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ABSTRACT

Recognizing human action in video is an important task with a wide range of applications. Recently, 
motivated by the findings in human visual perception, there have been numerous attempts on 
introduc-ing attention mechanisms to action recognition systems. However, it is empirically 
observed that a simple implementation of attention mechanism using attention mask of free form 
often generates ineffective distracted attention regions caused by overfitting, which limits the 
benefit of attention mechanisms for action recognition. By exploiting block-structured sparsity 
prior on attention regions, this pa-per proposed an `2,1-norm group sparsity regularization for 
learning structured attention masks. Built upon such a regularized attention module, an attention-
based recurrent network is developed for action recognition. The experimental results on two 
benchmark datasets showed that, the proposed method can noticeably improve the accuracy of 
attention masks, which results in performance gain in action recognition.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Human action recognition is a challenging yet important task

which has been receiving increasing attention in recent years.

Recognizing human actions is about identifying human activ-

ities (e.g. running, walking, or dancing) in video sequences

or images. It is an essential tool that enables effective anal-

ysis on human behaviors as well as efficient interactions be-

tween humans and vision systems. Thus, human action recog-

nition can see its usage in a wide range of applications, in-

cluding surveillance, video retrieval, human activity prediction,

content-based summarization, electronic entertainment, auto-
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mated cinematography, and many others. See e.g. (Moeslund

et al., 2006; Poppe, 2010) for more discussions. Meanwhile,

human action recognition is also a very challenging task due

to significant variations in human actions, in terms of personal

styles, human appearance, camera viewpoints, varying back-

ground and other environmental changes.

In the past decades, there has been an enduring effort

on the development of effective action recognition systems,

and they are quite successful under well-controlled environ-

ments (Poppe, 2010). However, for action recognition in a

single video sequence taken under unconstrained scenarios, it

remains a challenging problem with limited success. Over the

past years, many manually-crafted features have been proposed

for action recognition to exploit various types of cues. To

name a few, human poses (Lv and Nevatia, 2007; Thurau and

Hlavác, 2008; Raptis and Sigal, 2013), skeletons from depth
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cameras (Wang et al., 2012; Du et al., 2015), local space-time

patterns (Niebles et al., 2008; Yeffet and Wolf, 2009; Scovan-

ner et al., 2007), trajectories of interest points (Wang et al.,

2011; Wang and Schmid, 2013), motion patterns from optical

flow (Fathi and Mori, 2008; Laptev et al., 2008; Carreira and

Zisserman, 2017), and additional features from external non-

visual cues such as video attributes (Yao et al., 2011) and movie

scripts (Laptev et al., 2008). To further improve the perfor-

mance in complex scenarios, these features are often combined

together to achieve a better representation; see e.g. (Wang and

Schmid, 2013; Bilen et al., 2016; Wang et al., 2016; Feichten-

hofer et al., 2016a; Carreira and Zisserman, 2017).

More recently, with great advance in deep learning, there has

been rapid progress on applying deep neural network to solve

the problem of action recognition. Most existing studies adopt

two types of neural networks architectures. One is Convolu-

tional Neural Network (CNN) (Ji et al., 2013; Simonyan and

Zisserman, 2014; Feichtenhofer et al., 2016b), and the other

is Recurrent Neural Network (RNN) (Baccouche et al., 2011;

Wang et al., 2012; Du et al., 2015; Zhu et al., 2016). By replac-

ing manually-crafted features using adaptive features learned

from data, these neural-network-based approaches for action

recognition showed impressive improvement over traditional

approaches. Regarding action recognition in videos, the RNN

with Long-Short Term Memory (LSTM) cells (Yeung et al.,

2015; Du et al., 2015; Zhu et al., 2016) is particularly appeal-

ing, as it allows the NN to exploit one crucial property of hu-

man actions, i.e. long-term dependency of temporal patterns of

actions (Duchenne et al., 2009; Hoai and Zisserman, 2014; Fer-

nando et al., 2016). Nevertheless, it is empirically observed

in many studies (Feichtenhofer et al., 2016a; Carreira and Zis-

serman, 2017) that despite its theoretical advantage on cap-

turing the long-term temporal dependencies of human action,

LSTM network does not lead to noticeable performance gain

over other neural network architectures,

One solution proposed for exploiting the potential of LSTM

networks in action recognition is the introduction of attention

mechanism; see e.g. (Sharma et al., 2015; Yang et al., 2018; Yan

et al., 2017; Girdhar and Ramanan, 2017; Wang et al., 2017;

Du et al., 2018). Such a solution is motivated by the findings

that attention plays a pervasive role in human visual perception

in cluttered scenes; see e.g. (Itti and Koch, 2001; Sun, 2008),

which enables human to focus more on the objects of interest

and omit irrelevant background. Such a mechanism certainly

makes the task of object recognition in cluttered scenes much

easier.

The possible performance gain of a built-in attention module

to a LSTM network in video action recognition largely depends

on how accurately the introduced attention module can iden-

tify the regions of interest relevant to the subject and target of

an action. Or equivalently, it depends on whether the attention

module in a trained neural network can be generalized well.

Current approaches of introducing the attention module to the

LSTM network for action recognition are done by adding a soft

attention mask to each temporally-recurrent layer in the net-

work, and the masks are completely determined by the training

data without any constraint; see e.g. (Sharma et al., 2015). Un-

fortunately, for action recognition in a single video, significant

variations of regions of interest, as well as limited amount of

available training data, make it challenging to train an attention

module with good generalization. It is empirically observed

that the attention module trained using a reasonable amount of

data often generate diffusing attention masks on test data, as

shown in Fig. 4.

