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Abstract. Image reconstruction in sparse view CT is a challenging ill-
posed inverse problem, which aims at reconstructing a high-quality image
from few and noisy measurements. As a prominent tool in the recent de-
velopment of CT reconstruction, deep neural network (DNN) is mostly
used as a denoising post-process or a regularization sub-module in some
optimization unrolling method. As the problem of CT reconstruction
essentially is about how to convert discrete Fourier transform in polar
coordinates to its counterpart in Cartesian coordinates, this paper pro-
posed to directly learn an interpolation scheme, modeled by a multi-scale
DNN, for predicting 2D Fourier coefficients in Cartesian coordinates from
the available ones in polar coordinates. The experiments showed that, in
comparison to existing DNN-based solutions, the proposed DNN-based
Fourier interpolation method not only provided the state-of-the-art per-
formance, but also is much more computationally efficient.
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1 Introduction

Computed tomography (CT) is one imaging technique widely used in clinical
and industry applications. Mathematically, in CT imaging, a projection data (or
sinogram) p from a scanning angle 6 € [0, 7) at a position £ € R is obtained via
the following Radon transform [14]:

po(©) = [ " (es+ ns)dn, (1)

where f is the target image to be reconstructed, 5 = (cos#,sinf)’ and 5 =
(—sin®,cosf) . Reconstructing the image f is then about inverting Radon
transform from a limited number of observations corrupted by noise. Fourier
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slice theorem [2,21] plays an important role in the inversion of Radon trans-
form, which relates the 1D Fourier transform of projections with the 2D Fourier
transform of the image in polar coordinates:

F(w,0) = F(wcosO,wsinf) = pyp(w),

where F' denotes the 2D Fourier transform of the image f, and =~ denotes 1D
Fourier transform. Recall that once {F'(wy,wy)} in 2D Cartesian coordinates
are obtained, the image f can be reconstructed from {F(w,,wy)} by inverse
DFT. Thus, the CT image reconstruction can then be re-formulated as, given a
set of 1D discrete Fourier coefficients {pg, (w)}x for a limited number of {6y}
in polar coordinates, how to estimate {F (w,,w,)} in 2D Cartesian coordinates.

The interpolation problem in 2D discrete Fourier domain, i.e. estimating
all 2D Fourier coefficients on Cartesian coordinates from the available measure-
ments on polar coordinates, is indeed a challenging problem. It cannot be simply
solved by classic numerical interpolation schemes, e.g. linear interpolation. The
main reason is that the 2D Fourier coefficients of an image are highly irregular,
which contradicts the local smoothness assumption made by classic interpolation
schemes. As a result, direct call of classic interpolation schemes will lead to very
erroneous results with noticeable artifacts. In the case of sparse view CT where
the available measurements are sparse along a limited number of angles, the
results can be even worse. Zhang and Froment [22] proposed to tackle such an
interpolation problem with a total variation (TV) regularization on the image.
While many other regularization techniques introduced in CT reconstruction,
e.g., [13,15,16,19,9,11,6], can also be used for regularizing the interpolation
in discrete Fourier domain, these regularization strategies are based on some
pre-defined image prior, which does not always hold true in practice.

In recent years, DNN-based deep learning has emerged as one powerful tool
for CT image reconstruction. By treating the artifacts in the image reconstructed
by some method, earlier works used the DNN as a powerful denoiser to remove
the artifacts in the result [12, 8, 18, 20]. More recently, the so-called optimization
unrolling with DNN-based prior becomes a more preferred approach; see e.g.
[1,3,10,17,7,4,5]. These methods take some iterative regularization method,
and replace the regularization-relating modules by the DNNs with learnable
parameters. Note that, in each iteration, these methods needs to perform the
projection and back-projection operation, i.e. the Radon transform (1) and it
adjoint operator. As these operations are computationally expensive, the inclu-
sion of multiple such operations in the network not only makes the computation
very time-consuming, but also increases the complexity of network training.

