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Abstract

Blind motion deblurring is an important problem that
receives enduring attention in last decade. Based on the
observation that a good intermediate estimate of latent im-
age for estimating motion-blur kernel is not necessarily the
one closest to latent image, edge selection has proven it-
self a very powerful technique for achieving state-of-the-
art performance in blind deblurring. This paper presented
an interpretation of edge selection/reweighting in terms
of variational Bayes inference, and therefore developed a
novel variational expectation maximization (VEM) algo-
rithm with built-in adaptive edge selection for blind deblur-
ring. Together with a restart strategy for avoiding undesired
local convergence, the proposed VEM method not only has
a solid mathematical foundation but also noticeably outper-
formed the state-of-the-art methods on benchmark datasets.

1. Introduction
Motion blurring is a often-often type of image degrada-

tions. When there is a relative motion between the camera
and the scene during exposure time, the resulting image will
look blurry, known as motion blurring in digital photogra-
phy. For example, one common cause of motion blurring
is camera shake during exposure time. The so-called blind
motion deblurring is then about recovering a clear image
with sharp details from an input motion-blurred image.

This paper focuses on uniform motion blurring, i.e., the
motion is nearly constant over the image. Uniform motion
blurring happens when camera translates along image plane
and the scene depth has small variations. Such blurring is
often seen when taking a picture on targeted static object us-
ing mobile phone with 4X zoom or more. Uniform motion
blurring can be modeled as a convolution process:

g = k ⊗ f + n, (1)

where the operator⊗ denotes the discrete convolution oper-
ator, g denotes the given blurred image, f denotes the latent

clear image, k denotes the unknown blur kernel determined
by the motion, and n denotes noise.

Uniform motion deblurring is then about estimating the
pair (k, f) from (1), which is an ill-posed problem with
many solutions fitting(1) well. For instance, the trivial solu-
tion (δ, g) where δ denotes Delta function. To resolve such
ambiguities, one has to impose certain priors on both kernel
and latent image to constrain the space of feasible solutions.
Such prior can be invoked either in the form of regularized
variational models or in Bayesian framework, and they of-
ten come to the same solution. For example, an Maximum
a posteriori (MAP) estimator is to find the maximum of

p(f, k|g) ∝ p(g|f, k)p(f)p(k),

where p(g|f, k) is likelihood function, and p(f), p(k) are
statistical priors of f and p. After applying a negative log,
such an MAP estimator is equivalent to minimize the fol-
lowing regularized variational model:

min
f,k

Φ(g − f ⊗ k) + Ψ1(f) + Ψ2(k). (2)

where Φ(·) is fidelity term, and Ψ1(·),Ψ2(·) regularize
clear image and kernel. For example, one empirical statis-
tics of natural images models image gradients as the sam-
ples drawn from i.i.d. Laplacian distribution. Then, an
MAP estimator from such statistical prior is the same as
the total variation, Ψ1(f) = ‖∇f‖1, based regularization.

1.1. Discussions

The MAP estimator or the solution from variational
model (2) usually takes an iterative procedure that alterna-
tively updates f (or∇f ) and k. The main challenge in such
an iterative procedure is how to prevent the sequence con-
verges to suboptimal undesired local minimum or degener-
ate trivial solution (k ≈ δ). There have been an enduring
research effort along this line, and many recent works are
based on the following observation: the intermediate esti-
mation of f (or∇f ) is for helping more accurate estimation
of the kernel k, not the one as close to the truth. Once the



estimation of the kernel is finalized, one then estimate an
image that is closest to the truth. Thus, the prior from nat-
ural image statistics is not necessarily the optimal choice of
the image prior used in estimating intermediate results.

One approach is modifying the MAP estimator such that
the intermediate estimates of latent image are tuned for bet-
ter estimating blur kernel. Some methods modify the regu-
lar sparsity-prompting norm in regularization methods, e.g.
normalized `1-norm based regularization [19] and approx-
imated `0-norm regularization [43]. Other methods intro-
duce some heuristic procedure to modify the intermedi-
ate results such that the resulted one can lead the estima-
tion of kernel toward the right direction. Many strategies
have been proposed, including saliency edge/region selec-
tion [41, 14, 29] and edge filtering that removes weak de-
tails and enhancing salient edges [8].

Another approach is replacing MAP estimator by Varia-
tional Bayes (VB) methods [24, 10, 23, 22, 39, 1]. Differ-
ent from the MAP estimator, VB methods pursue posteriori
mean estimates for the kernel k such that the kernel is most
likely with respect to the distribution of possible clear im-
ages. In addition, as summarized in [39, 18], VB based
method will lead to an iterative re-weighting scheme that
have the effect of promoting sparsity in image gradient do-
main. Wipf and Zhang [39] showed that when using Gaus-
sian Scale Mixture (GSM) as the prior on image gradients,
the VB based framework can be reformulated as an uncon-
ventional MAP framework with a join regularization term
that depends on kernel, image gradients and noise level.

