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Abstract. Deep learning has been a powerful tool for solving many inverse
imaging problems. The majority of existing deep-learning-based solutions
are supervised on an external dataset with many blurred/latent image pairs.
Recently, there has been an increasing interest on developing dataset-free deep
learning methods for image recovery without any prerequisite on external training
dataset, including blind deconvolution. This paper aims at developing an un-
supervised learning method for blind image deconvolution, which does not call
any training sample yet provides very competitive performance. Based on the re-
parametrization of latent image using a deep network with random weights, this
paper proposed to approximate the maximum-a-posteriori (MAP) estimator of
the blur kernel using the Monte-Carlo (MC) sampling method. The MC sampling
is efficiently implemented by using dropout and random noise layer, which does
not require conjugate model as traditional variational inference does. Extensive
experiments on popular benchmark datasets for blind image deconvolution showed
that the proposed method not only outperformed existing non-learning methods,
but also noticeably outperformed existing deep learning methods, including both
supervised and un-supervised ones.

AMS classification scheme numbers: 68U10, 94A08

PACS numbers:

Submitted to: Inverse Problems

1. Introduction

Image blurring is one type of image degradation in photography that causes the loss
of image details. For example, the so-called motion blurring happens when there is
camera shake during shutter time. When the variation of the scene depth is small and
the camera motion is dominated by in-image translation, such motion blurring can be
modeled by a convolution process:

y = k ⊗ x+ n, (1)

where ⊗ denotes 2D discrete convolution operator, y denotes the input blurred image,
k denotes the blur kernel, x denotes the latent image with sharp details for recovery,
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and n denotes measurement noise. Then, the so-called blind image deconvolution is
about recovering the latent image with sharp details from an input motion-blurred
image. In other words, blind image deconvolution concerns the estimation of both the
kernel k and the latent image x from the input y.

Blind image deconvolution is an ill-posed inverse problem with severe solution
ambiguity, i.e., there exists many kernel/image pairs that satisfy the equation (1),
as long as the kernel can be factorized by k = k1 ⊗ k2. Such factorization leads to
another solution (k1,k2 ⊗ x) since

y = k ⊗ x+ n = (k1)⊗ (k2 ⊗ x) + n. (2)

One well-known example is the no-blur pair [42]: (δ,k ⊗ x), where δ denotes the
(Dirac) Delta kernel. The no-blur pair gives a trivial solution to the problem such
that the result remains blurred. How to resolve solution ambiguity is one main concern
when designing a method to solve blind image deconvolution. Certain priors need to
be imposed on both latent image and blur kernel to resolve solution ambiguity existing
in (1). These priors are introduced either in the formulation of Bayesian inference or
regularized optimization model. The problem of blind image deconvolution has been
extensively studied in the past. In the next, we give a brief review of the works are
related to the approach presented in this paper.

1.1. Related works

1.1.1. Hand-crafted regularizations and Bayesian inference Considering an MAP
estimator for solving (1), we have

p(k,x|y) ∝ p(y|k,x)px(x)pk(k), (3)

where p(y|k,x) denotes the likelihood function, and px(x), pk(k) denote the
probability density functions (statistical priors) of x,k. In the case of i.i.d. Gaussian
white noise n with s.t.d. σ, the negative logarithm on both sides of (3) leads to an
MAP estimator, which solves the problem:

min
x,k

1

2σ2
∥k ⊗ x− y∥22 − log px(x)− log pk(k), (4)

where log px(x) and log pk(k) are the logarithm of the prior distributions of x and k.
The MAPx,k estimator (4) can also be viewed as a regularization model:

min
x,k

1

σ2
∥k ⊗ x− y∥22 + ϕ(x) + ψ(k), (5)

where ϕ(x) and ψ(k) are regularization terms induced by the priors imposed on image
and kernel. As blurring effect happens mostly on high-frequencies of image, in most
recent approaches, the problem is solved in the domain of image gradients ∇x. There
are some works which considers the problem in the dark/extreme channel [40,55]. In
the past, there have been extensive studies on the regularizations for image (image
gradient) in various image recovery tasks, including blind deconvolution, as well as the
regularizations for motion-blur kernels. For the regularization on motion-blur kernel,
the squared ℓ2-norm ψ(k) = λ2∥k∥22, induced by Gaussian prior on kernel, is the most
popular one (e.g . [24,52,54]). The curvelet-based ℓ1-norm regularization is used in [5].
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The most-often seen regularization for x is the ℓp-norm relating regularization,
including total variation (TV) regularization ϕ(∇x) = λ1∥∇x∥1 (e.g . [2, 7]),

normalized TV regularization ϕ(∇x) = λ1∥∇x∥1

∇x∥2
[24], wavelet-based regularization [4],

and ℓ0-norm relating regularization (e.g . [54]). In addition to ℓp-norm relating
regularizations, there are also the regularizations derived from other image priors,
including recurrence prior of image patches, [35, 44, 46]. There are several works to
infer the blur kernel by the spectral map of the blurred image with the power law
decay of clean natural images [12, 17]. To efficiently solve the resultant nonconvex
optimization and avoid the convergence to degenerated solutions, edge selection as a
powerful technique in blind image deconvolution is widely used, see e.g . [8,13,39,52,56].

Instead of jointly estimating both image and kernel via the MAP framework,
another formulation of Bayesian inference is based on MAPk. Its theoretical
advantages over the joint MAP estimator is discussed in [30], in terms of avoiding
the convergence to the no-blur solution. As the posterior distribution p(k|y) is
computationally intractable, variational Bayesian inference in [1,30,36,51] is adopted,
which approximates p(k|y) by a mean-field distribution. Fergus et al . [9] modeled
gradient images using i.i.d. mixture of zero-mean Gaussians. Babacan et al . [1]
used the super-Gaussian image priors. Wipf and Zhang [51] adopted Gaussian scale
mixture (GSM) prior modeling, and linked the variational Bayesian algorithm to an
specific MAP reformulation. Note that to make the variational Bayesian tractable,
the conjugacy of the probability modeling is required.

