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Framelet based blind motion deblurring from a
single image

Jian-Feng Cai, Hui Ji, Chaoqiang Liu and Zuowei Shen

Abstract

How to recover a clear image from a single motion-blurred image has long been a challenging open problem
in digital imaging. In this paper, we focus on how to recover a motion-blurred image due to camera shake. A
regularization-based approach is proposed to remove motion blurring from the image by regularizing the sparsity
of both the original image and the motion-blur kernel under tight wavelet frame systems. Furthermore, an adapted
version of the split Bregman method ( [1], [2]) is proposed to efficiently solve the the resulting minimization
problem. The experiments on both synthesized images and real images show that our algorithm can effectively
remove complex motion blurring from natural images without requiring any prior information of the motion-blur
kernel.
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I. INTRODUCTION

Motion blurring is one of the prime causes of poor image quality in digital imaging. When an image is captured
by a digital camera, the image represents not just the scene at a single instant of time, but the scene over a period
of time. If objects in a scene are moving fast or the camera is moving over the period of exposure time, the objects
or the whole scene will look blurry along the direction of relative motion between the object/scene and the camera.
Camera shake is one main cause of motion blurring, especially when taking images using telephoto lens or using
long shutter speed under low lighting condition.

In the past, many researchers have been working on motion deblurring which recovers clear images from motion-
blurred images. In most works, the motion blur caused by camera shake is modeled by a spatial-invariant convolution
process:

f = g ∗ p+ η, (1)

where “∗” is the discrete convolution operator, g is the original image to recover, f is the observed blurry image, p is
the blur kernel (or point spread function), and η is the noise. How to recover the original image g from the observed
image f is the so-called image deconvolution problem. Based on the availability of p, there are two categories of
image deconvolution problems. If the blur kernel p is given as a prior, recovering the original image becomes a
non-blind deconvolution problem. Non-blind deconvolution is known as an ill-conditioned inverse problem as a
small perturbation of f may cause the direct solution from (1) being heavily distorted. In the past, there have been
extensive research literatures on robust non-blind deconvolution algorithm (e.g. [1], [3]–[7]). If the blur kernel p is
also unknown, how to reverse the effect of convolution by p on the blurred image f is then a blind deconvolution
problem. In general, blind deconvolution is a very challenging ill-conditioned and ill-posed inverse problem because
it is not only sensitive to image noise but also under-constrained with infinitely many solutions. Removing motion
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Fig. 1. (a): a motion-blurred image of size 1280 × 1024; (b) the image of blur kernel of (a) with image size 64 × 64. Both images are
from [8].

blurring from images is a typical blind deconvolution problem, as the relative motion between the camera and the
scene varies for individual images.

Certain priors on both the blur kernel p and the original image g have to be assumed to overcome the ill-
posedness of motion deblurring. The motion-blur kernel is quite different from some other types of blur kernels,
e.g., out-of-focus blur kernel and Gaussian optical blur kernel, as motion-blur kernel can not be represented by
some simple parametric form. In this paper, we assume that only significant motion of the camera is a translation
along image plane and that the scene being photographed is static. Let f denote the true sharp image and let g
denote the observed blurry image due to camera shake. Then, the relationship between f and g is a convolution
process (1) with the blur kernel p that vanishes out of the camera motion trajectory during exposure time. See
Fig. 1 (b) for the illustration of a real motion-blur kernel p. Briefly, the motion-blur kernel p is approximately a
smooth function with its support on a continuous curve in the image plane. From this perspective, motion deblurring
is a challenging blind deconvolution problem as the motion-blur kernels can not be characterized easily by some
parametric functional. As a result, it requires a significant number of unknowns to represent motion-blur kernels.

A. Previous work on blind deconvolution

In the past, there have been extensive research works on single-image blind deconvolution. Early works on blind
deblurring usually use a single image and assume a prior parametric form of the blur kernel p, such as linear
motion blur kernel model (e.g. [9]). These parametric motion-blur kernel models can be obtained by estimating
only a few parameters, but they are often overly simplified for practical motion blurring. To remove more general
motion blurring from images, some probabilistic priors on natural images’ edge distributions have been proposed
to derive the blur kernel (e.g., [10]–[13]). One weakness of these methods is either that the assumed probabilistic
priors do not always hold true for natural images or that it needs certain user interactions to obtain an accurate
estimation. It is noted that there also have been active researches on multi-image based blind motion deblurring
methods as multiple images provide more information of the scene and could lead to an easier configuration for
accurately estimating blur kernels. Interested readers are referred to [8], [14]–[19] for more details.

An alternative approach is to formulate the blind deconvolution as a joint minimization problem to simultaneously
estimate both the blur kernel and the clear image. To overcome the inherent ambiguities between the blur kernel p
and the clear image g, certain regularization terms on both p and g have to be added in the minimization, which
results in the following minimization formulation:

E(p, q) = min
p,g

Φ(g ∗ p− f) + λ1Θ1(g) + λ2Θ2(p), (2)

where Φ(p∗g−f) is the fidelity term, Θ1(g) and Θ2(p) are the regularization terms on the clear image and on the
blur kernel respectively. Early regularization-based methods assume the smooth constraints on images and kernels.
One such regularization (e.g. [20]) is to use the square `2 norm of image/kernel derivatives as the regularization
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term on the image/kernel, which is also the so-called Tikhonov regularization method. The variational approach
is proposed in [21]) which also assumes the smooth prior of both images and kernels by considering Gaussian
distribution priors. Moreover, the parameters involved in the regularization are also automatically inferred in [21]
by using the conjugate hyperpriors on parameters.

