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Abstract. Blind deconvolution is about estimating both the convolution kernel and the latent signal from their5
convolution. Many blind deconvolution problems have a short-and-sparse (SaS) structure, i.e. the6
signal (or its gradient) is sparse and the kernel size is much smaller than the signal size. While ℓ1-norm7
relating regularizations have been widely used for solving SaS blind deconvolution problems, the so-8
called region/edge selection technique brings great empirical improvement to such ℓ1-norm relating9
regularizations in image deblurring. The essence of region/edge selection is during an alternative10
iterative scheme of SaS blind deconvolution, one estimates the kernel on an estimate of the latent11
image with well-separated image edges instead of the one with the least fitting error. In this paper,12
we first examines the validity and soundness of ℓ1-norm relating regularization in the setting of 1D13
SaS blind deconvolution. The analysis reveals the importance of the separation of non-zero signal14
entries toward the soundness of such a regularization. The studies laid out the foundation of region15
selection technique, i.e., during the iteration, an estimate of the latent image with well-separated16
edges is a better candidate for estimating the kernel than the one with least fitting error. Based17
on the studies conducted in this paper, an alternating iterative scheme with region selection model18
is developed for SaS blind deconvolution, which is then applied on blind motion deblurring. The19
experiments showed its effectiveness over many existing ℓ1-norm relating approaches.20
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1. Introduction. One often-seen signal degradation in practice is blurring, which attenu-23

ates or erases high frequencies of signal during acquisition. The relation between the recorded24

signal b and the true signal x0 usually is modeled by a convolution process:25

(1.1) b = a0 ⊗ x0 + n,26

where a0 denotes a smoothing kernel (low-pass filter), n denotes measurement noise, and ⊗27

denotes discrete circular convolution operator. If the kernel a0 is known in advance, solving28

(1.1) is called non-blind deconvolution. If both the kernel a0 and the signal x0 are unknown,29

solving (1.1) is called blind deconvolution. While non-blind deconvolution focuses on how30

to suppress noise amplification when deconvolving the signal, blind deconvolution focuses on31

how to estimate smoothing kernel a0. Once the kernel a0 is estimated, the problem of blind32

deconvolution is reduced to the problem of non-blind deconvolution.33

Blind deconvolution is an important problem seen in a wide range of applications, in-34

cluding astronomical imaging [16, 9, 32], microscopy imaging [14, 10], and digital image35

photography [12, 3, 30, 21]. In general, blind deconvolution is an ill-posed problem with many36
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solutions. Certain priors need to be imposed on both a and x to address possible degenerate37

solution. Once the priors in image/kernel are determined, blind deconvolution can then be38

formulated as solving an optimization problem:39

(1.2) min
a∈Ω,x

ϕ(x) + λψ(a), subject to f(b− a⊗ x) ≤ ϵ,40

or its regularized variational form

min
a∈Ω,x

f(b− a⊗ x) + λ1ϕ(x) + λ2ψ(a),

where Ω denotes the feasible set for the kernel, and the function f(·) denotes the fidelity41

term determined by noise n, i.e. f(·) = ∥ · ∥1 or ∥ · ∥22. In the optimization models above,42

there are two terms ϕ(·) and ψ(·), the regularization terms on x and a derived from their43

corresponding priors. The feasible set Ω for kernel comes from the physics of signal acquisition44

systems. Taking optical imaging systems for example, the set Ω is often defined as the follows45

(1.3) Ω = {a ∈ Rn |a ≥ 0, ∥a∥1 = 1}.46

The model (1.2) or its regularized variational form is widely used in many existing blind image47

deblurring methods; see e.g . [23, 22, 4, 33, 27, 35] for more details.48

This paper concerns blind deconvolution of signals with the short-and-sparse (SaS) struc-49

ture (see e.g . [19, 20]):50

• The effective size of true kernel a0 is much less than that of true signal x0.51

• true signal x0 is sparse with most entries being zero or close to zero.52

Such an SaS structure exists in many blind deconvolution problems, including blind image
deblurring in digital photography. In such application, the blurring is modeled by B = a⊗ I,
where I/B are the clean/blurred images respectively. In certain cases, the natural image I
itself is not sparse, but its gradient ∇I is sparse. Recall that the discrete implementation
of ∇I can be formulated as the convolutions between I and the high-pass filter [1,−1]. By
the commutative property of convolution, we have b = ∇B = a ⊗ (∇I). As the aim of
blind deconvolution is for kernel estimation, one can recast the problem to the one with SaS
structure by solving the problem in the gradient domain, i.e.

min
a∈Ω,∇I

f(∇B − a⊗∇I) + λ1ϕ(∇I) + λ2ψ(a).