Both VB methods and edge selection based MAP esti-
mators have their advantages and disadvantages. VB meth-
ods have their merits in several aspects, including rigorous
mathematical interpretation, simpler implementation and
better stability. However, their experimental performance
is not state-of-the-art. Oppositely, edge selection/weighting
based MAP methods depends on some heuristic strategy for
edge selection/weighting, and some of them are among the
top performers. Edge selection based methods tends to per-
form very well on the images with large blurring degree, but
not so on the images with small blurring degree.

1.2. Our Contributions

Motivated by impressive performance gain of edge se-
lection/reweighting for blind image deblurring, this paper
aims at developing a mathematical foundation of edge se-
lection/reweighting in the context of blind deblurring, from
the viewpoint of VB inference. Thereafter a new edge
re-weighting based deblurring method is presented in the
framework of the VEM method.

The understanding of edge selection/reweighting in blind
deblurring is based on the VEM method that alternatively
estimates sharp image gradients and blur kernels. In the
framework of the VEM method, instead of viewing the la-

tent variable as the image gradient field of the latent im-
age as existing VB methods, we interpret the latent vari-
able as the image gradient that optimized for better estima-
tion of blur kernel. The key idea of implementing such a
latent variable is modeling the latent variable as a set of
independent random variables whose standard deviations
are regularized by the prior motivated from edge selec-
tion/reweighting. The outcome of such an approach leads to
a new VEM method with built-in adaptive edge selection.

It is observed that the proposed VEM method sometimes
suffers from the convergence to sub-optimal local minima,
which indeed is also the issue of most VB methods. In the
context of blind deblurring, a restart strategy is proposed for
the VEM algorithm for effectively circumventing subopti-
mal local convergence, especially when the blurring degree
is large. Together with the restarting strategy, the proposed
VEM method for blind motion deblurring comes with a
solid mathematical foundation, good stability to varying im-
age contents, and superior deblurring performance. Exten-
sive experiments on both synthesized dataset and real im-
ages showed that the proposed method outperformed most
existing methods by a noticeable margin.

2. Related Work

There is abundant literature on blind deblurring using ei-
ther only one image (e.g. [41, 8, 32, 10, 19, 23, 34, 43, 47,
25, 28, 30, 12, 45, 9, 11]) or using multiple images (e.g.
[4, 31, 7, 46]). We only focus on single image blind motion
deblurring that are very relevant to the proposed method.

Regularization methods. In the framework of MAP esti-
mation, many types of regularizations have been developed
in the past for blind motion deblurring. For example, Cai
et al. [3, 5] proposed to regularize clear images by mini-
mizing the `1-norm of its wavelet/framelet transform. In
order to deal with the issue of the bias toward degenerate
solution when only using `1-norm relating regularization,
Krishnan et al. [19] proposed to replace it by the normal-
ized `1-norm, i.e. ‖ · ‖1/‖ · ‖2 on image gradients. In [43],
a new sparsity-prompting function is proposed which ap-
proximates `0-norm of image gradients. For text images,
Pan et al. [28] proposed to regularize the deblurring process
by minimizing `0-norm of both intensity and image gradi-
ents. Instead of using image gradients, Sun et al. [34] in-
troduced a set of image patch prior specifically tailored for
image edges and corners for blind deblurring. Michaeli and
Irani [25] proposed a different prior on image patches that
exploits the recurrence of image patches in multiple scales.

Edge processing relating techniques. Based on the idea
of processing intermediate estimations of clear image in or-
der to better guide the estimation of blur kernel, Cho and
Lee [8] presented a fast deblurring algorithm by iteratively
estimating the blur kernel using the images which are the



modified version of intermediate recovered images. The
modification is done by first running shock filter on the re-
covered images and then only keep the edges are selected
such that its histograms are orientation isotropic. Xu and
Jia [41] proposed another edge selection strategy based on
the observation that those edges whose span are smaller
than the support of the kernel will lead the kernel estima-
tion to the wrong direction. Based on a new metric on edge
saliency, a map of salient edges are constructed in [41] to
facilitate the estimation of blur kernel. In [29], a different
definition of salient structure is proposed. Instead of using
salient edges, Hu et al. [14] proposed to select image re-
gions for kernel estimation. In [12], Gong et al. proposed
an adaptive edge selection algorithm by introducing a bi-
nary gradient activation vector with sparse cardinality con-
strain in their optimization problem.
Variational Bayesian Frameworks. It is shown in Levin et
al. [22] that many naive MAP approaches may fail because
they mostly favor trivial solutions. The VB method that
maximizing marginalized distributions has been proposed
to replace MAP estimator to address this issue; see e.g.
[10, 22, 23, 39, 1]. Fergus et al. [10] modeled images gra-
dients using i.i.d. mixture of zero-mean Gaussians and used
Miskin and MacKay’s algorithm to iteratively update the es-
timations of image and kernel. Levin et al. [23] also mod-
eled image derivatives using a mixture of zero-mean Gaus-
sians. Different from Fergus et al. [10], they introduced a
set of i.i.d. hidden variables to indicate the mixture com-
ponent from which each image gradient arises, and adopted
a VEM framework which makes use of the mean field ap-
proximation. Babacan et al. [1] presented a VB method
using super-Gaussian image priors. Wipf and Zhang [39]
analyzed both VB method and MAP method. They showed
that the underlying cost functions used by VB framework
with GSM prior can be reformulated as an unconventional
MAP cost function with a joint regularization term depend-
ing on kernel, image gradient and the noise level, and the
concavity of the regularization on image gradients is adap-
tively changing during the iterative optimization process.