In recent years, TV (Total Variation) and its variations have been popular choices of the regularization term in
recent years to solve various blind deblurring problems (e.g., [5], [22]–[26]). These TV-based blind deconvolution
techniques showed good performance on removing certain types of blurrings on specific types of images, such
as out-of-focus blurring on medical images and satellite images. However, TV regularization is not the optimal
choice for removing motion-blurring, because TV regularization penalizes, e.g., the total length of the edges for
piecewise constant functions (see [5]). As a result, the support of the resulting blur kernel tends to be a disk or
several isolated disks. A more sophisticated TV-norm related model is presented in [27] with good performances
on removing modest motion blurring from images without rich textures. Also, it is dependent on the accurate input
of some prior information of the blur kernel. The main limitation of TV-based regularization for nature images is
TV-based regularizations do not preserve the details and textures very well on the regions of complex structures
due to the stair-casing effects (see e.g. [28], [29]).

Another type of regularization techniques for blind deconvolution is using various sparsity-based priors to
regularize images, kernels or both of them. Considering a smooth blur kernel, a quasi maximum-likelyhood approach
is proposed in [30] for de-convolute both sparse images and nature images which are sparsified in [30] through
a sparsifying kernel learned from training data. Based on a Bayesian approach, a sparsity-based prior on kernel
is proposed in [31] that assumes the kernel can be represented by a weighted combination of Gaussian-type basis
functions with weights satisfying a heavy tailed student’s-t distribution. The regularization on images is also based
on the assumption that the image differences satisfy a heavy tailed student’s-t distribution.

B. Our approach and most related works

In this paper, we propose a new optimization approach to remove complex motion blurring from a single image
by introducing new sparsity-based regularization terms on both images and motion-blur kernels. Our approach is
closely related to recent works on both non–blind image deconvolution ( [1], [32]) and blind motion deblurring (
[33]).

Two non-blind image deconvolution algorithms in [1], [32] are both based on the observation that images usually
have sparse representations or sparse approximations in some redundant transformed domains, e.g., wavelet ( [34])
and framelet ( [35], [36]) transforms. Given the blur kernel p, (1) is solved in [1], [32] by seeking a sparse solution
in the corresponding transformed domain. The main difference between two methods lies in the different approaches
to enforce the sparsity prior: one is using the so-called synthesis-based sparsity prior ( [32]) and the other is using
the so-called analysis-based sparsity prior ( [1]). Here we give a brief explanation of two sparsity priors in terms
of deconvolution. Interested readers are referred to [1], [37] for more detailed discussions.

For simplicity, we denote images as vectors in Rn by concatenating their columns. Let D ∈ Rm×n be an
analysis operator which decomposes the data g ∈ Rn to some transform coefficients Dg ∈ Rm. Let R ∈ Rm×n
be an synthesis operator which synthesizes the data g ∈ Rn from some transform coefficients u ∈ Rm. If R is the
left inverse of D, RD = I , we have the perfect reconstruction formula

g = Ru = R(Dg).

Then, the approach using the synthesis-based sparsity prior gives the solution ḡ as following:

ḡ := Rū; ū := argminu∈Rm Φ(p ∗ g − f) + λ‖u‖1, (3)

where Φ is the fidelity term, λ is the regularization parameter and p is the blur kernel. The approach using the
analysis-based sparsity prior yields the following solution:

ḡ := argming∈Rn Φ(p ∗ g − f) + λ‖Dg‖1. (4)

or equivalently,
ḡ := Rū; ū := argminu∈range(D) Φ(p ∗ g − f) + λ‖u‖1 (5)
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as RD = I . Two minimizations (3) and (5) are equivalent only if range(D) = Rm, i.e., D (or R) is an invertible
square matrix with m = n. When the analysis operator D is a redundant transform (e.g., tight frame transform)
whose row dimension m is larger than its column dimension n, the two minimizations gives different solutions. As
the domain of unknowns in (5) is only a strict subset of the domain of unknowns in (3), the synthesis-based approach
(3) is seeking for the most sparse solution among all transform coefficient vectors while the analysis sparsity based
minimization (5) (or (4)) is seeking for the most sparse solution only among the canonical framelet coefficient
vector (transform coefficient vector decomposed from some images). Since the weighted norm of canonical framelet
coefficients are closely related to the smoothness of the underlying function ( [38]), the result from the analysis-
based approach (5) will give a less sparse but smoother solution than that of the synthesis-based approach (3). It is
observed in extensive experiments that the deblurred result (5) with certain smoothness tends to have better visual
quality than that from (3) which often has visible artifacts along image edges.

In [33], the sparsity prior under redundant tight frame system is used to remove motion blurring from natural
images for the first time. In [33], the sparsity prior of images under framelet ( [35], [36]) domain and the sparsity prior
of motion-blur kernels under curvelet ( [39]) domain are used to regularize both images and kernels. Both sparsity
priors are enforced by the synthesis-based approach. Although impressive results have been demonstrated in [33],
there are still rooms for further improvements, especially on reducing the artifacts of the estimated original images
and better estimation of more complex motion-blur kernels. Motivated by the benefits gained in the application of
non-blind deconvolution by using the analysis-based sparsity prior ( [1]), we also adopt the analysis based sparsity
prior of images under suitable tight frame system to regularize images.