This paper aims at developing a LSTM network with a

new attention module to address the weakness of existing ap-

proaches listed above. The idea is to introduce a spatially struc-

ture prior to the attention module with the motivation from hu-

man visual perception. In human visual perception, the recogni-

tion of a human action can be done by only focusing on certain

key parts of human body or of the target of the action. For in-

stance, we can easily identify the action of walking by looking

at the feet. See Fig. 1 for some illustrations. In other words,

the regions of attention that facilitate action recognition can be

assumed to be those connected regions.

More specifically, we propose an approach for regularizing
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the attention mechanism in a LSTM network by a block-wise

sparsity prior on attention masks, i.e., only few blocks of an

attention mask are activated in the attention module of net-

work. The introduction of regularized attention mechanism al-

lows the LSTM network to be trained with better generaliza-

tion, as shown in the experiments. It is empirically observed

that with the proposed structure regularization, the generation

of attention masks is more accurate on the locations of action

instances as it is less sensitive to cluttered backgrounds and

reduce the possibility of gating the salient patterns associated

with certain actions in long video sequences. It is noted that

in addition to the LSTM network, the proposed mechanism of

structured attention can also be directly plugged into other ar-

chitectures of RNNs for further performance improvement on

action recognition.

The rest of this paper is organized as follows. Section 2 gives

a brief review on existing approaches to action recognition. The

LSTM network with a structure-regularized attention mecha-

nism for action recognition is presented in Section 3. Section 4

is devoted to experimental evaluation of the proposed method.

Section 5 concludes the paper.

2. Related Work

Action recognition has been extensively studied in past. As

this paper is about action recognition in a single RGB video

sequence captured by conventional camera, our discussion fo-

cuses on the methods that work in the same setting. Other meth-

ods that work for videos from multiple cameras or depth cam-

eras are not covered here, owing to space limitation.

Most early methods follow the same framework as that of

traditional image classification, and generalize the local image

features (e.g.bag of visual words) in spatial domain to spatial-

temporal domain. For example, histograms of oriented space-

time gradients (Scovanner et al., 2007; Klaser et al., 2008), 3D

Harris (Laptev et al., 2008) and local trinary patterns (Yeffet

and Wolf, 2009). Recently, by tracing each feature point in a

short time interval and using the trajectories of feature points

as local descriptors, the trajectory-based methods (Wang et al.,

1

Fig. 1. Illustration of the block-structured sparsity prior on the attention

regions in videos. It can be seen that the recognition of a human action

can be done by only focusing on certain key parts of human body or of the

target of the action.

2011; Wang and Schmid, 2013) showed their performance gain

over those traditional features. All the aforementioned meth-

ods share the same weakness, i.e. spatiotemporal configuration

of feature points is not well exploited. To address this weak-

ness, many approaches have been proposed to use generative

models to characterize human actions, e.g. constellation mod-

els (Fanti et al., 2005; Niebles et al., 2008) and hidden Markov

models (Wang and Mori, 2011; Tang et al., 2012). More re-

cently, generative models with hierarchical structures are more

preferred (e.g. (Wang and Mori, 2011; Lan et al., 2015)), due to

its capability in encoding human actions with multi-level gran-

ularity.

Motivated by great advance on deep learning and its suc-

cess in many vision tasks, several neural network-based ap-

proaches have been proposed for action recognition in recent

years. In (Baccouche et al., 2011; Ji et al., 2013), a video clip

is treated as a 3D volume, and then the CNN designed for 2D

image classification is modified from processing 2D arrays to

handling 3D volumes done by introducing 3D convolutions in

spatiotemporal domain. Such a 3D-CNN architecture does not
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scale well with large-scale data. To speed up training process,

a multi-resolution CNN architecture is introduced in (Karpathy

et al., 2014). The performance of these generic spatiotemporal

CNNs on action recognition is not satisfactory, even in com-

parison to those recent methods that are built upon handcrafted

features (e.g. (Wang and Schmid, 2013)). Indeed, their perfor-

mance is close to those CNNs defined in the spatial domain (Fe-

ichtenhofer et al., 2016b). This indicates that temporal cues are

not well exploited in those approaches.

To exploit temporal cues of actions in videos, a two-stream

architecture is proposed in (Simonyan and Zisserman, 2014),

which decouples the spatiotemporal CNN into a spatial stream

on each single frame and a temporal stream on optical flow

across frames, and then fuses the classification score in the final

layer. Such a decoupling scheme allows independently learn-

ing temporal structures from optical flow. In (Feichtenhofer

et al., 2016a), the residual connections are injected into the two-

stream CNN for further improvement. Instead of factorizing

the network, the C3D method (Tran et al., 2015) constructs a

very deep CNN by factorizing 3D convolution into a 2D spa-

tial convolution and a 1D temporal convolution, which yields

much better results than that from (Baccouche et al., 2011; Ji

et al., 2013; Karpathy et al., 2014). In (Wang et al., 2016), the

Siamese network architecture with convolution layers is used

to model the relationship between actions and effects. While

they do well on discovering local patterns within a small time

window, such structured spatiotemporal CNNs ignore the long-

term motion patterns which may be crucial for identifying cer-

tain types of actions, e.g.the action with periodic motion. The

rank pooling (Bilen et al., 2016; Fernando et al., 2015, 2017)

developed for spatiotemporal CNNs addressed this problem by

firstly learning a ranker to rank video frames in feature space

and secondly using the learned parameters of the ranker as the

representation of video.