In recent years, many deep learning based approaches
have been proposed for blind motion deblurring. See e.g.
[20, 26, 44, 35, 42, 27, 6, 40, 33]. Most of them take an end-
to-end approach to address non-uniform blind deblurring.

3. Main Body
3.1. Preliminaries on Variational EM

Consider a probabilistic model involving observed vari-
able y and latent variable z, parameterized by θ ∈ Θ. The
Maximum Marginal Likelihood estimator of θ is given by

θ∗ = argmaxθ∈Θ p(y; θ) = argmaxθ∈Θ

∫
p(y, z; θ)dz.

Let q be any probability distribution on z such that

q(z) > 0. Then by Jensen’s inequality, we have the follow-
ing lower bound of the marginal log-likelihood log p(y; θ)

log p(y; θ) ≥
∫
q(z) log

p(y, z; θ)

q(z)
dz.

Define F (q, θ) =
∫
q(z) log p(y,z;θ)

q(z) dz. Instead of di-
rectly maximizing the marginal log-likelihood, the expec-
tation maximization (EM) algorithm maximizes the lower
bound F (q, θ):

(q∗, θ∗) = argmaxq,θ∈Θ F (q, θ).

Compared with the standard EM, variational EM (VEM)
method solves the optimization problem above by con-
straining q inside some family of distributions Q. This opti-
mization problem is solved by alternatively maximizing the
function F (q, θ) between q(z) ∈ Q and θ ∈ Θ. For the t-th
iteration,

1. E-step. Update q(z) using θt−1:

qt = argmaxq∈QEq(z)[log p(z,y;θt−1)
q(z) ]

= argminq∈Q KL(q(z)||p(z|y; θt−1)).
(3)

2. M-step. Update θ using qt:

θt = argmaxθ∈ΘEqt(z)[log p(z, y; θ)], (4)

where Θ denotes the feasible set of parameters, and
KL(q||p) denotes the KL-divergence between q and p. See
[2] for more details on EM or VEM

3.2. Problem Formulation in VEM

Estimating kernel in the domain of image gradients is
usually more preferred, i.e. the kernel is estimated by

∇g = k ⊗∇f +∇n, (5)

where ∇ = ( ∂
∂x ,

∂
∂y )>. As argued in [28, 41, 8], not all

gradients in ∇g are helpful to kernel estimation. For exam-
ple, it is shown in [41] that the gradients corresponding to
image edges with small span could have negative impact on
kernel estimation. Also, as proved in [18, 12], it is possible
to get good kernel estimation even if only part of the image
gradients are used in the kernel estimation. In other words,
an approximation∇z of the true image gradients∇f could
possibly do better when used for estimating the kernel k.

Let ∇z denote an image gradient field related to ∇f but
is better tailored for the estimation of the kernel k. In this
paper, we model∇z as latent random variables drawn from
Gaussian distribution with zero mean and invertible diago-
nal covariance matrix i.e.,

p(∇z) =

N∏
i=1

N ((∇z)i|0, σ2
i ),



where σi ≥ τ for a constant τ . Certain prior need to be im-
posed on the covariance matrix Σ for constraining the space
of distribution on ∇z. As observed in [18, 12], image gra-
dients suitable for kernel estimation usually have large mag-
nitude. Such a prior can be encoded as in the s.t.d. of the
variable ∇z, since the random variable with zero mean and
large s.t.d. is more likely to have the instance with large
magnitude, if it has large s.t.d.. Also, only a small percent-
age of such image gradients should be sufficient for esti-
mating k. Such observations motivates us to propose a car-
dinality prior on {σi}i:

#{i : σi > τ} ≤M (M � N)

where # denotes the set cardinality and M is a constant
(= N

10 in our implementation).
In the context of VEM, we can reformulate the kernel

estimation of blind deblurring as follows.
• Observed variable: ∇g ∈ RN .
• Latent variable: ∇z ∈ RN , that follows

p(∇z) =

N∏
i=1

N ((∇z)i|0, σ2
i ). (6)

And as usual, p(∇g|∇z, k) = N (∇g|k ⊗ ∇z, σ̃2I),
where σ̃ is the noise level.
• Parameters: θ := [k, θZ ] ∈ Θ, where k denotes blur

kernel and θZ := {σi}Ni=1 are the parameters of the
distribution of∇z. The feasible set Θ of the parameter
is defined as

Θ := {(k, θZ) :
∑
j

k[j] = 1, k[j] ≥ 0;

σi ≥ τ,#{i : σi > τ} ≤M}. (7)

• Variational approximation. We adopt the similar ap-
proximation as used by Levin et al. [23] such that Q is
the set of Gaussian distributions with diagonal covari-
ance matrix. However, different from [23], we restrict
the covariance matrix to λI with predefined constant λ:

Q := {N (µ, λI) : µ ∈ RN}. (8)

Such a set is more computationally efficient yet does
not decrease performance.