Regarding motion-blur kernel, we take a different approach from [33] to regularize it. Based on the assumption
that the motion-blur kernel can be approximated by a smooth function with the support close to a continuous “thin”
curve, we propose a mixed regularization strategy for blur kernel which includes both analysis based sparsity prior
and `2 norm regularization of blur kernels under a certain tight frame system. In our implementation, framelet
system ( [35], [36]) is chosen to represent both original images and motion-blur kernels for its implementation
simplicity and computational efficiency. Also, the minimization (5) is a more challenging problem to solve than
(3). The linearized Bregman iteration ( [25], [26]) used in [33] for solving (3) is not applicable to (5). Thus, in
this paper, we introduce another efficient solver for (5), i.e., the split Bregman method (See [1], [2]).

The rest of the paper is organized as follows. In Section 2, we formulate the minimization model and the
corresponding algorithms. Section 3 is devoted to the experimental evaluation and the discussion on future work.

II. FORMULATIONS AND ALGORITHMS

It is known that non-blind deconvolution is an ill-conditioned problem as it is sensitive to noise, that is, a small
perturbation of f may lead to a large distortion on the direct solution of (1). Extensive studies have been done
along the line of developing algorithms robust to noise. Imposing some regularization terms is proven to be an
effective approach. However, blind deblurring is a much more challenging problem as it is also an under-constrained
problem. Mathematically, there exists infinitely many solutions to (1).

There is one type of degenerate solutions (g̃, p̃) of (1) which bothers many existing blind deconvolution methods:

g̃ = g ∗ h; p̃ = p ∗ h−1, (6)

where h is some low-pass/high-pass filter. In such a case, the de-blurred image will be either over-deblurred when
h being a high-pass filter or less-deblurred when h being a low-pass filter. The extreme case of less-deblurring is

g̃ := f ; p̃ := δ, (7)

where the image is not deblurred at all. To overcome such ill-posedness of blind deconvolution, certain priors on
both images and kernels should be enforced by adding corresponding regularization terms in the minimization. And
one main role of these regularization terms is to guarantee that the solution generated by the algorithm does not
fall into the degenerate case.

In the remaining of this section, we will introduce a new approach to solve (1) with analysis-based sparsity
priors on both images and kernels under some suitable tight frame systems. In our approach, we choose framelet
system ( [35], [36]) as the frame system to represent both original images and blur kernels. Before presenting our
formulation on blind motion deblurring, we first give a brief introduction to framelet system and interested readers
are referred to [6], [40], [41] for more implementation details.
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A. Wavelet tight frame and image representation

The wavelet tight frames used here are mainly in two variable setting, however, for simplicity, we only present
wavelet tight frames in the univariate setting, since we use tensor product wavelet frames in the implementation.
A countable subset of X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
x∈X
〈f, x〉x, ∀ f ∈ L2(R). (8)

This is equivalent to
‖f‖2 =

∑
x∈X
|〈f, x〉|2, ∀ f ∈ L2(R),

where 〈f, g〉 and ‖f‖ denote the inner product and the norm of L2(R) for any two functions f, g ∈ L2(R)
respectively. Tight frame, as a generalization to orthonormal basis, relaxes the requirement of X being a basis of
L2(R) and brings in redundancy that has been proved useful in many applications in signal and image processing
(see e.g. [34], [41]). Since tight frame is redundant, there are an infinite number of possible expansions of f in the
system X . The particular expansion given in (8) is called the canonical expansion, and {〈f, g〉} is the canonical
frame coefficient sequence.

A wavelet system X(Ψ) is defined to be a collection of dilations and shifts of a finite set Ψ = {ψ1, . . . , ψr} ⊂
L2(R),

X(Ψ) := {ψj,k := 2j/2ψ(2jx− k), j ∈ Z, k ∈ Z, ψ ∈ Ψ}.

When X(Ψ) forms a tight frame, it is called a wavelet tight frame and each ψ ∈ Ψ is called a framelet. To construct
compactly supported wavelet tight frames, one usually starts from a compactly supported refinable function φ (called
a scaling function) with a refinement mask h0 satisfying

φ̂(2ω) = h0φ̂(ω),

where φ̂ is the Fourier transform ( [34]) of φ, and h0 is a 2π-periodic trigonometric polynomial with h0(0) = 1. For
a given compactly supported refinable function φ, the construction of a wavelet tight frame is to find an appropriate
set of framelets Ψ = {ψ1, . . . , ψr} defined in the Fourier domain by

ψ̂i(2ω) = hiφ̂(ω), i = 1, 2, . . . , r,

where the framelet masks hi’s are 2π-periodic trigonometric polynomials. The Unitary Extension Principle (UEP)
of [35] says that X(Ψ) forms a tight frame provided that

h0(ω)h0(ω + γπ) +

r∑
i=1

hi(ω)hi(ω + γπ) = δγ,0, γ = 0, 1.

