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Wavelet Domain Multi-fractal Analysis for Static
and Dynamic Texture Classification

Hui Ji, Xiong Yang, Haibin Ling and Yong Xu

Abstract

In this paper, we propose a new texture descriptor for both static and dynamic textures. The new descriptor is built on the
wavelet-based spatial-frequency analysis on two complementary wavelet pyramids: the standard multi-scale one and the so-called
wavelet leader one. The introduced wavelet pyramids essentially capture the local texture responses in multiple high-pass channels
in a multi-scale and multi-orientation fashion, in which there exists a strong power-law relationship for natural images. Such a
power-law relationship is characterized by the so-called multi-fractal analysis. In addition, two more techniques, scale normalization
and multi-orientation image averaging, are introduced to further improve the robustness of the proposed descriptor. Combining these
techniques, the proposed descriptor enjoys both high discriminative power and robustness against many environmental changes.
We apply the descriptor for classifying both static and dynamic textures. Our method has demonstrated excellent performance in
comparison with the state-of-the-art approaches in several public benchmark datasets.

Index Terms

Texture, dynamic texture, wavelet, wavelet leader, multi-fractal analysis.

I. INTRODUCTION

Understanding visual textures, either static or dynamic, plays an important role in many computer vision and image processing
tasks such as image and scene classification, video understanding, visual retrieval and image-guided diagnosis. Despite decades
of research efforts on texture modeling, it remains a challenging problem, partly owing to the geometrical and/or photometric
variations in texture patterns caused by environmental changes (e.g. [14], [22], [58]) including non-rigid surface deformation,
viewpoint changes, illumination variation, rotation, scaling, occlusion and etc. Thus, a desired texture descriptor should not
only capture highly discriminative information but also be robust to environmental changes.

The existing texture analysis methods are performed in either spatial domain, or frequency domain, or both of them. In the
spatial domain, texture descriptors are often built on the top of some statistical measures of local texture patterns in terms of
textons ([29]). These methods have achieved certain degree of insensitivity to occlusions and cluttering by sacrificing some
holistic texture information. An alternative solution is to seek such holistic information in the frequency domain, which has
been shown to be effective on capturing essential characteristics of scene textures in [36]. To use information in both frequency
and spatial domains, wavelet-based representations have been proposed by many researchers for texture analysis, retrieval and
classification (Sec. II).

In this paper, we propose a novel texture descriptor that combines wavelet-based representation and multi-fractal analysis
to gain both strong descriptive power and robustness against environmental changes. In the proposed approach, we first
represent texture patterns by using traditional low-pass and high-pass wavelet coefficients, as well as the recently proposed
wavelet leaders [48]. Then, instead of directly using these measurements, we apply multi-fractal spectrum (MFS) analysis on
these wavelet coefficients to extract robust texture descriptors. Two additional processes: scale normalization and orientation
averaging are introduced to further improve the robustness of our approach to scale and orientation changes. Integrating all
these ingredients, the proposed texture descriptor, named wavelet-based MFS (WMFS), encodes rich descriptive information
while enjoying strong robustness against environmental changes. The WMFS is applied to the classifications of both static and
dynamic textures. Experimental evaluations on four public static texture datasets and one public dynamic texture dataset (with
five different breakdowns) show clearly the effectiveness of the proposed method.

In summary, we make several contributions in this work. First, the novel combination of wavelet, wavelet leaders and MFS
makes the proposed WMFS texture descriptor very powerful for texture classification tasks. Second, the introduced scale
normalization and rotation averaging further improves the robustness of our approach. Third, the WMFS is applicable to both
static and dynamic textures. In the experiments, WMFS performs better than or at least as good as other previously reported
texture descriptors. In the rest of the paper, Sec. II reviews related works and overviews the proposed texture descriptor.
Sec. III introduces background knowledges of the wavelet, wavelet leader and multi-fractal spectrum. Then, the proposed
texture representation, for both static and dynamic, is detailed in Sec. IV. At last, the experimental evaluations are reported in
Sec. V and the conclusion is drawn in Sec. VI.
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II. RELATED WORKS AND OUR APPROACH

There has been an abundant literature on texture classification. In the following, we only summarize recent studies that are
most relevant to our work.

A. Static Texture Classification

Many modern texture classification systems (e.g. [9], [31], [50], [57], [27], [55]) model texture patterns using the statistics
of spatial texton distribution. The basic idea is to extract local patches through robust feature detectors or random sampling.
Then these patches are quantized into a texton dictionary and from which some statistical measurements (mostly histogram
based) are derived. The main advantage of such local feature based descriptors lies in the robustness of local features to
geometric and illumination changes, as well as partial occlusions. One representative work is the texture description proposed
by Lazebnik et al. [28] which is based on the histogram of affine-invariant regions. Such a texture descriptor shows strong
robustness to in-plane image rotations, scale changes and affine transformations. The promising performance has been shown
on the applications of texture classification and retrieval. In Zhang et al. [55], a similar bag-of-words texture representation
has been used for texture classification on several benchmark datasets.

Besides the histogram, an alternative statistical tool is the fractal/multi-fractal analysis (e.g. [23], [43], [44], [51], [52],
[53]). One main attractive property of fractal/multi-fractal analysis is its ability of capturing the self-similarities [33] of spatial
distribution of textons, which is another essential characteristic of texture patterns. Varma and Garg [43] proposed to use dense
local fractal features to represent textons. In [51], [53], Xu et al. proposed to use multi-fractal analysis to characterize the
spatial distribution of pixels of different types. In their approaches, pixels are first partitioned into different sets using either
local density measurements or the SIFT-based orientation templates. Then the fractal dimension for each pixel set is estimated
and combined together to form a multi-fractal spectrum that encodes statistical characterizations on how different types of
pixels are distributed.