See Fig. 1 for an illustration of the difference between
the latent variable ∇z from [23] and that from ours. The
variable ∇z from ours are sparser than that from [23] and
focus more on edges with large magnitude.

3.3. E-step

Provided an estimate θ(t), the goal of E-step is to refine
the estimation on q by solving

argminq∈Q KL(q(∇z)||p(∇z|∇g; θ(t))). (9)

(a) blurred image g (b) clear image f (c) z from (12)

(d) | ∂
∂x

f | (e) | ∂
∂y

f | (f) Truth k

(g) | ∂
∂x

z| from [23] (h) | ∂
∂y

z| from [23] (i) estimated k

(j) | ∂
∂x

z| from ours (k) | ∂
∂y

z| from ours (l) estimated k.

Figure 1: Illustration of latent variable ∇z = [ ∂∂xz,
∂
∂y z].

(a–b): input blurred image g and ground truth f ; (c): z esti-
mated using (12) of our algorithm; (d)–(f): Image gradient
of ground truth image f and ground truth kernel k; (g)–
(i): Latent variable∇z from [23] and the resulting kernel in
the last loop; (j)–(l): Latent variable ∇z from the proposed
method and the resulting kernel in last loop. The kernel is
estimated using (15).

Proposition 1. For θ(t) = [k(t),Σ(t)], the solution to the
optimization problem (9) is

q∗(∇z) = N (∇z|(∇z)∗, λI), (10)

where (∇z)∗ is the minimizer of the following problem:

min∇z‖∇g − k(t) ⊗∇z‖22 + σ̃2‖(Σ(t))−
1
2∇z‖22. (11)

Proof. See supplementary materials for the detailed proof.

In the derivation of E-step above, the variable (∇z)∗ is
estimated by assuming ∂z

∂x and ∂z
∂y are independent. Such an

assumption ignored the existing correlation between ∂z
∂x and

∂z
∂y . It is more stable to first estimate z and then calculate
∇z from it. Thus, we implement a modified version of E-



step which first estimate z by:

z(t+1) = arg minz[j]≥0

(
λ0||g − k(t) ⊗ z||22

+ ||∇g − k(t) ⊗∇z||22 + σ̃2||(Σ(t))−
1
2∇z||22

)
.

(12)
Then assign (∇z)∗ = ∇z(t+1) := [∂z

(t+1)

∂x , ∂z
(t+1)

∂y ]>.

3.4. M-step

Given q(t+1), the M-step is to update the estimate of pa-
rameters θ = [k,Σ] by solving the optimization problem

θ(t+1) = argmaxθ∈ΘEq(t+1)(∇z)[log p(∇z,∇g; θ)], (13)

where q(t+1)(∇z) denote the output from the E-step above.
First, we need to calculate the expectation and simplify the
above problem. Let h(θ) = log p(∇z,∇g; θ). Then,

h(θ) = log p(∇g|∇z; θ) + log p(∇z; θ)
= logN (∇g|k ⊗∇z, σ̃2I) + logN (∇z|0,Σ)

= log[ 1
(2πσ̃2)N/2 exp(− ||∇g−k⊗∇z||

2

2σ̃2 )]

+ log[ 1
(2π)N/2|Σ|1/2 exp(− 1

2 ||Σ
− 1

2∇z||2)]

= − 1
2σ̃2

[
||∇g − k ⊗∇z||2 + σ̃2||Σ− 1

2∇z||2]
−N log σ̃ −

∑
i log σi −N log(2π),

where N is the dimensionality of ∇z. Then, by direct cal-
culation, the optimization problem (13) is equivalent to

minθ∈Θ
1

2σ̃2

[
||∇g − k ⊗∇z(t+1)||22 + σ̃2||Σ− 1

2∇z(t+1)||22]
+
∑
i log σi + λN

2σ̃2 ||k||22 + λ
2

∑
i

1
σ2
i
,

(14)
where Θ is defined in (7).

The optimization problem above is solved independently
for k and Σ as follows. For k, by ignoring the irrelevant
terms, we have:

k∗ = argmink∈Θ ‖∇g−∇z(t+1)⊗k‖22 +λN ||k||22. (15)

For Σ, let Λ denote the index set of the M largest entries of
|(∇z)i|. Then, we have the following:

Proposition 2. The solution to the problem (14) w.r.t. Σ is
given by Σ∗ = diag((σ∗1)2, ..., (σ∗N )2), where

σ∗i =


(|(∇z(t+1))i|2 + λ)

1
2 if (|(∇z(t+1))i|2 + λ)

1
2 > τ

and i ∈ Λ,

τ otherwise.
(16)

Proof. See supplementary materials for the detailed proof.

