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Abstract

Recovery of degraded images due to motion blurring is a challenging problem
in digital imaging. Most existing techniques on blind deblurring are not capa-
ble of removing complex motion blurring from the blurred images of complex
structures. One promising approach is to recover the clear image using multiple
images captured for the scene. However, in practice it is observed that such a
multi-frame approach can recover a high-quality clear image of the scene only af-
ter multiple blurred image frames are accurately aligned during pre-processing,
which is a very challenging task even with user interactions. In this paper, by
exploring the sparsity of the motion blur kernel and the clear image under cer-
tain domains, we propose an alternative iteration approach to simultaneously
identify the blur kernels of given blurred images and restore a clear image. Our
proposed approach is not only robust to image formation noises, but is also
robust to the alignment errors among multiple images. A modified version of
linearized Bregman iteration is then developed to efficiently solve the resulting
minimization problem. Experiments show that our proposed algorithm is capa-
ble of accurately estimating the blur kernels of complex camera motions with
minimal requirements on the accuracy of image alignment. As a result, our
method is capable of automatically recovering a high-quality clear image from
multiple blurred images.
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1. Introduction

Motion blurring caused by camera shake has been one of the prime causes of
poor image quality in digital imaging, especially when using telephoto lenses or
long shuttle speeds. In many imaging applications, there is simply not enough
light to produce a clear image by using a short shutter speed. As a result, the
image will appear blurry due to the relative motion between the camera and the
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scene. Motion blurring can significantly degrade the visual quality of images.
Thus, how to restore motion-blurred images has long been a fundamental prob-
lem in digital imaging. Motion blurring due to camera shake is usually modeled
as a spatially invariant convolution process:

f = g ∗ p+ n, (1)

where ∗ is the convolution operator, g is the clear image to recover, f is the
observed blurred image, p is the blur kernel (or so-called point spread function),
and n is the noise. How to recover the clear image g from the blurred image f
is the so-called image deconvolution problem.

There are two cases in image deconvolution problems: non-blind deconvolu-
tion and blind deconvolution. In the non-blind case, the blur kernel p is assumed
to be known or estimated somewhere else, and the task is to recover the clear
image g by reversing the effect of convolution on the blurred image f . Such
a deconvolution is known as an ill-conditioned problem, as a small perturba-
tion of f may cause the direct solution from (1) being heavily distorted. In
the past, there have been extensive studies on robust non-blind deconvolution
algorithms (e.g. [1, 22, 8, 7, 18]). In the case of blind deconvolution, both the
blur kernel p and the clear image g are unknown. Then the problem becomes
under-constrained and there exist infinitely many solutions. In general, blind
deconvolution is much more challenging than non-blind deconvolution. Motion
deblurring is a typical blind deblurring problem, because the motion between
the camera and the scene always varies for different images.

Some prior assumptions on both the kernel p and the image g have to be
made in order to eliminate the ambiguities between the kernel and the image.
In practice, the motion-blur kernel is very different from the kernels of other
types of blurring (e.g. out-of-focus blurring, Gaussian-type optical blurring), as
there do not exist simple parametric forms representing motion-blur kernels. In
general, the motion-blur kernel can be expressed as

p = v(x, y)|C , (2)

where C is a continuous curve of finite length in R2 which denotes the camera
trajectory and v(x, y) is the speed function which varies along C. Briefly, the
motion-blur kernel p is a smooth function with the support of a continuous
curve.

1.1. Previous work

Earlier works on motion deblurring usually used only one single blurred
image. Most such methods (e.g. [10, 29, 21, 17]) require a prior parametric
knowledge of the blur kernel p so that the blur kernel can be obtained by only
estimating a few parameters. These methods are usually computationally ef-
ficient but only work on simple blurrings such as symmetric optical blurring
or simple motion blurring of constant velocity. To remove more complicated
blurring from images, an alternative approach is to use a joint minimization
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model to simultaneously estimate both the blur kernel and the clear image. To
overcome the inherent ambiguities between the blur kernel and the clear im-
age, certain regularization terms have to be added in the minimization, e.g.,
total variation (TV) regularization proposed by [9, 8, 16, 20]. These TV-based
blind deconvolution techniques showed good performance on removing certain
blurrings on specific types of images, such as out-of-focus blurring on medical
images and satellite images. However, TV regularization is not a good choice in
the case of motion-blurring, because TV regularization penalizes, e.g., the total
length of the edges for piecewise constant functions (see [8]). As a result, the
support of the resulting blur kernel tends to be a disk or several isolated disks,
instead of a continuous curvy camera trajectory. Also, for many images of na-
ture scenes, TV-based regularization does not preserve the details and textures
very well on the regions of complex structures due to the stair-casing effects (see
[13, 23]).

In recent years, the concept of epsilon photography ([27]) has been popular
in digital imaging to optimize the digital camera by recording the scene via
multiple images, captured by an epsilon variation of the camera setting. These
multiple images make a more complete description on the scene, which leads to
an easier configuration for many traditionally challenging image processing tasks
including blind motion deblurring. Most such approaches (e.g. [3, 26, 28, 19])
actively control the capturing process using specific hardwares to obtain multiple
images of the scene such that the blur kernel is easier to infer and the deblurring
is also more robust to noise. Impressive results have been demonstrated by these
approaches. However, the requirement on the active acquisition of input images
limits the wider applications of these techniques in practice.

1.2. Our work

The goal of this paper is to develop a robust numerical algorithm to recover
a high-quality clear image of the scene from multiple motion-blurred images. In
our setting, the input multiple images are passively captured by a commodity
digital camera without any specific hardware. It is noted that the proposed
algorithm could also be applied to removing motion blurring in the videos with
little modifications. In other words, as the input in our algorithm, there are M
available blurred images with the following relationships:

{fi = g(hi(·)) ∗ pi + ni, i = 1, 2, . . . ,M},

where hi is the spatial geometric transform from the clear image g to the blurred
image fi, determined by the camera pose when the i-th image is taken, pi is the
blur kernel of the i-th image, and ni is the noise.

