 (17)

where θ ∈ ( 1
2 , 1).

Proof See Appendix B.

5. Experiments

In this section, the practical performance and computa-
tional efficiency of the proposed approach is evaluated on
two applications: image de-noising and face recognition.
The experiments on these two applications showed that, us-
ing the same minimization model, the performance of our
approach is comparable to the K-SVD based method, but is
more computationally efficient with less running time.

boat512 fingerprint512 hill512

Lena512 man512 peppers512
Figure 2. Test images.

(e) K-SVD (f) Alg.1
Figure 3. The dictionaries learned from the image ”Lena512” with
noise level σ = 30 using the K-SVD method and the accelerated
implementation of Alg.1. The atom size is 8× 8.

5.1. Image Denoising

Alg. 1 for image denoising is evaluated on tested im-
ages shown in Fig. 2 with different noise levels. Through
all the experiments, we set λ = 10σ2 as the threshold-
ing value for dictionary learning process. Same as the K-
SVD method [8], the dimension of the dictionary is set to
m = 4n and the atoms of the dictionary are generated by
the tensor product of the 1D filters, the columns of the top
half of discrete cosine transform matrix of double size in 1D
case. The maximum iteration of Alg. 1 is set 30. After the
dictionary is learned via training samples, the image is de-
noised using the coefficients from the OMP method under
the learned dictionary in one pass. The results is compared
to the DCT-based thresholding method and the K-SVD de-
noising method [8] with patch size 8 × 8. See Table 1 for
the list of PSNR values of the results and Fig. 4 for a vi-
sual illustration of the denoised images. Fig. 3 shows the
dictionaries learned from noisy image by both the K-SVD
method and the accelerated implementation of the proximal
method. It can be seen that the performance of ours is com-
parable to the K-SVD method.
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Figure 4. Visual illustration of noisy images and denoised results
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Figure 5. Overall running time of our method and the K-SVD de-
noising method with comparable PSNR values.

The computational efficiency of the proposed one is
compared to the accelerated version of the K-SVD method,
the approximated K-SVD Algorithm [20] with the imple-
mentation from the original authors2. All two methods
run on the same environment: MATLAB R2011b (64bit)
Linux version on a PC workstation with an INTEL CPU
(2.4GHZ) and 48G memory. The average running time of
each iteration is: 2.81 seconds (K-SVD) vs. 0.71 seconds
(ours). Fig. 5 shows the comparison of the overall running
time of the accelerated implementation of Alg.1 and the K-
SVD method to denoise image ”Lena512” with noise level
σ = 25. Clearly, Alg.1 is noticeably faster than the ap-
proximate K-SVD method when learning the dictionary of
the same size. More importantly, Alg.1 is more scalable for
high-dimensional data.

5.2. Face Recognition

Alg. 1 can also be applied to recognition tasks using
the model (5) by simply replacing the K-SVD module by
the proposed one. The performance is evaluated on two
face datasets: Extended YaleB dataset [11] and AR face
dataset [18]. Our approach is compared to three K-SVD
based methods: LC-KSVD [15], D-KSVD [28] and K-

2http://www.cs.technion.ac.il/ ronrubin/software.html

Table 2. Training time (seconds) on two face datasets.

Dataset K-SVD D-KSVD LC-KSVD Ours

Extended YaleB 44.46 63.47 184.64 10.52
AR Face 55.03 70.43 256.12 22.75

Table 3. Classification accuracies (%) on two face datasets.

Dataset K-SVD D-KSVD LC-KSVD Ours

Extended YaleB 93.10 94.10 95.00 95.66
AR Face 86.50 88.80 93.70 94.41

SVD [1]. The experimental setting is set the same as
[28, 15]:
Extended YaleB Database: The extended YaleB
database [11] contains 2,414 images of 38 human
frontal faces under about 64 illumination conditions
and expressions. There are about 64 images for each
person. The original images were cropped to 192 × 168
pixels. Following [28], we project each face image into a
504-dimensional feature vector using a random matrix of
zero-mean normal distribution. The database is randomly
split into two halves. One half which contains 32 images
for each person was used for training the dictionary. The
other half was used for testing.
AR Face Database: The AR face database [18] consists of
over 4000 frontal images from 126 individuals. For each
individual, 26 pictures were taken in two separate sessions.
The main characteristic of the AR database is that it in-
cludes frontal views of faces with different facial expres-
sions, lighting conditions and occlusion conditions. Fol-
lowing the standard evaluation procedure from [28, 15], we
use a subset of the database consisting of 2,600 images
from 50 male subjects and 50 female subjects. For each
person, twenty images are randomly picked up for train-
ing and the remaining images are for testing. Each face
image is cropped to 165 × 120 and then projected onto a
540-dimensional feature vector.