3.5. Restarting technique for the VEM Method

Although it is well-known that VB based algorithms can
effectively avoid trivial solutions (k = δ) [23, 39], em-
pirically we found that local convergence to other subopti-
mal solutions may occur especially when blurring degree is

large. See Fig. 2 (d)–(g), the kernel estimation in the plain
version of the proposed VEM method seem to be trapped
in some local minima which is quite away from the truth
shown in Fig. 2 (c). In other words, the VEM method can
avoid trivial solution, but might be trapped in some local
minima away from the truth. Such a phenomena might be
caused by (1) the highly non-convex nature of the corre-
sponding optimization problem, and (2) the fact that the up-
date of the VEM method only guarantees that F (q, θ) is not
decreasing.

One often used technique for circumventing such issue
when solving a highly non-convex problem is to introduce
some restarting strategy to allow the iteration jump out of
the local maximum point. In this section, we propose a
restarting strategy on the estimation of the parameter Σ. Re-
call that the latent variable∇z can be viewed as an approx-
imation to∇f modified for better estimation of blur kernel.
Thus, the restart strategy proposed in this paper is to restart
the estimation of Σ using the available estimate on ∇f af-
ter a number of iterations. Let f∗ denote the estimate of f
using simple Tikhonov regularization method:

f∗ = argminf ||g − k∗ ⊗ f ||22 + λ1||∇f ||22. (17)

where k∗ is the most recent estimate on blur kernel and λ1

is a constant (= 1
400 in our implementation). Recall that

in the statistical model of ∇z, from Proposition 2 we see
that σi ≥ τ is large only if its corresponding gradient is
sufficiently large, and its value is mostly determined by the
magnitude of the gradient. Thus, we define the restart of the
diagonal Σ∗ as follows. Let Λ∗ denote the index set of M
largest entries of |∇f∗|. Then, σ∗i is defined by

σ∗i =

{
|(∇f∗)i| if |(∇f∗)i| > τ and i ∈ Λ∗,
τ otherwise. (18)

Note that (17) uses a spatially uniform natural image prior,
so what the restarting process essentially does is to select
edges on natural latent image after every few VEM update,
instead of continuously select edges from those images get
form (12), which may only contain part of the edges as
shown in Fig. 1(c).

See Fig. 2 for an illustration of how the restart can be
more computationally efficient and guide the kernel esti-
mation toward correct direction. It can be seen that after
5 iterations in inner loop, the estimate on k is nearly un-
changed, i.e. k(5,j), k(10,j), k(20,j) are all similar. In con-
trast, if we use restarting after having k(5,j), the restarted
estimate k(1,j+1) shown Fig. 2 (h) is clearly much closer
to the truth. This indicates the effectiveness of restart. See
Fig. 3 (d)—(g) and (h) for an illustration of how during one
outer loop, the inner loops update the estimations of∇z and
its covariance matrix Σ. It can be seen that the iterations
will yield a more sparse image gradient.



(a) Input g (b) Output f (c) Output k (d) k(1,j)

(e) k(5,j) (f) k(10,j) (g) k(20,j) (h) k(1,j+1)

Figure 2: Illustration of how the restart helps the VEM al-
gorithm to avoid local convergence to suboptimal solution.
(a)–(c): blurred image g and the final output image f and
final output kernel k; (d)–(g): the intermediate estimates
of k in one inner loop of VEM; (h): the estimate of k af-
ter restarting the VEM only after 5 iterations in inner loop,
i.e. the restarted estimate right after k(5,j). In this example
j = 2. Input image is taken from the dataset in [17].

By including the restarting procedure on Σ in the VEM
based alternating iteration, we have a VEM based approach
with restart for estimating the motion-blur kernel. After suf-
ficient number of iterations, we have an accurate estimation
of the kernel, denoted by k∗. The recovery of clear image f
becomes the classic non-blind deconvolution, which solve
the linear problem: g = k∗ ⊗ f + n. There are several non-
blind deblurring methods optimized for deblurring image
using an estimated kernel; see e.g. [15, 16, 37]. For fair
comparison, we also adopt the deblurring algorithm pro-
posed in [37] which are used in several existing comparative
studies on blind motion deblurring. See Algorithm 1 for the
outline of the proposed method with restart.

4. Experiment
4.1. Important Implementation Details

In order to deal with large blurs, we adopt the common
practice to take a coarse-to-fine estimation scheme, which
assumes that the estimation of the kernel in the coarse scale
is a good initialization to the kernel in the fine scale. At the
coarsest scale, the kernel is initialized using 3× 3 Gaussian
kernel with σ = 3

4 and call Alg. 1 to estimate the kernel. Af-
ter that, the estimated kernel is up-sampled using bi-linear
interpolation and served as the initialization for the kernel
estimation in the finer scale. The set of images with coarse-
to-fine scales are generated as follows. Starting with the
input image, each image in the coarser scale is constructed
by resizing the image in the current scale by half. The num-
ber of scales is determined by how many down-sampling is
needed to resize the maximum kernel size down to 3× 3.

(a) (Σ
1/2
x )(0,j) (b) (Σ

1/2
y )(0,j) (c) (Σ

1/2
x )(4,j) (d) (Σ

1/2
y )(4,j)

(e) | ∂z
(1,j)

∂x
| (f) | ∂z

(1,j)

∂y
| (g) | ∂z

(5,j)

∂x
| (h) | ∂z

(5,j)

∂y
|

Figure 3: Illustration of the updates of variable |∇z| and its
{σi}i in outer Iteration j = 2. (a)–(b): Σ1/2 used in first
iteration, (c)–(d): Σ1/2 used in last iteration (5-th iteration);
(e)–(h): the resulting estimate of∇z using (12).

