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Robust image de-blurring with inaccurate blur
kernels

Hui Ji and Kang Wang

Abstract

Most existing non-blind image deblurring methods assume that the blur kernel is free of error. However, it is
often unavoidable in practice that the input blur kernel is erroneous to some extent. Sometimes the error could be
severe, e.g, for images degraded by non-uniform motion blurring. When an inaccurate blur kernel is used as the
input, significant distortions will appear in the image recovered by existing methods. In this paper, we present a novel
convex minimization model that explicitly takes account of errors in the blur kernel. The resulting minimization
problem can be be efficiently solved by the so-called APG method. Also, a new boundary extension scheme is
incorporated in the proposed model to further improve the results. The experiments on both synthesized and real
images showed the efficiency and robustness of our algorithm to both the image noise and the model error in blur
kernel.
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I. INTRODUCTION

Image blurring is one of the prime causes of poor image quality in digital imaging. Two main causes of blurry
images are out-of-focus and camera shake. The image blurring process is commonly modeled as the convolution
of a clear image with a shift-invariant kernel plus noise:

f = k ∗ g + n, (1)

where ’∗’ denotes the discrete convolution operator, g denotes the clear image, f denotes the available blurry
observation, k denotes the blur kernel and n denotes the image noise. Recently, spatially variant blurring models
also has drawn a lot of attentions (e.g. [1]–[3]) for better modeling practical motion blurring. Both spatially invariant
and spatially varying image blurring processes can be expressed in a matrix-vector form:

f = Ag + n (2)

where f , g, n denote the column-wise vector forms of f , g and n respectively, and the matrix A denotes the
blurring matrix. For spatially invariant blurring process, each row of A corresponds to the same smoothing filter
up to a spatial shift. For spatially varying image blurring process, each row of A may correspond to a different
smoothing filter.

Image deblurring is about how to estimate the clear image g from the given blurry image f . There are two
tightly coupled sub-problems: (a) estimating the blur kernel k (or A) and (b) estimating the clear image g using
the estimated blur kernel k. Existing image deblurring methods can thus be classified into two categories: blind
image deblurring that jointly solves the above two sub-problems and non-blind image deblurring that only solves
the second sub-problem. It is well known that the non-blind image deblurring is an ill-conditioned problem in the
presence of image noise, as some high-frequency components are attenuated in the blurring process such that they
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can barely be discriminated from the noise. Simply reversing the blurring process may considerably amplify the
noise and do more harm than good. Blind image deblurring is an even more inherently ill-posed problem due to
the loss of information on both the images and the blurring process.

In the past, there have been extensive studies on how to improve the robustness of non-blind image deblurring
methods to image noise. Most of them assume the blur kernel provided for the image deblurring is free of error.
However, in practice, such an assumption often does not hold true. Taking motion deblurring for example, the
existing approach for the blur kernel estimation either is done by using some additional hardwares that augment
the camera system to aid the blurring process (e.g. [4]–[6]), or is done by using software-based blind motion
deblurring techniques that impose certain priors on motion-blur kernels to significantly constrain the form of
kernels (e.g. [7]–[10]). Despite the great progresses on blind motion deblurring, there are several issues that limit
the wider applicability of these methods. One is due to the complex nature of the practical blurring process, the
priors used for constraining kernels may not characterize the real blur kernels very accurately. As a result, the
accuracy of the estimated blur kernels varies with different data sets. Another issue is that the convolution model
(1) is often over-simplified for many practical motion-blurred images. It is shown in Levin et al. [11] that the
uniform blurring assumption on motion blurring caused by camera shake often is an over-simplified assumption.
Practical motion blurring tends to be a spatially varying blurring process. Although there have been some interesting
work on estimating spatially varying blurring matrix A (e.g. [1], [3], [12]), how to reliably estimate such a matrix
A without auxiliary hardwares remains an open question.

Without taking account of the error in the blur kernel, non-blind deblurring methods are indeed very sensitive
to even a small amount of perturbations on blur kernels. See Fig. 1 for an illustration of the sensitivity of the
widely used Richardson-Lucy (RL) method to image noise and kernel error. Clearly, besides the image noise, the
sensitivity of the deblurring method to the error in blur kernel k (or in the blurring matrix A) should be addressed
when developing practical image deblurring methods. Thus, this paper aims at developing a new non-blind image
deblurring method which not only is robust to image noise but also is robust to the blur kernel error or model
error in A. In this paper, a new regularization based approach is proposed to solve the following errors-in-variables
(EIV) version of (2) :

f = (A− δA)g + n (3)

where δA is the model error in A and n is additive image noise. The proposed minimization is convex and can be
efficiently solved by the so-called accelerated proximal gradient (APG) method with mathematically guaranteed
fast convergence. Also, a new technique of handling boundary value problem is introduced in this paper which
outperforms the existing boundary extension techniques, especially when the blurring is significant or spatially
variant.