Another approach of exploiting long-term motion patterns in

video is to adopt RNN with the LSTM units (Hochreiter and

Schmidhuber, 1997). The resulting LSTM network is capable

of discovering long-range temporal patterns by storing, mod-

ifying and accessing internal states of network layers. In the

early work (Baccouche et al., 2010), the LSTM network with

BoVW features as input is used to analyze the actions in soccer

video. In (Zhu et al., 2016; Du et al., 2015), a deep LSTM net-

work is applied to skeleton-based action recognition with good

performance, but it is not applicable to generic RGB video.

For action recognition in generic RGB video, a LSTM network

is used in (Baccouche et al., 2011), together with a sequence

of spatiotemporal CNN descriptors extracted from each frame.

In (Yue-Hei Ng et al., 2015), a LSTM network is used, together

with the aforementioned two-stream CNN (Simonyan and Zis-

serman, 2014). In parallel, an end-to-end network is proposed

in (Donahue et al., 2015) which concatenates a deep LSTM net-

work to a CNN on raw data, which showed impressive results

without using any auxiliary input, e.g.optical flow used in (Yue-

Hei Ng et al., 2015). The conventional LSTM networks cannot

guarantee memorizing discriminative motion patterns. Thus, a

differential gating scheme is proposed for the LSTM neural net-

work in (Veeriah et al., 2015), which emphasizes the changes

of information gain caused by the salient motions in succes-

sive video frames. The LSTM network can also be used in an

unsupervised setting. See (Srivastava et al., 2015) for an auto-

encoder inspired LSTM architecture for unsupervised learning

of temporal features.

The performance of the LSTM networks on action recogni-

tion can be further improved by introducing attention mech-

anism (e.g. (Sharma et al., 2015; Yang et al., 2018; Yan et al.,

2017; Girdhar and Ramanan, 2017; Wang et al., 2017; Du et al.,

2018)), which is also the focus of this paper. The very related

works are (Yeung et al., 2015; Sharma et al., 2015). In (Yeung

et al., 2015), a dense action labeling is done using a tempo-

ral accumulated attention model on the input-output context.

In (Sharma et al., 2015), an attention mechanism is introduced

into the LSTM network, implemented by the soft masks that

weight spatial locations using a softmax layer. These meth-

ods do not consider spatially structure prior of attention masks,

which indeed is very important for neural network trained for

action recognition to have good generalization.
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3. Main body

In this paper, we propose a neural network with a structure-

regularized attention mechanism for action recognition in a sin-

gle video. The proposed neural network is composed of three

modules: CNN, RNN, and attention. The CNN module is used

as a feature extractor for each video frame. The RNN module

takes the CNN features as input and extracts sequential (tem-

poral) information from the features. The regularized attention

mechanism is introduced such that the attention of the network

concentrates on most relevant pivotal regions. See Fig. 2 for the

diagram of the proposed method.

The notations used in the paper are as follows. Bold up-

per letters are used for matrices, bold lower letters for column

vectors, light upper letters for constants, light lower letters for

scalars, and both hollow letters and calligraphy letters for sets.

3.1. Feature extraction by CNN

In our approach, the first step is mapping video frames to

some feature space for better representation. In this step, we

focus on the spatial features of videos, and the mapping is done

by extracting image features on each video frame. Motivated

by classification performance of GoogLeNet (Szegedy et al.,

2016) model on ImageNet dataset (Deng et al., 2009), we adopt

GoogleNet for the task of feature extraction. Consider a video

V = {V(t)}Tt=1 with T successive frames. The feature extraction

process is done by feeding each V(t) to the GoogLeNet and us-

ing as the spatial features the feature maps output by the last

convolutional layer of the GooLeNet.

Suppose there are D feature maps extracted from the last con-

volutional layer of GooLeNet, each of which is of size K × K.

Then, for the video frame V(t), we have a feature cube of size

K × K × D, which is expressed in the matrix form for conve-

nience:

V(t) −→ X(t) = [x(t)
1 , · · · , x

(t)
K2 ], (1)

for t = 1, · · · ,T , where x(t)
i ∈ R

D denotes the coefficient vector

formed by concatenating of the coefficients of each feature map

on the ith spatial location at the tth time step. Thereafter, we use

the attention mechanism presented in Section 3.3 to pool the

feature cube X(t) ∈ RD×K2
into a frame feature x(t) ∈ RD. Then,

x(t) is fed to the RNN as the input in the next step.

3.2. Recurrent model

Taking the spatial feature of each video frame as input, we

construct a recurrent network to capture the temporal dynamics

among video frames. In order to extract the long-range tem-

poral patterns of an action, a bi-level LSTM network (Zaremba

et al., 2014) is adopted in our implementation. Let σ(·) denote

the sigmoid function and � denote the element-wise multipli-

cation. Taking the features {x(t)}Tt=1 extracted from the previous

step as the input, the bi-level LSTM network is defined by the

recurrent form as follows.

i(t)1

f (t)
1

o(t)
1

g(t)
1


=



σ

σ

σ

tanh


P1

h(t−1)
1

x(t)

 ,


i(t)2

f (t)
2

o(t)
2

g(t)
2


=



σ

σ

σ

tanh


P2

h(t−1)
2

h(t)
1

 , (2)

c(t)
1 = f (t)

1 � c(t−1)
1 + i(t)1 � g(t)

1 , (3)

c(t)
2 = f (t)

2 � c(t−1)
2 + i(t)2 � g(t)

2 , (4)

h(t)
1 = o(t)

1 � tanh(c(t)
1 ), (5)

h(t)
2 = o(t)

2 � tanh(c(t)
2 ), (6)

where i(t)k , f (t)
k , o(t)

k , g(t)
k , c

(t)
k , h

(t)
k ∈ R

M denote the input gate, for-

get gate, output gate, intermediate result, cell state, and hidden

state on the kth (k = 1, 2) level respectively. The transform

Pk ∈ R4M×(M+D), k = 1, 2 denotes an affine transformation con-

sisting of trainable parameters, and t denotes the time step.