Algorithm 1 Outline of the VEM method

1: INPUT: blurred image g
2: OUTPUT: sharp image f∗, blur kernel k∗

3: %%% kernel estimation
4: Initialization: set initial kernel k(0,0).
5: for j = 1, 2, . . . ,m do
6: Restarting: define Σ(0,j) as described in Sec. 3.5.
7: for t = 1, 2, . . . , n do
8: E-step: define ∇z(t,j) by (12)
9: M-step: define k(t,j) by (15)

10: define Σ(t,j) by (16)
11: end for
12: Set k(0,j+1) := k(n,j).
13: end for
14: Set k∗ := k(n,m).
15: %%% non-blind deblurring using k∗

16: Estimate f∗ using the method in [37].

For the experiments on the tested datasets, the image gra-
dients are calculated using the difference operator [−1, 1]
and [−1, 1]>. The parameters are set uniformly as follows.
The number of inner iterations n = 5, and the number of
outer iterations m = 12. The constant M for cardinality
constraint is set to be N

10 for both horizontal and vertical gra-
dients, where N denotes the number of image pixels. For
other parameters, σ̃ = 10−

5
2 , τ = 10−3 and λ = 0.001/N .

The last step in Algorithm 1 calls the non-blind routine in
[37] with iteration number= 100. (12), (17) and (15) are
all quadratic programming problems. In our implementa-
tion, they are simply solved by first using Conjugate Gradi-
ent (CG) method as unconstrained problems, followed by a
projection to their feasible sets.



Fergus Cho Xu-10 Krishinan Levin Sun Xu-13 Zhang Zhong Michaeli Pan Perron Nah Ours
[10] [8] [41] [19] [23] [34] [43] [46] [47] [25] [28] [30] [26]

man-made 14.10 16.11 19.56 15.67 18.02 19.30 17.87 16.93 17.32 17.32 17.33 17.53 15.63 19.99
natural 16.44 20.09 23.38 19.24 20.93 23.69 22.14 21.38 21.07 20.66 21.47 22.08 18.45 24.33
people 18.46 19.89 26.50 21.34 22.95 26.13 25.72 24.58 24.39 24.20 24.33 24.04 20.58 27.22

saturated 12.73 14.23 15.59 14.11 14.81 14.95 15.00 14.92 14.86 14.30 15.11 13.89 14.46 17.04
text 13.65 14.82 19.68 15.11 15.80 18.35 18.61 16.11 15.86 15.22 17.56 16.80 14.21 20.35

average 15.09 17.03 20.97 17.09 18.50 20.48 19.87 18.78 18.70 18.34 19.16 18.87 16.67 21.79

Table 1: Quantitative comparison on the synthetic uniform dataset in [21]. Performance is measured in average PSNR value.
Different row denotes different category of images. The last row is the average PSNR value over the whole dataset.

Whyte et al. Hirsch et al. Shan et al. Krishnan et al. Cho and Lee Xu and Jia Yue et al. Gong et al. Ours
[38] [13] [32] [19] [8] [41] [45] [12]

Image 1 27.5475 26.7232 26.4253 26.8654 28.9093 29.4054 30.1340 30.3572 31.7060
Image 2 22.8696 22.5867 20.5950 21.7551 24.2727 25.4793 25.4749 25.5210 26.3540
Image 3 28.6112 26.4155 25.8819 26.6443 29.1973 29.3040 30.1777 31.6577 31.0048
Image 4 24.7065 23.5364 22.3954 22.8701 26.6064 26.7601 26.7661 27.4804 27.9150

Total Avg. 25.9337 24.8155 23.8244 24.5337 27.2464 27.7372 28.1158 28.7541 29.2249

Table 2: Quantitative comparison on Köhler dataset [17]. Performance is measured in average PSNR value.

4.2. Quantitative Evaluation

Synthetic dataset from Lai et al. [21]. In order to test our
method on different types of images with different sizes of
blurs, we adopt the recent benchmark dataset built by Lai
et al. [21], which contains 100 blurry images divided into
5 categories. They are synthesized by using 4 different ker-
nels with size ranging from 51 × 51 to 101 × 101, adding
1% Gaussian noise. Except the results from the deep learn-
ing method [26], the results of all other compared methods
in Table 1 are obtained from [21]. We first downloaded the
estimated kernels published online by [21], and then ran the
same non-blind deblurring algorithm, Whyte et al. [37] with
their code published online, to get the deblurred images for
comparison. The results of [26] is obtained by using the
trained model published by the authors.

See Table 1 for the comparison of the method in terms
of average PSNR. It can be seen that our methods outper-
formed other methods in all categories, especially on the
category of ”people” and saturated”, which indeed possess
special characters of image edges. This shows the adaptive
edge selection in the proposed framework is more robust
than existing edge selection techniques e.g. [41, 8]. The
comparison on SSIM [36] and the demonstration of some
examples can be found in supplementary materials.