As an application of UEP, a family of wavelet tight frame systems is derived in [35] by using uniform B-splines (
[42]) as the refinable function φ. The simplest system in this family is piecewise linear B-spline tight frame which
uses piecewise linear B-spline function as φ. This φ has the refinement mask h0 = cos2(ω2 ), and the corresponding
low-pass filter is

h0 =
1

4
[1, 2, 1],

Two framelets ψ1, ψ2 are defined by the framelet masks h1 = −
√
2i
2 sin(ω) and h2 = sin2(ω2 ), whose corresponding

high-pass filters are

h1 =

√
2

4
[−1, 0, 1], h2 =

1

4
[−1, 2,−1]. (9)

Numerical computation of the wavelet frame transform is done by using the wavelet frame decomposition
algorithm given in [36]. In fact, we use the decomposition algorithm without down-sampling. This can be easily
implemented by using the refinement and framelet masks. The transform can be represented by a matrix W
whose construction depends on the boundary conditions. In this paper, we use the Neumann (symmetric) boundary
condition. Since [6], [40] have given details of how to generate such matrices, we omit the detailed discussions
here and the interested reader should consult [6], [40] for details.
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With the matrix W , it is easy to describe the transformation process. Let g be a vector of the image after column
concatenation, the frame coefficient vector u can be computed via

u = Wg.

Once we have W , the inverse transform, i.e. the reconstruction algorithm, is W T , i.e.

g = W Tu.

It is very important to note that W can be constructed from the refinement and framelet masks such that W TW = I .
The rows of the matrix W form a tight frame in a finite dimensional space which connects well to the wavelet
frame system in function spaces (see e.g. [36] for details). In general, since there are more rows than columns
in W , WW T 6= I . When WW T = I , then the rows of W form an orthonormal basis. Finally we remark that
in practical computation, we are working in the bivariate setting. We employ the tensor product of 1D wavelet
tight frame, and the corresponding matrix W can be constructed easily via the Kronecker product of the matrix
constructed by univariate wavelet frame transform (see [6] for details). In the rest of this paper, we still use W to
denote the discrete transform generated by bivariate wavelet tight frame. We further note that W is basically used
for notational convenience. In the real computation, we do not use matrix multiplication. Instead, we use a wavelet
decomposition and reconstruction algorithm directly modified from [36].

B. Formulation of our minimization model

Given a blurred image f satisfying the relationship (1):

f = p ∗ g + η.

we take a regularization-based approach to solve the blind motion deblurring problem, which requires the simulta-
neous estimations of both the original image g and the blur kernels p. It is well known that the regularization-based
blind deconvolution approach usually results in solving a challenging non-convex minimization problem. The most
commonly used approach is an alternative iteration scheme; see [22] for instance. Let p(0) be the initial guess on
the blur kernel, the alternative iteration scheme is described in Algorithm 1.

Algorithm 1 Outline of the alternative iterations

For k = 0, 1, . . .,
1) given the blur kernels p(k), compute the clear image g(k+1):

g(k+1) := argming
1

2
‖p(k) ∗ g − f‖22 + λ1Θ1(g), (10)

where Θ1(·) is the regularization term on images and λ1 is the corresponding regularization parameter.
2) given the clear image g(k+1), compute the blur kernels p(k+1);

p(k+1) := argminp
1

2
‖g(k+1) ∗ p− f‖22 + λ2Θ2(p), (11)

where Θ2(·) is regularization term on kernels and λ2 is the corresponding regularization parameter.

There are two steps in Algorithm 1 and both steps are about using regularization-based approach for non-blind
deconvolution. Step 1 is a non-blind image deblurring problem, which has been studied extensively in the literature;
see, for instances, [3]–[7], [32]. However, there are subtle differences between Step 1 and the classic non-blind
deconvolution problems, that is, the intermediate estimated blur kernel p(k+1) used for deblurring in Step 1 is not
perfect and it is far way from the truth during the initial iterations. Inspired by the strong noise robustness of
the recent non-blind deblurring technique ( [1]), we also use the analysis sparsity prior on the original image g
under framelet system to regularize the non-blind image deblurring to alleviate the distortion caused by erroneous
intermediate estimate of the blur kernel. Thus, we propose the following regularization term in (10) of Step 1:

Θ1(g) = ‖Wg‖1, (12)
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where g is the vectorized form of image g and W is the framelet transform given in last section.
Step 2 is also a non-blind deconvolution problem but the data to recover is the motion-blur kernel p. Motion-blur

kernel can also be viewed as an image but with unique image content. See Fig. 1 for one sample motion-blur
kernel visualized as an image. It is observed that there are two essential constraints of a function being a “sound”
motion-blur kernel. One is its curvy support which implies its sparsity in spatial domain; the other is the continuity
of its support and the smoothness of the kernel along its support. We propose to translate these two constraints to
the following regularization term in (11) of Step 2:

Θ2(p) = ‖Wp‖1 +
τ

2
‖p‖22, (13)

where p is the vectorized form of kernel p, W is the same framelet transform as that in (12) and τ is the parameter
which balances the sparsity of the blur kernel and the continuity of the support of the blur kernel.