Spectral information of texture images has also been studied in the past for texture analysis, especially after the invention
of wavelet transform (e.g. [2], [11], [24], [40], [45], [46], [47], [48]). Do et al. [11] used the marginal distribution of wavelet
coefficients for texture retrieval. Arivazhagan et al. [1] used some advanced statistical features extracted from both low- and
high-frequency components of discrete wavelet transform (DWT) for texture classification. Arneodo et al. [2] proposed the
modulus maxima of a continuous wavelet transform (MMWT) for image analysis. For multi-component texture images including
color images and multispectral images, various similarity measures are proposed for wavelet-based statistics of images, e.g.,
the Kullback-Leibler divergence measure [45] and Rao geodesic distance [46]. Coupled with a Bayesian framework, a joint
statistical model is proposed in [24] to utilize the magnitudes of the dual complex wavelet coefficients for texture retrieval. In
these approaches, the wavelet coefficients are used as the local features and then the texture retrieval and analysis is done via
different statistical measurements or via different distance functions.

One closely related work that combines the wavelet transform and the fractal analysis is the so-called wavelet leader method
by Wendt et al. [47], [48]. Instead of using the standard wavelet coefficients, they used wavelet leaders defined as the maximum
of the neighboring high-pass wavelet coefficients in spatial-scale space. Three measurements are derived from the wavelet
leaders: scaling exponents, multi-fractal spectra and Hölder exponents. However, some important texture primitives in these
approaches are missing, e.g. low-frequency information. Also, the sensitivity to environmental changes is not well addressed.
As a result, its performance is inferior to many state-of-the-art texture descriptors. Therefore, we propose a new wavelet-fractal
approach that combines the information of textures in both spatial and spectral domains with the strong robustness against
environmental changes. In our approach, a multi-orientation wavelet pyramid is used as the representation of texture images to
combine both wavelet coefficients and wavelet leaders, which provides a solid foundation for multi-fractal analysis with rich
information. With the additional help from the scale normalization process, the proposed wavelet-based multi-fractal analysis
generates texture descriptors that are insensitive to geometrical and photometric changes.

A preliminary conference version of this work appeared in [54]. The main extensions in this journal version include the
extension of WMFS to dynamic texture along with related evaluations, the evaluation of WMFS on two more datasets, and
some other experiments to validate the use of wavelet leaders and the use of ‘averaging’ for rotation invariance.

B. Dynamic Texture Classification

Dynamic texture (DT) is defined as video sequences of moving scenes that exhibit certain stochastic stationary properties.
Such video sequences are pervasive in real world, e.g., sequences of rivers, waterfall, foliage, smoke, clouds and fire. Compared
with static texture, DT is more challenging to analyze, owing to the additional difficulties of characterizing the stochastic
dynamic behavior of DT. Traditional DT classification systems (e.g. [6], [7], [12], [41], [42]) often explicitly model the
underlying physical process and then distinguish different DTs by the values of the associated model parameters. For example,
the linear dynamical system (LDS) is used in [42] to characterize DT processes via the analysis on the resulting Stiefel manifold.
Then the LDSs of textures are compared using the Martin distance. In Chan and Vasconcelos [7], probabilistic kernels are
combined with both the appearance and motion components for classifying DT sequences. Dynamic characteristics of DT
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Fig. 1. Flow chart of the proposed wavelet-based multi-fractal spectrum texture representation.

are usually measured using normal flow (e.g. [8], [37], [38]). In [37] and [38], normal flow based statistical measurements
have been used for DT analysis. Ghanem and Ahuja [18] introduced a Fourier phase based model to capture both motion and
appearance information for DT recognition.

The development of a universal physical process for all DTs certainly is a very difficult task. Another type of methods
bypass such difficulties by using appearance and structure based discriminative methods for DT classification ([10], [17], [41],
[49], [56]). Wildes and Bergen [49] constructed spatiotemporal filters specifically tuned up for local DT structures with a
small number of image patterns and motion patterns. Zhao and Pietikäinen [56] proposed a DT descriptor that extends local
binary pattern (LBP) from the 3D volume by computing LBP of a DT sequence in three orthogonal planes. Ravichandran
et al. [41] combined both local DT structure analysis and generative models of DT for DT classification. Derpanis and
Wildes [10] proposed an approach for DT recognition by matching distributions of spatial-temporal orientation structure. Chan
and Vasconcelos [6] used kernel PCA to learn a non-linear kernel dynamic texture and applied it to video classification. In [5],
an approach based on the hierarchical EM algorithm is used for clustering DTs. Ghanem and Ahuja [17] combined elementary
distances using the maximum margin distance learning (MMDL) for DT classification.

Our solution can be viewed as an appearance-based discriminative approach. The main difference from previous studies lies
in that the discriminative information used in our approach is closely associated with stochastic self-similarities existing in a
wide range of dynamic processes that generate those dynamic textures. It is noted that the effectiveness of multi-fractal analysis
on capturing such self-similarities in dynamic processes has been demonstrated in various dynamic processes in nature (see
e.g. [4], [19]).

C. Overview of the Proposed Approach

In this section, we give an overview of the structure of the proposed approach. See Fig. 1 for an illustration of the basic
procedure of computing the proposed texture descriptor.
Scale normalization. The first component aims at improving the robustness of the wavelet coefficients to scale changes.
Motivated by recent progresses in invariant feature detection (e.g. [16]), we propose to use scale-normalized texture images
as the input for wavelet transform. The estimate of the texture scales is derived from the statistics of scale-invariant patches.
In our implementation, the Laplacian blob detector [13] is used to collect scales of local patches, followed by a global scale
estimation of the whole textured image.
Multi-orientation wavelet and wavelet leaders. Wavelet coefficients are known to encode both low-frequency and high-
frequency information of textures in a multi-scale manner. However, some statistical measurements on wavelet coefficients,
such as negative moments, can be unstable since a significant percentage of wavelet coefficients of natural images tend to be
small. Thus, in addition to traditional wavelet coefficients, a modified version of the so-called wavelet leaders [26] technique
is included as one additional measurement of texture images. The purpose is for facilitating the robust computation of multi-
fractal spectrum of textures that relies on both positive and negative moments. Moreover, to suppress the orientation sensitivity
of wavelet transform, we propose to average the wavelet coefficients over multiple oriented instances of texture images. In
summary, the above multi-orientation wavelet and wavelet leader pyramids provide two complementary measurement sources
that are stable for statistical computation and encode rich information regarding texture patterns.
Multi-fractal analysis. Based on the above representation, a multi-fractal spectrum (MFS) is estimated for each individual
wavelet domain, including the low-frequency domain, the high-frequency domain and the wavelet leader domain. The texture
descriptor is then defined as the combination of the multi-fractal spectra estimated in all three domains.
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Fig. 2. The high-pass wavelet coefficients and wavelet leaders of a sample textured image Each row represents wavelet coefficients of
horizontal, vertical, diagonal directions and wavelet leader respectively.