Once a is determined by solving the problem above, one can then switch back to estimate I53

by deconvolving B in image domain. Such a practice is widely used in many existing blind54

image deblurring methods.55

In last decade, motivated by practical needs, there has been rapid progress on the devel-56

opment of blind deconvolution methods, especially in the domain of blind motion deblurring.57

See e.g . [23, 22, 4, 33, 27, 35]. Most of these methods require solving a non-convex problem.58

While these methods demonstrated good performance and empirical stability in practice, the-59

oretical understanding and mathematical soundness of these methods are scant in existing60

literature. For example, it is not clear under what condition, the true kernel/signal is indeed61

one global minimum of the model (1.2). This paper aims to analyze one type of ℓ1-norm62
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relating regularization model (1.2) to provide a clearer picture of its soundness when being63

used for solving blind SaS deconvolution problems. Consider a blind SaS problem where the64

signal x ∈ Rn. Let Rn
k denote the subspace of Rn where all vectors are supporting on the first65

k entries. We assume the kernel a ∈ Rn
k . The following model is considered in this paper for66

solving (1.1):67

(1.4) min
(a,x)∈Sϵ

b

∥x∥1 + ν ∥a∥22 ,68

where69

(1.5) Sϵb = {(a ∈ Rn
k ,x ∈ Rn) | ∥a⊗ x− b∥1 ≤ ϵ,a ≥ 0, ∥a∥1 = 1}.70

The bound ϵ is determined by measurement noise n, i.e. ϵ ≥ ∥n∥1.71

In the model (1.4), the ℓ1-norm regularization for the signal x, ϕ(x) = µ∥x∥1, is a widely72

used convex function for prompting sparsity of signal; see e.g . [7, 5, 29, 36]. There are two73

terms related to the kernel a. One comes from the feasible set Sϵb, which is determined by the74

physics of many signal acquisition systems, especially optics-based imaging. Two most general75

physical constraints in these signal acquisition systems are (1) non-negativity constraint a ≥ 0;76

and (2) normalization constraint ∥a∥1 = 1. The squared ℓ2-norm relating regularization for77

smoothing kernel, ψ(a) = ν∥a∥22, comes from the fact that a is a band-limited filter supported78

only in low-frequency domain. The term ψ(a) = ν∥a∥22 is also critical to avoid scenario where79

the trivial no-blur pair (δ,a0⊗x0) has a lower cost than that of the true pair (a0,x0), where80

δ denotes Dirac delta. Note that the no-blur pair (δ,a0⊗x0) satisfies δ⊗(a0⊗x0) = a0⊗x0,81

and for a non-negative kernel a with ∥a∥1 = 1,82

∥a⊗ x∥1 ≤ ∥a∥1∥x∥1 = ∥x∥1.83

In other words, the true pair is unlikely to be a global minimum of the model (1.4) with ν = 0.84

It is shown in [27, 33] that, without such regularization term ψ(a), the solution of the model85

is biased to the kernel closer to the Dirac Delta δ. The ℓ1 norm is used as the fidelity metric86

in this paper, as it is widely used in practical image deblurring methods for its robustness to87

outliers. Before proceeding, we briefly introduce some notations used in the discussions.88

Notations. We use bold font to denote vector and, without of specification, the indices of89

vector a ∈ Rn is {0, 1, . . . , n− 1}. The space Rn
k = {a ∈ Rn |a[j] = 0, k ≤ j ≤ n− 1} denotes90

the space of all n-dimensional vectors with their support on the first k entries. Given a vector91

v ∈ Rn, we denote Sτ (v) the cyclic shift of the vector v by τ entries: Sτ (v)(i) = v([i− τ ]n),92

here n is the length of the vector, [i]n denotes the modulo with respect to n. Taking sign(·)93

on a vector means taking sign(·) point-wisely on this vector.94

Organization. We review the related works in Section 1.1. We present the main results of95

this paper in Section 1.2. The analysis of the model (1.4) with detailed proofs is presented in96

Section 2. The model (1.4) is discussed in Section 2.1 and 2.2. Finally Section 2.3 is devoted97

to a novel region selection approach motivated by our theoretical results and algorithm for98

blind SaS deconvolution with application to blind image deblurring. Section 3 shows the99

experiments to validate the effectiveness of our region selector within the proximal alternative100

minimization framework for blind image deblurring. Section 4 provides the conclusion.101
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1.1. Related works. The optimization problem (1.4) is a non-convex problem with a102

complicated optimization landscape. Some non-critical solution ambiguities are addressed in103

the feasible set Sϵb in (1.4). For instance, there is the so-called shift ambiguity : The pair104