1.1.2. Supervised deep learning methods In recent years, deep learning has been a
powerful tool for blind image drblurring. Most existing deep-learning-based solutions
are based on supervised learning, i.e., a deep neural network (DNN) is trained over
many blurred/latent image pairs. There are two types of approaches to supervised
learning. One type of methods explicitly calls the convolution process in the network.
Chakrabarti et al . [6] learned the deblur kernel in the frequency domain. Schuler et
al . [45] and Li et al . [32] unrolled an alternative minimization scheme of an MAP
estimator with its image-prior-related part replaced by a learnable DNN. Kaufman
and Fattal [19] proposed a two-stage approach which first learns a DNN for predicting
blur kernel and then learns another DNN for deblurring the image using the predicted
kernel. There are also some other variations, including learning a discriminator or
the fitting term (e.g . [31, 38]). These methods are based on the convolution-based
blurring model. Thus, there are more suitable for processing the images with uniform
blurring. Another type of methods trains the DNN in an end-to-end way that directly
maps an blurred image to a sharp one. The main differences among these works are
on the design of network architectures; see e.g . [26, 37, 47, 53]. Xu et al . [53] is the
first work that proposes the end-to-end training for a deblurring DNN. Tao et al . [47]
employed a coarse-to-fine and recurrence structures in network. As these methods do
not reply on the convolution-based blurring model, they are applicable to the images
with spatially-varying blurring effect (e.g . [57]).

1.1.3. Unsupervised deep learning for image denoising In order to have good
generalization performance, a supervised learning method requires an external dataset
with many training samples for training the network. Such a prerequisite on training
data with truth images limits its application in certain domains, including medical
imaging and scientific images. It is of great value to develop deep-learning-based
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method which does not require the access to external truth images, while still providing
good performance.

While there are few works on unsupervised learning methods for blind
deconvolution, there have been many works on unsupervised deep learning methods
for image denoising. Ulyanov et al . [48] proposed the seminal work, deep image prior
(DIP), which shows there exist implicit regularizations introduced by the structures
of a convolutional neural network (CNN), which prefers regular image structures
over random noising when training a denoising network. The Noise2Noise method
presented in [29] showed that one can train a denoising network using the noisy/noisy
image pairs, instead of noisy/clean image pair as those supervised denoising network.
Afterward, many methods are developed to augment noisy images to image pairs for
training a denoising network; see e.g . [3, 25,28,41].

1.1.4. Unsupervised deep learning methods for blind image deblurring In comparison
to image denoising, the works on unsupervised deep learning for blind deconvolution
are few. A method is proposed in Ren et al . [43], which is motivated by the DIP [11,48]
and the double-DIP [11]. The double-DIP proposed to use two NNs to predict
two layers, cartoon and texture, of an image for decomposition. Similarly, Ren et
al . [43] also used two NNs for predicting kernel and image: One CNN for predicting
the image and an FCN for predicting blur kernel. While DIP is very effective on
image denoising, it cannot resolve solution ambiguity in blind deconvolution, i.e. the
convergence to a blurred solution. Thus, an additional TV-regularization is imposed
on the latent image in the cost function in Ren et al . [43] for resolving solution
ambiguity. Another approach is based on GAN. Lu et al . [34] proposed a GAN-
based disentangle representation framework with unpaired blurry and sharp images
to deblur domain-specific images such as facial images. Such a GAN-based method
will encounter domain shift issues for wider adoption. Liu et al . [33] proposed an
optical-flow-based self-supervised method for processing images or videos, where the
network is trained on video sequences.

1.2. Discussion on existing un-supervised methods

The idea of double-DIP for blind image deconvolution [43] is to train two generative
NNs Gk(·;θk) and Gx(·;θx) for predicting the kernel k and the latent image x
respectively. These two NNs map the two fixed initial seeds zx, zk to the unknown
image and kernel:

Gx(·;θx) : zx → x, and Gk(·;θk) : zk → k, (6)

where θx,θk are the parameter sets of two NNs. Then, one might train the two
networks to have a maximum likelihood estimation (MLE) by using the following loss
function:

min
θk,θx

1

2σ2
∥Gk(zk;θk)⊗ Gx(zx;θx)− y∥22. (7)

DIP cannot resolve solution ambiguity of blind deconvolution we discussed in the
previous section, when training the networks using (7). What DIP can avoid is the
introduction of random noise in the prediction. However, the pairs of image/kernel
which cause solution ambiguities do not contain such noisy pattern. For example, the
image in the trivial no-blur pair (y, δ) is the smoothed-out version of the latent x
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(a) Input (b) w/o regularization(c) Early stopping(d) TV regularization (e) Our model (27)(f) Groundtruth

Figure 1. Estimating the image/kernel for the image shown in (a) using
the same NN trained by different methods. (b) Training by the loss (7)
without early stopping; (c) Training by (7) with early stopping in DIP; (d)
Training by TV regularized loss (8) in Ren et al . [43]; (e) Training by the
proposed method; (f) Truth image/kernel.

without random noise. As a result, the smoothed-out version of the image x tends
to appear before the truth image x during the training. In other words, DIP itself
is not sufficient for handling possible overfitting when training the networks by (7).
See Figure 1 (c) for an illustration of the convergence to the no-blur pair when using
(7) to train two networks. To avoid possible overfitting when using double-DIP to solve
blind deconvolution problem, an additional TV regularization is introduced in [43] on
the image predicted by the network. The resulting loss function is then:

min
θk,θx

1

2σ2
∥Gk(zk;θk)⊗ Gx(zx;θx)− y∥22 + λ∥∇Gx(zx;θx)∥1, (8)

where λ is a hyper-parameter to be tuned-up. With additional TV regularization on
the prediction, the loss function (8) partially addressed the likely overfitting. However,
such a regularization also have a negative impact on the result, as it is not adaptively
optimized for individual images.

See Figure 1 for an illustration of the predictions from the network trained using
MLE-based (7), TV-regularized loss (8), and the proposed method. It can be seen
that the network trained using (7) will converge to the prediction of the no-blur pair,
and the network trained using (8) does not provide an accurate estimation of the blur
kernel due to the non-adaptive regularization on the sample image. Overall, existing
DIP-based unsupervised methods for blind image deconvolution, e.g . DIP-based Ren
et al . [43], leave a lot of room for further improvement. For GAN-based methods,
e.g . Lu et al . [34], they are more suitable for processing domain-specific images (e.g .
text or face images), not general natural images.

1.3. Main idea and contribution

In this paper, we proposed a new un-supervised deep learning method for blind image
deconvolution. The method is not about the design of new deterministic network
architecture for blind deconvolution, but is about introducing deep-NN-based re-
parametrization [16,20,21] technique, in the framework of Bayesian inference, to tackle
the overfitting caused by the absence of training samples.