In this paper, we assume that the geometric transforms hi among all im-
ages are estimated using some existing image alignment technique during pre-
processing. However, we emphasize that there is no available image alignment
technique which is capable of accurately aligning blurred images. Therefore, we
take the following fis as the input in our mathematical formulation:

{fi = g((I + εhi)(·)) ∗ pi + ni, i = 1, 2, . . . ,M}, (3)
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where I is the identity operator, pi and g are unknowns, εhi is image alignment
error and ni is image formation noise. In summary, there are two types of un-
desired perturbations when taking a multi-image approach to removing motion
blurring. One is the image formation noise ni and the other is image alignment
error εhi. The goal of this paper is to develop a numerical algorithm robust to
both types of perturbations.

In this paper, we begin our study on blind motion deblurring by investigating
how to measure the “clearness” of the recovered image and on the “soundness”
of the blur kernel. Our study shows that, given multiple images (≥ 2), the
sparsity of image under tight frame systems ([12, 30]) is a good measurement
on the “clearness” of the recovered image, and the sparsity of blur kernels in
a weighted image space is a good measurement on the “soundness” of the blur
kernel when combined with a smoothness regularization. In particular, it is
shown empirically that the impressive robustness to image alignment error is
achieved by using these two sparsity regularizations for restoring the clear image
and for estimating the blur kernels. In our proposed approach, the sparsity of an
image under a tight frame system is the `1-norm of its tight frame coefficients,
and the sparsity of a blur kernel in a weighted image space is measured by its
weighted `1-norm.

The rest of the paper is organized as follows. In Section 2, we formalize the
minimization strategy and explain the underlying motivation. In Section 3, we
present the detailed numerical algorithm for solving the proposed minimization
problem. Section 4 is devoted to the experimental evaluation and discussions of
future works.

2. Problem formulation and analysis

When taking an image by a digital camera, the image does not represent the
scene in a single instant of time, instead it represents the scene over a period
of time. As the camera does not keep still due to unavoidable camera shake,
the image of the scene must represent an integration of all camera viewpoints
over the period of exposure time, which is determined by the shutter speed.
The resulting image will look blurry along the relative motion path between the
camera and the scene. As the relative motion between the scene and the cam-
era is generally global; usually we assume that the relative motion is spatially
invariant. Thus the motion blurring can be simplified as a convolution process:

f = g ∗ p+ n, (4)

where p is the so-called blur kernel function which represents relative motion
with normalization, f is the observed blurred image and g is the desired clear
image.

2.1. Benefits of using multiple images

The benefits of using multiple images to remove motion blurring are two-fold.
First, it is known that non-blind deblurring is an ill-conditioned problem as it is
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sensitive to noise. The noise sensitivity comes from the fact that reversing the
image blurring process will greatly amplify the high-frequency noise contribution

to the recovered image. Let (̂·) denote the Fourier transform, then (1) becomes

p̂(ω) · ĝ(ω) = f̂(ω)− n̂.

The values of |p̂| are zero or very small at large ω because the blur kernel p usu-
ally is a low-pass filter. Thus, ĝ(ω) is very sensitive to even small perturbations
at large ω. Extensive studies have been carried out in the past to reduce such
noise sensitivities by imposing some extra regularizations.

However, if we have multiple perfectly aligned images fi of the same scene
with different motion-blur kernels:

fi = pi ∗ g + ni, i = 1, 2, . . . ,M, (5)

the deblurring process can be much more robust to noise. Because motion-blur
kernels are not isotropic, the intersection of all ω with small |p̂i(ω)| is very
likely to be much smaller than the set of ω with small |p̂i(ω)| for each individual
pi. Let us examine a simple example of two blurred images: one is blurred by
a horizontal filter p1 = 1

N (1, 1, . . . , 1); the other is blurred by a vertical filter
p2 = 1

N (1, 1, . . . , 1)T . Then we have

p̂1(ωx, ωy) = sinc(
2

N
ωx); p̂2(ωx, ωy) = sinc(

2

N
ωy).

p̂1 has vertical periodic lines of zero points at {(ωx = kNπ
2 , ωy), k ∈ Z} and p̂2

has horizontal periodic lines of zero points at {(ωx, ωy = kNπ
2 ), k ∈ Z}. How-

ever, the combination of p̂1 and p̂2 only has periodic points {(ωx = kNπ
2 , ωy =

kNπ
2 ), k ∈ Z}, which can greatly improve the condition of the deconvolution

process. In practice, we may not have such an ideal configuration. But it
is very likely that different blurred images have different blur kernels, as the
camera motion is random during the capture. Heuristically, it is a reasonable
assumption that the combination of all blur kernels

(

N∑
i=1

|p̂i|2(ω))
1
2 .

will have many fewer small values in its spectrum than the individual blur kernel
does. Therefore, using multiple images can greatly improve the noise sensitivity
of the deconvolution process.

Secondly, for blind deblurring, the estimation of blur kernels will benefit
even more by using multiple images. The main difficulty in blind deblurring is
that the problem is under-constrained. There exist infinitely many solutions.
For example, the famous degenerate solution to (4)

p := δ, g := f
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has been a headache for many blind deblurring techniques. Although the de-
generate solution can be avoided by some ad-hoc processes, the inherent ambi-
guities between the kernel and the image still lead to the poor performance of
most available techniques on removing complex motion blurring from images.