A. Related work

Image deblurring is one long-last problem in image processing. There have been an abundant literature on this
topic. The entire body of previous work on this topic is beyond what can be covered here. Thus, we will only discuss
some most related non-blind and blind deblurring techniques. The ill-posedness of the image deblurring problem
comes from the ill-conditioning of the blurring matrix A when solving the linear system (2). Early traditional image
deblurring methods work in the frequency domain as the convolution operator can be diagonalized by the Fourier
transform, e.g., the wiener filter based deconvolution ( [13]) minimizes the negative impact of noise at frequencies
with poor signal-to-noise ratio. Rather than taking inverse filter in the frequency domain, another type of deblurring
method is using a Bayesian-based iterative procedure for recovering sharp images. One such representative approach
is the so-called Richardson-Lucy (RL) method ( [14], [15]) that utilizes the Bayes’ law to make the inference about
clear image iteratively. The RL method is adapted in [16] to handle spatially varying motion blurring. These methods
are very simple to implement and the results are relatively of fine quality. However, unpleasant ringing artifacts
near strong edges are known as the side effect of these methods.

In recent years, regularization based methods have been widely used to overcome the ill-conditioning of the matrix
A. The estimation of clear image in most regularization methods is done by solving the following minimization:

min
g∈Rn

Φ(Ag − f) + Ψ(g), (4)
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Fig. 1. Illustration of the sensitivity of the RL method to kernel error and noise. (a): original image; (b): image blurred by the horizontal
linear motion kernel of length 10 pixels; (c): result of the RL method for the blurred image shown in (b) further corrupted by Gaussian
white noise with variance σ = 2; (d): de-blurred result of the RL method for the blurred image shown in (b) using the erroneous horizontal
kernel of length 12 pixels.

where f is the observed blurry image, g is the clear image to estimate; Φ is the fidelity term dependent on the
nature of image noise and Ψ is the regularization term that enforces certain priors on de-blurred images. In the
past, many image priors have been proposed for image deblurring. The Tikhonov regularization, Ψ(g) = 1

2‖Γg‖
2
2

with some difference operator Γ, is first proposed in [17] to enforce the smoothness of the underlying image. It is
known that image edges of results from the Tikhonov method tend to be smoothed out. Thereafter, total variation
(TV) and its variations (see e.g. [9], [18]–[21]) are developed to keep image edges sharper. TV-based regularizations
are based on the `1 norm (or weighted `1 norm) of image gradients, i.e. Ψ(g) = ‖Γg‖1 where Γ denote the first-
order or higher-order difference operator. Also, some heavy-tailed statistical probabilistic constraints (e.g. [22]) are
developed in recent years to regularize the de-blurred images. TV-based regularization tends to keep image edges
sharper than Tikhonov regularization does. However, it is also observed that for nature images of complex structure,
TV-based regularization does not preserve the image details very well on the regions of complex structures due to
the stair-casing effects (see e.g. [23]).

Another promising regularization approach is based on the sparsity prior of images under certain transform
domain, such as wavelet transform (see e.g. [24]). As most images are compressible signals, the sparsity priors
assume that most coefficients of the image under these transforms are likely to be sparse, that is, most coefficients
are zero or close to zero. Such sparsity priors are usually enforced via minimizing the `1 norm of transform
coefficients of the image. For example, the wavelet tight frame transform is used in [25], [26] as the preferred
transform to sparsify images. By using `1 norm of wavelet tight frame coefficients of images as the regularization
strategy, impressive results are reported in [25], [26] for various image restoration tasks.

Besides Gaussian image noise, it is pointed out in Cho et al. [27] that some types of outlier, such as pixel
saturation and non-Gaussian noise, will invalidate the convolution model such that the results deblurred by many
existing methods have noticeable ringing artifacts. A new blur model is proposed in [27] is proposed to better
deblur images by explicitly handling these types of outliers. Another problem is the so-called boundary value
problem that also often causes ringing artifacts in the results if not appropriately handled. Boundary value problem
in image deblurring is caused by the missing information of pixels outside the image boundary which is needed to
produce the blurred image. Most existing strategy to solve this problem is to synthesize these unavailable pixels by
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Fig. 2. Results in the presence of system error δA. The true blur kernel is linear motion blur kernel of length 20 pixels and orientation 45◦

to the horizonal axis counter-clockwise. The input blur kernel for deblurring is of length 20 pixels and orientation 50◦ to the horizontal axis
counter-clockwise. (a) and (e): the original images, (b) and (f): the blurry images by true blur kernel, and (c) and (g): the blurry images by
the input blur kernel, (d) and (h): the system error δAg. Pixels values for (d) and (h) are magnified by ten times for better visual illustration.

extrapolating the available image data inside the image boundary. Various extrapolation schemes have been proposed
in the past, including zero Dirichlet, periodic, Neumann (also called reflective or symmetric) boundary extension
(see e.g. [28]). Usually, the periodic boundary extension is more suitable for methods working in frequency domain
and Neumann boundary extension works better for regularization methods in spatial domain.