The proposed method is built on the well-known MAPk estimator for blind
deconvolution [30]. The estimator MAPk requires the marginalization of the images
over the prior distribution px(x), which is in general computationally intractable.
The so-called variational Bayesian approximation method tackles such an issue by
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approximating the distribution px(x) using another distribution q(x,γ) to make the
computation tractable. For example, the following factorization distribution is used
in [9,36] for mean field approximation: q(x;γ) =

∏
i q(xi; γi), where q(x) (or q(∇x))

and q(k) is defined by a conjugate hierarchical distribution,

q(xi) ∼ N (xi; 0, γi), where γi ∼ Γ(γi; a, b). (9)

where N denotes normal distribution and Γ denotes Gamma distribution.
It can be seen that the performance of such a variational approximation method

depends on how accurately the approximating distribution can approximate the prior
distribution px(x). In order to make q computationally tractable, the distribution q are
greatly simplified in existing methods. As a result, the approximating distribution does
not accurately characterize the properties of natural images. For example, the mean-
field assumption of q assumes the independence of all image pixels, which certainly is
sub-optimal. This motivates us to study a different Bayesian approximation method
to the MAPk estimator. Our solution is based on the so-called re-parametrization
technique [16, 20, 21], which approximates the prior distribution of px(x) by a NN
with random weights

Gx(·;θx,γx) : zx → samples from px(x), (10)

where θx denotes the set of deterministic weights of the network and γx denotes the set
of the weights randomly sampled from standard distribution (e.g . normal or Bernoulli
distribution). The distribution derives from (10) will provide better characterization
of the correlations among image pixels, in comparison to existing mean-field models.
For the representation of kernel k, we also use a generative network with learnable
weights to express it:

Gk(·;θk) : zk → k.

Note that, unlike image generative network Gx(·), there is no need to impose
randomness on Gk(·), as the marginalization is only for the image in our approach.

Remark (Prior distribution of targe image in un-supervised learning). It is noted that
the definition of prior distribution p(x) in our setting has different meaning from
that used in supervised learning or GAN. In supervised learning or GAN, a model is
trained over many images in the same domain, which is supposed to learn the prior
distribution of all images in that domain. Then, such a prior distribution over all
images allows one to use a pre-trained model to process unseen images in the same
domain. In our unsupervised case, the network is trained only for one specific target
image x. The resulting prior distribution p(x) is then about the probability of such
an image. As a result, in contrast to that in supervised learning, the prior distribution
function p(x) that we are approximating is a Gaussian-like function that centers at
the target image x with small variance.

Based on the proposed image generative network with random weights, one can
approximate the MAPk using the MC sampling method. In this paper, we proposed
an efficient MC sampling scheme for approximating the MAPk. Such a MC sampling
scheme is integrated in an alternating iteration scheme, which leads to an efficient
algorithm for training the network. See below for the summary of our contributions.

• Deep-NN-based re-parametrization for variational approximation. An
deep-NN-based re-parametrization is introduced to provide more accurate
approximation to the distribution of images over existing related methods.
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• Efficient training scheme with the integration of an efficient MC
sampling and alternating iteration scheme. An efficient MC sampling
is proposed to approximate the MAPk estimator, which is integrated into an
alternating iteration scheme for training the network.

• Noticeable performance improvement over existing solutions. Extensive
experiments on three benchmark datasets show that the proposed method not
only noticeably outperformed existing non-learning methods and un-supervised
methods, but also outperformed existing supervised deep learning methods.

• Potential application in other non-linear inverse problems. The
techniques presented in this paper are easy to implement. It can see its potential
applications to solve other linear or non-linear inverse problems.

In short, we proposed to model the prior distribution of the image by a deep-NN-
based re-parametrization technique, which is implemented by including both additive
Gaussian noise layer and dropout layer in the network. Then, one can sample the
distribution px(x), expressed by the trained network with random variables. One
image sample can be obtained with one instance of Gaussian noise and dropout [21]
for the generative network. In other words, we proposed to train a generative
network for image with random process, which enables an efficient MC-sampling based
approximation to the integral over x involved in the MAPk. Note that, in comparison
to the pre-defined TV regularization on image [43] which assumes the gradients of
target image follows a Laplacian distribution, the prior distribution of target image in
our approach is learned via training a generative networks with random process.

1.4. Organization

The organization of the paper is as follows. In Section 2, the main results are presented
with all details. In Section 3, extensive experiments are conducted to evaluate the
performance of the proposed method. Section 4 concludes the paper.

2. Monte-Carlo sampling for MAPk

The section is devoted to the detailed discussion of the proposed MC-sampling-based
self-supervised deep learning method for blind image deconvolution. The method is
built on the following MAPk for k:

k̂ = argmax
k

p(k|y) = argmax
k

∫
p(k,x|y)dx

= argmax
k

pk(k)

∫
p(y|k,x)px(x)dx, (Bayes’ rule) (11)

where px/pk denotes the prior distribution of image/kernel. Once the kernel is
predicted, the latent image x can be efficiently computed by calling a non-blind
deconvolution method. It is shown in [30] that, in terms of avoiding the convergence
to the no-blur pair, the MAPk is more effective than MAPk,x which jointly estimate
k and x as the following:

(k̃, x̃) = argmax
k,x

p(k,x|y). (12)
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The reason comes from the size difference between the kernel and image: kernel
size is usually much smaller than image size. Thus, the MAPk is much less likely
biased to Dirac Delta δ than MAPk,x. Note that the MAP estimator MAPk requires
the marginalization of the images over the posterior distribution p(k,x|y). In our
approach, such a marginalization is approximated by an MC sampling method.