This paper aims at developing a deep learning method for image reconstruc-
tion, which not only provide better performance than existing solutions to sparse
view CT, but also is much more computationally efficient. The basic idea is to
interpret the problem of CT image reconstruction as an interpolation problem
in discrete Fourier domain, not as a linear inverse problem in image domain
as most methods do. In this paper, we proposed an multi-scale interpolation
scheme in discrete Fourier domain with adaptive interpolating weights, which is
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predicted by a learnable multi-scale DNN. Note that there is no projection or
back-projection is involved in the proposed approach. For performance evalua-
tion, the proposed method is compared with FBP, TV method [15], two deep CT
reconstruction methods: LEARN [3] and Learn-PD [1]. The experiments showed
that the proposed method outperformed these methods by a noticeable margin,
while requiring much less training time.

2 Main body

We first introduced some notations for facilitating the discussion. Let f(z,y),
(z,y) € 2 C R? denote the image of spatial attenuation distribution, and pg (&)
the Radon transform of the object with 8 € (0,7] and £ € [—r,r], where r
denotes the radius of 2. For parallel scanning geometry, both 6 = (61,---,01)
and & = (&, --,&N) are uniformly distributed in the range [0,7) X [—r,7].
The 1D Fourier transform of the projection at each view, denoted as ¢y, are
distributed on a discrete polar grid in Euclidean space. In other words, the
input measurement is {F'(wg, 6¢)}, the 2D Fourier coefficients of the image f on
a polar coordinates {wg, 0) }r,i. In order to reconstruct the image f, one needs to
estimate the full set of 2D discrete Fourier coefficients of the image f, denoted by
{F(wk, , Wky) } k1 ks, o0 Cartesian coordinates, Once we have {F(wk, , Wk, )}y ko »
the image can be reconstructed by simply calling an inverse DFT. In short,

{po. Yk = {F (Wi, 00) }it == {Doy 1e = {F (Why > Why) Yoy ke — f = F 'F,

where F denotes 2D DFT and F~! denotes its inversion. In the procedure above,
the key step is to estimate {F(wg,, Wk, ) } iy ks from {F(wg, 0;) }x,1, which is often
called the problem of re-gridding, an interpolation problem from one grid to
a different type of grid. See Fig. 1 for an illustration of the work flow. As the
density of measured spectral data decreases rapidly from low to high frequencies,
it is a challenging task to interpolate the regions of high frequencies.

-
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Inter(F (w, 6),W)

Fig. 1. The work flow of Fourier interpolation (regridding) for image reconstruction
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In this paper, we proposed a learnable method for re-gridding in discrete
Fourier domain, which excludes the forward /backward projection in the network.
The basic idea is to interpolate the missing Fourier coefficient using a weighted
summation of its neighbors with adaptive weights. Specifically, for a frequency
(Wi, , Wk, ) on the Cartesian grid, the missing coefficient is predicted by a weighted
average of its K nearest neighbors {F(w (), ;) }2£, on the polar grid:

K

F(wlﬁ ) ka) = Z kal Wy (Z>F(Wk(z)7 91(1)) (2)
=1

where Wy, w,, (i) are learnable weights that are adaptive to different frequen-
cies. Such an interpolation scheme is implemented in a multi-scale manner. For
low frequencies with dense neighbors in polar coordinates, few neighbors are used
for interpolation with smaller K. For high frequencies with sparse neighbors in
polar coordinates, more neighbors are used for interpolation with larger K.
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Fig. 2. Diagram of the proposed method.

After the interpolation is done, we have now an initial estimation of all Fourier
coefficients on the Cartesian grid. Then, a learnable CNN is introduced to correct
possible prediction errors arising in the interpolation. As prediction accuracy de-
creases from low to high frequencies, we propose a multi-scale CNN-based correc-
tion scheme. Briefly, we construct S sets of Fourier coefficients on the polar grid
whose range increases from low to high frequencies, denoted by {Fj(w,0)}5_;.
Then, after the interpolation and CNN-based correction in discrete Fourier do-
main, the image can be reconstructed by inverse DFT with respect to different
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resolutions. Instead of using such a prediction for estimating the image f at the
resolution s, the estimation is done by the concatenation of current estimation
and the one from the coarser resolution s — 1 after up-sampling.