However, such ambiguities can be significantly reduced by using multiple
images. Again, let us examine one example. In the case of a single image, let
the blur kernel be decomposed into two parts: p = p1 ∗ p2. Then besides the
true solution (p, g), (p1, p2 ∗ g) is also a solution to (4). As long as p2 is a low-
pass filter, even imposing other available physical constraints on images or blur
kernels, e.g.,

p ≥ 0;
∑
j,k

p(j, k) = 1; g ≥ 0, (6)

will not eliminate such ambiguities. On the contrary, in the case of multiple
images, it is very unlikely that such ambiguities will happen. In order to have
another solution to the system (5) when using multiple images, all N kernels pi
need to have a common factor p2 such that

pi = p1i ∗ p2.

Considering the fact that the support of each pi is a curve in 2D, it is unlikely
that all pi will have a non-trivial common factor.

In summary, multiple blurred images of the same scene provide much more
information than a single blurred image does, which leads to a better config-
uration for recovering a clear image of the scene. But, some new challenging
computational problems also arise when taking a multi-frame approach.

2.2. Challenges of using multiple images

When we take multiple images of the same scene, the camera pose varies
during the capture. In other words, we have multiple observed blurred image
fi related to the clear picture g up to a spatial geometrical transform hi:

{fi = g(hi(·)) ∗ pi + ni, i = 1, 2, · · · ,M}.

The estimation of hi is known as the image registration problem, which has been
extensively studied in the past (see [34] for more details). However, most image
registration techniques need to assume a simple model (e.g. affine transform)
on the geometrical transform, which may not approximate the true geometrical
transform well when the 3D structure of the scene is complicated. Furthermore,
when images are seriously blurred, the appearances of the same scene blurred
by different blur kernels are very different from each other. Currently there
does not exist an alignment technique which is capable of accurately aligning
seriously blurred images. Therefore, we have a new perturbation source when
using multiple images: image alignment error.

It is observed in [19] that alignment errors will seriously impact the perfor-
mance of multi-image blind deblurring. In [19], a simple experiment is carried
out to illustrate the high sensitivity of blind deblurring to alignment errors when

6



(a) clear image (b) blurred image

(c)(−1.4◦, 0.98) (d)(−0.7◦, 0.99) (e) (0◦, 1.00) (f) (0.7◦, 0.99) (g) (1.4◦, 0.98).

Figure 1: (b) is the synthesized blurred version of the clear image (a) by using the blur kernel
shown in the top right of (b). (c)-(f) are the blur kernels estimated based on the blurred
image (a) and a number of transformed clear image (b) with different rotation and scale. The
two numbers in brackets under each kernel are the rotation angle and the scale value (θ, s).
All images are taken from [19].

estimating blur kernels. The experiment considered a simplified configuration
by assuming knowing the clear image and the blurred image up to a small align-
ment perturbation. The only unknown is the blur kernel. Thus, the inputs of
the experiment are a clear image g shown in Fig. 1 (a) and its blurred version
f shown in Fig. 1 (b) up to an alignment perturbation. The corresponding blur
kernel p is shown in the top right corner of the blurred image. The alignment
perturbations are simulated by applying a similarity transform on Fig. 1 (b)
with various pairs of rotations and scales (θ, s) and with the same translation
(tx, ty):

h :

(
x
y

)
−→ s

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
+

(
tx
ty

)
. (7)

Then the blur kernel is estimated based on the clear image g in Fig. 1 (a) and
the blurred image Fig. 1 (b) with a geometrical perturbation h defined in (7).
In other words, the estimated blur kernel p′ is based on the following perturbed
version of the original equation:

p′ ∗ g(h(·)) = f = p ∗ g(·). (8)

In the experiment done by [19], p′ is estimated by solving (8) using a least
squares method with Tikhonov regularization. It is noted that multi-image
blind blurring is not sensitive to small translation errors, as the translation
between two images only results in a spatial shift of the estimated kernel. Thus,
the translation error is fixed as a constant in the experiment.

The estimated blur kernels p′ is given in Fig 1 (c)–(g) with respect to small
alignment perturbations of the form (7) for various s and θ. The results clearly
showed that the blur kernel is very sensitive to even a small alignment error
in the simplified case where the true clear image is available. In practice, the
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problem is much more ill-conditioned as we do not have the clear image in hand.
This experiment clearly indicates the importance of the robustness to alignment
errors when developing multi-image blind motion deblurring techniques.

3. Formulation for blind motion deblurring with sparsity regulariza-
tions

3.1. Outline of our proposed algorithm

Given M blurred images fi, i = 1, 2, . . . ,M satisfying the relationship (3):

fi = g((I + εhi)(·)) ∗ pi + ni, i = 1, 2, . . . ,M,

we take a regularization-based approach to solve the blind motion deblurring
problem, which requires the simultaneous estimations of both the clear image g
and M blur kernels {pi, i = 1, . . . ,M}. It is well known that the regularization-
based blind deconvolution approach usually results in solving a challenging non-
convex minimization problem. In our case, the number of unknowns is up to the
order of millions. The most commonly used approach is an alternative iteration
scheme; see [9] for instance. The alternative iteration scheme can be described
as the following: let g(0) be the initial guess on the clear image.

Algorithm 1 Outline of the alternative iterations

For k = 0, 1, . . .,

1. given the clear image g(k), compute the blur kernels {p(k+1)
i , i =

1, 2, . . . ,M}.