2.1. MC sampling with NN-based re-parametrization for approximate the MAP
estimator (11)

In this section, we present the detailed derivation of the proposed MC-sampling based
approximation to MAPk. By Bayesian rule, we have

log p(y|k) = log

∫
p(y,x|k)dx ∝ log

∫
p(x)p(y|x,k)dx. (13)

Then, by the Jensen’s inequality,

− log

∫
p(x)p(y|x,k)dx = − logEp(x)[p(y|x,k)] ≤ −Ep(x)[log p(y|x,k)]. (14)

Note that MAPk is the minimum of the following cost function:

min
k

L(k) := − log p(k)− log

∫
p(x)p(y|x,k)dx. (15)

Then, we approximate the MAPk by minimizing its upper bound given by (14):

min
k

LMC := − log p(k)− Ep(x)[log p(y|x,k)]. (16)

In our approach, the distribution of kernel is assumed to be normal distribution such
that − log(p(k)) = λ∥k∥22. The expectation in (16) is approximated by the MC
sampling method:

Ep(x)[log p(y|x,k)] ≃
1

N

N∑
i=1

log p(y|k,xi), (17)

where {xi}Ni=1 are randomly sampled from the distribution px(x). As px(x) is not
available, the remaining question is then how to simulate MC samples {xi}Ni=1 without
knowing the exact form of px(x).

In our approach, we use a deep generative network with random weights to
approximate the prior distribution of x, such that we can simulate MC samples by
the map

Gx(·,θx; ϵ,M) : zx → Samples from px(x), (18)

where θx are deterministic weights and ϵ,M are random variables. In other words, the
network Gx is a network with random weights for approximating the prior distribution
of the image x, while the deterministic generative network used in [11, 43] is for
predicting the latent image. Suppose that after training the network Gx with sufficient
iterations, the model can well approximate p(x), the Dirac Delta distribution. Then,
the images predicted by the random instances of the trained model are the ones very
close to the latent image x.
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The network with random process is implemented on an encoder-decoder
backbone network, where several dropout layers are inserted in the decoder part and
an additive Gaussian noise layer is attached in the beginning of the encoder. Let
B(p0) denotes the Bernoulli distribution with probability p0. Then, the distribution
represented by Gx(·,θx) can be expressed as

Gx(zx + ϵ;θx,M), (19)

where θx are deterministic network weights, and ϵ ∼ N (0, σ2
0I), M ∼ B(p0). The

distribution represented by (19) is then used to approximate the density function of
the latent image px(x). Once the network is trained with optimal weights θ∗, the MC
samples from px(x) can be simulated by sampling the network as follows.

{xi}Ni=1 = {Gx(zx + ϵi;θ
∗
x,Mi)}Ni=1, (20)

where {ϵi,Mi} are independently drawn from N (0, σ2
0I) and B(p0) respectively.

In our approach, same as [11,43], we also train a deterministic network to predict
the kernel k, which is implemented by a small-size encoder-decoder backbone network.
The reason of no randomness in the Gk(·) is that there is no gain obtained as illustrated
in our experiments, see Section 3.5.

Remark. While double-DIP [11], Ren et al . [43], and our methods all train two
deep NNs for the latent image and the blur kernel. The NN for image in [11, 43]
is deterministic which predicts the latent image. In contrast, the NN for image in
our approach is the one with random weight which represents the prior distribution
of images.

2.2. Alternating iterative scheme for network training

Note that most existing non-learning regularization methods take an alternating
iterative scheme to alternatively update the estimation of x (or ∇x) and the kernel
k. Such an alternating iteration scheme works surpassingly well in practice. Thus, we
also propose to use the same alternatively iterative scheme to updates the weights of
two NNs:

θ0
k → θ1

x → θ1
k → θ2

x → · · · → θt
k → θt+1

x → θt+1
k → · · · , (21)

which is equivalent to alternatively update the estimations of image and kernel. Recall
that the MAPk estimation of k at iteration t reads

kt = argmax
k

p(k|y;θt
x). (22)

We minimize

LMC = − log p(k)− Ep(x)[log p(y|x,k)]

= − log p(k)− Ep(x)[−
1

2σ2
∥k ⊗ x− y∥22]

≈ − log p(k) +
1

N

N∑
i=1

1

2σ2

∥∥k ⊗ Gx(zx + ϵti;θ
t
x,M

t
i )− y

∥∥2
2

= λ∥k∥22 +
1

N

N∑
i=1

1

2σ2

∥∥k ⊗ Gx(zx + ϵti;θ
t
x,M

t
i )− y

∥∥2
2
.

(23)
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+

Dropout

Figure 2. The diagram of the un-supervised training approach to blind
deconvolution via randomized deep network.

It can be seen that the MC sampling is used to approximate the expectation in the
derivation above. Notice that the kernel k is generated by the deterministic NN
Gk(zk;θk). Defining the following loss function:

L̃(θk, θx; {ϵi,Mi}i) =
1

N

N∑
i=1

∥Gk(zk;θk)⊗ Gx(zx + ϵi;θx,Mi)− y∥22. (24)

Then, minimizing LMC is to equivalently solve

θt
k = argmin

θk

(
L̃(θk,θt

x; {ϵti,M t
i }i) + 2σ2λ∥Gk(zk;θk)∥22

)
. (25)

After the kernel kt is updated at iteration t, we can update the estimation of prior
distribution px(x), which is determined by the Bayesian NN Gx(zx + ϵ;θx,M). The
update on θx is then defined by

θt+1
x = argmin

θx

L̃(θt
k,θx; {ϵt+1

i ,M t+1
i }i). (26)

In summary, the alternating update on two weight sets θk and θx can be viewed
as solving minimization problem

min
θk,θx

L(θk,θx) = min
θk,θx

Eϵ,M

(
L̃(θk,θx; {ϵ,M}) + µ∥Gk(zk;θk)∥22

)
, (27)

where ϵ ∼ N (0, σ2
0I),M ∼ B(p0) and µ = 2σ2λ. The function (27) is the cost function

used for training two networks. See Figure 2 for the diagram of the work flow. In
practice, we observed that at each iteration, just sampling one image instance (i.e.,
N = 1) by the randomized image generative network performs well in our experiments.
See Algorithm 1 for the outline of the algorithm for network training.

Recall that to have an accurate estimation of the truth image x, we would
like to have the prior distribution defined by the trained image generative network
concentrated on the truth image x with small variance. See Figure 3 for the
visualization of the images generated from the network trained after iteration 100, 1000
and 5000 respectively. It can be seen that the images generated by the network
trained with more iterations are more close to the truth images. Also, after sufficient
iterations, these images generated from the network are well concentrated on the truth
images without significant image artifacts (small variance). This illustration showed
the approximation effectiveness of the proposed method to the truth prior distribution
of the latent image x.
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Algorithm 1 Blind image deconvolution via approximate Monte-Carlo sampling

Input: Blurry image y, regularization parameter µ, fixed input noise s.t.d σx, σk,
injected noise s.t.d σ0, dropout rate p0, number of iteration T .