In summary, for each resolution s, the resulting prediction of the image f,
denoted by fs7 can be expressed as

fo(w,y) = F~(CNN, (Interp(Fy(w, ), W;), 6,)) + Up,_y (fo-1(2,9), 6,7 1),

where CNN; denotes the correction network with learnable weights 605, Interp
denotes the interpolation operator with learnable weight W, F,(w,6) denotes
the input measurement of scale s, fs(x,y) denotes the output of scale s, and
Up, denotes the upsampling layers from lower to higher resolution image with
learnable parameter 6%7. The image reconstruction f (z,y) is defined as the es-
timation in the finest resolution fg. In the implementation, we set S = 4 and
fo(amy) = 0. See Fig. 2 for the diagram. Let {p?, f7 le denote the training set
with J training samples, where each (p?, f7) denotes one pair of sinogram and
true image. The network is trained by minimizing the following loss function

J
£©) =231 FIR. 3
j=1

where 6 := {0, Wy, 0P} denotes the whole set of NN parameters.

EER)

3 Experiments

To evaluate the performance of the proposed method, we simulated projection
data from CT images as follows. The dataset included 6400 prostate CT images
of 256 x 256 pixels per image from 100 anonymized scans, where 80%, and 20%
of the data is set for training and testing respectively.

Through the experiments, K = 2,4, 6,8 are used for the numbers of the near-
est neighbors from low to high resolution. For an image of size N x N, the learn-
able weights, WlN/SXN/SXQ,WéV/MNMM, ?fV/QXN/2X6,WiVXNX8 at four levels,
are initialized with the normalized distance for every point and learned along
with the parameters in CNN and Upsampling layers. The standard CNN blocks
are stacked with the structure Conv—BN—ReLU. For all the Conv layers in the
CNN, the kernel size is set as 3 x 3, and the channel size is set to 64. The block
numbers of CNN are increased over the four levels: starting with 10 blocks for
the lowest frequencies and sequentially adding 4 blocks when the resolution level
increases. Finally, a CNN with 10 blocks are used in the upsampling stage.

The NN was implemented with PyTorch on a NVIDIA Titan GPU, and
trained by the Adam where momentum parameter 8 = 0.9, the mini-batch size
is 8, and the learning rate is 10~%. The model was trained for 50 epochs. The
convolution weights are initialized with constant matrices and the biases are
initialized with zeros. Both root mean square error (RMSE) and peak signal to
noise ratio (PSNR) are used for quantitative assessment of image quality.
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Table 1. Quantitative evaluation of the results (Mean£+STD) from different methods.

Angle Number|Noise Level|Method FBP TV FBPConvNet| Learn-PD LEARN Proposed
0% RMSE | 29.35 4+ 3.20 [25.08 +2.81| 21.79 £+ 2.73 |16.21 + 2.16/10.79 £ 1.70| 13.14 £+ 2.34
v PSNR | 40.45 4+ 0.97 |41.35 + 1.08| 43.05 £ 1.04 |45.56 + 0.57|49.19 &£ 1.29| 47.50 & 1.46

RMSE | 36.72 +2.98 [32.23 £ 2.42[ 26.91 £ 3.08 [28.51 £ 2.39] 19.90 + 1.94 |16.61 + 2.57

07
10% PSNR | 38.48 +0.70 |39.58 & 1.05| 41.20 + 0.94 |40.65 + 0.61| 43.81 £ 0.82 |45.43 £+ 1.27

180 views

RMSE | 52.84 +4.72 [35.64 & 1.94| 23.65 £ 2.53 [32.78 £ 1.96] 23.76 & 2.03 |20.86 + 2.25

07
0% PSNR | 35.3240.75 |38.71 £ 0.83] 42.32 £ 0.90 |39.45 + 0.52| 42.26 £ 0.72 |43.41 £ 0.91

RMSE | 72.05 £ 7.39 [39.71 £ 2.07| 27.85 + 2.59 [35.92 + 1.86| 34.65 + 4.70 [22.31 £ 2.59

309
30% PSNR | 32.64 4+ 0.86 |37.77 £ 1.03| 40.88 £ 0.79 |38.65 + 0.45| 39.03 £ 1.13 |42.83 4 1.00

RMSE | 82.85 4+ 8.55 [43.57 £ 2.31| 29.95 =+ 3.20 [36.92 + 2.62| 32.81 & 2.38 |20.80 & 2.57

0% PSNR | 32.42 4 0.87 |36.97 £ 0.86| 40.27 £ 0.91 |37.96 + 0.54| 39.45 £ 0.62 |43.45 4 1.05

10% RMSE | 94.01 +7.90 [44.87 £ 2.70{ 33.12 £ 3.34 {39.09 + 3.30| 37.16 & 2.40 |21.05 + 2.39
? PSNR | 30.31 4 0.71 |36.84 £ 0.85| 39.39 + 0.87 |37.93 + 0.72| 38.36 £ 0.55 |43.34 & 0.98