B. Motivation and the outline of our approach

As we stated in the previous discussion, the assumption that the blur kernel is free of error used in most existing
methods often does not hold true in practice, especially in the case of motion blurring. As we observed in Fig. 1,
the deblurring process is indeed very sensitive to the error in the matrix A. One may take an alternating scheme
attempting to correct kernel errors using the results obtained in the previous step, just as many blind deblurring
methods do. However, the effectiveness of correcting kernel error by such an alternating iteration scheme largely
relies on the accuracy the assumed kernel priors. Due to complex nature of real blurring processes, e.g., the spatially-
variant nature of motion-blurring caused by camera shake, it remains a very challenging problem to have general
priors on blur kernels that can accurately model most real data. Based on these observations, we propose to consider
the following EIV (errors-in-variables) model for image deblurring:

f = (A− δA)g + n (5)

where g and f are the clear image and its blurred observation, A is the blurring matrix with model error δA and
n is image noise.

The goal of this paper is to develop an efficient regularization method for solving (5) such that the de-blurred
results are robust to both image noise n and model error δA. The basic idea of our proposed approach comes from
the following rewritten form of (5):

f = (A− δA)g + n = Ag + n− δAg. (6)

It is seen from (6) that to accurately estimate g, we only need to know the residual term δAg instead of the
perturbation matrix δA itself. The perturbation matrix δA is hard to estimate due to the lacking of information of
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Fig. 3. Illustration of ringing effect caused by using erroneous kernel in RL method. (a): original image; (b): blurry image; (c): de-blurred
result using RL method with an inaccurate kernel. (d): 1D illustration of the pattern of ringing artifacts along the normal direction of an
image edge. The estimated edge, denoted as the red dashed line, is decomposed as an sharp edge and periodic function, denoted as the blue
line and black dot-dash line respectively.

the blurring process. However, the estimation of the residual δAg is actually possible as there exist certain priors
to constrain δAg well. As illustrated in Fig. 2, the residual term δAg tends to be sparse in the spatial domain.
By enforcing the sparse prior of the residual δAg, we can simultaneously estimate both the clear image g and the
residual term δAg such that the error caused by δA can be explicitly removed from the EIV model (6). Moreover,
as illustrated in figure 3, the ringing artifacts caused by erroneous blur kernel usually show strong periodic patterns
around the sharp edge, which can be modeled by the summation of the sharp edge and the pattern with strong
periodicity. In our proposed regularization, we also explicitly separate these periodic patterns and sharp edges to
further suppress the ringing artifacts in the results.

Furthermore, we propose a new approach for handling boundary value problem. Instead of explicitly extrapolating
pixels outside the image boundary as most did, we propose to first estimate a clear image that includes all pixels
involved in the generation of blurred image. The resulting estimation thus has a larger support than the given image
does. Then the final result is obtained by cropping the estimated image to the same size as the given blurred image.
By this technique, we avoid the possible error caused by the extrapolation which becomes noticeable when the
blurring is significant.

The rest of the paper is organized as follows. In Section 2, we formalize the regularization strategy and explain
the underlying motivation. In Section 3, we present the detailed numerical algorithm for solving the proposed
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minimization problem. Section 4 is devoted to the experimental evaluation and discussions.

II. REGULARIZATION FORMULATION AND ANALYSIS

To overcome the sensitivity of image deblurring to image noise, certain image prior is needed to suppress the
propagation of image noise when reversing the blurring process. Motivated by the impressive performance of the
sparsity prior of images under tight wavelet frames in many image restoration tasks (e.g. [10], [29], [30]), we also
use the `1 norm of wavelet tight frame coefficients of images as the regularization term to constrain clear images.
Before we present the detailed minimization formula for robust image deblurring in the presence of model error in
the blur kernel, we first give a brief introduction to wavelet tight frame.

A. Tight framelet system

In this section, we give a brief review on wavelet frame systems. For in-depth theoretical analysis and practical
implementation, see for example [31], [32]. A wavelet frame system is a redundant system that generalizes the
orthonormal wavelet basis (see [31] for more details). Wavelet tight frames have greater flexibility than orthonormal
bases by sacrificing orthonormality and linear independence, while keeping the same efficient decomposition and
reconstruction algorithms as orthonormal wavelet bases do. The filters used in wavelet frame systems have many
attractive properties, not present in those used in orthonormal wavelet systems: e.g., symmetry (anti-symmetry),
smoothness,and shorter support. These nice properties make wavelet frame systems ideal for better representing
images.

A MRA-based wavelet frame system is based on a single scaling function φ ∈ L2(R) and several wavelet
functions {ψ1, . . . , ψr} ⊂ L2(R) that satisfy the following refinable equation:

φ(t) =
√

2
∑
k

h0(k)φ(2t− k);

ψ`(t) =
√

2
∑
k

h`(k)φ(2t− k), ` = 1, 2, . . . , r.