Output: Estimated sharp image x and blur kernel k.
1: %% Generate fix noise .
2: zx ∼ N (0, σ2

xI); zk ∼ N (0, σ2
kI)

3: for t = 1 : T do
4: ϵt ∼ N (0, σ2

0I), M
t ∼ B(p0)

5: θt
k = Adam(θt−1

k ,∇θk
L), where L in (27)

6: θt
x = Adam(θt−1

x ,∇θx
L), where L in (27)

7: end for
8: x = Gx(zx;θ

T
k ), k = Gk(zk;θ

T
k )

it
er
=
1
00

it
er
=
1
00
0

it
er
=
50
00
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Figure 3. The image samples generated from the network Gx trained after
100, 1000 and 5000 iterations respectively. (a)-(d) show some image samples and
(e) shows the standard deviation of 10 such samples.

2.3. Discussion on the treatment of kernel estimation

In the previous section, we present a MC-sampling-based approach to approximate
the MAPk. The generative NN Gx is a deep network with random process which is
trained to model the posterior distribution of x. Different from the treatment for
image, the generative network for the kernel k is deterministic.

From the derivation of the MAPk estimator, there seems to be no need for training
a network for predicting the kernel. One reason we train a network for predicting
the kernel is for computational efficiency. Note that the integral involved in MAPk is
approximated by the MC method. While more samples will give better approximation
accuracy, only few samples are used during the iteration for computational efficiency.
As a result, direct calculation of the kernel will suffer from approximation error. By
training a generative network for predicting the kernel, we can help alleviate such
approximation error by learning the prediction from only few samples. In addition,
there are two widely used physical constraints on the kernel:

• Non-negativity: k[n] ≥ 0 for all n.

• Normality: ∥k∥1 = 1.
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These two physical constraints can be implemented by appending a Softmax layer in
the end of the NN, same as [43]. Therefore, there is no need to add such constraints
on the cost function.

As the generative NN used for kernel is deterministic and the one for image is
randomized, a natural question is then why not treat two in the same way, e.g . both
NNs are randomized. Then, the image can also be estimated by marginalizing over
the distribution of kernels, which gives the MAP estimator for image MAPx. The
reason why we don’t adopt such a strategy is that the dimension of the kernel space is
much smaller than that of the image space. As a result, such a marginalization does
not bring noticeable benefit, while it will significantly increase computational cost. In
Section 3, an ablation study is conducted to show that there is no performance gain
if we also randomize the NN for the kernel in the same way as we did for the image.

In summary, we present an un-supervised deep learning method for blind image
deconvolution, which does not require any training samples with ground truth image.
The proposed method is built on the MAPk estimator which estimates the kernel
by marginalizing over all images in its posterior distribution. In our approach, the
MAPk estimator is approximated by MC sampling on the approximating distribution
modeled by a generative NN with random process. Based on such an MC sampling
method, two generative networks for image and kernel are trained in an alternating
iterative scheme. The corresponding cost function can be solved by standard deep
learning solvers, e.g . Adam.

3. Experiments

This section is devoted to the performance evaluation of the proposed method, in
comparison to existing solutions to the application of blind image deconvolution.

3.1. Implementation details

Both generative networks, Gx(·,θx) for image and kernel Gk(·,θk) for kernel, are based
on U-Net and are jointly trained. For Gx(·,θx), we implemented a U-net with 6 levels.
Channel number was set to 128. For Gk(·,θk), the U-net contained 4 levels with
channel number 64. The physical constraints on blur kernel is implicitly implemented
by appending a Softmax layer to the output of the U-net. Both NNs used LeakyReLU
with slope 0.1; see supplementary file for more details. To make the image generative
network enable sampling multiple image instances, we add a Gaussian noise layer
to perturb the input zx. In addition, we also include a dropout layer before each
re-scaling in the Decoder sub-network.

We set the fixed inputs zx, zk sampling from the uniform distribution U(0, 0.1).
We trained the NN for 5 × 103 epochs. For the generative NN for images Gx(·,θx),
we set the dropout rate p0 = 0.3 at the first 1.5× 103 epochs and drop to p0 = 0.001
for later iteration. A decreasing dropout rate is for further improving computational
efficiency. The motivation is that after the kernel is far away from the Dirac delta
function, the randomness of kernel is not long necessary for keeping the network
converging to the Dirac delta function.

For noise ϵ, its s.t.d. is set to σ0 = 0.05 for larger kernel size or 0.01 for relative
small kernel size initially and 0.001 after 3.5 × 103 iterations. The learning rate is
1 × 10−2 . For Gk(·,θk), the learning rate was set to 1 × 10−4. Both leaning rates
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dropped with rate 0.5 after 3 × 103 steps. The parameter µ was set to be 1 × 10−4.
All experiments are conducted on a single NVIDIA Titan RTX GPU.

3.2. Dataset and protocol for performance evaluation

The experiments are evaluated on both synthesized dataset for quantitative evaluation
and real-world dataset for qualitative evaluation. Quantitative evaluation is conducted
in three benchmark datasets:

• Levin’s dataset‡ with mild uniform blurring effect. Levin et al .’s dataset contains
32 images generated by convolving 4 clear images using 8 motion-blur kernels and
adding Gaussian white noise with s.t.d. 1%. The size of these kernels is small,
ranging from 11× 11 to 27× 27.

• Lai’s dataset§ with severe blurring effect. Lai et al .’s [27] contains 100 blurry
images falling into 5 categories and covers 4 different kernels whose size ranges
from 31× 31 to 75× 75.

• Köhler’s dataset∥ with non-uniform blurring effect. Köhler [22] contains 48
motion-blurred images. This dataset is produced by recording the samplings
from the six-dimensional camera motion trajectory. Thus, the blurring of the
images are not uniform. However, the variations of blurring effect are not very
large. The size of dominant kernels ranges from 41× 41 to 141× 141.

Performance evaluation on real-world images are conducted on one dataset with real-
world images:

• Lai et al . ’s real-world dataset [27], which contains 100 real blurred images
captured in the real-world scenarios with different cameras and settings. They
are categorized into 5 attributes as the synthetic images form Lai’s dataset [27].

As no ground truths are available for real-world images, only qualitative evaluation
via visual inspection is possible on these images.