At each time step, the LSTM network predicts the soft label

y(t) = [y(t)
1 , · · · , y

(t)
C ] ∈ RC regarding C action classes on the tth

frame, by using the additional layers defined by

y(t)
i =

exp(tanh(b>i h(t)
2 ))∑C

j=1 exp(tanh(b>j h(t)
2 ))

, i = 1, · · · ,C, (7)

where bi ∈ RM denotes the trainable parameters of the linear

classifier on the ith class.

3.3. Attention mechanism regularized by spatially structured-

sparsity prior

Recall that in the stage of feature extraction described in Sec-

tion 3.1, for each frame, the feature x(t) is obtained from the
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Fig. 2. Framework of the proposed model. The CNN module (bottom) is used as a feature extractor to yield the feature X(t) of each video frame V(t) for

t = 1, · · · ,T . Thereafter, a module of structured attention (middle) attenuates the features of each frame by element-wise multiplication with the soft

attention mask a(t). The RNN module (upper) takes the feature X(t) for all t as input and predicts the label of each video frame by analyzing sequential

(temporal) patterns of the features.

feature cube X(t) via the so-called attention mechanism:

Attention : X(t) ∈ RD×K2
−→ x(t) ∈ RD.

The introduction of such an attention mechanism is motivated

from the findings in human visual perception, i.e., when rec-

ognizing the action of a specific object, human tends to focus

his/her attention on that object while omitting the other less rel-

evant parts, such as the background. In other words, for ef-

ficient action recognition, different regions of the image have

different contributions to the features. Such a mechanism can

be incorporated into the neural network by introducing the so-

called attention masks defined on the original features derived

from the image.

In the vector form, let a(t) = [a(t)
1 , · · · , a

(t)
K2 ] ∈ RK2

denote the

soft attention mask with respect to a K × K feature map in the

spatial domain at the tth time step. The soft mask can also be

viewed as the relevance indicator with respect to the feature in

spatial domain. Each attention degree a(t)
i in the attention mask

is predicted according to h(t−1)
2 , i.e. the hidden state at the last

time step, through the softmax function:

a(t)
i =

exp(w>i h(t−1)
2 )∑K×K

j=1 exp(w>j h(t−1)
2 )

, i = 1, · · · ,K2, (8)

where wi ∈ RK2
denotes the transform with learnable weights

that maps the last hidden state to a proper representation at the

ith spatial location. It can be seen that the entries of a(t)
i are nor-

malized by the softmax function and thus can be viewed as the

relevance of the input frame to the recognition. After calculat-

ing the attention mask a(t), the feature x(t) of the tth video frame

is computed by the average of the feature vectors over K × K

spatial locations weighted by the attention mask a(t) as follows.

x(t) =

K2∑
i=1

a(t)
i x(t)

i = X(t)a(t). (9)

In our implementation, a(1) is initialized as 1
K2 , as each spatial

location is equally relevant when no observation is available.

See Figure 3 for the diagram of the attention mechanism.

The attention mechanism can be interpreted as a dynamic

weighted average pooling, where the weights are predicted ac-

cording to the hidden state of the LSTM network at the last

time step. The attention mechanism can also be understood as a

simulation of the same mechanism in human visual perception.

For action recognition, human attention usually concentrates on

very related regions. For example, the attention should be fo-

cused on the football in juggling, and the bike should be paid

more attention to in cycling.
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CNN
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(𝑡𝑡)

𝒙𝒙(𝑡𝑡) ∈ ℝ𝐷𝐷

𝒙𝒙(𝑡𝑡)

𝒂𝒂𝒊𝒊
𝒕𝒕

𝒉𝒉𝟐𝟐𝑡𝑡−1

exp(𝒘𝒘𝒊𝒊
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∑𝑗𝑗=1𝐾𝐾×𝐾𝐾 exp(𝒘𝒘𝑗𝑗⊺𝒉𝒉2𝑡𝑡−1)

Fig. 3. Illustration of diagram of the proposed attention mechanism. The

attention mask a is used as the weights for pooling the feature cube X to a

feature vector x.

However, overfitting is likely to happen when training a RNN

with attention masks, especially compared to those without at-

tention mechanisms. Intuitively, the overfitting of a network

with attention may be reflected by one of the following phe-

nomena of the attention masks: incorrect focus placed on the

objects irrelevant to the action, or distracted attention with scat-

tering non-zero entries of the mask. It is empirically observed

that the second phenomenon is dominant. See Fig. 4 for an ex-

ample. The overfitting of NN cancel off most benefits of the

introduction of attention masks. This leads us to introduce a

spatial prior to regularize the estimation of the attention masks

in NN for alleviating the overfitting. The prior we proposed is

based on the following observations. Firstly, the relevant re-

gions in action recognition usually only take a small portion

of the full image, i.e., only a small percentage of the entries

of the attention mask are significant. Secondly, the pixels of

these regions are not randomly distributed in spatial domain.