Let φk(t) = φ(t − k) and ψk,j,` = ψ`(2
jt − k). Then for any square integrable function f ∈ L2(R), we have a

multi-scale representation of f as the following

f =

∞∑
k=−∞

ckφk(t) +

r∑
`=1

∞∑
j=0

∞∑
k=−∞

dk,j,`ψk,j,`, (7)

where ck =
∫
R f(t)φk(t)dt and dk,j,` =

∫
R f(t)ψk,j,`(t)dt. The equation above is called the perfect reconstruction

property of wavelet tight frames. The coefficients {ck} and {dk,j,`} are called low-pass and high-pass wavelet
coefficients. The wavelet coefficients can be efficiently calculated by a so-called cascade algorithm (see e.g. [24]).
In this paper, we use the piece-wise linear wavelet frame developed in [31]:

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

See Fig. 4 for the corresponding scaling function φ, framelets ψ1 and ψ2.
In this paper, we follow the discrete implementation of 2D un-decimal multi-level framelet transform used in Cai et

al [29]. Briefly, given the 2D tensor products of linear-piecewise framelet system associated with hk, k = 0, 1, 2,
let H denote the convolution operator with filter h, The multi-level decomposition operator up to L can be written
as

W =



(∏L−1
`=0 H

(L−`)
0

)>
;(

H(L)
1

∏L−1
`=1 H

(L−`)
0

)>
;
(
H(L)

r
∏L−1

`=1 H
(L−`)
0

)>
;

...(
H(1)

1

)>
;
(
H(1)

r

)>



>

, (8)
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Fig. 4. Piecewise linear refinable scaling function and two corresponding framelets.

where H(i) denote the convolution operators associated with the given filter H at the i-th level without down-
sampling. For convenience of notation, we denote such a linear frame decomposition by a rectangular matrix W
of size m×n with m > n. Thus, given any signal f ∈ Rn, the discrete version of (7) is expressed as the following

f =W>(c) =W>(Wf),

where c ∈ Rm is the frame coefficient vector of f . It is noted that we have W>W = In but WW> 6= In unless
the tight framelet system degenerates to an orthonormal wavelet system. We need to mention here that there exist
fast algorithms for calculating Wf and W>c, which only involve the convolutions of images by a couple of filters.
Interested readers are referred to [32] for more details.

B. Regularization model

Before presenting our proposed model in this section. We may first take a look at the system (5) in the absence
of model error δA:

f = Ag + n,

There exist many robust methods for solving it. Our approach is built upon the framelet-based image deblurring
method firstly proposed in [29], because of its impressive performance and rigorous mathematical treatment. The
image deblurring method proposed in [29] is the so-called balanced approach for sparsity-based regularization,
which recovers the clear image g via solving the following minimization:

g∗ :=W>c∗;
c∗ := minc∈Rm

1
2‖AW

>c− f‖22
+κ

2‖(Im −WW
>)c‖22 + λ‖c‖1

(9)

where 0 ≤ κ < ∞ and λ is some regularization parameter, Im denotes the identity matrix. c∗ is the estimated
framelet coefficient vector that will be used to synthesize the estimated clear image g∗, via wavelet frame transform
W>. It is seen that the first term in the minimization is the `2 norm based data fidelity term that assume the existence
of Gaussian white noise. The second term is the distance between the coefficient c and the range of W , which
is associated with the smoothness of the resulting image (see [32] for more details). The last term is `1 norm of
framelet coefficient vector c that promotes the sparsity of the vector c.

1) Minimization model in the presence of model error: When there exists the model error δA in the blur matrix
A, one additional error term δAg appears in the system:

f = (A− δA)g + n = Ag − δAg + n. (10)

As we stated in the previous discussions, we propose to explicitly estimate the residual term δAg via enforcing
certain priors on δAg. The question remains how to constrain it. Notice that δA is the difference between two
low-pass filters: the true blur kernel and the input blur kernel. Thus, the term δAg is actually the response of
the clear image g to some high-pass filters, which is likely to be sparse for nature images. See figure 2 for an
illustration. Therefore, we propose to treat the residual term δAg as an additional variable for estimation, which is
done by regularizing it via a sparse constraint in the spatial domain.
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Moreover, we observed that ring artifacts caused by the perturbation δA generally have strong periodicity around
the sharp edges. See figure 3 for an illustration of artifacts caused by kernel error when using the RL method . In
other words, the results from erroneous kernel are the combination of sharp edges and periodic patterns. Recall that
the signal with strong periodicity implies that most of its discrete cosine transform (DCT) coefficients are small,
i.e., the DCT coefficient vector is sparse. Similar to the treatment of perturbation term δA, we also propose to
further suppress the ringing artifacts caused by erroneous kernel by explicitly extracting these artifacts.