The motivation of the proposed regularization term (13) on motion blur kernels is explained as follows. There
are two components in the regularization term (13): one is the analysis based sparsity regularization under framelet
domain ‖Wp‖1 and the other is the `2 norm regularization ‖p‖22. The regularization term ‖Wp‖1 penalizes
the number of large framelet coefficients, which could be viewed as penalizing the number of pixels with large
discontinuities. Thus, the resulting minimizer p tends to be a function with the area of the support being small.
However, by only using the analysis based sparsity regularization, the support of the resulting kernel is biased
to sparse isolated points, especially when there are large oscillations on the speed of camera motion. The second
regularization term ‖p‖22 in (13) comes to correct such a bias by also regularizing the kernel p with `2 norm ‖ · ‖22,
as the resulting minimizer tends to favor the blur kernels of larger connected support. By balancing the sparsity
prior ‖Wp‖1 and the support continuity prior ‖p‖22 using parameter τ , the proposed regularization term (13) will
yield a sound motion-blur kernel.

In general, the minimization problem resulting from the regularization-based formulation for blind deconvolution
is not a convex problem due to the non-convexity of the fidelity term Φ(g ∗ p− f) (Φ(·) = ‖ · ‖22 in our approach).
Thus, the method may converge to a local minimum instead of the global one, depending on how it is initialized.
As a result, many existing blind deconvolution algorithms require some accurate physical measurement of the blur
kernel, e.g., the kernel size ( [10]). Algorithm 1 can not guarantee the convergence to the global minimum either.
However, in the experiments, it has been consistently converging to the result of high visual quality without requiring
knowing the kernel size. In the remaining of this section, we give a heuristic argument on why Algorithm 1 with
proposed regularization terms (12)–(13) is very likely to converge to a sound solution, instead of some degenerate
solution (6).

The two regularization terms (12) and (13) play important roles on avoiding the convergence to the degenerate
solution (6). For the case of over-deblurring where h is a high-pass filter, the de-blured image g̃ = g ∗ h is
a wrongly sharpened version of natural image by high-pass filtering, which will significantly increase the high-
frequency content of the image. Thus, g̃ will have much more large framelet coefficients than g does, or equivalently
‖Wg̃‖1 is much larger than ‖Wg‖1. On the other hand, the resulting blur kernel p̃ = p∗h−1 is a smoothed version
of p by low-pass filtering. Notice that the blur kernel p itself is a smooth kernel with very few high-frequency
components, compared to nature images. Thus, the number of large framelet coefficients of p̃ is nearly the same as
that of p, which implies that ‖Wp̃‖1 is still very close to ‖Wp‖1. With an appropriate parameter τ , the overall cost
(2) for the over-deblurred solution (g̃, p̃) will be larger than that of the true solution. For the case of less-deblurring
where h is a low-pass filter, the deblurred image g̃ = g ∗ h is a still a smoothed version of g but with less blurring
effect. In such a case, the resulted blur kernel p̃ is usually a blur kernel with a smaller support than the truth.
Although we can see a small decrease on the costs of both ‖Wg̃‖1, both ‖Wp̃‖1 and the penalty term ‖p̃‖22 in
(13) will see an increase of their values. By assigning an appropriate value to the parameter τ , the overall cost for
such (g̃, p̃) will still be larger than that of the true solution. In summary, the balance between the sparsity-based
regularization ‖Wg‖1 on the image g, the sparsity-based regularization ‖Wp‖1 and the `2 norm-based regularization
‖p‖22 on the kernel p is likely to avoid those degenerated solutions and generate a sound solution of high visual
quality.

C. Numerical algorithms

This section is devoted to the detailed numerical algorithm of our blind motion deblurring algorithm outlined
in Algorithm 1. Both steps in Algorithm 1 are solving the same type of large scale minimization problems. The
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difficulties lie in the non-separable `1 norm terms ‖Wg‖1 and ‖Wp‖1. One efficient solver for minimizations
involving such terms is the split Bregman iteration [1], [2], which will be used in our solver. The split Bregman
iteration is based on the Bregman iteration. The Bregman iteration was first introduced for non-differentiable TV-
energy in [43] and then was successfully applied to wavelet based denoising in [44]. The Bregman iteration was
also used in TV-based blind deconvolution in [25], [26]. To further improve the performance of the Bregman
iteration, a linearized Bregman iteration was invented in [45]. More details and an improvement called “kicking”
of the linearized Bregman iteration is described in [46], and a rigorous theory was given in [47]. The linearized
Bregman iteration for frame-based image deblurring was proposed in [32]. Recently, a new type of iteration based
on Bregman distance, called split Bregman iteration, was introduced in [2] which extended the utility of Bregman
iteration and linearized Bregman iteration to more general `1 norm minimization problems. The split Bregman
iteration for frame-based image deblurring was first proposed in [1]. The basic idea of split Bregman iteration is to
convert the unconstrained minimization problem (10) and (12) ((11) and (13) respectively) into a constrained one
by introducing an auxiliary variable d1 = Wg (d2 = Wp respectively) and then invoke the Bregman iteration to
solve the constrained minimization problem. Numerical simulations in [1], [2] show that it converges fast and only
uses a small memory footprint which make it very attractive for large-scale problems.

Let f ,g ∈ Rn denote the given blurred image f and the original image g after column concatenation. We assume
that the size of the blur kernel is not larger than that of the images, and let p ∈ Rn denote its vectorized version.
Let [·]∗ denote the matrix form of the convolution operator after concatenating operations as follows,

p ∗ f ⇐⇒ [p]∗g = [g]∗p.