Temporal analysis for dynamic texture. Dynamic texture analysis differs from static texture analysis on its additional temporal
dimension. Most of the previous systems (see Sec. II-B) study DTs using methods radically different from those for static
textures. In our approach, we show that the proposed framework for static texture can be easily extended to analyze dynamic
textures with small modifications. We treat a DT sequence as three different sequences, and each of them composes 2D slides
along different spatio-temporal axis. The wavelet-based MFS descriptors of these three orthogonal sequences are combined
together to form a texture descriptor for the given DT sequence.

III. WAVELETS AND MULTIFRACTAL ANALYSIS

Before presenting the detailed description of our approach, we first give an introduction of two mathematical tools upon
which our approach is built.

A. Wavelets and Wavelet Leaders

There has been extensive literature on wavelet and its applications. Interested readers are referred to [32] for more details.
Given an image I , the discrete wavelet transform (DWT) decomposes I into one low-frequency channel DS(I) at the coarsest
scale and multiple high-frequency channels at multiple scales Wo,s(I), o = 1, 2, 3, s = 1, 2, . . . , S, where S is the number of
scales (S = 3 is used in our work) and o indicates the index of three filter orientations, i.e., horizontal, vertical and diagonal.
Thus, we have three high-frequency channels (o = 1, 2, 3) at each scale s, which encode the discontinuities of the image
along horizontal, vertical and diagonal directions in a multi-scale fashion. In our implementation, the 2D tensor product of
Daubechies’ DB2 wavelet ([32]) is chosen for its nearly anti-symmetry.

To improve the robustness of certain statistical measurements of regular wavelet coefficients, we use the additional wavelet-
based measurements, the so-called wavelet leaders ([48]) which is first proposed for multi-fractal analysis of images. Following
[48], the wavelet leaders are defined as the maximum of all wavelet coefficients in terms of magnitude in the local spatial
neighborhood and scale neighborhood at coarser scales. More specifically, for a pixel x ∈ R2 at scale s0, its corresponding
wavelet leader coefficient is defined as

Ls0(I; x) = max
1≤s≤s0

max
1≤o≤3

max
y∈Ω(x)

|Wo,s(I; y)|, (1)

where Ω(x) is the square neighborhood of x, and Wo,s(I; y) is the wavelet coefficient at y. Thus, for an input image I , the
wavelet and wavelet leader transformations produce a set of two-dimensional outputs denoted as

WL(I) = {DS(I),Wo,s(I), Ls(I) : 1 ≤ o ≤ 3, 1 ≤ s ≤ S}.

Fig. 2 illustrates the high-frequency wavelet coefficients and wavelet leaders of a sample texture image. It is seen that a
large amount of small wavelet coefficients are removed when converting wavelet coefficients to wavelet leaders, which makes
some statistical measurements applicable to the data, e.g. the negative-order moment. It is mathematically justified that the
wavelet leaders enable an accurate measurement of the multi-fractal properties of 2D measuring fields [21]. Meanwhile, such
a conversion from wavelet coefficients to wavelet leaders does not remove too much information of texture images thanks to
the multi-scale maximum nature of the edgels in the wavelet domain (See [48] for more details).

B. Multi-fractal Analysis

Fractal dimensions ([33]) have been widely used in physics and geophysics to capture self similarities in many real world
phenomena. Based on the concept of “measurement at scale δ”, fractal dimensionality studies the irregularity of a given
point set E in the space by measuring its power-law behavior with respect to the scale δ: m(δ) ∝ δp, where m(δ) is some
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Algorithm 1 Multi-orientation wavelet and wavelet leader-based MFS
Input: texture image I
Output: descriptor WMFS(I)

1) Estimating scale of I using statistics from local scale invariant features (Sec. IV-A)
2) J ← scale normalization of I
3) {J1, J2, . . . , JN} ← multiple orientations of J
4) Compute the multi-orientation wavelet and wavelet leader pyramids WL(Jk), k = 1, . . . , N (Sec. IV-B)
5) Compute the MFSs {M(Jk) : 1 ≤ k ≤ N} using the box-counting method (Sec. IV-C) and formula (6)
6) WMFS(I)← average over {M(Jk)} (Sec. IV-C)

measurement of the given point set E at scale δ. The exponential quantity p is the so-called fractal dimension and denoted by
dim(E). One popular definition of the fractal dimension is the box-counting fractal dimension ([15]) defined as follows. Given
a `-dimensional point set P = {p1,p2, . . . ,pn} ⊂ R`, let the space R` be covered by a mesh of `-dimensional hypercubes
with side length r (i.e., r-mesh `-dimensional hypercubes) and a counting function c(P, r) is defined as the number of r-mesh
`-dimensional hypercubes that intersect P . Then the box-counting fractal dimension dim(P ) is defined as

dim(P ) = lim
r→0

log c(P, r)

− log r
. (2)

In practice, for a point set coming from an image of size m×m1, to approximate the process of r → 0, we estimate the slope
of log c(P, r) for a side-length sequence, rn > rn+1 > · · · > rm > 0, (n < m), using the least squares method. In our texture
classification context, we define ri = m−i+1

m , i = n, n+ 1, . . . ,m.
As a generalization of fractal dimension, multi-fractal spectrum (MFS) analysis is a powerful tool to describe more complex

patterns mixed by multiple objects with different fractal dimensions. In the multi-fractal analysis, an image domain Λ (e.g.,
the m×m grid points in the above example) is first divided into multiple point sets Pαs according to some categorization term
α, i.e., Λ =

⋃
α Pα and Pα1

⋂
Pα2 = ∅, for α1 6= α2. The MFS is then given by the multi-fractal function dim(Pα) vs. α.

In the classical definition of the MFS, the categorization term α is defined according to the “density” function, such as the
image intensity, to guide the partition of Λ (See [53] for more details).