Thus, we proposed that the observed blurred image is composed by two parts: one is the composite of the true
image and the artifacts blurred by the true kernel; the other is the response of clear image in some high-pass filter
channel. This leads to the following minimization model for deblurring in the presence of model error δA:

g∗ :=WT c∗;
{c∗,h∗,u∗} := argminc,h,uΦ(c,h,u)

+λ1‖c‖1 + λ2‖h‖1 + λ3‖u‖1
(11)

with
Φ(c,h,u) = 1

2‖A(W>c + C>h) + u− f‖22
+κ

2‖(Im −WW
T )c‖22,

(12)

where C denotes the DCT operator, and c ∈ Rm,h ∈ Rn,u ∈ Rn denote three variables that represent the wavelet
frame coefficients of clear image, the DCT coefficients of ringing artifacts and the residual δAg respectively. The
minimization model (11)–(12) essentially decomposes the blurred image into three components regularized by
different sparsity-based priors:

1) clear image g∗ =WT c∗, which has a nearly sparse representation in wavelet frame domain;
2) ringing artifacts h∗, whose DCT coefficient vector is nearly sparse;
3) system residual u, which is sparse in the spatial domain.
It is easy to see that the minimization model (11) is convex and there exists a very efficient numerical method for
solving (11) detailed in Section 3.

2) Modified minimization model (11) with boundary value problem handling: The system (5) will not be exact
in the neighborhood of image boundaries, as the pixels involved in the generation of pixels along the boundary
of image f are missing in the system. This is the so-called boundary value problem in image deblurring. Instead
of extrapolating these pixels using pixels inside the boundary as most methods do, we propose a new approach
that can be naturally incorporated into the model (11). The basic idea is to first estimate all pixels involved in the
generation of the observed blurry image, then crop it to the same size as the observed image. Let Ω denote the set
of all pixels inside the image boundary and let Ωc denote denote the set of pixels outside of the image boundary
but involved in the blurring process. Now let the variable c ∈ Rm′ denote the wavelet tight frame coefficient vector
that generates an image W>c with the support Ω ∪ Ωc. Then, to incorporate the new boundary handling strategy,
we only need to modify the minimization model (11) as the following

Φ(c,h,u) = 1
2‖[A(W>c + C>h)]Ω + u− f‖22

+κ
2‖(Im′ −WW

>)c‖22,
(13)

where c ∈ Rm′ ,h ∈ Rn′ , and u ∈ Rn. And the result is defined as g∗ = (W>c∗)|Ω. Notice that the difference
between models (11) and (13) lies on which image region to work on. By defining a projection operator PΩ which
sets the values of pixels in Ωc to 0 and unchanged otherwise, the model (13) can be written as

Φ(c,h,u) = 1
2‖PΩ

(
A(W>c + C>h)

)
+ u− f‖22

+κ
2‖(Im′ −WW

>)c‖22,
(14)

The advantage of this approach over the existing explicit boundary extension is that it avoids extrapolating the pixel
values outside of the boundary, which becomes quite unreliable when the blurring is significant.

C. Numerical algorithm

In this section, we give a detailed description of the efficient numerical solver for the minimization (14) derived in
last section. The minimization (14) is a convex but has non-differentiable terms. In recent years, there have been great
progresses on how to solve this type of `1 related minimization problems. In particular, the so-called Accelerated
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Proximal Gradient (APG) method has been used by [33], [34] for solving similar `1-regularized minimization
problems arising in various image/signal processing applications. Its fast convergence rate is not only mathematically
proved but also demonstrated in various image restoration tasks (see [34]). Thus, the APG method is chosen in our
implementation as the numerical solver for the minimization problem (14). For the completeness, we first give a
brief introduction of the generic APG algorithm. Interesting readers are referred to [33], [34] for more details.

The APG algorithm is designed for solving the following convex optimization model

min
x∈Rn

F (x) +G(x) (15)

where the term F is convex, continuously differentiable and its gradient ∇F is Lipschitz continuous on Rn, i.e.

‖∇F (x)−∇F (y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rn

for some constant L > 0, and the term G is convex but not necessarily differentiable. The general APG method for
solving (15) is outlined in Algorithm 1. It is seen that the only non-trivial step is the second step in (16) which also
requires solve an optimization sub-problem. Fortunately, when G(x) = λ‖x‖1, the solution to such an sub-problem
can be easily computed with a simple soft-thresholding operator. More specifically, the soft-thresholding operator
Tλ is defined as the following

Tλ : x = [x1, x2, ..., xn] 7→ [tλ1
(x1), tλ2

(x2), ..., tλn
(xn)]

with tλi
(xi) = sgn(xi) max{0, |xi| − λi}. Then, for the second step in (16), we have

xk+1 = Tλ/L
(
βk −

1

L
∇F (βk)

)
.

It is shown in [33] that Algorithm 1 only need O(1/
√
ε) iterations to yield a solution with the ε-optimality to (15).

Theorem 2.1: [33] Let the sequence {xk} be generated by Algorithm 1 and let x∗ be any minimizer of (15).
Then for any k ≥ 1 ∣∣∣[F (xk) +G(xk)]− [F (x∗) +G(x∗)]

∣∣∣ ≤ 2L‖x0 − x∗‖22
(k + 1)2

.

Algorithm 1 Numerical algorithm for solving (15)
(i) Set initial guesses x0 = x−1 ∈ Rn and set t0 = 1, t−1 = 0.

(ii) For k = 0, 1, . . ., perform the following iterations until convergence
βk := xk + tk−1−1

tk
(xk − xk−1);

xk+1 := argminx∈RnG(x)

+L
2

∥∥∥x− (βk − 1
L∇F (βk)

)∥∥∥2
;

tk+1 :=
1+
√

1+4t2k
2 .