Köhler dataset [17]. We also tested the proposed method
on those images whose motion blurring is not exactly uni-
form. Köhler dataset [17] is used for testing, which con-
tains 48 real blurry images generated by convolving 4 latent
sharp images with 12 blur kernels whose sizes range from
41×41 to 141×141. This dataset is generated by recording
the samplings of the six dimensional camera motion. See
Table 2 for the comparison in terms of PSNR and SSIM

[36]. The results of other methods are directly quoted [12].
It can be seen that the proposed method overall noticeably
outperform the compared methods.

4.3. Experiments on Real Images

The proposed algorithm is also evaluated on real images
summarized by Lai et al. [21]. We compared ours to the
six representative methods with top performance, including
two edge selection related methods: Cho et al. [8], Xu and
Jia [41], two `0-norm regularization methods: Xu et al. [43]
and Pan et al. [28], one VEM method: Levin et al. [23],
and one deep learning method: [26]. The introduction to
these methods can be found in Section 2. See Fig. 4 for
visual inspection of the results. It can be seen that the results
from the proposed method in general produce the results
with better visual quality. The illustration of more results
can be found in supplementary materials.

5. Conclusion
This paper revisited the powerful edge selec-

tion/reweighting technique used in blind motion deblurring
from the perspective of VB inference. By building a
mathematical foundation on edge selection, we develop
a VEM method with strong motivation from edge selec-
tion/reweighting for blind motion deblurring. Together
with a restart strategy, the proposed VEM method is
easy to implement, stable to varying content, and provide
state-of-the-art performance.
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(1.a) input (1.b) Cho-09 [8] (1.c) Xu-10 [41] (1.d) Xu-13 [43]

(1.e) Pan-14 [28] (1.f) Levin-11 [23] (1.g) DeepDeblur-17 [26] (1.h) Ours

(2.a) input (2.b) Cho-09 [8] (2.c) Xu-10 [41] (2.d) Xu-13 [43]

(2.e) Pan-14 [28] (2.f) Levin-11 [23] (2.g) DeepDeblur-17 [26] (2.h) Ours

(3.a) input (3.b) Cho-09 [8] (3.c) Xu-10 [41] (3.d) Xu-13 [43]

(3.e) Pan-14 [28] (3.f) Levin-11 [23] (3.g) DeepDeblur-17 [26] (3.h) Ours

Figure 4: Visual comparison of the results from different methods. Zoom-in for easier inspection
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1. Overview
This supplementary material is organized as follows. In Section 2, we will show the proofs of Proposition 1 and 2. Then,

in Section 3, we will present more details on the experiments. This includes quantitative comparison of the results in terms
of SSIM, and more examples on the dataset [5], and on real images.

2. Proofs of Proposition 1 and 2
2.1. Proof of Proposition 1

Proof. Since
p(∇z|∇g; θ(t)) ∝ p(∇g|∇z; θ(t))p(∇z; θ(t)) = N (∇g|k(t) ⊗∇z, σ̃2I)N (∇z|0,Σ(t)),

p(∇z|∇g; θ(t)) is a normal distribution with mean given by

argmin∇z‖∇g − k(t) ⊗∇z‖22 + σ̃2‖(Σ(t))−
1
2∇z‖22. (1)

Since q(∇z) is restricted to be normal distribution with a constant covariance matrix, and the KL-divergence between two
normal distributions is

KL(N (µ1,Σ1)||N (µ2,Σ2)) =
1

2
(tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1) + log

det(Σ2)

det(Σ1)
− n),

the KL function is minimized when the mean of q(∇z) equals to that of p(∇z|∇g; θ(t)) given by (1).

2.2. Proof of Proposition 2

Proof. Denote∇z(t+1) for∇z for simplicity of notation. By ignoring the irrelevant terms in

minθ∈Θ
1

2σ̃2

[
||∇g − k ⊗∇z(t+1)||22 + σ̃2||Σ− 1

2∇z(t+1)||22] +
∑
i

log σi +
λN

2σ̃2
||k||22 +

λ

2

∑
i

1

σ2
i

, (2)

and let θ∗Z = {σ∗1 , ..., σ∗N} denotes the optimal solution, we have

θ∗Z = argminθZ∈Θ

N∑
i=1

(log σi +
|(∇z)i|2 + λ

2σ2
i

).

Let fi(σi) = log σi +
a2i

2σ2
i

, where ai = (|(∇z)i|2 + λ)
1
2 . Let σ̃∗i = argminσi≥τfi(σi), then by direct calculation, we have

σ̃∗i = ai, if ai > τ and τ otherwise. Since σ̃∗i is the unique optimal solution for each fi(σi), we have for each i, σ∗i is either
ai or τ .