They are likely to be located in connected regions with similar

blob-type shape. These two physical observations on effective

attention regions motivated us to propose a block-wise sparsity

prior for regularizing the attention masks in the LSTM network.

Our implementation of the block sparsity regularization is done

by minimizing the `2,1-norm of attention mask that prompts its

group sparsity.

Given an attention mask a = [a1, · · · , aK2 ], we first divide

the K ×K spatial locations into N ×N non-overlapping regions,

where the region length is L = bK/Nc. The index set of each

region is defined as follows.

Sr =

p

∣∣∣∣∣∣∣∣ ((r − 1)%N)L ≤ (p − 1)%K < ((r − 1)%N + 1)L

b(r − 1)/NcL ≤ b(p − 1)/Kc < b(r − 1)/N + 1cL


for r = 1, · · · ,N2, where % denotes the modulo operation.

Then we use the `1,2 norm that prompting group sparsity to de-

fine the structure loss regarding an attention mask as follows.

r(a) =
N2∑
r=1

‖aSr‖2 =

N2∑
r=1

√∑
k∈Sr

ak
2. (10)

The structure loss r(·) applies the `2 norm within each block for

smoothing the attention degrees in the corresponding region,

while applying the `1 norm across the blocks to select important

regions in the attention mask. In other words, the penalty by

the structure loss in objective function can make the values of

solution biased to a limited number of pivotal regions in which

the values are well connected, and thus promoting the block

sparsity we need. See Fig. 4 (b) for some results computed

by the LSTM network with the proposed regularized attention

mechanism.

3.4. Loss function and data preparation

In this section, we define the total loss function for train-

ing the network proposed in the previous sections. Recall that

the proposed neural network accepts a video clip and predicts

the label of each video frame in the clip. For convenience, let

g( · , h(t−1)
2 ; θ) denote the mapping that predicts the soft label y(t)

of the video frame V(t) using the proposed model, i.e.

y(t) = g(V(t), h(t−1)
2 ; θ),

where h(t−1)
2 is the hidden state generated at (t − 1)th time

step, and θ contains all related model parameters. Let a(t) =

[a(t)
1 , · · · , a

(t)
K2 ] denote the attention mask , calculated by (8).at

the tth time step in the network. Given a video clipV = {V(t)}Tt=1
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1

(a) Soft-attention LSTM network [?] with un-regularied attention mechanism.

(b) Attention masks computed by the proposed regularized attention mechanism.

Fig. 1. Test video frames and their attention masks.

1

(a) Soft-attention LSTM network [?] with un-regularied attention mechanism.

(b) Attention masks computed by the proposed regularized attention mechanism.

Fig. 1. Test video frames and their attention masks.
Fig. 4. Test video frames and their attention masks. First row: Phenomena of distracted attention when adopting an un-regularized attention mechanism.

The left rows show one key frame of each test video frame and the right rows show the corresponding attention masks generated by the soft attention

LSTM network (Sharma et al., 2015) with an un-regularized attention mechanism. It can be seen that the attention masks scatter over the background,

while they are supposed to concentrate on the key parts of the objects related to the actions. The second and third rows: the key parts in the corresponding

actions and the attention masks computed by the proposed attention mechanism which are consistent with human perception.

with T frames and its ground-truth label ŷ, the loss function of

the proposed model is defined as

L(V, ŷ, θ) = −
T∑

t=1

C∑
i=1

y(t)
i log ŷi + γ

∑
i

θ2
i

+λ

T∑
t=1

N2∑
r=1

√∑
k∈Sr

(a(t)
k )

2
, (11)

where γ and λ are the weights that balance the contribution of

each term. The first term is for measuring the discrimination er-

ror, which is defined by the cross-entropy between the predicted

label and the ground-truth one. The second term is the weight

decay regularization on the parameters of network for avoiding

overfitting. The last term is the group sparsity regularization for

imposing the block-wise sparsity prior on the attention masks.

Let {Vp}
P
p=1 denote a set of P video clips for training the

proposed model, and the corresponding ground-truth labels are

denoted by {ŷp}
P
p=1 where ŷp is an one-hot vector. The loss

function on the training set {(Vp, ŷp)}Pp=1 is defined as

min
θ

P∑
p=1

L(Vp, ŷp, θ). (12)

To enhance the stability of the proposed model, we use the

following strategy of data augmentation to generate sufficient

training data. Given a video of an action, we split the video into

segments with a stride of d, each of which contains T consecu-

tive frames. The video segments from all the videos are used as

the video clips {Vp}p for training.

3.5. Prediction

When a new video arrives for the prediction of action label,

we first split the video into T -frame segments (clips),

{Vq : Vq = {V(t)
q }

T
t=1}

Q
q=1,

using the same strategy as that in the data augmentation of train-

ing. Each segment is input to the proposed network, and the
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label of the segment is calculated as

yq =
1
T

T∑
t=1

g(V(t)
q , ht−1; θ). (13)

Then the predicted label ofVq is defined by

cq = max(yq(1), yq(2), · · · , yq(C)). (14)

Lastly, the label of the whole video is predicted by

c∗ =
C

max
c=1

Q∑
q=1

Ic(cq), (15)

where Ix(·) denotes the indicator function.