2. given the blur kernels {p(k+1)
i , i = 1, 2, . . . ,M}, compute the clear image

g(k+1);

There are two steps in Algorithm 1. Step 2 is a non-blind image deblurring
problem, which has been studied extensively in the literature; see, for instances,
[1, 22, 8, 7, 18, 5]. However, there is one more error source in Step 2 than
the traditional non-blind deblurring problem has, that is, the error in the in-

termediate blur kernel p
(k+1)
i used for deblurring. Inspired by recent non-blind

deblurring techniques which are based on sparse approximation to the image
under certain tight frame systems ([7, 4]), we also use the sparsity constraint on
the clear image g under tight frame systems to regularize the non-blind deblur-
ring. And we use a modified version of so-called linearized Bregman iteration
(See [24, 32, 31, 16, 20, 11, 25, 4, 5, 6, 15]) to achieve impressive robustness
to image noises, alignment errors, and, more importantly, perturbations on the
given intermediate blur kernels. In our implementation, we choose the tight
framelet system constructed in [12, 30] as the choice of the tight frame system
representing the clear image g.
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For Step 1, it is observed in Fig. 1 that the alignment error will lead to a
false estimation on the motion blur kernel. The support of the false kernel tends
to be much larger than that of the true blur kernel. Based on this observation,
we propose to overcome the sensitivity of estimating blur kernels to alignment
errors by exploring the sparsity constraint on the motion blur kernel in its
spatial domain. Similarly, we also use a modified version of linearized Bregman
iteration to solve the resulting minimization problem. Before we present the
detailed algorithm, we give a brief introduction to the framelet system used in
our method in the remaining of the section.

3.2. Tight framelet system and image representation

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

〈f, h〉h, ∀f ∈ L2(R), (9)

where 〈·, ·〉 is the inner product on L2(R). An orthonormal basis is a tight frame,
hence a tight frame is a generalization of an orthonormal basis. However, tight
frames sacrifice the orthonormality and the linear independence of the system
in order to get more flexibility. Tight frames can be redundant.

For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), the affine (or wavelet) system is
defined by the collection of dilations and shifts of Ψ as

X(Ψ) := {ψ`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z} with ψ`,j,k := 2
j/2

ψ`(2
j · −k). (10)

When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame, and
ψ`, ` = 1, . . . , r, are called the (tight) framelets.

To construct a set of framelets, usually, one starts with a compactly sup-
ported refinable function φ ∈ L2(R) (a scaling function) with a refinement mask
τφ satisfying

φ̂(2·) = τφφ̂.

Here φ̂ is the Fourier transform of φ, and τφ is a trigonometric polynomial with
τφ(0) = 1, i.e., a refinement mask of a refinable function must be a lowpass
filter. For a given compactly supported refinable function, the construction of
tight framelet systems is to find a finite set Ψ that can be represented in the
Fourier domain as

ψ̂(2·) = τψφ̂

for some 2π-periodic τψ. The unitary extension principle (UEP) of [30] says
that X(Ψ) in (10) generated by Ψ forms a tight frame in L2(R) provided that
the masks τφ and {τψ}ψ∈Ψ satisfy:

τφ(ω)τφ(ω + γπ) +
∑
ψ∈Ψ

τψ(ω)τψ(ω + γπ) = δγ,0, γ = 0, 1 (11)

for almost all ω in R. τφ must correspond to a low-pass filter and {τψ}ψ∈Ψ must
correspond to highpass filters. The sequences of Fourier coefficients of τψ, as
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(a) φ (b) ψ1 (c) ψ2

Figure 2: Piecewise linear framelets.

well as τψ itself, are called framelet masks. In our implementation, we adopt
the piece-wise linear B-spline framelet constructed in [12, 30]. The refinement
mask is τφ(ω) = cos2(ω2 ), whose corresponding lowpass filter is h0 = 1

4 [1, 2, 1].

Two framelets are τψ1
= −

√
2i
2 sin(ω) and τψ2

= sin2(ω2 ), whose corresponding
highpass filters are

h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1].

The associated refinable function and framelets are given in Fig. 2. With a 1D
framelet system for L2(R), the 2D framelet system for L2(R2) can be easily
constructed by the tensor product of 1D framelets.

In the discrete case, an n×n image f is considered as the coefficients {f(i) =
〈f, φ(·−i)〉, i ∈ Z2} up to a dilation, where φ is the refinable function associated
with the framelet system, and 〈·, ·〉 is the inner product in L2(R2). The L-level
discrete framelet decomposition of f is then the coefficients {〈f, 2−L/2φ(2−L ·
−j)〉, j ∈ Z2} at a prescribed coarsest level L, and the framelet coefficients

{〈f, 2−l/2ψi(2−l · −j)〉, j ∈ Z2, 1 ≤ i ≤ r2 − 1},

for 0 ≤ l ≤ L.
If we denote f as a vector f ∈ RN , N = n2 by concatenating all columns

of the image, the discrete framelet decomposition of f can be described by the
vector Af , where A is a K × N matrix. By the UEP (11), ATA = I, thus
the rows of A form a tight frame system in RN . In other words, the framelet
decomposition operator A can be viewed as a tight frame system in RN as its
rows form a tight frame in RN such that the perfect reconstruction formula
x =

∑
y∈A〈x,y〉y holds for all x ∈ RN . Unlike the orthonormal case, we

emphasize that AAT 6= I in general. In our implementation, we use a multi-
level tight framelet decomposition without down-sampling under the Neumann
(symmetric) boundary condition. A detailed description can be found in [7].

4. Numerical algorithm

This section is devoted to the detailed numerical algorithm of our blind
deconvolution algorithm outlined in Algorithm 1. Both steps in Algorithm 1
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are based on the linearized Bregman iteration. The Bregman iteration was first
introduced for non-differentiable TV-energy in [24], and then was successfully
applied to `1-norm minimization in compressed sensing in [32] and to wavelet
based denoising in [31]. The Bregman iteration was also used in TV-based blind
deconvolution in [16, 20]. To further improve the performance of the Bregman
iteration, a linearized Bregman iteration was invented in [11]; see also [32].
More details and an improvement called “kicking” of the linearized Bregman
iteration is described in [25], and a rigorous theory was given in [4, 6]. The
linearized Bregman iteration for frame-based image deblurring was proposed
in [5]. Recently, a new type of iteration based on Bregman distance, called
split Bregman iteration, was introduced in [15], which extended the utility of
Bregman iteration and linearized Bregman iteration to minimizations of more
general `1-based regularizations including total variation, Besov norms and sums
of such things.