(16)

The general APG method can be applied to solve our proposed model (14) with little modifications. For the
minimization (14), we have

F (c,h,u) = 1
2‖PΩA(WT c + C>h) + u− f‖22

+κ
2‖(Im′ −WW

T )c‖22.

It is easy to see that F is a differentiable convex function with L-Lipschtiz gradient. Its gradients with respect to
c,h,u are as the following

∇cF (c,h,u) =WATPTΩ
[
PΩA(WT c + C>h) + u− f

]
+κ(Im′ −WWT )c;

∇hF (c,h,u) = CATPTΩ
[
PΩA(WT c + C>h) + u− f

]
;

∇uF (c,h,u) = PΩA(WT c + C>h) + u− f .
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(a) (b) (c) (d)

Fig. 5. Four sample kernels tested in the experiments. (a): linear motion blur kernel of length 20 pixels and of slop 10◦ to the horizontal
axis counter-clockwise; (b): illustration of piece-wise blurring process caused by camera rotation of 10◦; (c): box blur kernel of size 15×15
pixels, (d): Gaussian blur kernel with σ = 3.

Notice that the model (11) is a special case of (14) by setting the projection operator PΩ the identity matrix.
Thus, we only give the detailed description of the numerical algorithm for solving (14); see Algorithm 2. In our
implementation, L is set as 4, κ is set as 1. The initial guess c0 are the coefficients of given blurry image under
framelet decomposition, u0 and h0 are all set as the zero vector 0.

Algorithm 2 the APG method for solving (14)
(i) Set initial guesses c0 = c−1 ∈ Rm′ ,h0 = h−1 ∈ Rn′ ,u0 = u−1 ∈ Rn′ and set t0 = 1, t−1 = 0.

(ii) For k = 0, 1, . . ., perform the following iterations until ‖W(ck+1 − ck)‖2 ≤ ε:

βck := ck + tk−1−1
tk

(ck − ck−1);

βhk := hk + tk−1−1
tk

(hk − hk−1);

βuk := uk + tk−1−1
tk

(uk − uk−1);

gck := βck −∇cF (βck, β
h
k , β

u
k )/L;

ghk := βhk −∇hF (βck, β
h
k , β

u
k )/L;

guk := βuk −∇uF (βck, β
h
k , β

u
k )/L;

ck+1 := Tλ1/L(gck);

hk+1 := Tλ2/L(ghk);
uk+1 := Tλ3/L(guk);

tk+1 :=
1+
√

1+4t2k
2 .

(17)

III. NUMERICAL EXPERIMENTS AND ANALYSIS

Through all the experiments, the parameters λ2, λ3 are set as 5λ1 and 2λ1 respectively in our implementation.
The value of λ1 is dependent on the image noise level. In our implementation, it is set as 5e−4 when there is little
noise and is set as the value close to the standard deviation of image noise otherwise. The Matlab (Version 7.11)
implementation of the deblurring algorithms are performed on an PC with an Intel Core 2 CPU of 2.4GHz and
with 4GB RAM. The average time assumption for an image of size 256× 256 pixels is around 20 seconds.

A. Simulated images

In the first part of the experiments, the proposed method is tested on synthesized degraded images. The test images
are blurred by the given blur kernels followed by adding additional Gaussian white noise. Four representative types
of blur kernels are tested in the experiments: a) translational motion blur kernel (spatially invariant), (b) blurring
matrix from rotational motion blurring (spatially varying), (c) box blur kernel and (d) Gaussian blur kernel. Both
proposed models, model (11) with Neumann boundary extension and model (14) with proposed boundary value
problem handling technique, are compared against three existing representative deblurring methods: the Richardson-
Lucy method [35], the TV based regularization method [36] and the wavelet frame based regularization method
[25]. Besides the visual comparison of the results, the PSNR measurement is also used to quantitatively evaluate
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blur type true kernel input kernel

linear motion blurring length: 20 pixels length: 20 pixels
orientation: 10◦ orientation: 20◦

spatially varying blurring motion blurring by piecewise linear
image rotation of 10◦ blur kernel

box-type blurring size: 15× 15 size 17× 17
Gaussian blurring σ = 2 σ = 3

TABLE I
THE TRUE BLUR KERNELS OF BLURRED IMAGES AND THE ERRONEOUS INPUT OF THE DEBLURRING ALGORITHMS

the quality of the restored results. Recall that given a signal x, the peak signal to noise ratio (PSNR) of its estimate
is defined as

PSNR(x̂,x) = 10 log10

2552

1
mn

∑m
i=1

∑n
j=1(x̂ij − xij)2

,

where (m,n) is the size of the image, xij is the intensity value at the pixel location (i, j), and x̂ij corresponds to
the intensity value of the restored image at the location (i, j).