4. Experiments

4.1. Datasets

The proposed method for action recognition in a single video

is evaluated on two public benchmark datasets: one is UCF-

11 (Liu et al., 2009) and the other is HMDB-51 (Kuehne et al.,

2011). See the following for a brief description of these two

datasets.

• The UCF-11 dataset is also called the “YouTube Action”

dataset, which contains 1600 video clips from 11 action

categories, including basketball shooting, biking/cycling,

diving, golf swinging, horse back riding, soccer juggling,

swinging, tennis swinging, trampoline jumping, volleyball

spiking, and walking with a dog. Each category is divided

into 25 groups, each group contains several video clips,

and each video clip is of the frame rate 9.97fps that only

associated with a single action. Since the data set does

not provide a standard partition, we randomly extract 15

groups in each class as training data, and the remaining 10

groups are used for testing. Finally we used 948 videos

for training and 652 videos for testing (i.e. 60% for train-

ing and 40% for testing). Due to the randomness of train-

ing/test split, the average of five runs are reported for the

evaluation.

• The HMDB-51 dataset is a large human motion dataset

collected from movies, public databases, and web videos.

It contains 6849 video clips with 51 action categories, such

as clapping, drinking, hugging, jumping, somersaulting,

throwing, and etc. Each category contains at least 101

video clips. The HMDB-51 dataset is more challenging

than the UCF-11 dataset, as the scenes captured in it are

more complex. In existing literature, there are three con-

figurations to split the HMDB-51 dataset into the training

set and test set. We followed the original setting (Kuehne

et al., 2011), which used the first configuration and used

3570 videos (i.e. 70 videos per category) for training and

used remaining 1530 videos (i.e. 30 videos per category)

for testing. The training/test split is fixed in this setting for

all the compared methods.

4.2. Implementation details

Recall that our method is composed of both CNN and RNN,

and the training of the network with recurrent structure often

does not converge when using the current training algorithm.

Thus, we split the training procedure into two steps: first pre-

training the CNN on images, and then learning the parameters

of the RNN as well as the parameters of attention masks. The

reason of pre-training CNN on images instead of videos is that

we only consider spatial features in the CNN module of the

proposed model. Indeed, pre-training CNN for feature extrac-

tion is a widely used practice in action recognition and video

classification, e.g. (Sharma et al., 2015; Yang et al., 2018).

The training details are listed as follows. Each input video

was split into segments with T = 30 and d = 2. The GoogLeNet

model (Szegedy et al., 2016) trained on ImageNet (Deng et al.,

2009) was adopted as the pre-trained CNN network. In the ex-

periments, each video frame was resized to 224 × 224 × 3, the

number of output feature maps D was set to 2048, and the size

of each feature map was set to 8 × 8. As a result, the size of

Xt was 64 × 2048. Regarding the LSTM units, the dimensions

of LSTM memory gates and hidden states were all set to 512.

Regarding the module of structured attention, the spatial loca-

tions were divided into 4 × 4 non-overlapping regions with the

length of 2, i.e. N = 4, L = 2. The penalty coefficients of the

loss function in (11) were set as γ = 10−5 and λ = 10−4. The
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model was trained by Adam with the learning rate starting from

1 × 10−4, and other parameters use default values. In the train-

ing, the batch size was set to 256 and the training process was

stopped after 10 epochs. The dropout operation with ratio 50%

was used at all non-recurrent connections.

The proposed neural network is implemented using Tensor-

Flow with CUDA acceleration. The experiments were carried

out on a workstation with a 3.5GHz Intel Core i7-5930K CPU,

64G RAM and an NVIDIA GeForce Titan-X GPU.

Table 1. Classification accuracy (%) by different methods.

Model UCF-11 HMDB-51

(Gammulle et al., 2017) 89.20 -

(Meng et al., 2018) 89.70 -

(Li et al., 2018) - 43.30

(Yan et al., 2017) - 43.40

(Sharma et al., 2015) 84.86 41.31

(Yang et al., 2018) 89.70 52.30

Ours 91.84 48.81

4.3. Quantitative analysis

The performance of the proposed method is compared to sev-

eral recent video-based action recognition methods, including

(Gammulle et al., 2017; Meng et al., 2018; Li et al., 2018;

Sharma et al., 2015; Yang et al., 2018). These methods were

chosen for comparison since they are also built uopn LSTM

networks or attention mechanisms. The results in terms of clas-

sification accuracy are shown in Table 1. It is clear that the

proposed method performs the best among all the compared

methods on the UCF-11 dataset. On the HMDB-51 dataset, our

method exceeds all other methods except (Yang et al., 2018). It

is noted that the method proposed in (Yang et al., 2018) uses

optical flow as an additional cue for action recognition In con-

trast, our method does not use optical flow. By using less cues,

our method still outperforms (Yang et al., 2018) on the UCF-11

dataset and is comparable on the HMDB-51 dataset. The soft-

attention LSTM model (Sharma et al., 2015) is more related to

the proposed method, which also employs a similar attention

mechanism but without structure regularization. The effective-

ness of the proposed regularized attention mechanism is justi-

fied by the improvement (i.e. 6.98% on UCF-11 and 7.5% on

HMDB-51) of the proposed method over (Sharma et al., 2015).