For a texture image I defined on Λ, given a 2D coefficient matrix X ∈ WL(I), d disjoint point sets P1, P2, . . . , Pd are first
generated from X using different thresholds α0 < α1 < . . . < αd, i.e., Pi = {p ∈ Λ : αi−1 ≤ X(p) < αi}. Then the MFS of
X is calculated as

MFS(X) = (dim(P1),dim(P2), . . . ,dim(Pd))
> . (3)

For implementation, we use the algorithm introduced in [53] that generates a d-dimensional MFS feature, where d = 26,
[α0, αd] = [1, 4], and the interval [1, 4] is equally divided into 26 subintervals with breakpoints {αi}, i = 0, 1, 2, . . . , d.

It is noted that there are many other types of fractal dimensions defined for the point sets. Our approach is not limited to
the box-counting fractal dimension. The main reason we choose the box-counting fractal dimension is for its implementation
simplicity and computational efficiency.

IV. OUR PROPOSED TEXTURE DESCRIPTOR

Our proposed texture descriptor is built upon the multi-fractal analysis in the wavelet pyramid domain. It can be viewed as
the collection of multiple MFS vectors extracted from components of the multi-orientation wavelet pyramids, which include
both wavelet coefficients and wavelet leaders of multiple oriented instances of a given texture image. The proposed approach
is illustrated in Fig. 1 and outlined in Algorithm 1. In the rest of this section, we will detail each step in the algorithm.

A. Scale Estimation and Normalization

The global scale variation caused by view-point changes is very common in practice. In order to gain robustness to such
global scale changes, the feature space upon which the texture descriptor is built should also be robust to such variation.
Unfortunately, the plain wavelet pyramid is sensitive to scale changes. Thus, we propose to first scale-normalize the original
texture image before applying the wavelet transform. The basic idea is to estimate the scale of the image using the statistics
of local scale-invariant texture patches. Thanks to recent progresses in robust local patch extraction, there are many good
local patch detectors with strong scale-invariance [16], [34], [35]. The scale-invariant blob detector used in this paper is the
affine-adapted version [35] of the scale-invariant Laplacian-of-Gaussian (LOG) region detector [30]. We use the implementation
from Dorko2 with default setting. See more implementation details in [13].

1For simplicity, we assume that the image has equal length in each dimension, otherwise we can normalize it to make so.
2http://lear.inrialpes.fr/people/dorko/downloads.html
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(a) (b) (c)

Fig. 3. (a) Three textures in different scales, the top and the middle texture images are nearly in the same scale; (b) images of twenty
detected local scale invariant patches; (c) scale-normalized images.

Inspired by these works, we estimate the global scale of given texture image using the average area of detected invariant
elliptic patches. Specifically, for an input texture image I , we first use the local patch detector to extract local elliptic patches
and keep the T largest patches, denoted as {p1,p2, . . . ,pT }. Then scale t of the image is estimated as

t =

√
1

T

∑
i=1..T area(pi). (4)

In our implementation, the 20 largest patches are used for each image to estimate its associated scale t, i.e., T is fixed at 20
for all images. We then compare t with a predefined reference scale t0. Finally, a scale normalized image J is generated by
scaling I by the factor of t0/t. See Fig. 3 for the illustration of the scale normalization. The estimated scales of three given
images in Fig. 3 (a) are 1:1:2 respectively. The images are then rescaled accordingly in Fig. 3 (c) and they appear to be on
the same scale, which illustrates that the scale-normalization process can effectively remove the scale variations.

B. Multi-orientation Wavelet Pyramid

Another weakness for wavelet transform when used for texture description is its sensitivity to large image rotations. We
propose a simple approach to overcome the sensitivity. The basic idea is to use multiple wavelet transforms with different
orientation selectivities to encode images under different rotation views, which is equivalent to apply standard 2D tensor wavelet
transform on multiple instances of the same image rotated by different angles.

More specifically, given a scale normalized image J , we generate a sequence of images {J1, J2, . . . , JN} for N uniformly
sampled orientations. In particular, Jk is generated by rotating J with angle kθ, where θ is the angle unit chosen in the
implementation. We then calculate the wavelet and wavelet leader pyramids for each rotated instance:

{WL(Jk) : 1 ≤ k ≤ N} , (5)
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F1 F2 F3 F4

Fig. 4. Four fabric textures with rotation, viewpoint, scale, illumination and non-rigid surface deformation.

(a) (b)

Fig. 5. WMFS feature vectors of four texture images shown in Fig. 4, where the x-axis denotes the dimension indices (25 out of 338
are randomly chosen for better illustration) and the y-axis denotes the values of corresponding fractal dimensions. (a) WMFS without scale
normalization and rotation averaging; (b) WMFS with scale normalization and rotation averaging.

where WL(Jk) is the set of wavelet and wavelet leader coefficient matrices for Jk as defined in Sec. III.
Clearly, the wavelet set {WL(Jk)} defined above is invariant to the rotation up to the tolerance θ/2 when discarding the

element order in the set. For the angle interval θ, it can be seen that a too large θ decreases the robustness of the resulting
feature while a too small θ decreases the discrimination power and computation efficiency. In our experiments, we use θ = π

8
as it achieves a good balance.

C. Wavelet-based MFS

As described in previous sections, given an image I , we compute its multi-orientation wavelet and wavelet leader pyramids
{WL(Jk)} from its scale-normalized version for all sampled orientations. The MFS is calculated for each component in
WL(Jk) using the box-counting method, and we define:

M(Jk) =
⊎

X∈WL(Jk)

MFS(X), (6)

where
⊎

denotes the concatenation of MFS vectors of all components of WL(Jk). Thus, we get a bag of MFS for the given
texture image I : {M(J1),M(J2), . . . ,M(JN )}. Instead of using the bag of MFSs as the texture descriptor, we construct
our wavelet-based MFS (WMFS) by averaging the MFS over its multiple-orientation instances, i.e.