Consider M blurred images fi ∈ RN , i = 1, . . . ,M . We assume that the size
of the blur kernel is no larger than n×n. Let pi ∈ RN denote the blurred image
pi after column concatenation. Let [ ]∗ denote the convolution operator of p and
f after concatenating operation:

p ∗ f = [p]∗f = [f ]∗p.

Let u = Ag denote the framelet coefficients vector of the clear image g.

4.1. Method for Step 2 in Algorithm 1
In Step 2 of Algorithm 1, at the k-th iteration, we need to find a clear image

g(k+1) given the blur kernels {p(k+1)
i , i = 1, 2, . . .M}. In the initial stages, since

the kernel is not close to the true solution, it is not necessary to find an accurate
g(k+1). We simply use a least squares deblurring algorithm, i.e., solve

min
g

1

2

M∑
i=1

‖[p(k+1)
i ]∗g − fi‖22 + λ‖∇g‖22. (12)

This can be done efficiently by FFTs.
In the final stages, the kernel is close to the true solution, so we need an

accurate solution of the clear image. For this, we solve the image deblurring
problem in the tight framelet domain. Let u be the tight framelet coefficients of
the clear image g(k+1), i.e., g(k+1) = ATu. Our strategy of recovering the clear
image g(k+1) is to find a sparse solution u in the tight framelet domain among
all solutions with reasonable constraints.

Temporarily, we ignore the mis-alignment error and assume that the blur
kernels are accurate enough, such that there exist solutions for the equations

[p
(k+1)
i ]∗A

Tu = fi, i = 1, 2, . . . ,M.

To seek a sparse set of coefficient u, we need to minimize its `1-norm ‖u‖1.
Thus, we have to solve

min
u

‖u‖1
subject to [p

(k+1)
i ]∗(A

Tu) = fi, i = 1, 2, . . . ,M.
(13)
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The linearized Bregman iteration is a very efficient tool for solving the above
minimization problem. Given x(0) = v(0) = 0, the linearized Bregman iteration
generates a sequence of x(l) and v(l) as follows{

v(l+1) = v(l) −
∑M
i=1A[p

(k+1)
i ]T∗

(
P

(k+1)
i

(
[p

(k+1)
i ]∗(A

Tx(l))− fi
))
,

x(l+1) = 1
ν2
Tµ2

(vl+1).
(14)

Here Tµ2
is the soft-thresholding operator defined by

Tµ2
(v) = [tµ2

(v1), tµ2
(v1), . . .], with tµ2

(vi) = sign(vi) max(|vi| − µ2, 0),

and P
(k)
i is a preconditioning matrix used to accelerate the convergence of the

iteration. Usually, we choose

P
(k+1)
i =

(
[p

(k+1)
i ]T∗ [p

(k+1)
i ]∗ + τ2∆

)−1
, (15)

where ∆ is the discrete Laplacian. In our implementation, µ2 is set as 0.2‖v‖.
The basic idea of the linearized Bregman iteration (14) for finding a sparse

solution is as follows. Two steps are involved in the linearized Bregman iteration.
The first step is to find an approximate solution (a least squares solution in our
case) to the residual equation of the constraint in (13) to update the data.
However, the updated data may not be sparse. Therefore, the second step, a
soft-thresholding operator, is applied to obtain a sparse framelet coefficients set.
The procedure is repeated and it converges to a sparse solution in the framelet
domain. The algorithm is efficient and robust to noises as analyzed by [5] and
we also have the following convergence results from [5]. See [4, 5, 6, 32] for a
more detailed analysis.

Proposition 1. Assume that there exists at least one solution of {[p(k+1)
i ]∗(A

Tu) =
fi, ∀ i = 1, 2, . . . ,M}. Then, there exists a constant c such that, for all
ν2 ∈ (0, c), the sequence x(l) generated by (14) converges to the unique solu-
tion of

min
u

‖u‖1 + 1
2µ2ν2

‖u‖22
subject to [p

(k+1)
i ]∗(A

Tu) = fi, i = 1, 2, . . . ,M.
(16)

Therefore, if we choose a sufficiently large thresholding parameter µ, then the
iteration (14) converges to a solution of (13).

During the iterations of Algorithm 1, the intermediate results of the blur
kernels are not accurate until the last few iterations. More importantly, there are
alignment errors among the observed images. Thus, to obtain a good deblurred
image, one can still use (13), but need to stop it early when the error of the
constraint in (13) satisfies

‖[p(k+1)
i ]∗(A

Tu)− fi‖22 ≤ δ2
2,i, i = 1, 2, . . .M, (17)

where δ2
2,i is an estimation of the variance of the image noises, the inaccuracy

of the blur kernels, and the image alignment errors. The main reason is that
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the Bregman iteration has a good property: in the sense that as the Bregman
distance decreases, x(l) approaches the tight frame coefficients of the true image
until the residual in the iteration drops below the variance of the errors, as
shown theoretically in [24, 32]. Furthermore, (14) is very robust to image noises
and alignment errors in fi ([5]).

In summary, in Step 2 of Algorithm 1, we use the linearized Bregman itera-
tion (14) with the stopping criteria (17) to get a clear image. Usually, it takes
only tens iterations for (14) to get an image of satisfactory visual quality.