In comparison to non-blind image deconvolution, the focus of blind image
deconvolution is about kernel estimation. A popular evaluation protocol is to measure
the accuracy of the estimated kernel, which is done in a two-stage protocol. Firstly, the
blind deconvolution algorithm for evaluation is called to estimate the kernel. Then,
using the estimated kernel, some standard non-blind deconvolution method [30,50] is
called to deblur the image, whose quality is used for measuring the estimation accuracy
of the kernel. However, many recent deep learning methods simply restore the blurred
image without predicting the blur kernels, and thus we only can evaluate them using
the output of these methods. In our experiments, when evaluating a method, the
two-stage protocol is called whenever the kernel is available. For the method without
outputting the kernel, its direct output of image is used for evaluation and the results
are colored in blue. For the proposed method, both protocols are used for evaluation.
Two metrics are used for quantitative evaluation: PSNR (peak signal-to-noise ratio)
and SSIM (structural similarity index measure).

‡ https://webee.technion.ac.il/people/anat.levin/papers/LevinEtalCVPR2011Code.zip

§ http://vllab.ucmerced.edu/wlai24/cvpr16_deblur_study/data/cvpr16_deblur_study_

synthetic_dataset.zip

∥ http://people.kyb.tuebingen.mpg.de/rolfk/BenchmarkECCV2012/BlurryImages.zip

https://webee.technion.ac.il/people/anat.levin/papers/LevinEtalCVPR2011Code.zip
http://vllab.ucmerced.edu/wlai24/cvpr16_deblur_study/data/cvpr16_deblur_study_synthetic_dataset.zip
http://vllab.ucmerced.edu/wlai24/cvpr16_deblur_study/data/cvpr16_deblur_study_synthetic_dataset.zip
http://people.kyb.tuebingen.mpg.de/rolfk/BenchmarkECCV2012/BlurryImages.zip
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Table 1. Average PSNR/SSIM of the results from different methods on Levin et
al .’s dataset [30].

Non-learning Methods Supervised Un-supervised

Metric
Cho Xu Sun Xu Pan Yan Yang Pan Tao Kupyn Ren Ren

Ours Ours& Lee & Jia et al . et al . et al . et al . & Ji et al . et al . et al . et al . et al .
[8] [52] [46] [54] [40] [55] [56] [38] [47] [26] [43] [43]

PSNR 30.79 31.74 32.38 29.93 32.69 31.28 32.04 30.42 25.97 25.7 33.32 33.07 34.42 34.71
SSIM 0.875 0.917 0.91 0.895 0.928 0.912 0.912 0.907 0.795 0.79 0.943 0.931 0.948 0.948

Input Xu et al . Tao et al . Kupyn et al . Ren et al . Ours Groundtruth

[52] [47] [26] [43]

Figure 4. Deconvolution results for two images from Levin et al . [30]’s dataset
with noise level 1 %.

3.3. Experiments on blind image deconvolution

Our method is compared to existing representative blind image deconvolution
methods. Whenever possible, we directly cited the results from the literature.
Otherwise, we used the pre-trained models from the authors to generate the results.
If only code was available, we made effort to train it for optimal parameters. If none
was available, we left it blank.
Experiments on Levin et al .’s dataset [30] with small kernel size In this
experiments, totally 11 methods are included for comparison, including 7 non-learning
methods, such as [8, 46, 52, 54], 3 supervised deep learning methods [26, 38, 47] and 1
unsupervised learning method [43]. See Table 1 for quantitative comparisons of the
results from different methods. It can be seen that our method outperformed the
second-best by around 0.64dB in terms of PSNR, and by around 0.005 in terms of
SSIM. The results showed that our method provides very competitive performance
when processing motion-blurred images with small kernel sizes. See Figure 4 for the
visual comparison of the results from several methods. It can be seen that the results
from ours and Ren’s have overall the best visual quality in terms of sharpness and
artifacts. Overall, the proposed method provides the SOTA performance on the images
with small kernel size.
Experiments on Lai et al .’s dataset [27] with large kernel size Following [27],
the non-blind deconvolution method [23] is called in the evaluation protocol for all
categories except ”saturation”, in which the method [50] with outlier handling is
called. For this dataset, totally 17 methods are included for comparison. See Table 2
and 3 for the quantitative comparison of the results from different methods in terms
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Table 2. Average PSNR of the results from different methods on Lai et al .’s
dataset [27].

Non-learning Methods Supervised Un-supervised

Category
Cho Xu Sun Xu Pan Yan Yang Tao Kupyn Kaufman Ren Ren

Ours Ours& Lee & Jia et al . et al . et al . et al . & Ji et al . et al . &Fattal et al . et al .
[8] [52] [46] [54] [40] [55] [56] [47] [26] [19] [43] [43]

Manmade 16.11 19.56 19.3 17.87 17.33 19.32 19.99 15.61 15.93 18.94 20.08 20.35 21.01 23.06
Natural 20.09 23.38 23.69 22.14 21.47 23.69 24.33 18.61 18.95 22.05 22.5 22.05 24.67 26.00
People 19.89 26.5 26.13 25.72 24.33 27.01 27.22 21 21.53 27.05 27.41 25.94 28.17 31.02

Saturated 14.23 15.59 14.95 15 15.11 16.46 17.04 13.78 13.79 15.18 16.58 16.35 16.63 17.21
Text 14.82 19.68 18.35 18.61 17.56 18.64 20.35 14.42 14.82 17.85 19.06 20.16 20.51 25.46

Average 17.03 20.97 20.48 19.87 19.16 21.02 21.79 16.68 17.04 20.22 21.13 20.97 22.20 24.55

Table 3. Average SSIM of the results from different methods on the dataset Lai
et al . [27].