45 views

RMSE | 121.28 +9.56 [48.84 £ 2.23| 34.54 £ 3.28 [39.06 + 2.24] 39.91 £+ 2.15 |25.55 + 2.78

0
20% PSNR | 28.10 4 0.66 |35.97 £ 0.72] 39.39 + 0.81 |37.92 + 0.50| 37.86 + 0.46 |41.65 £ 0.93

RMSE [156.30 & 14.11{55.12 + 3.24| 40.25 £ 3.29 [48.02 + 2.26| 32.29 + 2.93 [30.64 + 3.32

0
30% PSNR | 25.90 +0.76 |34.92 + 0.69| 37.68 & 0.69 |36.13 + 0.41| 39.60 + 0.79 |40.07 + 0.93

RMSE [143.74 4+ 11.18]47.21 + 2.40| 42.11 £ 3.91 |48.13 £ 2.74| 41.85 +2.38 |23.11 &+ 2.53

0% PSNR | 26.62 + 0.68 |36.27 + 0.56| 37.30 £ 0.79 |36.11 & 0.49| 37.33 £ 0.50 |42.41 + 0.91

RMSE [154.24 & 10.00(48.56 =+ 2.41| 39.82 £ 4.15 [43.77 £ 2.99| 45.07 & 2.27 |26.16 + 2.58

10% PSNR | 26.00 & 0.56 |36.02 £ 0.85| 37.79 £ 0.86 |36.94 + 0.59| 36.68 = 0.43 |41.43 4 0.84

30 views

RMSE [181.94 4 10.17(52.48 £ 2.43| 38.37 £ 3.34 [53.41 £ 3.31| 51.37 +2.57 |28.82 4+ 3.10

0;
20% PSNR | 24.56 & 0.48 |35.35 £ 0.54| 38.10 £+ 0.74 |35.21 + 0.54| 35.54 & 0.43 |40.60 £ 0.93

RMSE [220.13 & 14.92(58.44 £ 3.52| 43.90 £ 4.96 [53.11 £ 3.71] 56.23 & 5.97 |31.82 + 3.38

07
30% PSNR | 22.91 4 0.57 |34.41 £ 0.52| 36.94 + 0.88 |35.26 + 0.61| 34.79 & 0.88 |39.74 £ 0.90

3.1 Parallel Beam CT Reconstruction

In the experiments for parallel beam CT reconstruction, the projection data
was down-sampled from 180 to 45 and 30 views to simulate the sparse view
geometry. For performance evaluation, the proposed methods is compared to
FBP method [2], TV method [15], FBPConvNet [12] and two optimization-
unrolling-based deep learning methods: Learn-PD [1] and LEARN [3].

See Table 1 for quantitative comparison of the results from different meth-
ods, in terms of RMSE and PSNR. It can be seen that deep learning methods
noticeably outperformed two non-learning methods, FBP and TV methods. For
the data with 180 views, LEARN is the best performer when measurement is
noise-free. In the presence of noise, the proposed method outperformed LEARN,
learn-PD and FBPConvNet by a noticeable margin for different noise levels. See
Fig. 3 for visual comparison of the results from different methods on one test
data with 180 views under different noise levels, and Fig. 4 on the same noise-free
test data with different views. Both quantitative and visual comparison showed
the advantage of the proposed method over existing solutions to spare view CT
reconstruction, especially in the presence of measurement noise.

Computational efficiency is another main motivation of our work. See Table
2 for the comparison of different methods on training/testing time. Owing to the
exclusion of the projection/back-projection operators in the proposed method,
the proposed method is much more computational efficient than two optimization
unrolling methods, LEARN and Learned-PD, in both training and testing. While
FBPConvNet is faster than the proposed method, its performance is significantly
worse than the proposed one as shown in Table 2.
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Noise Level

0%

10%

20%

30%

Methods FBP TV FBPConvNet Learn-PD LEARN  Proposed

Fig. 3. Parallel beam CT reconstruction with the projection data of 180 views.

45 views

Methods FBP TV FBPConvNet Learn-PD  LEARN  Proposed

Fig. 4. Parallel beam CT reconstruction with noiseless data: 45 views and 30 views.