In Step 1, we need to solve the following `1-norm based minimization:

min
g

1

2
‖[p(k)]∗g − f‖22 + λ1‖Wg‖1. (14)

By letting d1 = Wg, the minimization (14) is equivalent to

min
g,d1

1

2
‖[p(k)]∗g − f‖22 + λ1‖d1‖1 s.t. d1 = Wg. (15)

Then, the problem (15) is further transferred into a non-constrained minimization

min
g,d1

1

2
‖[p(k)]∗g − f‖22 + λ1‖d1‖1 +

λ1µ

2
‖(Wg − d1) + b1‖22, (16)

where µ is a constant number. This is the so-called split Bregman iteration. The iterative numerical algorithm for
solving (16) (14) is described as following:

g(`+1,k) := argming
1
2‖[p

(k)]∗g − f‖22
+λ1µ

2 ‖Wg − d
(`,k)
1 + b

(`,k)
1 ‖22,

d
(`+1,k)
1 := T1/µ(Wg(`+1,k) + b

(`,k)
1 ),

b
(`+1,k)
1 := b

(`,k)
1 + (Wg(`+1,k) − d

(`+1,k)
1 ),

(17)

Interesting readers are referred to [1] for more detailed derivation of (17). The following theorem, which follows
directly from [1, Theorem 3.2], says that iteration (17) is the right one to use.

Theorem 1: The iteration (17) satisfies the following property:

lim`→+∞
1
2‖[p

(k)]∗g
(`,k) − f‖22 + λ1‖Wg(`,k)‖1

= 1
2‖[p

(k)]∗g
(∗,k) − f‖22 + λ1‖Wg(∗,k)‖1,

where g(∗,k) is a minimizer of (14). Furthermore, assume that (14) has a unique minimizer, then iteration (17)
converges, i.e.,

lim
`→+∞

‖g(`,k) − g(∗,k)‖2 = 0.

Proof: To apply [1, Theorem 3.2], we need to prove that there exists a minimizer satisfying (14). The existence
of such a minimizer follows immediately from the definition of the cost functional.
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In Step 2 of Algorithm 2, we need to solve the minimization problem similar to (14):

1

2
‖[g(k+1)]∗p− f‖22 + λ2(‖Wp‖1 +

τ

2
‖p‖22). (18)

The split Bregman iteration can also be used to solve the above minimization efficiently with some modifications.
The sequences of v(`,k),d

(`,k)
2 ,b

(`,k)
2 is generated as following:

p(`+1,k) := argminp
1
2‖[g

(k+1)]∗p− f‖22 + λ2τ
2 ‖p‖

2
2

+λ2µ
2 ‖Wp− d

(`,k)
2 + b

(`,k)
2 ‖22,

d
(`+1,k)
2 := T1/µ(Wp(`+1,k) + b

(`,k)
2 ),

b
(`+1,k)
2 := b

(`,k)
2 + (Wp(`+1,k) − d(`+1,k)),

(19)

where µ > 0 is some parameter of the iteration, Tθ is the soft-thresholding operator. The first step of each iteration
in (19) is done by solving the following positive definite linear system:

([g(k+1)]T∗ [g(k+1)]∗ + λ2(µ+ τ)I)v

= [g(k+1)]T∗ f + λ2µW
T (d(`,k) − b(`,k)).

We have the same convergence result for (19) as that of (17).
In Step 1 (respectively Step 2), to get an exact solution of (14) (respectively (18)), we need to choose g(k+1) =

g(+∞,k) (respectively p(k+1) = p(+∞,k)) as stated in Theorem 1. However, it is too conservative to use infinite
steps of iterations. The reason is that the image g(k) or the kernel p(k) might not be accurate enough, and accuracy
obtained by the infinite loop will be wasted. This is typical in split Bregman iterations; see [1], [2]. Therefore, for
computational efficiency, we only need to perform one iteration in (17) and (19), i.e., we choose set g(k+1) = g(1,k)

and p(k+1) = p(1,k).
Moreover, in practice, the iterates g(k) and p(k) may not always be a physically sound solution. Thus, we chose

to impose the following physical conditions:

p ≥ 0,
∑
j

p(j) = 1; and 0 ≤ g ≤ 1. (20)

which says that the blur kernel is non-negative and is normalized, and the range of the original image is between
[0, 1]. In each step, we project g(k) and p(k) such that they satisfies the physical conditions in (20). Taking all
above into account, we get the complete iteration that will be used in our algorithm for blind motion-deblurring;
see Algorithm 2 for a detailed description.

III. EXPERIMENTS AND CONCLUSIONS

In our implementation, the maximum iteration number of Algorithm 2 is set to 100. For blurred color images of
size 866×1280, each iteration in Algorithm 2 (implemented in Matlab 7.8) takes roughly 10 seconds on a windows
PC with 4GB memory and one single Intel Core 2 CPU of 2 GHz Frequency. In Section III. B, when running
Algorithm 2 on real image data, maximum iteration number K = 200 and the stopping threshold ε = 10−5. The
parameters used inside Algorithm 2 are set as the following:

λ2 = 10−1λ1(
∑

i,j f(i, j));

µ1 = 2 · 103;
µ2 = 10−1µ1;
τ = 10−1µ2.