The results listed above demonstrated performance gain of

our approach to attention mechanism in neural network. We

also compared our method with some state-of-the-art methods

whose architectures and mechanisms are different from ours

and the above compared methods. Table 2 shows the results

of the comparison. The performance of our method is close

to I3D (Carreira and Zisserman, 2017) but worse than MiCT-

Net (Zhou et al., 2018) and SMNet (Feichtenhofer et al., 2017).

However, we note that some of these methods use additional

sources such as optical flow as input, and our attention mech-

anism can also be incorporated into these methods for further

improvement. While not performing as good as those recent

state-of-the-art ones, our approach still has its value for atten-

tion mechanism, one important technique in action recognition.

Table 2. Classification accuracy (%) by ours and some state-of-the-art

methods on HMDB-51.

Model HMDB-51

I3D (Carreira and Zisserman, 2017) 49.80

MiCT-Net (Zhou et al., 2018) 63.80

SMNet (Feichtenhofer et al., 2017) 68.90

The proposed method 48.81

4.4. Parameter influence analysis and more studies

The parameter λ in the loss function of (11) is one impor-

tant parameter in the proposed method, as it controls the con-

tribution of the block-structured sparsity regularization on the

attention masks. To test the impact of the different settings

of λ to the performance, we conducted the experiments using

λ = 10−6, 10−5, 10−4, 10−3 respectively. The results are shown

in Table 3. It can be seen from the table that within a reason-

able range, the performance of the proposed model arises as λ

is increased. Such results also demonstrate the effectiveness of

introducing the structured attention mechanism. When λ ex-
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ceeds the range, the performance of our model decreases. It is

reasonable because very large value of λ imposes too much reg-

ularization on attention masks, and the resulting model could be

less relevant to the data.

Table 3. Classification accuracies (%) of proposed method with different

values of λ.

Model UCF-11 HMDB-51

Proposed model ( λ = 10−3 ) 89.54 47.62

Proposed model ( λ = 10−4 ) 91.84 48.81

Proposed model ( λ = 10−5 ) 90.46 47.56

Proposed model ( λ = 10−6 ) 89.23 47.29

The block size N in constructing the group sparsity regular-

ization in our method is also an important factor, as it may in-

fluence the way to divide image into regions and determine the

impact of the block sparsity constraint. The block size is re-

lated to the expected spatial region over which an action is to

occur, and the blocks with proper size can well fit the spatial

regions related to the action. The ablation study on the value

of N is done by conducting the experiments using another two

values of N. Moreover, we also tested the performance of using

overlapping blocks instead of the non-overlapping ones in our

method, since intuitively using overlapping blocks may have

better expressive power to fit more complex shape of attention

masks. In Table 4, we list the results of using different values

of N and different strides of overlapping block sampling. From

the results we can see that using block size N = 4 yields better

results than using bigger/smaller values. In practice, setting N

too large may make a block to cover many pixels that are not

related to the action, which significantly decreases the perfor-

mance. Meanwhile, too small N may weaken the regularization

of structured sparsity, which leads to noticeable impact on per-

formance. Also, it can be seen from Table 4 that using overlap-

ping regions is worse than using non-overlapping regions. The

reason is probably that using overlapping regions has less reg-

ularization effects on the network as it has more freedoms to fit

the attention well.

To verify the effectiveness of our attention mechanism, we

Table 4. Classification accuracy (%) by our method using different block

sizes and sampling strides on UCF-11.

Non-overlapping Overlapping

Stride 2 4 6 1 2 2

Blk. Size 2 4 6 2 4 6

Accuracy 89.17 91.84 85.22 86.71 88.46 82.62

compare our method to the version without attention, as well as

the version with classic un-regularized attention Sharma et al.

(2015). See Table 5 for the comparison It can be seen that

our attention mechanism outperformed the other two compared

ones demonstrates the benefits of the attention mechanism reg-

ularized by group-sparsity prior in action recognition.

Table 5. Classification accuracy (%) using different attention mechanisms.

Method UCF-11 HMDB-51

Without attention 82.37 38.46

Classic attention 84.98 41.42

Our attention 91.84 48.81

The attention map we generated only takes previous state of

LSTM as input. One possible improvement is taking account

of the feature of current frame when computing the attention

map. With such a purpose, we modified our network as fol-

lows: (i) applying a 1×1×2048 convolution to X(t) to form a 2D

map; (ii) applying an MLP (multi-layer perceptron) to the 2D

map to form a 512-dimensional feature w(t); (iii) replacing h(t−1)

with the concatenation of h(t−1) and w(t) in the attention mod-

ule. However, we found that the performance has no further

improvement but even gets worse with more than 0.5 accuracy

decrease. The reason is probably that additional operations for

utilizing current frame makes the network much more complex.

4.5. Visual illustration

This section is for visual illustration of some practical ex-

amples using the regularized attention mechanism proposed in

this paper. See Fig. 5 for the demonstration of sample attention

masks obtained in our method, which includes several video
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frames and the corresponding attention masks produced by the

proposed method. In Fig. 5 (a), the attention mask concentrates

on the regions of the soccer ball in the video frames. Note that

the soccer ball is the key object in the action of soccer juggling.

In Fig. 5 (b), the attention concentrates on the pedal as well as

the feet of the biker in the video frames, which are the key parts

of the subject and object in the action of biking. Fig. 5 (c) shows

another example of biking. In this example, in addition to ma-

jor attention on the bike, there is also partial attention locating

at the road. This result is reasonable, as biking and road are

highly correlated to each other, considering the fact that biking

often occurs on road. In Fig. 5 (d), it can be seen that the pro-

posed attention mechanism can capture the key parts of golfing,

i.e.swinging hand.