WMFS(I) =
1

N

N∑
k=1

M(Jk). (7)

(a) (b) (c)

Fig. 6. Comparison of WMFS with and without scale normalization and orientation averaging. (a) The standard deviations of the estimates
shown in Fig. 5, where the blue curve stands for the WMFS without scale normalization and orientation averaging, and the red curve stands
for the WMFS with them; (b-c) the distance matrices of the four texture images in Fig. 4 using the WMFS without(b) and with(c) scale
normalization and orientation averaging.
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Averaging over orientations aims at the robustness of the descriptor to global rotation. Note that other than ‘average’, there
are other statistics that are rotation invariant such as ‘maximum’. In our empirical study we found that ‘average’ outperforms
‘maximum’ for texture classification, and we therefore choose it for achieving rotation invariance. In summary, for each
coefficient channel, we get a 26-dimensional MFS feature vector. Since three scales are used (i.e., S = 3) in wavelet
decomposition, there are total 13 wavelet coefficient channels, including one low-pass channel and nine high-pass channels
and three wavelet leader channels. Thus, the dimension of the texture feature WMFS(I) is 26×13=338.

Four texture images are shown in Fig. 4 from the same class with different viewpoints, different scales and different surface
distortions The associated WMFS with/without scale normalization and rotation averaging are shown in Fig. 5. The standard
deviation of each feature for each of the 25 randomly selected dimensions is plotted in Fig 6 (a). The variation of features across
four texture images of the same class is less when using the scale normalization and orientation averaging, which demonstrates
the invariance of the proposed WMFS to scale and orientation. This is further demonstrated in the distance matrices among
four features presented in Fig. 6 (b) and (c), where the intra-class distances are reduced when using the scale normalization
and rotation averaging.

D. Dynamic Texture Classification

In this section, we extend the proposed WMFS descriptor from 2D static texture to 3D dynamic texture, owing to the
existence of the multi-scale self-similarities, fractal structure observed in a large spectrum of dynamic nature images. For
example, it is shown in [4], [19] that the amplitudes of temporal frequency spectra of many video sequences, including camera
movements, weather and biological evolution indeed obey the power-law in terms of the frequency (the scale of sinusoids).

There are two natural ways to extend the proposed WMFS for DT. One is to treat a DT sequence as a 3D volume and
extend the WMFS for 2D image data to handle 3D volume data. This approach, while theoretically sound, faces challenges
such as dealing with varying frame rates or motion speed. The second method, which we propose here, is to capture the
self-similarity behavior of 2D slices along three orthogonal x, y and t axes in 3D DT volume. Then we calculate WMFS for
each 2D slice along three axes. For each axis, the mean of the WMFS of 2D slices is obtained. At last, the WMFS of DT
sequence is defined by concatenating the three mean fractal dimension vectors with respect to three axes. Here we only show
the calculation of WMFS for DT sequence along t axis, which is shown in Fig. 7. Suppose there are m 2D slices along t axis,
denoted as Vt = {I1, I2, . . . , Im}, where each Ii is a 2D slice, we take the mean of WMFS of all slices as the descriptor for
Vt. Specifically, we have

WMFS(Vt) =
1

m

m∑
i=1

WMFS(Ii) . (8)

WMFS(Vx) and WMFS(Vy) can be calculated in the same manner, that is, WMFS(Vx) and WMFS(Vy) are the means of WMFS
of all slices along x and y axes in DT volume respectively. Define WMFSDT (V ) = [WMFS(Vt),WMFS(Vx),WMFS(Vy)].
Then the vector WMFSDT is our proposed descriptor for the DT sequence V . It is noticed that WMFS(Vt) is about the average
of the DT structure in spatial domain over time and the temporal information of DT is not used. Since the wavelet coefficients
in the high-pass channels of a 2D slice along x- or y-axis are obtained by applying high-pass filters on the 2D slice, these
wavelet coefficients can be viewed as the normal flow along y- and x-axis using multi-scale high-pass filters. Thus, The vector
WMFS(Vx) and WMFS(Vy) are capturing the variations of the normal flow along y-axis and along x-axis. The performances
of WMFS(Vt) and WMFSDT are compared in experimental section; see Table V.

To further improve the stability of the resulting descriptor, the mean of WMFS over all slices is used. The resolution of
the frames of the video sequence is usually much lower than that of static image. Thus the slices may not contain enough
pixels to yield a stable estimation the MFS. By taking the mean, it effectively suppresses the variations of the computed MFS
vectors of all slices. Also, the temporal behavior of DT is characterized by the WMFS of the 2D slices along x and y axes,
but without explicitly using the optical flow information. Such an approach has its advantages over those optical flow based
approaches since the optical flow field of the sequence of low resolution is hard to be estimated reliably.

Only two scales are used in wavelet decomposition when calculating WMFS for DT (i.e., S = 2) due to the limitation
of the dimensions of the slices. In summary, there are nine wavelet coefficient channels including one low-pass channel, six
high-pass channels and two wavelet leader channels. Thus the dimension of WMFSDT texture feature is 26× 9× 3 = 702.

V. EXPERIMENTAL EVALUATION

A. Static Texture Classification

1) Texture Datasets: We evaluate the proposed texture descriptor on three texture datasets of modest size: the UMD texture
dataset3; the UIUC texture dataset4; the KTH-TIPS dataset [20], and one large-size dataset the ALOT dataset5 Both the UMD

3http://www.cfar.umd.edu/∼fer/High-resolution-data-base/hr database.htm
4http://www-cvr.ai.uiuc.edu/ponce grp/data/index.html
5http://www.science.uva.nl/∼aloi/public alot
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Fig. 7. WMFS for dynamic textures along t-axis.