4.2. Method for Step 1 in Algorithm 1

In Step 1 of Algorithm 1, given the intermediate clear image g(k), we want

to compute the blur kernels {p(k+1)
i , i = 1, 2, . . .M}. As shown in (2), a true

motion blur kernel can be approximated well by a smooth function with the
support of a continuous curve. It is observed that there are two essential prop-
erties of a “sound” motion blur kernel: one is the overall smoothness of the blur
kernel; the other is its curvy support which implies its sparsity in spatial do-
main. Inspired by this observation, we model the motion blur kernel as a sparse
solution in spatial domain with strong smoothness on its support. Thus, the

proposed algorithm is to find the sparse blur kernels {p(k+1)
i , i = 1, 2, . . . ,M}

in spatial domain subject to certain smoothness constraints, which results in an
`1 norm minimization problem. In order to further improve the accuracy and
the efficiency of estimating the blur kernel, we use a weighted `1 norm instead
of the ordinary one.

Same as our previous discussions on Step 1, temporarily, we ignore the image
alignment errors and assume that the clear image are accurate enough, such that
there exist solutions for the equations

[g(k)]∗pi = fi, i = 1, 2, . . . ,M.

Since a weighted `1-norm is minimized, we have to solve

argmin
pi

‖Wipi‖1, subject to [g(k)]∗pi = fi, i = 1, 2, . . . ,M, (18)

where Wi is the diagonal weighting matrix. Again, the linearized Bregman
iteration can be applied to solve (18). The iteration is as follows, starting from

r
(0)
i = q

(0)
i = 0,{

r
(l+1)
i = r

(l)
i − [g(k)]T∗

(
Q(k)

(
[g(k)]∗q

(l)
i − fi)

))
,

q
(l+1)
i = 1

ν1
WiTµ1

(
(Wi)

−1rl+1
i

)
.

(19)

Here Tµ1 is the soft-thresholding operator, Q(k) is a preconditioner matrix:

Q(k) =
(
[g(k)]T∗ [g(k)]∗ + τ1∆

)−1
,

where ∆ is the discrete Laplacian. In our implementation, µ1 is set as 0.2‖r‖∞.
Similar to Proposition 1, (19) gives a sparse solution and we have the conver-
gence of (19).
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Proposition 2. Assume that there exists at least one solution of [g(k)]∗pi =
fi, ∀ i = 1, 2, . . . ,M . Then, there exists a constant c such that, for all ν1 ∈ (0, c),

the sequence q
(l)
i generated by (19) converges to the unique solution of

min
pi

‖Wipi‖1 + 1
2µ1ν1

‖pi‖22
subject to [g(k)]∗pi = fi, i = 1, 2, . . . ,M.

(20)

Therefore, if we choose a sufficiently large thresholding parameter µ1, then the
iteration (19) converges to a solution of (18).

During the iterations of Algorithm 1, the intermediate result of the clear
image is not accurate and there are alignment errors among the observed images.
Similar to the method for Step 2, we still use (19), but stop it early when the
error of the constraint satisfies

‖[g(k)]∗q
l
i − fi‖22 ≤ δ2

1 , (21)

where δ2
1 is an estimation of the variance of the errors caused by the noise, the

inaccuracy of the clear image and the alignment errors. Therefore, q
(l)
i generated

by (19), with a large µ1 and stopping criteria (21), gives a good estimation of
the blur kernel. From our empirical observations, only a couple of iterations
already yield a satisfactory estimation of the blur kernel.

From Proposition 2, (19) minimizes the `2 norm of the blur kernel among
all the minimal weighted `1 norm solutions (see [4, 5, 6] for details). We would
like to explain more on why (19) is likely to yield a blur kernel which is a
smooth function with a curvy support. In the first step of (19), the operation

Q(k)
(
[g(k)]∗q

(l)
i −fi

)
essentially yields the solution of the following minimization:

min
pi

1

2
‖[g(k)]∗pi − t

(k)
i ‖

2 + τ1‖∇pi‖2,

where t
(k)
i is the residual of the i-th observed image at the k-th step satisfying

[g(k)]T∗ t
(k)
i = [g(k)]∗q

(l)
i − fi.

In other words, a Tikhonov regularization with the penalty ‖∇pi‖2 is applied
in the preconditioning step. Thus, the smoothness of the estimated blur kernel
is imposed to better constrain the smoothness of the blur kernel pi. The side
effect of the smoothing is that the resulting blur kernel tends to have much
larger support than the true on does. Therefore, the second step of (19) comes
to remove this side effect by finding a sparse solution with minimal weighted
`1 norm from the previous one, which is done by applying a soft-thresholding
operator as shown in (19). The support of the resulting sparse solution is then
shrunken and likely to approximate the true support better than the previous
one.

If only using Tikhonov regularization, the resulting blur kernel will be a
smooth function with the support on a large region; if only using the sparsity
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constraint, the resulting blur kernel will very likely converge to the degenerate
case at only a few isolated points. By balancing the smoothness of the kernel
using a Tikhonov regularization and the sparsity of the kernel in spatial domain
using a weighted `1 norm, the sequence generated from (19) will converge as
Proposition 2 proved. And the resulting solution will be close to the ideal motion
blur kernel model, that is, a smooth function with the support of a continuous
curve.

How to choose an appropriate Wi is dependent on the support of the true
blur kernel p∗i . A good example of Wi is

Wi(m,m) =

{ 1
|p∗

i (m)| , if p∗i (m) 6= 0

∞, otherwise;
and Wi(m,n) = 0, if m 6= n,

for j, k = 1, . . . , N . Unfortunately, It is impossible to construct such a Wi

without knowing the blur kernel pi. In our approach, we take a simple algorithm
which updates the weighting matrix Wis iteratively. That is, during the k-th

iteration for the blur kernel estimation, we define the weighting matrix W
(k)
i as

such

W
(k)
i (m,n) =

{
(|([a]∗p

(k)
i )(m)|+ ε)−1, if m = n

0, otherwise,

based on the value p
(k)
i obtained from the last iteration. Here [a]∗ is the con-

volution with a local average kernel. The weighting matrix W
(k)
i will be used

in the next iteration. The parameter ε is to avoid numerical instability. It is
observed empirically that such a weighting `1 norm can greatly speed up the
algorithm.