We set the thresholding parameter λ to be 10−4/2 and
initialize the dictionary with identity matrix. Besides the
classification accuracies, we also evaluate the training time
of all compared approaches under the same environment.
The results of all the tested methods are listed in Table 3
and Table 2. It can be seen that our approach performs con-
sistently with the state-of-the-art methods while have no-
ticeable advantages on computational efficiency.

6. Summary
In this paper, we proposed an proximal method for solv-

ing `0 norm based dictionary learning problems in sparse
coding. The proposed one not only answered the open



Image Boat512 Fingerprint512 Hill512
σ 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT; 8× 8 36.79 33.49 31.34 29.96 28.90 36.34 32.25 29.68 28.29 26.85 36.54 32.93 31.11 30.02 29.00
K-SVD; 8× 8 37.17 33.64 31.73 30.36 29.28 36.59 32.39 30.06 28.47 27.26 36.99 33.34 31.43 30.17 29.19

Ours; 8× 8 37.02 33.57 31.62 30.20 29.16 36.59 32.35 29.97 28.28 27.03 36.94 33.31 31.29 30.02 29.06
Image Lena512 Man512 Peppers512
σ 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT; 8× 8 38.29 35.25 33.39 32.03 30.96 37.16 33.12 31.01 29.65 28.67 37.06 34.48 33.02 31.89 30.95
K-SVD; 8× 8 38.59 35.47 33.70 32.38 31.32 37.61 33.62 31.45 30.13 29.11 37.77 34.72 32.37 32.26 31.39

Ours; 8× 8 38.49 35.41 33.57 32.25 31.19 37.46 33.47 31.43 30.02 29.00 37.68 34.64 33.22 32.14 31.18

Table 1. PSNR values of the denoised results

question regarding the existence of a convergent method
for solving `0 norm based dictionary learning problems, but
also showed the computational efficiency on two practical
applications. In future, we will investigate the applications
of the proposed framework for solving other non-convex
minimization problems in computer vision.
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Appendix A. The proof of Theorem 4.1 is built upon The-
orem 1 from [14].

Theorem 6.1 [14] The sequence Z` = (x(`),y(`)) gener-
ated by the iteration (7) converges to the critical point of
(6), if the following conditions hold:

1. H(x,y) is a KL function;

2. Z(`), ` = 1, 2, · · · is a bounded sequence and there
exists some positive constant `, ¯̀ such that t1` , t

2
` ∈

(`, ¯̀), ` = 1, 2, · · · ;

3. ∇Q(x,y) has Lipschitz constant on any bounded set.

The first condition requires that the objective function
satisfies the so-called Kurdyka-Lojasiewicz (KL) properties
in its effective domain; see Definition 3 in [14] for more
details on KL properties. It is shown in Remark 5 and The-
orem 11 in [5] that any so-called semi-algebraic function
satisfy the Kurdyka-Lojasiewicz property. In the next, we
first give the definition of the semi-algebraic sets and func-
tions, followed by the proof that the objective function (6)
defined via (10) is a semi-algebraic function.

Definition [14] A subset S of Rn is called the semi-
algebraic set if there exists a finite number of real polyno-
mial functions gij , hij such that

S =
⋃
j

⋂
i

{u ∈ Rn : gij(u) = 0, hij(u) < 0}.

A function f(u) is called the semi-algebraic function if its
graph {(u, t) ∈ Rn ×R, t = f(u)} is a semi-algebraic set.

The next lemma establishes that the objective function
(6) defined via (10) is a semi-algebraic function.

Lemma 6.2 Each term in the function (6) defined via (10)
is a semi-algebraic function, and thus the function (6) de-
fined via (10) is a semi-algebraic function.