1

C1: 96.5 C2: 95.8 C3: 99.9 C4: 97.7 C5: 99.9

C6: 99.8 C7: 100 C8: 94.7 C9: 99.8 C10: 99.9

C11: 99.7 C12: 100 C13: 100 C14: 100 C15: 98.4

C16: 100 C17: 98.5 C18: 98.7 C19: 100 C20: 96.4

C21: 97.5 C22: 97.4 C23: 97.5 C24: 99.6 C25: 99.5

1

C1: 97.0 C2: 95.5 C3: 91.0 C4: 97.8 C5: 96.8

C6: 95.3 C7: 100 C8: 94.0 C9: 97.8 C10: 99.3

C11: 99.5 C12: 98.5 C13: 98.3 C14: 95.0 C15: 100

C16: 100 C17: 100 C18: 100 C19: 88.5 C20: 99.5

C21: 97.8 C22: 99.8 C23: 99.8 C24: 99.8 C25: 100

Fig. 8. Classification rates (%) by the WMFS descriptor on the UMD dataset (left) and the UIUC dataset (right).

dataset and the UIUC dataset consist of 1000 uncalibrated, unregistered images: 40 samples for each of 25 different textures.
The image resolution of the UMD dataset is 1280×900 and the image resolution of the UIUC dataset is 640×480. Significant
viewpoint changes and scale differences present in both datasets. The sample images from these two datasets can be found
in Fig. 8. The KTH-TIPS texture dataset [20] consists of 810 images: 81 samples for each of 10 different classes with a low
resolution around 200×200. The dataset has significant viewpoint, illumination and small scale changes. The sample images
of the KTH-TIPS are shown in Fig. 9. The ALOT dataset is a large-scale dataset, which consists of 25000 color images: 100
samples for each of 250 different textures with a resolution of 1536× 1024 pixels. To speed up the computation, we only use
the grayscale version of the images downsampled by half to compute the WMFS descriptor during the classification. Some
sample images from the dataset are shown in Fig. 10.

2) Experimental Setup: In our classification experiments, the training set is selected as a fixed size random subset of the
class, and all remaining images are used as the test set. The reported classification rates are the average over 200 random
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class 1: 99.87 class 2: 98.01 class 3: 97.23 class 4: 90.82 class 5: 96.58 class 4→8 class 6→4

class 6: 95.10 class 7: 98.51 class 8: 95.54 class 9: 97.23 class 10: 97.55 class 8→10 class 9→2

Fig. 9. Sample images in the KTH-TIPS texture dataset. The first five columns show samples and the corresponding classification rates
(%) from different classes by our WMFS method; while the remained columns (images from different classes) show failed examples. Class
labels before and after “→” indicate true and classified class labels respectively. For example, “4→8” indicates an image from class 4 is
misclassified as in class 8. The same notation is used in other figures as well.

Fig. 10. Sample images from the ALOT dataset.

subsets. We use the support vector machine (SVM) implemented by Pontil et al. [39] as the classifier with RBF kernels. The
1-vs-all classification strategy is adopted in our implementation. The cost factor of the SVM is the number of images in the
dataset, and the the range of the RBF kernel parameter is [0.001, 0.05]. The parameters used in the SVM are determined by
the standard cross-validation. The parameters of the proposed texture descriptor are set as follows. The number of orientations
is 16; the wavelet is ’DB2’; the MFS parameters are the same as in [53]. Three scales (S = 3) are used for the UMD dataset,
the UIUC dataset and the ALOT dataset; and only two scales (S = 2) for the KTH-TIPS dataset due to its low resolution.

Due to the implementation complexity of many existing methods and required parameter tune-up for optimal performance,
we compare our methods against those methods which either have the code available online, or have classification results
reported on the tested datasets. For the UMD and UIUC datasets, 20 samples for each class are used for training and the rest
are used for testing. We compared our method (WMFS) against four existing methods:
• The first one, (H+L)(S+R), proposed in [28], uses a patch-based approach by clustering elliptic regions followed by a

normalization to circles. Two types of descriptors, spin image and RIFT (Rotation Invariant Feature Transform), are then
defined on each region. The resulting descriptor is the histogram of clusters of these local descriptors, which is compared
by earth mover’s distance.

• The second method, VG-fractal, introduced in [43], uses the local density function of various image measurements to
produce a 13-dimensional local descriptor. The descriptor is the histogram of clusters of these local descriptors.

• The third method, MFS is based on the multi-fractal analysis framework by [53]. The pixel classification is using the local
density function at each point. Several measurements are used to define multiple local density functions. The descriptor
is obtained by combining MFSs defined on these local density functions.

• The fourth method, OTF, is an extension of the above MFS method [51] by using multi-scale local orientation histogram
for pixel classification.

On the KTH-TIPS dataset, we compare our method with three texture classification methods from [20], [28], [55] respectively.
The method in [20] combines filter bank responses of images and a SVM for classification, and the method in [55] uses
a bag-of-visual-words framework with SVM. We follow the experiment setup in [55] and randomly divide the dataset into
a training set and a testing set. Then we report the average result over 100 runs. On the ALOT dataset, we use the same
parameters as those for the UMD and UIUC datasets, except that the step of the scale normalization is omitted as there is
little change in the scales of the images in the ALOT dataset.

Our proposed approach is implemented in MATLAB 2007B and the experiments are done on a computer with a 2 GHz Intel
Pentium Dual CPU and 2G memory. The running time on the UIUC dataset is as follows. The running time of the proposed
feature extraction is about 37 seconds per image. After feature extraction, the features are input to a SVM classifier. Our
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class 1→2 class 8→22 class 2→13 class 20→4 class 22→3

class 19→8 class 3→5 class 8→19 class 14→2 class 6→12

Fig. 11. Examples of the UMD dataset (first row) and the UIUC dataset (second row) on which the WMFS fails.

TABLE I
CLASSIFICATION RATES (%) ON THE UMD AND THE UIUC DATASETS.

Dataset VG-fractal MFS (H+L)(S+R) OTF WMFS WMFS
[43] [53] [28] [51] w/o leader

UMD 96.36 93.93 96.95 98.49 97.60 98.68
UIUC 92.31 92.74 97.02 97.40 95.45 97.62

proposed approach does not require expensive clustering. Thus, the running time for each trial is about 0.2 seconds with 25
classes. During each trial, we used 20 images per class for training, and other 20 images per class for testing.