4.3. The Complete Algorithm

Due to all types of noises and errors, the numerical algorithms do not always
yield a solution which satisfies the physical rules of the image in the digital
world. In order to obtain a physical solution, we also impose the following
physical conditions:{

pi ≥ 0,
∑
j pi(j) = 1, i = 1, 2, · · · ,M.

g = Atu ≥ 0.
(22)

The constraints (22) say that all pixel values of the recovered image have to
be non-negative, and the estimation kernel should also be non-negative and its
summation should be 1. It is noted that the physical constraint on the kernel
pi partially explains the reason why the regular `1 norm is not a good sparsity
measurement on the kernel pi because the `1 norm of the kernel pi is always 1
if pi satisfies the constraints (22). Combining all this, the complete algorithm
for our blind deconvolution is described in Algorithm 2.
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Algorithm 2 Complete algorithm for blind motion deblurring

1. Let W
(0)
i and g(0) be the initial guess.

2. Iterate on k until convergence.

(a) Fixing the clear image g(k), iterate as (19) until (21) is satisfied.

Then impose p
(k+1/2)
i = q

(`)
i , where ` is the minimal l such that (21)

is satisfied.

(b) Get the blur kernels by

p
(k+1)
i = P(p

k+1/2
i ),

where P is the projection operator, with an explicit expression, onto
the set {p : p(j) ≥ 0,

∑
j p(j) = 1}.

(c) Adjust the weightings Wi by

W
(k+1)
i (j, `) =

{
1

|([a]∗p
(k+1)
i )(j)|+ε

, if j = `

0, otherwise.

(d) Fixing the blur kernels p
(k+1)
i , i = 1, 2, . . . ,M , if k ≤ K, get gk+1/2

by solving (12). Otherwise, iterate as (14) until (17) is satisfied; then
impose u(k+1) = x(`), where ` is the minimal l such that (17) is
satisfied; set g(k+1/2) = ATu(k+1).

(e) Get the clear image g(k+1) by

g(k+1)(j) =

{
g(k+1/2)(j), if g(k+1/2)(j) ≥ 0;
0, otherwise.

(f) k = k + 1.
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(a) (b) (c)

Figure 3: (a) The original clear image. (b) One blurred image. (c) Another blurred image.
The corresponding blur kernels are shown on the top left of the images respectively.

5. Experimental Evaluation and discussion

In our implementation, the initial diagonal elements of W
(0)
i are set as 1 on

those points falling in the center square of the image with size n
2 ×

n
2 and as 1

ε

otherwise, and the initial image g(0) is one of the input images fi for some i. λ
in (12) is set as 10−3. δ1 in (21) and δ2,i in (17) are set empirically as 10−5‖f‖∞.
Also, the maximum iteration number of Algorithm 2 is set to 100. The number
K in Step 2(d) of Algorithm 2 is set to 2/3 of the maximum iteration number.
All our experiments were done by running Matlab codes of our algorithm on
a windows PC with an Intel 2G Hz CPU. Each iteration in Algorithm 1 took
roughly 18 seconds for all channels of the two input blurring color images with
the resolution 1280× 1024 pixels.

5.1. Simulated images

In the first experiment, we would like to see how robust the estimation of
motion blur kernels in our proposed method is to the alignment error. The
images used in this experiment are synthesized as follows. First, two blurred
images (Fig. 3 (b) and (c)) are generated by applying two different blur kernels
on the clear image (Fig. 3 (a)), respectively. Then the alignment error is added
to the second blurred image (Fig. 3 (c)) by applying a spatial transform of (7)
on the image with different rotations and scales (θ, s). The translation (tx, ty)
always keeps the same (5 pixels shift along x-axis and 5 pixels shift along y-
axis). Our proposed method is then applied to each pair of the blurred images in
(Fig. 3(b) and Fig. 3(c)) with spatial distortions to recover the clear image and
the blur kernels. Fig. 4 shows the intermediate results during the iterations of
Algorithm 2 to illustrate the convergence behaviors of our algorithm. Fig. 5 (b)
shows the estimated motion blur kernels from our method for different alignment
errors.

It is clear that our proposed method can perfectly estimate the compli-
cated blur kernels when the alignment is perfect. When there exist modest
mis-alignments between two images, our method still can accurately estimate
two blur kernels. The results shown in Fig. 5 (b) demonstrats that our method
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(a)

(b)

Figure 4: The images in (a) are the recovered images during k-th iteration when applying our
proposed algorithm on the two blurred images in Fig. 3 (a)–(b). The corresponding estimated
blur kernels are shown in (b).

is capable of finding complicated blur kernels and is robust to modest align-
ment errors. For comparison, we also estimate the blur kernels by the least
squares minimization with Tikhonov regularizations. Fig. 5 (a) shows that the
standard approach cannot identify the motion blur kernel even when there is
no alignment error. Fig. 6 (a)-(c) show a number of deblurred images using
our proposed method under different alignment errors. As comparison, Fig. 6
shows the deblurred image by least squares minimization method with Tikhonov
regularization when there exist no alignment errors.

In the second experiment, we would like to evaluate the robustness of our
method to image noises. All blurred images in this experiment are generated by
applying two blur kernels on the original image, subsequently contaminated by
zero mean white noise with different noise levels. Thirty two random samples
are generated for each noise level. The noise level is measure by the so-called
SNR (signal to noise ratio) of the noised image Ĩ to the clean image I defined
as

SNR(Ĩ) = 20 log10 ‖I‖2/‖I − Ĩ‖2.
Fig. 7 shows that the estimation of the blur kernel by our method is also very
robust to image noises.