In the experiments, four sample images shown in Fig. 6 (a) – Fig. 9 (a) are first blurred by four sample blur
kernels shown in Fig. 5 respectively, and then added by additional Gaussian white noise with different standard
deviation (std). The inaccurate blur kernels used as the input of the deblurring methods are listed in Table I. It is
noted that the blurring process caused by in-plane image rotation varies everywhere in the image. And we use a
piece-wise uniform blurring process to model it, that is, partition the blurred image into multiple sub-regions and
assume each sub-region is blurred by a linear motion blur kernel.

The PSNR values of the results from all five methods are summarized in Table II and Table III. It is seen that
there are noticeable advantages of the model (11) and (13) over other methods in terms of PSNR values. The
benefits using the proposed boundary problem handing are also demonstrated in this experiment, as the model (14)
outperformed (11) in most cases. The improvement on PSNR value is also consistent with the improvement on
visual quality. See Fig. 6 – Fig. 9 for an visual inspection of some sample results with respect to both noise-free and
noisy cases. It is clear that the results from the two proposed methods have the least artifacts among all methods.
Overall, the model (14) is the best performer in this experiment, in terms of both PSNR values and visual quality.

In the remains of this section, we would like to show how the performance of the proposed method scales with
the degree of kernel error by a simple experiment. The experiment is run on the image ”cameraman” blurred by a
linear motion kernel with length 20 pixels and orientation 10◦ to the horizontal axis counter-clockwise. The blurred
image is deblurred by the proposed model (14) using different erroneous kernels. The erroneous kernels are also
linear motion kernels of length 20 pixels but with different orientations: 15◦, 20◦, 30◦ and 40◦. In other words, the
orientation errors of the input kernels are 5◦, 10◦, 20◦ and 30◦ respectively. See Fig. (10) for the visualization of
the corresponding results. It is not surprising to see that the performance of the proposed method decreases when
the error increases. When the estimation error becomes very significant, e.g., more than 20◦ error in the orientation
of linear motion blur kernel, the results are smoothed out. To correct the results in the presence of very significant
kernel error, some additional module has to be incorporated into the method to correct the estimation of the blur
kernel.

B. Real images

In the second experiment, the proposed methods are applied on real motion-blurred images and the results are
compared with the following three methods: RL method ( [35]), TV regularization method ( [36]) and wavelet
frame regularization method ( [25]). Since the model (14) with the proposed boundary value problem handling
technique shows better performance than the model (11) with Neumann boundary extension. We only included the
results from (14). During the experiment, all motion-blur kernels are first inferred using the two-phase blind motion
deblurring method recently proposed by [37]. Then the inferred motion-blur kernels are used as the input of all
non-blind methods for comparison. Due to the complexity of real motion-blur kernels and the spatially varying
nature of practical motion blurring, the error in blurring matrix is unavoidable, which can be seen from the results
from the blind motion deblurring method ( [37]).
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Results of removing linear motion blur from image ”cameraman” in the presence of Gaussian white noise with std = 5. (a): the
ground truth image; (b): the blurred and noisy image (c)–(f): the results of RL method ( [35]), TV method ( [36]), wavelet frame method (
[25]) and the proposed model (14), respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of removing rotational motion blurring from noise-free image ”towergray”. (a): the ground truth image; (b): the input blurry
image; (c)–(f): the results of the RL method [35], the TV method [36], wavelet frame method [25] and the proposed model 14, respectively.
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Translational Motion Blur (Spatially Invariant)
Noise std [35] [36] [25] (11) (14)

Cameraman 0 22.75 23.94 23.93 24.38 24.48
5 21.75 23.81 23.82 23.96 24.06

Lena 0 24.98 26.27 26.08 26.40 26.81
5 23.53 25.82 25.81 26.05 26.23

Towergray 0 17.55 21.99 22.10 22.99 23.05
5 14.00 21.83 21.83 22.95 23.00

Logo 0 15.73 16.70 17.65 18.29 18.30
5 15.60 16.59 17.62 18.02 18.02

Rotational Motion Blur (Spatially Variant)
Noise std [35] [36] [25] (11) (14)

Cameraman 0 16.17 26.54 26.85 27.43 28.03
5 15.95 26.26 26.51 26.77 27.04

Lena 0 18.06 28.18 28.37 29.01 29.74
5 17.74 27.72 28.13 28.34 28.68

Towergray 0 18.43 25.35 25.32 25.68 26.21
5 18.09 23.02 24.85 25.01 25.13

Logo 0 16.44 28.67 28.65 29.23 29.22
5 16.41 25.33 28.25 28.68 28.70

TABLE II
PSNR VALUES OF THE RESULTS BY FIVE METHODS W.R.T. TWO TYPE OF MOTION BLURRING: SPATIALLY INVARIANT MOTION

BLURRING AND SPATIALLY VARYING MOTION BLURRING

Out-of-focus Blurring (Box kernel)
Noise std [35] [36] [25] (11) (13)