3) Experimental Results: Tables I summarizes the classification rates of tested methods on the UMD dataset and the UIUC
dataset. Fig. 12 (a) and (b) show the classification rates vs. the class indices on both datasets respectively. The classification
rates for individual class are shown in Fig. 8. Overall, the proposed WMFS performs slightly better than current state-of-the-
art methods on these two datasets. Some texture images on which our method failed are shown in Fig. 11. A more close
inspection shows that the WMFS handles the scale and orientation changes better than the others such as the OTF method.
But it performs slightly worse on those textures with significant underlying surfaces with severe distorted geometric features
than the OTF method, for example the straight edges are distorted to curvy edges. Such sensitivity comes from the fact that
the local filter based wavelet measurements are less robust to such geometric changes than the the texton pattern based OTF
method. The performances of the WMFS descriptor computed without wavelet leaders shown in Fig. 12 for the UMD and
UIUC datasets illustrate that the inclusion of wavelet leaders indeed improves the performance of the WMFS descriptor on the
texture classification. Table II summarizes the classification rates of different methods on the KTH-TIPS dataset, where our
method again achieves the best classification performance. Examples of correctly and incorrectly classified images are shown
in Fig. 9. Table III shows the classification rates of our method and two other methods on the ALOT dataset. It shows that our
method still performs reasonably well on the large size dataset. We also conducted the t-test analysis on the recognition results
on the UMD and UIUC datasets to evaluate the statistical significance of the performance differences between the proposed one
and other methods. The t-statistic values of the results by the methods for comparison are summarized in Table IV. It is seen
that, on both datasets, the WMFS noticeably outperforms the VG-Fractal method and the MFS method, but its improvements
over the (H+L)(S+R) method and the OTF method are marginal.

B. Dynamic Texture Classification

We test the proposed texture descriptor on the UCLA dynamic texture dataset [42], which has been widely used for evaluating
dynamic texture analysis systems. The UCLA DT dataset contains DT sequences from 50 classes in grayscale. Each class
has four grayscale DT sequences and each sequence includes 75 frames with 160×110 pixels. To add more challenges and

TABLE II
CLASSIFICATION RATES (%) ON THE KTH-TIPS DATASET

Method Hayman (H+L)(S+R) Zhang WMFS
et al.[20] [28] et al.[55]

Rate (%) 94.8± 1.2 91.3± 1.4 96.1± 1.2 96.54± 1.07
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(H+L)(S+R) MFS (H+L)(S+R) MFS

VG-Fractal OTF VG-Fractal OTF

WMFS without leader WMFS WMFS without leader WMFS
(a) UMD dataset (b)UIUC dataset

Fig. 12. Classification rate vs. class index on the UMD and the UIUC datasets. The number on the top of each sub-figure is the average
rate.

TABLE III
CLASSIFICATION RATE (%) VS TRAINING SIZE ON THE ALOT DATASET

Training size 10 20 30 40 50
WMFS 82.95 89.33 93.57 95.98 96.94

OTF 81.04 89.71 93.45 94.89 95.60
MFS 71.35 78.89 82.57 84.46 85.64

reduce some ambiguity, the dataset is reorganized into five different breakdowns in [5], [6], [10], [17], [41], termed DT-50,
DT-SIR, DT-9, DT-8 and DT-7 respectively. Some sample frames from all five cases are shown in Fig. 13, Fig. 15 and Fig. 16.
Using both NN (nearest-neighbor) and SVM classifiers, we conduct experiments on five different breakdowns for evaluation,
in comparison with state-of-the-art methods [5], [6], [10], [17], [41]. For the implementation of the WMFSDT , the step of
scale estimation and normalization is omitted for computational efficiency as the scale changes are small in most DTs. The
other parameters are set as the same as those for the static textures, except that two scales are used (i.e. S=2) since image
resolution in DT is much lower than that of static texture image. Table V summarizes the classification rates of the proposed
method, together with results reported in the previous works.

1) DT-50 and the Results: The original 50 classes of DT sequences in UCLA DT dataset are used for the experiments of
DT classification. The state-of-the-art recognition rates are, 99.00% using NN [17], and 97.50% using SVM [6]. We follow the
same setup as [17] and [6]. Specifically, the training set is randomly selected using 75% (3 sequences for each class) of the
whole dataset and the rest is used as the testing set. The experiment contains 200 random trials, and we achieve the average

TABLE IV
T-STATISTIC VALUES OF THE RESULTS ON THE UMD AND THE UIUC DATASETS

Dataset WMFS vs. WMFS vs. WMFS vs. WMFS vs.
VG-fractal MFS (H+L)(S+R) OTF

UMD 3.00 5.51 1.65 0.53
UIUC 3.42 2.97 1.28 0.26
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boiling water fire flower fountain sea smoke water waterfall

Fig. 13. Sample key frames in the UCLA DT-8 dataset.

TABLE V
CLASSIFICATION RATES (%) ON THE UCLA DATASET (SUPERSCRIPT “M” IS FOR RESULTS USING MAXIMUM MARGIN LEARNING AND 1NN [17])

Method DT-7 DT-8 DT-9 DT-50 DT-SIR
Classifier 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN

[41] – – 70.00 80.00 – – – – –
[10] 92.30 – – – – – 81.00 – 42.30
[17] – – – – 95.60m – 99.00m – –
[6] – – – – – – 89.50 97.50 –
[5] – – 88.00 – – – – – –

WMFSVt 89.30 96.95 91.89 95.53 91.85 95.15 93.00 99.40 45.50
WMFSDT 96.87 98.45 97.18 96.96 96.95 97.11 99.12 99.75 61.25

recognition rates of 99.12% using NN and 99.75% using SVM, which outperform previously tested methods. See Table V for
the comparison of the results.

2) DT-SIR and the Results: To eliminate the effects owing to biases in identical viewpoint selection, the “shift-invariant
recognition (SIR)” is set in [10] as follows. Each of the original 200 DT sequences is spatially divided into left and right,
non-overlapping halves, resulting in totally 400 new sequences. The experimental setup follows that in [10]. Shown in Table V,
we achieve the average recognition rate of 61.25% using NN, which is significantly higher than 42.30% in [10].

3) DT-9 and the Results: In the DT-50 breakdown, all four sequences in each class are captured with the same viewing
parameters (e.g., identical viewpoint). To evaluate the performance across viewpoint change, a nine-class breakdown [17],
named DT-9, is created by merging same classes in DT-50 from different viewpoints. The resultant nine classes are: boiling
water (8), fire (8), flowers (12), fountains (20), plant (108), sea (12), smoke (4), water (12) and waterfall (16), where the
number denotes the number of DT sequences in each class.

Our experiment is conducted using the same configuration in [17]. A training set is randomly selected 50% from the whole
dataset (each class has two training sequences) and the rest is used as the testing set for each class. We run the experiment on
200 randomly generated training/testing sets. The average recognition rates are 96.95% by NN classifier and 97.11% by SVM
classifier. See Table V for the classification rates of different methods in the DT-9 breakdown. The confusion matrices by NN
and SVM are shown in Fig. 14.