5.2. Real images

We also tested our method on real images taken by a handheld commodity
digital camera with small hand trembles. All images are first automatically
aligned by using the conventional image alignment method from [2] before ap-
plying our method.

Fig. 8 (a)-(b) and Fig. 9 (a)-(b) show two blurred telephotos of two indoor
objects with hand trembles. As a comparison, the recovered images from Al-
gorithm 2 are compared against the results from the state-of-art blind motion
deblurring technique ([14]) which utilizes the statistical prior on the image gra-
dients to derive the motion blur kernel. It is seen that the restored image by
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(0◦, 1.000) (1◦, 0.990) (2◦, 0.983) (3◦, 0.965) (4◦, 0.948)
(a)

(0◦, 1.000) (1◦, 0.990) (2◦, 0.983) (3◦, 0.965) (4◦, 0.948)
(b)

Figure 5: (a) The estimated kernels of the images in Fig. 3(b)-(c) using least square min-
imization with Tikhonov regularization. (b) The estimated kernels of the images in Fig. 3
(b)-(c) using our method. Two numbers in brackets under each pair of estimated kernels are
the rotation angle parameter θ and the scale parameter s for the alignment error of the form
(7).

(0◦, 1.000) (1◦, 0.990) (2◦, 0.983) (0◦, 1.000)
(a) (b) (c) (d)

Figure 6: (a)–(c) are the deblurred images using the kernels from Algorithm 1. (d) is the
deblurred image using the estimated kernel from the least squares method with Tikhonov
regularization. The two numbers in brackets under each deblurred image are the rotation
angle parameter and the scale parameter of (7).

40 36 32 28

(a) (b)

Figure 7: (a) The estimated kernels of Fig. 3(b) and (c) under various noise settings. The
horizontal vector on the top is the SNR of the noisy images. (b) The left image is the noisy
blurred image with SNR = 26dB and the right image is the deblurred image.
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Algorithm 2 shown in Fig. 8 (d) and Fig. 9 (d) are very clear with little artifacts.
Obviously, they are of much better visual quality than the images restored by
the method from [14] which are shown in Fig. 8 (c) and Fig. 9 (c).

We also tested our method on outdoor scenes. The blurred images on out-
door scenes usually tend to be more difficult to deblur as there are multiple
layers of blurring due to more complicated 3D structures, e.g., out-of-focus blur-
ring and moving objects. Also, the complex image structure of typical outdoor
scenes makes the deblurring process more challenging. Fig. 8 (a)-(b) and Fig. 9
(a)-(b) show two blurred image pairs on two outdoor scenes. We compared the
results from Algorithm 2 to the results from the more traditional cepstrum-
based approach ([17]). Obviously, the results from Algorithm 2 are much better
than those using the method from [17]. However, the restored images shown
in Fig. 10 (d) and Fig. 11 (d) are less impressive than the previous results of
indoor images. One reason is that the framelet coefficients of images with rich
textures are not as sparse as those of images with less textures, which results
in less robustness of our deblurring algorithm to image noises. Also, there are
more noticable artifacts in Fig. 10 (d) than in Fig. 11 (d). The reason could be
that the actual blurring in the case of Fig. 10 is a mixture of multiple blurring
processes and our model only focuses on motion blurring. One evidence is that
the estimated blur kernels shown in Fig. 10 (e) are not in the form of typical
motion-blur kernels. Another possible reason could be that the blurring kernel
of Fig. 10 is not spatially invariant due to wind blowing the leaves during camera
exposure. This can be seen from the fact that the artifacts in Fig. 10 (e) have
different directions for different leaves.

5.3. Conclusion and future work

Using multiple images not only improves the condition on deconvolution
process, but also provides more information to help the identification of com-
plicated motion blurring. However, the benefits of using multiple images can
not be easily materialized by the standard approaches as the unavoidable image
alignment errors could eliminate all the advantages of using multiple images.
In this paper, we proposed an approach to recover high-quality clear images
by using multiple images to accurately identify motion blur kernels. By us-
ing the sparsity constraints on the images and on the blur kernels in suitable
domains, the proposed approach is robust to the image formation noise and
more importantly robust to the image alignment errors. Furthermore, based
on the linearized Bregman iteration technique, we developed a fast approxi-
mate algorithm to find a good approximate solution to the resulting large-scale
minimization problem very efficiently.

Our proposed method does not require a prior parametric model on the mo-
tion blur kernel, and does not require accurate image alignment among frames.
These two properties greatly extend the applicability of motion deblurring on
general video sequences in practice. In future, we would like to investigate the
localization of our algorithm on spatial-variant motion blurring such as deblur-
ring fast-moving objects in the image. Also, we are interested in investigating
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(a) (b)

(c) (d) (e)

Figure 8: (a)–(b): two blurred images; (c): the recovered image using the method in [14]; (d):
the deblurred image using Algorithm 2; (e): the two blur kernels estimated by Algorithm 2
w.r.t. (a) and (b).

(a) (b)

(c) (d) (e)

Figure 9: (a)–(b): two blurred images; (c): the recovered image using the method in [14]; (d):
the deblurred image using Algorithm 2; (e): the two blur kernels estimated by Algorithm 2
w.r.t. (a) and (b).
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(a) (b)

(c) (d) (e)

Figure 10: (a)–(b): two blurred images; (c): the recovered image using the newest cepstral
method ([17]); (d): the deblurred image using Algorithm 2; (e): the two blur kernels estimated
by Algorithm 2 w.r.t. (a) and (b).

(a) (b)

(c) (d) (e)

Figure 11: (a)–(b): two blurred images; (c): the recovered image using the newest cepstral
method ([17]); (d): the deblurred image using Algorithm 2; (e): the two blur kernels estimated
by Algorithm 2 w.r.t. (a) and (b).
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how to incorporate the image alignment of blurred image into the proposed
minimization to achieve even better performance.
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