In the next, we present some examples to illustrate how the

proposed block-structured sparsity regularization impacts the

performance of the attention mechanism. In this demonstration,

the attention masks are generated by the attention mechanism

with and without regularization, which can be done by setting

the parameter λ = 0) of the proposed method. In Fig. 6 (a), the

un-regularized version incorrectly classifies the soccer juggling

video as golf swing, while in Fig. 6 (b) the proposed regularized

version yields a correct prediction. It can be seen that the pixels

of the regions produced by the un-regularized version are scat-

tering over the frames in the video. In contrast, the attention

regions predicted by the proposed regularized version mainly

concentrate on the objects and subjects of action, which cer-

tainly provide more relevant information for the recognition of

action. In addition, it can be seen in Fig. 6 (a) and Fig. 6 (b)

that the attention to the right person gradually becomes weaker

while the attention to the left person becomes more prominent

over the time. This shows that over time, the proposed regular-

ized attention mechanism can effectively focus on the object re-

lated to the action instead of simply detecting human body. See

Fig. 6 (c) and Fig. 6 (d) for the illustration of another example,

in which the un-regularized attention mechanism generates the

attention masks that spread out such that most are wrongly la-

beled. It is noted that the attention is effective to some degree at

the beginning, but it gradually diffuses over time, which makes

the LSTM network gate the discriminative information of the

action. In contrast, the proposed regularized one is capable of

classifying the input video correctly using the attention masks

with higher accuracy.

The visual inspection on Fig. 4 and Fig. 5 might lead to the

concern that the attention masks may be too sharply focused on

sub-parts of the actor that do not necessarily define the action

in and of themselves. For example, in the case of bicycle riding

the cycles are much more highlighted than the feet of the rider,

and in the case of horseback riding, the horse is much more fo-

cused than than the feet of the rider. In other words, it might

be confused with stationary bicycles that have no no riders. In-

deed, such a concern is not a severe issue. Firstly, human visual

perception allows one to recognize a human action by mainly

focusing on certain key parts of the human body or of the target

of the action. Secondly, in the cases of bicycle riding and horse

riding, the attention mask still has small focusing part on the

feet of rider. Lastly, when the bicycle and horse are stationary,

the attention mask may be not focused on them, as the atten-

tion is based on temporal cues exploited by the LSTM. Thus,

our method will not take stationary bicycles into account when

recognizing an action. See Fig. 7 for a demonstration.

Before ending the section, we also show some cases that

the proposed method fail. See Fig. 8 for the illustration. In

Fig. 8 (a), the video of playing basketball is mis-recognized as

the action of swinging, and the attention is misplaced on the

basketball court. One possible cause of such failure might be

that the basketball player is not conspicuous enough and too

small to satisfy the block size when calling block-sparsity reg-

ularization. Setting a proper block size in the group sparsity

regularization can help alleviating such error. Another exam-

ple is shown in Fig. 8 (b), where the video of football juggling

is mis-recognized as golf swing. In this example, the attention

is placed on the player at the beginning, but later the attention

leaves the human body due to a large movement occurring in

a short time interval, which eventually leads to incorrect clas-

sification. This issue can not be easily fixed in the current im-
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1

(a) Soccer juggling

1

(b) Biking-1
1

(c) Biking-2

1

(d) Golfing

Fig. 5. Video frames (upper rows) and the corresponding attention masks (bottom rows) produced by the proposed method.

1

(a) Misclassified as ”golf swing” with un-regularized attention mechanism

1

(b) Correctly classified as ”basketball” with regularized attention mechanism1

(c) Misclassified as ”volleyball spiking” with un-regularized attention mecha-

nism

1

(d) Correctly classified as ”soccer juggling” with regularized attention mecha-

nism

Fig. 6. Video frames (upper rows) and the corresponding attention masks (bottom rows) produced by the baseline method and the proposed method. (a)

and (c) correspond to the results by the baseline method that uses the un-regularized attention mechanism, where the videos are mis-classified. (b) and (d)

correspond to the results by the proposed method which uses the regularized attention mechanism, where the videos are correctly classified.
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Fig. 7. Key frames of a video (upper row) and its attention mask (bottom

row) generated by our method. The video contains a walking man and a

stationary bike. It can be seen that the attention mask generated by our

mechanism mainly focuses on the walking man instead of the stationary

bike.

plementation of the proposed mechanism, and it will be one

problem we focus on in future work.

5. Conclusion

Attention mechanism is an important technique in neural net-

work based recognition systems by telling the system where to

focus. However, existing implementation of attention mecha-

nism in action recognition often suffers from over-fitting such

that its benefits are mostly canceled out. Motivated by the ob-

servation that the parts of attention usually only concentrate on

a few connected regions relevant to the subject and object of

an action, this paper proposed an LSTM network for action

recognition with attention mechanism regularized by a block-

wise sparsity prior, In the proposed method, the prior is imple-

mented by imposing a `2,1-norm on attention mask that prompts

its block-wise sparsity. With such a built-in regularized atten-

tion mechanism that measures the relevance of image pixels to

action recognition, the proposed neural network showed good

performance in the experiments on the UCF-11 and HMDB-51

datasets. In future, we would like to investigate how to improve

the robustness of the attention mechanism in the case where

large motions of objects/subjects of actions occur, and how to

introduce the idea of regularized attention mechanism to other

recognition tasks for better performance.
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