Let Λ′ = {i : ai > τ, 1 ≤ i ≤ N}. If #{Λ′} ≤M , then σ∗i = σ̃∗i , which can be expressed as

σ∗i =

{
(|(∇z(t+1))i|2 + λ)

1
2 if (|(∇z(t+1))i|2 + λ)

1
2 > τ and i ∈ Λ,

τ otherwise.
(3)

1



(a) 51× 51 (b) 75× 75 (c) 75× 75 (d) 101× 101

Figure 1: Ground truth kernels and the corresponding sizes of the dataset [5].

manmade natural people saturated text average
Fergus-06 [2] 0.628 0.744 0.858 0.687 0.629 0.710

Cho-09 [1] 0.729 0.854 0.897 0.768 0.718 0.793
Xu-10 [13] 0.869 0.924 0.978 0.840 0.899 0.902

Krishnan-11 [3] 0.742 0.854 0.922 0.783 0.744 0.809
Levin-11 [6] 0.823 0.891 0.938 0.823 0.757 0.847
Sun-13 [11] 0.841 0.933 0.954 0.815 0.851 0.879
Xu-13 [14] 0.821 0.904 0.967 0.818 0.867 0.875

Zhang-13 [15] 0.761 0.885 0.961 0.808 0.775 0.838
Zhong-13 [16] 0.785 0.887 0.962 0.812 0.747 0.839
Michaeli-14 [7] 0.753 0.836 0.937 0.771 0.676 0.795

Pan-14 [9] 0.796 0.903 0.957 0.815 0.815 0.857
Perrone-14 [10] 0.820 0.917 0.957 0.794 0.815 0.860

DeepDeblur-17 [8] 0.659 0.793 0.902 0.769 0.618 0.748
DeblurGAN-17 [4] 0.608 0.728 0.852 0.727 0.609 0.705

Ours 0.875 0.949 0.980 0.850 0.912 0.913

Table 1: Quantitative comparison on the dataset in [5]. Performance is measured in average SSIM values on grayscale
images. Different column denotes different category of images. The last column is the average SSIM value over the whole
dataset.

If #{Λ′} > M , which breaks cardinality constraint, some of the i ∈ Λ′ has to be set to τ . For a > τ , the cost of letting
σ∗ = τ instead of a is given by

h(a) = f(τ)− f(a) =
a2

2τ2
− log a+ log τ − 1

2
,

where f(σ) = log σ + a2

2σ2 . Since ∀a > τ , h′(a) > 0, the cost of letting σ∗i = τ instead of ai strictly increase as ai increase.
Since ai = (|(∇z)i|2 + λ)

1
2 , the optimal solution in this case will be achieved by letting σ∗i = σ̃∗i when i ∈ Λ and σ∗i = τ

otherwise, which can also be expressed by (3). The proof completes.

3. Additional experiments and examples.
In the article, the quantitative comparison of different methods on the the synthetic dataset in Lai et al. [5] is listed in terms

of the PSNR value. In this section, the quantitative comparison in terms of average SSIM is listed in Table 1 which used the
same results as Table 1 in the article. See Figure 1 for the four ground truth kernels of different sizes used in [5] to generate
the dataset, and see Figure 2 for visual inspection of the results on five images from the dataset [5] by the proposed method.
These 5 images are taken from 5 categories respectively: “manmade”, “natural”, “people’, “saturated” and “text”. See Fig. 3
for visual comparison of different methods on more real images, including some real images summarized in [5].

2



(1.a) blurred image (1.b) ground truth image (1.c) deblurred image (1.d) estimated kernel

(2.a) blurred image (2.b) ground truth image (2.c) deblurred image (2.d) estimated kernel

(3.a) blurred image (3.b) ground truth image (3.c) deblurred image (3.d) estimated kernel

(4.a) blurred image (4.b) ground truth image (4.c) deblurred image (4.d) estimated kernel

(5.a) blurred image (5.b) ground truth image (5.c) deblurred image (5.d) estimated kernel

Figure 2: Demonstration of some results on the images from the dataset [5] by the proposed method. The first column
shows blurry images; the second column shows ground truth images; the third column shows our deblurred results; the fourth
column shows the kernels estimated by our algorithm. .
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(1.a) input (1.b) Cho-09[1] (1.c) Xu-10[13] (1.d) Xu-13[14]

(1.e) Pan-14[9] (1.f) Levin-11[6] (1.g) DeepDeblur-17[8] (1.h) Ours

(2.a) input (2.b) Cho-09[1] (2.c) Xu-10[13] (2.d) Xu-13[14]

(2.e) Pan-14[9] (2.f) Levin-11[6] (2.g) DeepDeblur-17[8] (2.h) Ours
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(3.a) input (3.b) Cho-09[1] (3.c) Xu-10[13] (3.d) Xu-13[14]

(3.e) Pan-14[9] (3.f) Levin-11[6] (3.g) DeepDeblur-17[8] (3.h) Ours

(4.a) input (4.b) Cho-09[1] (4.c) Xu-10[13] (4.d) Xu-13[14]

(4.e) Pan-14[9] (4.f) Levin-11[6] (4.g) DeepDeblur-17[8] (4.h) Ours

(5.a) input (5.b) Cho-09[1] (5.c) Xu-10[13] (5.d) Xu-13[14]

(5.e) Pan-14[9] (5.f) Levin-11[6] (5.g) DeepDeblur-17[8] (5.h) Ours

Figure 3: Visual comparison of the results from different methods. They are better viewed using zoom-in.
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