Non-learning Methods Supervised Un-supervised

Category
Cho Xu Sun Xu Pan Yan Yang Tao Kupyn Kaufman Ren Ren

Ours Ours& Lee & Jia et al . et al . et al . et al . & Ji et al . et al . &Fattal et al . et al .
[8] [52] [46] [54] [40] [55] [56] [47] [26] [19] [43] [43]

Manmade 0.388 0.546 0.53 0.494 0.476 0.579 0.599 0.3 0.321 0.517 0.538 0.509 0.682 0.751
Natural 0.512 0.623 0.662 0.581 0.6 0.678 0.692 0.412 0.429 0.586 0.581 0.514 0.751 0.774
People 0.639 0.824 0.832 0.785 0.775 0.842 0.861 0.681 0.694 0.833 0.85 0.737 0.863 0.902

Saturated 0.474 0.532 0.531 0.518 0.537 0.588 0.605 0.488 0.488 0.599 0.654 0.52 0.651 0.679
Text 0.49 0.764 0.723 0.749 0.692 0.689 0.762 0.489 0.519 0.717 0.731 0.699 0.76 0.892

Average 0.501 0.658 0.656 0.625 0.616 0.675 0.704 0.474 0.49 0.65 0.671 0.596 0.741 0.800

of PSNR and SSIM. It can be seen that our method outperformed all other methods
by a large margin, with about 2.7 dB advantage over the second-best performer. The
results indicate that the proposed method can estimate the kernel of large size much
more accurately than existing ones. It is not surprising to see such a significant
performance gain on the estimation of the kernel of large size. Notice that in the case
of large kernel size, the deterministic generative NN trained in Ren et al . [43] is prone
to the convergence to the no-blur pair with kernel close to Dirac delta. Thanks to
randomized NN trained in the proposed method, the proposed method provides a MC-
based sampling approximation to the MAP estimator of the kernel, which effectively
avoids the convergence to the no-blur pair. As a result, our approach outperformed
Ren et al .’s method by a large margin. The improvement demonstrates the benefit of
MC-based approximation to the MAPk estimator. See Figure 5 for visual comparison
of some results from different methods. More comprehensive visual comparison of the
results from different methods can be found in the supplementary file. Overall, the
results from the proposed method have the best visual quality among all, with sharper
image details and less artifacts.
Experiments on Köhler et al .’s dataset [22] with non-uniform motion
blurring The dataset from Köhler [22] is not exactly uniform blurred. The blurring
effect of the images is can roughly viewed as a uniform blurring with mild variations all
over the images. It is a dataset for evaluating the robustness of the uniform deblurring
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Input Xu et al . Kupyn et al . Kaufman Ren et al . Ours Groundtruth

[52] [26] & Fattal [19] [43]

Figure 5. Visual comparisons of two examples of the deconvolution results from
the dataset Lai et al . [27]. First row comes from the ”manmade” category and
second row comes from the ”natural” category.

method to small variations on blurring effect. For this dataset, totally 12 methods
are included for comparison. See Table 4 for quantitative comparison of different
methods in terms of PSNR and MSSIM¶. It can be seen that our proposed method is
the best among all in terms of PSNR, and is close to the best performer in terms of
MSSIM. See Figure 6 for visual comparison of sample results from different method.
The experiment shows the robustness of the proposed method when being applied to
deblur an image whose blurring effect is only approximately uniform.

Table 4. Average PSNR/MSSIM of the results from different methods on the
dataset Köhler et al . [22].

Non-learning Methods Supervised Self-sup.

Metric
Cho Xu Whyte Hirsch Vasu & Ra Yan Jin Yang Tao Kupyn Kaufman Ren

Ours& Lee & Jia et al . et al . -jagopalan et al . et al . & Ji et al . et al . & Fattal et al .
[8] [52] [50] [14] [49] [55] [18] [56] [47] [26] [19] [43]

PSNR 28.98 29.53 28.07 27.77 29.89 28.57 29.61 29.22 27.06 26.97 30.17 25.85 30.27
MSSIM 0.933 0.944 0.848 0.852 0.927 0.949 N/A N/A 0.84 0.83 0.915 0.792 0.936

3.4. Experiments on real images from Lai et al. [27]

As no ground truths are available for real images, only visual inspection is available.
See Figure 7 for the illustration of some results from our methods on real image
dataset [27]. More comprehensive visual comparison of the results from different
methods can be found in the supplementary file.

3.5. Ablation study on MC sampling

This section is devoted to the ablation study on the proposed MC sampling method for
blind image deconvolution. The main idea of the proposed method is randomizing the

¶ The comparison protocol for Köhler’s dataset uses MSSIM instead of SSIM.
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Input Xu et al . Kupyn et al . Kaufman Ren et al . Ours Groundtruth

[52] [26] & Fattal [19] [43]

Figure 6. Visual comparisons of one example of the deconvolution results from
the dataset Köhler et al . [22] from different methods.

Input Output Input Output Input Output

Figure 7. Visual comparison on deconvolution results for real-world images
from Lai et al .’s dataset [27].

generative network for the image to enable MC-sampling-based approximation to the
MAP estimator of the kernel. This ablation study is for validating the performance
gain brought by our training schemes.
Performance gain by the proposed MC sampling This study focuses on the
performance gain introduced by the approximate Monte-Carlo sampling implemented
via dropout and noise layer for input. See Table 5 for the results on the dataset Lai et
al . [27]. It can be seen that, without dropout or noise layer, the performance will see a
significant decrease. The results showed the effectiveness of the randomization to avoid
the overfitting. In some categories, dropout layers made substantial contribution to the
performance . In other categories, noise layer for input made substantial contribution
to the performance.

Table 5. Ablation study on the proposed architecture in terms of PSNR/SSIM
on Lai et al .’s dataset.

w/o dropout w/ only w/ only Ours
& noise layer drop-out noise layer w/ both

Manmade 19.54/0.507 19.60/0.564 19.91/0.620 23.06/0.751
Natural 22.70/0.629 24.42/0.564 25.49/0.772 26.00/0.774
People 26.83/0.781 30.48/0.889 29.21/0.863 31.02/0.902

Saturated 15.71/0.566 16.58/0.619 17.35/0.677 17.21/0.679
Text 20.58/0.669 24.28/0.863 25.82/0.899 25.46/0.892

Average 21.07/0.630 23.07/0.726 23.56/0.766 24.55/0.800

Ablation study on decreasing dropout rate and noise variance The practice
of using decreasing noise variance and decreasing dropout rate is based on empirical
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observation through extensive experiments. In this study, we investigate how such a
practice benefit the performance and efficiency of the proposed method. Totally six
additional figurations are considered in this study, including (1) Only using dropout
layer with rate 0.5; (2) Only using dropout layer with rate 0.001; (3) Only using
dropout layer with varying rate from 0.3 to 0.001 at iteration 1500; (4) Only using
input noise layer with standard deviation 0.05; (5) Only using input noise layer with
standard deviation 0.001; (6) Only using input noise layer with varying standard
deviation from 0.01 to 0.0001 at iteration 3500. These six figurations are compared to
the configuration used in our method: the dropout rate is varying from 0.3 to 0.001 at
iteration 1500 and the standard deviation of input noise is varying from 0.01 to 0.001.