Proof ForQ(C,D) = 1
2‖Y −DC‖2F is a real polynomial

function, Q(C,D) is a semi-algebraic function [14].
It is easy to notice that the set X = {Y ∈ Rn×m :

‖yk‖2 = 1, 1 ≤ k ≤ m} =
⋂m
k=1{Y :

∑n
j=1 y

2
kj =

1} is a semi-algebraic set. And the set C = {C ∈
Rm×p|‖ck‖∞ ≤ M} =

⋃M
j=1

⋃p
k=1{C : ‖ck‖∞ = j}

is a semi-algebraic set. Therefore, the indicator functions
IC(C) and IX (D) are semi-algebraic functions from the
fact that the indicator function for semi-algebraic sets are
semi-algebraic functions [3].

For the function F (C) = ‖C‖0. The graph of F is

S =
mp⋃
k=0

Lk , {(C, k) : ‖C‖0 = k}. For each k =

0, · · · ,mp, let Sk = {J : J ⊆ {1, · · · ,mp}, |J | = k},
then Lk =

⋃
J∈Sk
{(C, k) : CJc = 0,CJ 6= 0}. It is easy

to know the set {(C, k) : CJc = 0,CJ 6= 0} is a semi-
algebraic set in Rm×p × R. Thus, F (C) = ‖C‖0 is a
semi-algebraic function since the finite union of the semi-
algebraic set is still semi-algebraic.

For the second condition in theorem 6.1, C(`) ∈ C
and D(`) ∈ X for any ` = 1, 2, · · · , which implies
Z` = (C(`),D(`)) is a bounded sequence. In addition,
for ` = 1, 2 · · · , the step size λ` = max(ρL(D(`)), l)
is bounded above since L(D(`)) = ‖D(`)>D(`)‖F and
D ∈ X . The same holds for the step size {µ`k}mk=1 since
µ`k = max(ρL(z

(`)
k ), l) where L(z

(`)
k ) = [C(`)C(`)>]k,k

is bounded above. Consequently, there exists l, l̄ > 0 such
that λ`, µ`k ∈ (l, l̄) for any k, `.

For the last condition in theorem 6.1, notice that the func-
tion Q(C,D) = 1

2‖Y − DC‖2F is a smooth function.
More specifically,∇Q(C,D) = (D>(DC−Y ), (DC−
Y )C>) has Lipschitz constant on any bounded set. In
other words, for any bounded setM, there exists a constant
M > 0, such that for any {(C1,D1), (C2,D2)} ⊆ M,

‖∇Q(C1,D1)−∇Q(C2,D2)‖ ≤M‖(C1,D1)−(C2,D2)‖.

Appendix B. The proof of Theorem 4.2 is a direct applica-
tion of the following theorem established in [3].

Proposition 6.3 ([3]) For a given semi-algebraic function
f(u), for all u ∈ domf , there exists θ ∈ [0, 1), η ∈
(0,+∞] a neighborhood U of u and a concave and con-
tinuous function φ(s) = cs1−θ, s ∈ [0, η) such that for all
ū ∈ U and satisfies f(ū) ∈ (f(u), f(u)+η), the following
inequality holds

φ
′
(f(ū)− f(u))dist(0, ∂f(ū)) ≥ 1 (18)

where dist(0, ∂f(ū) = max{‖u∗‖ : u∗ ∈ ∂f(ū)}.

Theorem 6.4 ([3]) If the objective function is semi-
algebraic, Z` = (x(`),y(`)) generated by the iteration (7),
and Z̄ = (x̄, ȳ) is its limit point. Then

• If θ = 0, Z` converges to Z̄ in finite steps.

• If θ ∈ (0, 1/2], then ∃ω > 0 and τ ∈ [0, 1), such that
‖Z` − Z̄‖ ≤ ωτ `

• If θ ∈ (1/2, 1), then ∃ω > 0 such that ‖Z` − Z̄‖ ≤
ω`−

1−θ
2θ−1 .

where θ corresponding to the desingularizing function
φ(s) = cs1−θ defined in proposition 6.3.

In the proposed Alg.1, notice that τ`

`
− 1−θ

2θ−1

→ 0 as `→ +∞,

where τ ∈ [0, 1) and θ ∈ (1/2, 1). Thus, the sequence Z`

converges to Z̄ at least in sub-linear rate.