Cameraman 0 23.33 25.66 25.72 26.31 26.55
5 22.91 25.01 24.95 25.06 25.08

Lena 0 25.24 27.32 27.13 27.62 27.77
5 24.63 26.41 26.37 26.39 26.71

Towergray 0 23.03 23.40 23.43 23.63 23.83
5 22.41 23.19 23.27 23.47 23.52

Logo 0 16.51 18.65 19.21 19.52 19.50
5 15.90 18.04 18.36 18.64 18.66

Optical Blurring (Gaussian Kernel)
Noise std [35] [36] [25] (11) (13)

Cameraman 0 23.72 25.31 25.56 26.65 26.97
5 23.24 25.29 25.51 26.33 26.44

Lena 0 26.57 27.42 27.91 28.49 29.15
5 25.64 27.39 27.83 28.37 28.92

Towergray 0 23.50 24.02 24.16 24.62 24.63
5 23.03 23.98 24.14 24.52 24.54

Logo 0 14.60 18.28 21.55 22.25 22.24
5 14.53 18.28 21.51 22.13 22.18

TABLE III
PSNR VALUES OF THE RESULTS BY FIVE METHODS W.R.T. BOX BLUR KERNEL AND GAUSSIAN BLUR KERNEL

Two types of motion-blurred images are tested. The first is two motion-blurred images caused by camera shake
from Levin et al. [11]. In [11], both the blurry images and the corresponding true clear images are provided, which
are obtained by specific hardware configurations. Both images tested in the experiment are of size 255× 255 and
blurred by motion-blur kernel of size ranging from 13× 13 to 27× 27. The motion blur process occurring on these
two images is mostly a spatially invariant motion blur process, perturbed by a small amount of spatially varying
blurring process. The results are shown in Fig. 11, it is seen that there are noticeable artifacts in the results from
the blind deblurring method. Switching to other two existing non-blind deblurring methods does not improve the
results either. On the contrary, the results from the proposed approach (14) has the least artifacts among all. In
other words, the results from blind deblurring methods can be further improved by our proposed robust non-blind
deblurring model (14), owing to its built-in mechanism of handling model error in the blur matrices. Also, the
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Results of removing box blurring from noise-free image ”lena”. (a): the ground truth image, (b): the input blurry image; (c)–(f):
the results of the RL method [35], the TV method [36], the wavelet frame method [25] and the proposed model 14, respectively.

Blind deblurring [37] TV [36] Wavelet [25] Model (14)
”Crown” 24.86 24.74 22.23 26.58

”Children” 25.28 24.16 22.83 26.04

TABLE IV
PSNR VALUES OF THE RESULTS SHOWN IN FIGURE 11

visual improvement from our proposed model is consistent with the improvement of PSNR value; see Table IV for
the comparison of PSNR values of the results from all compared methods.

In practice, due to the varying depth of the scene, it is also often seen that motion blurring happened on the
images are spatially varing. For this type of images, we still use the same two-stage blind deblurring methods [37] to
estimate a global motion kernel by assuming the motion blurring is spatially invariant. Then this motion-blur kernel
is used to de-blur the images using existing non-blind deblurring methods and our proposed method. The tested
real images are either from [38] or taken by a Canon EOS 550D DSLR camera. The results are shown in Fig. 12
and Fig. 13. Clearly, our approach yielded the results with least artifacts and it showed that our method indeed
is robust to possible modeling error in blurring matrices. All kernels of tested images inferred by the two-stage
method [37] are shown in Fig. 14.

IV. CONCLUSIONS

In this paper, a new regularization method is developed for non-blind image deblurring which is robust to error
in kernel, noise image and boundary value problem. The resulting minimization problem is convex and can be
efficiently solved by the APG method with fast convergence. The proposed method can either be used to deblur
images when only blur kernel of low quality is available, or can be used to deblur images blurred by complex
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Results of removing Gaussian blurring from image ”logo” in the presence of image noise with std = 5. (a): the ground truth image;
(b): the input blurry and noisy image; (c)–(f): the results of the RL method [35], the TV method [36], the wavelet frame method [25] and
the proposed model (14), respectively.

blurring processes such as spatially varying motion blurring. In future, we would like investigate how to incorporate
such a framework to solve the blind motion-blurring problem when there are fast moving objects in the scene.
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from blind deblurring method [37]; the 4th to 6th row: the results from the TV regularization algorithm [36], the wavelet frame regularization
method [25] and the proposed model (14) respectively.



18

full image region full image region

Fig. 12. Results of two real images from [38]. The first row: blurred images; the second row: the results from blind deblurring method [37];
the third to 5th row: the results from the TV regularization algorithm [36], the wavelet frame regularization method [25] and the proposed
model (14) respectively.
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Fig. 13. Results of two real images taken by a Canon EOS 550D camera. The first row: blurred images; the second row: the results from
blind deblurring method [37]; the third to 5th row: the results from the TV regularization algorithm [36], the wavelet frame regularization
method [25] and the proposed model (14) respectively.
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Fig. 14. Kernels estimated by the approach of [37]. (a) and (b) are the estimated kernels for the two blurry images shown in Fig. 11; (c)
and (d) are the estimated kernels for the two blurry images shown in Fig. 12; (e) and (f) are the estimated kernels for the two blurry images
shown in Fig. 13.
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