See Figure 8 for the comparison of performance impact (in terms of PSNR) and
of computational efficiency (in terms of decreasing speed of training loss), using the
same network and same training hyper-parameters on a sample image from from Lai
et al .’s dataset. The curves ”S2” and ”S5” showed that too small variance of two
random sources leads to severe overfitting: small training loss but with large test
error (small PSNR value). The curves ”S1” and ”S4” showed that large variance
of either random sources provides reasonable testing performance but has a slower
convergence rate. The curves ”S3” and ”S6” showed that the decreasing variance of
either random sources provides a faster convergence rate and smaller testing error.
The combination of both achieve the best in terms of both training efficiency and
testing performance.
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Figure 8. Comparison of the training efficiency and the testing performance of
different configurations, in terms of iteration numbers. (a) The convergence rate,
and (b) the testing performance in PSNR value

Ablation study on other randomization options In the proposed method, only
the network for predicting the images is randomized. In this study, we investigate
other randomization options. One is only randomizing the network for predicting the
kernel. We also set up the dropout layers with dropout rate p0 = 0.1 at the first
1.5× 103 epochs and drop to p0 = 0.001 for latter iteration, and add the noise layer ϵ
the same as the NN for predicting images in the proposed method. The average result
is reported on a test image manmade_01_kernel_01 from Lai et al .’s dataset with 10
trials. Another option is randomizing two networks for both image and kernel.

See Figure 9 for the illustration of the results from the proposed method and
two other randomization options. It can be seen that in comparison to the proposed
one which only randomizes the NN for image, the option of only randomizing the
NN for predicting kernel suffers from the overfitting to the Dirac delta (All the 10
trails produce delta kernels). For another option which randomizes both NN, while it
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provides comparable performance to the proposed method, it is less computationally
efficient, see Figure 10 for the comparison of prediction accuracy (in PSNR and SSIM)
over epochs. This study showed the soundness of the design of the proposed method
in terms of both prediction accuracy and computational efficiency.

(a) Groundtruth (b) Image

(c) Both (d) Kernel

Figure 9. Results of three randomization options. (a) Groundtruth; (b)
randomized image network; (c) randomized both networks; (d)randomized kernel
network.

Applicability of MC-sampling technique on other network architectures
The proposed MC-sampling technique is independent of network architectures. It is
quite common to use the U-Net as the backbone for the generative NN of image. In
the proposed method, the generative NN for kernel implemented by a CNN. There are

0 1000 2000 3000 4000 5000
iteration

14

16

18

20

22

24

PS
NR

PSNR Both
PSNR Image

0 1000 2000 3000 4000 5000
iteration

0.3

0.4

0.5

0.6

0.7

0.8

SS
IM

SSIM Both
SSIM Image

(a) (b)

Figure 10. Comparison of recovery progress of image averaged over 10 trials
with two randomization options. (a) PSNR vs iteration (b) SSIM vs iteration.
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other NN architectures for predicting kernel. For example, a fully connected network
(FCN) is implemented in Ren et al .’s method [43] for predicting the kernel. In this
study, we also applied the proposed method using the network architecture from [43].
See Table 6 for the study. It can be seen that the proposed MC sampling method also
significantly boosted the performance of Ren et al .’s method [43]. The performance
gap between the different implementation of the NN for kernel is relatively small.
This study showed that the MC-sampling technique is the main contributor to the
performance gain of the proposed method, and it is also applicable to other network
architectures.

Table 6. The study on applying the proposed training scheme on Ren et al .’s [43]
architecture with model size.

Levin et al . Lai et al . Köhler et al . # Param.

[43] 33.07/0,931 20.97/0.596 25.85/0.792 3.52M
[43] + MC 33.63/0.936 23.92/0.770 29.63/0.925 3.52M

Ours 34.71/0.948 24.55/0.800 30.27/0.936 2.65M

3.6. Comparison of running time

See Table 7 for the comparison of running time among existing blind deconvolution
algorithms. It is noted that for a supervised learning method, it is time-consuming
when training a model. However, once the model is trained, using it for processing an
image is very fast. In comparison, our method needs to train a model for the image
for processing. Thus, it falls into the category of traditional iterative methods.

It can be seen that the running time for processing an image is in the same
category as many iterative optimization methods and existing self-supervised learning
solutions. In comparison to supervised learning which can pre-trained a model and
use it to process other images, the proposed method needs to train different networks
for different images. One of our future research direction would be study how to to
speed up the training process of an unsupervised learning method for blind image
deblurring. One possible approach is using the scheme of meta-learning [10], which
first learns a network using supervised learning and then refine the pre-trained model
using an un-supervised learning method to make the model adaptive to the test image.
Another possible approach is we introduce the so-called region selection technique used
in existing non-learning method (e.g . [15]), which only select certain image regions for
estimating the kernel. As the training efficiency depends on the size of input image,
the incorporation of such a region selection module can speed up the training process
as well.

4. Conclusion

Different from most existing deep-learning-based methods which are supervised over a
large training dataset, this paper presented an un-supervised deep learning method for
blind image deconvolution. The proposed method is built on the MC approximation
to an MAPk estimator via dropout and noise layer for the input. Despite the absence
of truth images in training, the proposed method still provided SOTA performance on
standard benchmark datasets of blind image deconvolution. The proposed technique
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Table 7. Time comparison with existing blind deconvolution algorithms when
processing a 256× 256 image.

Non-learning Methods Supervised Self-super.

Sun Xu Pan Yan Jin Yang Tao KupynKaufman Ren
et al . et al . et al . et al . et al . & Ji et al . et al . & Fattal et al .
[46] [52] [38] [55] [18] [56] [47] [26] [19] [43] Ours

Time (s)113.98 1.18 295.23 35.84 1242.97 354.03 0.21 0.24 0.17 235.84 273.12

has potential applications for solving other challenging non-linear inverse problems
arising from imaging, where the collection of ground truth images is costly or
challenging. In future, we will study how to further improve computational efficiency
of the proposed method, as well as build its theoretical foundation.
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