In these parameters, µ1 and µ2 are only related to the convergence rate of the Bregman iteration. Setting different
values of µ1 and µ2 does not change the outcome of Algorithm 2. The parameter λ1 depends on the complexity
of the image constant. The image with simple structure will prefer a smaller λ1. It is noted that Algorithm 2 is
rather insensitive to the value of λ1. In our experiments, we tried Algorithm 2 on image data using three candidate
values of λ1: {10−4, 10−3, 10−2} and set λ1 = 10−3 uniformly for all experiments.
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Algorithm 2 Numerical algorithm for blind motion deblurring

(1) Set k := 0, p(0) := δ,d1 = b1 := 0 and d2 = b2 := 0, where δ is the Delta function;
(2) DO 

g(k+ 1

2
) := argming

1
2‖[p

(k)]∗g − f‖22
+λ1µ1

2 ‖Wg − d
(k)
1 + b

(k)
1 ‖22,

g(k+1)(j) :=


1, if g(k+ 1

2
)(j) > 1;

0, if g(k+ 1

2
)(j) < 0;

g(k+ 1

2
)(j), otherwise,

j = 1, 2, . . . , N,

d
(k+1)
1 := T1/µ1

(Wg(k+1) + b
(k)
1 ),

b
(k+1)
1 := b

(k)
1 + (Wg(k+1) − d

(k+1)
1 ),

p(k+ 1

2
) := argminp

1
2‖[g

(k+1)]∗p− f‖22 + λ2τ
2 ‖p‖

2
2

+λ2µ2

2 ‖Wp− d
(k)
2 + b

(k)
2 ‖22,

p̃(k+1)(j) := max(p(k+ 1

2
)(j), 0), j = 1, 2, . . . , N,

p(k+1) := p̃(k+1)

‖p̃(k+1)‖1 ,

d
(k+1)
2 := T1/µ2

(Wp(k+1) + b
(k)
2 ),

b
(k+1)
2 := b

(k)
2 + (Wp(k+1) − d

(k+1)
2 ),

k := k + 1,

(21)

UNTIL (k ≥ K or ‖p(k) − p(k−1)‖22 ≤ ε)

(a) One clear image (b) the blurred image (c) the blur kernel

Fig. 2. (a): an clear image; (b): the blurred image (c): the corresponding blur kernel.

A. Simulated images

In the first part of the experiments, we synthesized one sample motion-blurred image of size 866 × 1280 to
illustrate the convergence behavior of Algorithm 2. The motion blur-kernel is simulated by letting the camera move
in a constant speed along an ”S” curve in the image plane. The sample original image is shown in Fig. 2 (a) and
the synthesized blurred image are shown in Fig. 2 (b) with the corresponding blur kernels shown in Fig. 2 (c). The
intermediate results obtained during the iterations of Algorithm 2 are shown in Fig. 3. The estimated motion-blur
kernels are shown in the first row, the intermediate recovered images are shown in the second row, and the same
region of the recovered images are shown in the third row after zooming in for better visual inspection. It is clear
that Algorithm 2 is empirically convergent to the ground truth of the original image and blur kernel. And the
convergence rate is fairly fast as it only took 160 iterations to obtain a satisfactory result. With more iterations, it is
seen from Fig. 3 (h) that Algorithm 2 estimated the motion-blur kernel very accurately and yielded a high-quality
deblurring image with little artifacts.
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(a) k = 0 (b) k = 10 (c) k = 20 (d) k = 40

(e) k = 80 (f) k = 160 (g) k = 320 (h) k = 640

Fig. 3. (a)–(h) are the results on deblurring the blurred image shown in Fig. 2 (b) in k-th iteration of Algorithm 2, for k =
0, 10, 20, 40, 80, 160, 320, 640 respectively. Estimated blur kernels are shown in the first row; intermediate deblurred images in the second
row; and one region after zooming in in the third row.
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B. Real images

In the second part of the experiments, Algorithm 2 is applied on real image data from various sources ( [10], [33],
[48]). We compared our results against the other five single-image based methods: You & Kaveh’s method ( [20]),
Fergus et al.’s method ( [10]), Shan et al.’s method ( [27]), Tzikas et al.’s method ( [31]) and Cai et al.’s method (
[33]). As we discussed in Section I, the approach proposed in [20] is based on the Tikhonov regularization on both
images and kernels. Fergus et al.’s method use the statistical properties of image derivatives to infer motion-blur
kernel. In order to get a good result, it need fairly accurate information regarding the size the motion-blur kernel,
especially when the size of motion-blur kernel is large (≥ 30 pixels). Shan et al.’s method is based on a sophisticated
TV-norm based minimization model on both image intensity and image gradients, the regularization term on the
motion-blur kernel is the `1 norm of the kernel intensity. Similar to [10], it also requires the input of the kernel
size. Cai et al.’s method ( [33]) is based on synthesis-based sparsity constraint of motion kernels in curvelet domain
and synthesis-based sparsity constraint of images in wavelet domain. For [10], [27] and [33], the results are from
the authors’ implementations. For [20] and [31], the results are from our own implementations. The parameters of
the above methods above are tuned up to find visually pleasant results on tested images. Tzikas et al.’s method
estimates the blur kernel using a weighted combination of Gaussian-type basis functions whose weights satisfying a
heavy tailed Students-t distribution. It is noted that one advantage of Tzikas et al.’s method is that many parameters
are automatically estimated and we used the default values of remained few parameters proposed in their paper.