4) DT-8 and the Results: The DT-8 breakdown [41] contains all classes of DT-9 except “plants”, which has much more
sequences than other classes. Our experiment on DT-8 is configured similarly as that on DT-9: we trained on 50% of DT-8
dataset and tested on the rest. See Table V for the classification rates of different methods on UCLA DT-8 dataset and the
confusion matrices of the proposed methods are given in Fig. 14. The figure clearly shows the superior performance of the
proposed approach.

5) DT-7 and the Results: The last breakdown on which we evaluate the proposed approach is DT-7 containing seven classes.
It is proposed in [10] by first cutting spatially each sequence in the UCLA dataset into left and right halves and then dividing
all 400 resulting sequences into seven semantic categories: flames (16), fountain (8), smoke (8), turbulence (40), waves (24),
waterfall (64), vegetation (240). See Table V for the comparison of the classification rates of different methods on UCLA DT-7
dataset. The confusion matrices are in Fig. 14. Again, our approach shows superior performance.

6) More Discussions on the Proposed DT Descriptor: Fig. 15 shows the sequences from the two classes that are misclassified
by our method in DT-50 breakdown: the sequences in class fire and class smoke are misclassified as the class water. The main
reason is that there exist some flames in certain fire sequences which are similar to the light reflections in some water sequences;
and the background with smokes in some fire sequences is nearly the same as the wave patterns in many water sequences.
See Fig. 15 (a) for an illustration. Also, it is seen from Fig. 15 (b) that the similarity between the sequences from smoke and
water makes it a challenging task to distinguish sequences from these two classes.

It is seen that the classification rates on DT-SIR are overall much lower than those on the other four breakdowns. It is
because the DT-SIR eliminates the repetitive instances of DT sequences under the same viewpoint and significantly increased
the variations of the DT sequences under different viewpoints. Considering the good robustness of multi-fractal analysis to
view changes, it is not surprising to see that our method outperforms the other method. However, there are still a lot of room
for future improvement on the robustness to view changes. Some failed sample sequences from DT-SIR by our approach are
shown in Fig. 16.
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(a) DT-9: NN (b) DT-8: NN (c) DT-7: NN

(d) DT-9: SVM (e) DT-8: SVM (f) DT-7: SVM

Fig. 14. Confusion matrices of our method on the UCLA DT-9, DT-8 and DT-7 breakdowns.

(a) fire → water (b) smoke → water

Fig. 15. (a) Sample sequences of the DT-50 dataset on which our proposed method fails; (b) sample sequences of DT-50 & DT-9 & DT-8
datasets on which our proposed method fails.
/

For the other cases, Fig. 14 shows the misclassification rates of our method between any two classes using the confusion
matrices. For the DT-9 breakdown, all the misclassification rates are below 5% except for the class smoke whose misclassification
rate is 7.86%. The reason is the same as that in the DT-50 breakdown: the sequences in the class smoke are hard to distinguish
from the sequences in the class water. The similar phenomenon is also observed in the DT-8 breakdown with misclassification
rate 8.43% for the class smoke. The other seven misclassification rates of the proposed method are less than 4% in the DT-8
breakdown. For the DT-7 breakdown, the misclassification rates are below 2% for all classes except for the class smoke, which
is misclassified as the class turbulence with an error rate 20.17%. The error is mainly due to the high inter-class similarity
between these two.

To demonstrate how the temporal information of DT will bring additional discriminative information for DT, we compare
the classification performances of WMFS(Vt) and WMFSDT in Table V. Recall that WMFS(Vt) only captures the multi-fractal
structure of DT sequences in spatial domain while WMFSDT captures the multi-fractal structure of DT in spatial-temporal
domain. The additional temporal information captured by WMFSDT significantly improves the classification performance,
especially on the DT-SIR breakdown which emphasizes the significant viewpoint variations. Such a phenomenon is not surprising
as the spatial appearances of the inner-class DT sequences may vary significantly and only temporal information can help
detecting the similarities of the inner-class DT sequences on their temporal dynamics.

VI. SUMMARY AND CONCLUSIONS

Motivated by the strong multi-scale power-law relationship in natural texture patterns, in this paper, we propose a new texture
descriptor, wavelet-based multi-fractal spectrum (WMFS), for both static and dynamic textures. The power-law relationship is
characterized by extracting the multi-fractal structure from the wavelet and wavelet leader pyramids of images. Additionally,
two more techniques, scale normalization and multi-orientation averaging are introduced to further improve the robustness of
the wavelet-based multi-fractal analysis to scale and rotation variations, which are not well addressed by existing fractal analysis
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SIR:class 15→ SIR:class 33 SIR:class 24→ SIR:class 22 SIR:class 44→ SIR:class 46 DT7: smoke→ DT7: turb.

Fig. 16. Sample sequences from the datasets DT-SIR & DT-7 on which our proposed method fails.

based approaches. By combining these techniques, we developed a texture descriptor with both high discriminative power and
robustness against many environmental changes. There are several advantages of the proposed texture descriptor, including (a)
high inter-class discriminability, (b) strong robustness to inner-class variations and many environmental changes, and (c) easy
implementation as it avoids many complicated processing steps often used by other modern methods, e.g. clustering, texton
generation and cross-bin comparisons.

Our proposed WMFS texture descriptor is based on the statistical measure on the distribution of different types of pixels.
Thus, it also suffers from the often seen weakness as many other statistical methods, that is, it requires sufficient pixels to have
an accurate and stable estimation. As a result, the WMFS does not work very well on the static texture images of very low
resolution. It is empirically observed that when the image resolution is less than 64× 64, it does not perform as well as some
state-of-the-art methods such as (H+L)(S+R) method. However, such a weakness is not severe for DT recognition. The reason
is that we are taking the average of the WMFSs over many 2D slices as the resulting descriptor which effectively suppresses
the estimation variations. In the future, we would like to investigate more effective multi-fractal analysis tools for static texture
of low resolution. Also, we are interested in studying the application of the proposed WMFS based DT descriptor in object
recognition and action recognition for surveillance videos.
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