Table 2. Comparison of training/testing time of different methods.

FBP TV |FBPConvNet|Learn-PD|LEARN [Proposed

180 views - - 40 min 6 day |6.2 day| 6 hour
Training| 45 views - - 40 min 2 day 3 day | 5 hour
30 view - - 40 min 1 day 1 day | 5 hour

180 views|0.20 sec|42.67 sec| 0.003 sec 2.16 sec | 2.27sec | 0.05 sec
Testing | 45 views [0.04 sec| 9.76 sec | 0.003 sec 0.55 sec [0.57 sec| 0.04 sec
30 view |0.02 sec| 5.76 sec 0.003 sec 0.44 sec |0.39 sec| 0.04 sec
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180 views

45 views

30 views

Methods FBP TV FBPConvNet Learn-PD LEARN  Proposed

Fig. 5. Fan beam CT reconstruction with noiseless projection data of 45 and 30 views.

3.2 Fan Beam CT Reconstruction

The proposed method is also applied for fan beam CT reconstruction, after
re-binning fan beam projection to parallel projection. The experiments are con-
ducted on the noiseless projection data with X-ray source rotated with 180, 45
and 30 views spanned on half circle. See Table 3 for the quantitative comparison
of the results from different methods and Figure 5 for visual inspection of the
results on sample data. The proposed method remains the top performer, in
terms of both quantitative metric and visual quality.

Table 3. Quantitative evaluation of different methods for fan beam CT reconstruction.

FBP TV FBPConvNet| Learn-PD | LEARN Proposed

RMSE| 85.87+8.88 |75.24+2.80| 43.14+3.83 | 50.65+3.04 [45.27+2.93|28.16 + 3.44
PSNR| 31.114+0.87 |32.25+0.50| 37.08+0.76 | 35.67+0.52 |36.65+0.57|40.91 + 1.06
RMSE| 92.81+9.07 |78.10+2.13| 46.30+5.52 | 62.54+4.88 |53.91+3.04|33.86 + 3.97
PSNR| 30.434+0.83 |31.90+0.53| 36.494+0.99 | 33.85+0.68 [35.13+0.50(39.57 £+ 1.01
RMSE|103.44+8.59(82.3442.04| 52.84+6.24 |88.78+10.07|63.361+4.02|38.95 4 4.77
PSNR| 29.48+0.71 |31.44+0.51| 35.344+0.98 | 30.83+0.96 |33.73+0.55/38.07 4+ 1.06

180 views

45 views

30 views

3.3 Ablation Study

This ablation study is for evaluating the performance gain brought by three
components in sparse view CT reconstruction: (1) CNN-based upsampling vs.
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bilinear, (2) multi-scale structure and (3) learnable interpolating weights {W;}
vs. fixed weights. The study is conducted on noise-free sample data with 180
views. See Fig. 6 for the comparison of different network architecture with in-
dividual component being replaced. It can be seen all three components makes
noticeable contributions toward performance gain. In addition, we also evaluate
the impact of the values of the hyper-parameter K to the performance. The
experiments are conducted on the noisy data of 45 views with 10% noise level.
It can be seen from Table 4 that the configuration with K = 2,4,6,8 from low
to high resolution achieves better performance than other configurations.

L

180 views
Methods Fixed Weight Single-Scale Bilinear Upsample Proposed True
RMSE 28.8885 27.3821 19.5619 12.6809

Fig. 6. Reconstruction results of different NNs for ablation study.

Table 4. Quantitative evaluations of the results from different configurations on K.

K | 2222 1444 | 66,66 8,8,8,8 2,4,6,8
RMSE(26.32£2.81|25.53£3.84(22.88+2.5721.34£2.49(21.05£2.39
PSNR [41.3940.94[41.70+£1.29]42.61+0.96|43.22+1.00|43.34-£0.98

4 Conclusion

This paper presented a multi-scale DNN for sparse view CT image reconstruc-
tion, whose key part is to learn an interpolation scheme that converts discrete
Fourier transform on polar coordinates to its counterpart on Cartesian coordi-
nates. The proposed method not only provide SOTA performance on CT image
reconstruction, but also is very computationally efficient. In future, we would
like to extend the proposed method to the case of 3D CT imaging geometry.
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