Fig. 4 – 7 showed the recovered results from all six methods on four real blurred images, which differ from
each other on the type of image content, the blurring degree and the type of camera motion. The motion-blur
kernels estimated by Algorithm 2 are shown in Fig. 4(h) – 7 (h) for all tested images. It is seen that there are
camera motion along straight line segmentations but with varies speed, camera motion along curve and camera
motion along trajectory with sharp corners. It is seen that the visual quality of recovered images from Algorithm
2 degraded a little bit compared against that from the previous simulated experiment. The main reason is that the
blurring happening in real life is hardly a perfect spatial-invariant motion blurring, either there exist other image
blurring effects, e.g., out of focus blurring; or the motion-blurring is not completely uniform over the whole image.

Overall, compared to other evaluated methods, Algorithm 2 performed consistently over these images and the
results are of good quality with few noticeable image artifacts. The results from five other existing methods varied
in terms of visual quality and are in general visually inferior than that from Algorithm 2. You & Kaveh’s method
( [20]) only worked well on the image shown in Fig. 6 and did poorly on three other images. Such a result is not
surprising as the Tikhonov regularization used in You & Kaveh’s method emphasizes too much on the smoothness
of blur kernels such that it tends to yield Gaussian-type blur kernels. As a result, the kernel is often over-sized which
will lead to over-deblurred results. Fergus et al.’s method ( [10]) performance relies on how well the distribution of
image derivatives fit the assumption, which certainly has its limitation as the image content could vary significantly
in the experiments. It is seen from Fig. 6 and Fig. 7 that it tends to under-estimate the blur degree such that the
results look still blurry. The kernel estimation of Shan et al.’s method ( [27]) is based on the regularization `1 norm
of blur kernel, which seems not adequate enough to yield accurate estimation of motion-blur kernels tested in the
experiments. Thus, the results on tested images from Shan et al.’s method is not satisfactory. Tzikas et al.’s method
( [31]) has its advantages over other methods on the autonomous estimation of regularization parameters. However,
the kernel model considered in Tzikas is the linear combination of Gaussian-type blur kernel. As a result, it did
not perform well on images blurred by ”thin” kernels, such as Fig. 5. Cai et al.’s method ( [33]) is quite stable
compared to other methods. However, the results from Cai et al.’s method tend to show noticeable artifacts along
edges. The main reason is the usage of synthesis-based approach to enforce the sparsity constraints of image/kernel.
Such a drawback is well addressed in Algorithm 2. The results from Algorithm 2 are consistent on tested images
and in general are more visually pleasant with fewer artifacts than that of the other methods.

C. Conclusions and future work

In this paper, a new algorithm is presented to remove camera shake from a single image. Based on analysis-based
sparsity prior of images in framelet domain and a mixed regularization on motion-blur kernels, which includes both
analysis-based sparsity prior of kernels in framelet domain and smoothness prior on kernels, our new formulation
on motion deblurring leads to a powerful algorithm which can recover a clear image from a given motion-blurred
image. The analysis-based sparsity prior used in our approach empirically yields more visually pleasant results
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. The blurred image of size 728 ∗ 905 and its deblurred results with zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c)
Fergus et al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g) Algorithm 2. (h) Color-visualization of the motion-blur
kernel estimated by Alg. 2 with image size 25 ∗ 25.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The blurred image of size 640 ∗ 480 and its deblurred results with zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c)
Fergus et al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g) Algorithm 2. (h) Color-visualization of the motion-blur
kernel estimated by Alg. 2 with image size 45 ∗ 45.

than the synthesis-based sparse prior used in other methods do ( [33]). Also, our formulation does not suffer from
converging to some well-known degenerate cases as many other approaches might do. As a result, our method does
not require any prior information on the kernel while many existing techniques are dependently on some accurate
information of motion blurring which usually needs user interactions. The resulting minimization problem from
our formulation could be solved efficiently by the split Bregman method. The experiments on both synthesized and
real images show that our proposed algorithm is very efficient and very effective on removing complicated blurring
from nature images of complex structures.

Blind motion deblurring is a challenging blind deconvolution problem and there are still many open questions
remained. Our proposed algorithm performs quite well in the case of motion-blurring being the uniform blurring
over the image, but can not deal with non-uniform motion-blurring, including image blurring caused by camera
rotation and the partial image blurring caused by fast moving objects in the scene. In future, we would like to extend
our proposed algorithm to remove non-uniform motion blurring from images. Also, although the parameter setting in
our algorithm is rather simple without requiring rigorous tuning up, it is still more preferred for some applications
to have a completely automatic parameter setting process. Recently, there have been some blind deconvolution
techniques that use either variational Bayesian approach (e.g. [49]) or cross-validation techniques to automatically
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The blurred image of size 1024 ∗ 768 and its deblurred results with zoomed regions. (a) Blurred image; (b) You & Koveh [20]; (c)
Fergus et al. [10]; (d) Shan et al. [27]; (e) Tzikas et al. [31]; (f) Cai et al. [33]; (g) Algorithm 2. (h) Color-visualization of the motion-blur
kernel estimated by Alg. 2 with image size 65 ∗ 65.

determine the optimal parameter values (e.g. [50]). In future, we also would like to investigate how to incorporate
these techniques into our method to automatically infer optimal parameter setting of the de-blurring algorithm.
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