(S−τ (a0),Sτ (x0)) has the same convolution as the true pair (a0,x0). There is also the so-105

called scale ambiguity : The pair (sa0,
1
sx0) has the same convolution as (a0,x0). The shift106

ambiguity is addressed by a ∈ Rn
k and the scale ambiguity is addressed by ∥a∥1 = 1. These107

types of ambiguities are not critical, shift ambiguity only causes the resulting signal be a108

shifted version of the true signal, and the scale ambiguity does not modify the pattern of the109

signal. Besides these non-critical ambiguities, in general, there are additional global minima110

and a variety of critical points of the non-convex problem (1.4), which are away from the111

truth.112

Recently, there have been quite a few impressive works on studying provable algorithms113

for blind deconvolution. Ahmed et al . [1] recast the problem of blind deconvolution to a114

linear inverse problem on rank-1 matrix [1, 25, 24], as an extension to the convexification115

for phase retrieval [6]. Consider two vectors x0 and a0, its outer product a0x
∗
0 is a rank-1116

matrix, and their convolution b can be expressed as A(a0x
∗
0) for some linear mapping A. It117

is shown in [1] that such a nuclear-norm-based convex model can exactly recover the pair118

(a0,x0) (up to a scale), if the pairs follow the following configuration: The signal x0 is drawn119

from a random subspace, and a0 is a vector in a subspace whose basis vectors are ”flat” in its120

frequency domain. Based the same lifting-based formulation, Li et al . [25] examined various121

configurations of a0 and x0 for identifiability and stability of the problem, including subspace122

constraints for x0,a0, sparse constraints and the mixture of both. It is shown in [25] that, up123

to a set of zero measure, the pair (a0,x0) is identifiable up to a scale. Despite its theoretical124

soundness, the lifting scheme does not scale well as the dimension of the matrix for recovery125

is the multiplication of signal dimension and kernel dimension.126

Li et al . [24] considered a slightly different configuration, where the signal x is drawn from127

a random subspace spanned by the columns of a Gaussian matrix, and the kernel a is short and128

has small correlation (coherence). Under such a configuration, a provable regularized gradient129

descent algorithm is proposed [24] for blind deconvolution with the provable convergence to130

the true pair with a large probability. Nevertheless, the assumptions imposed on signals131

and kernels in [24] do not hold for many practical scenarios, especially blind deblurring of132

natural images. The performance of such a method is also not competitive to many existing133

regularization methods for blind image deblurring. Several works [38, 37, 20] insists the134

sparsity of signal is w.r.t. the natural basis, while they considered the ℓ2 normalization135

constraint on a for its smoothness over ℓ1 normalization constraint. Zhang et al . [38] studied136

the geometry of ℓ1-norm regularization model over ℓ2 sphere in the case where the signal137

x0 = δ. It is shown in [38] that for ℓ1-norm relating regularization model, all strict local138

minima of the model are close to signed shift truncations of a0. The same structured local139

minima can be obtained by replacing ℓ1-norm by another sparsity-prompting function −∥·∥44,140

as shown in [37]. In the figuration that the convolution erases little information of signal,141

i.e., ∥a0 ⊗ x0∥2 ≈ ∥x0∥2, Kuo et al . [20] presented an algorithm which can guarantee exact142

recovery of an incoherent kernel a0 and sparse x0. While the works discussed above provide143

good insights for ℓ1-norm relating method for blind SaS deconvolution and computational144

algorithm with recovery guarantee, the discussions focus on noiseless observation and the145
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configuration where the smoothing effect is relative little, i.e. kernel is close to Dirac Delta or146

∥a0 ⊗ x0∥2 ≈ ∥x0∥2.147

1.2. Main results. Different from the models and assumptions of the existing works, this148

paper studies the validity of model (1.4) for blind SaS deconvolution where there might be149

significant frequency attenuation on true signal during convolution. In the setting of this150

paper, the input measurement b ∈ Rn is formulated as151

(1.6) b = a0 ⊗ x0 + n, where x0 ∈ Rn, a0 ∈ Rn
k ,a0 ≥ 0, ∥a0∥1 = 1,152

where x0 ∈ Rn denotes true sparse signal and a0 ∈ Rn
k , the convolution is defined as the

circular convolution

(a⊗ x)[j] =
n∑

i=1

a[i]x[(j − i) mod n].

The model (1.4) is used for estimating the kernel a from (1.6). Recall that model (1.4) is153

different from what has been studied for SaS blind deconvolution [38, 37, 20] on two parts154

related to a:155

• The term ν∥a∥22 for the corresponding minimum biased to a band-limited filter.156

• The non-negativity constraint, a ≥ 0, which holds true for many signal acquisition157

systems.158

The problem (1.4) is an optimization problem with convex objective function and non-convex159

constraints. As the focus of blind SaS deconvolution is on the estimation of the kernel a0, this160

paper aims at analyzing the soundness and well-posedness of the model (1.4) for estimating161

a0. In our study, instead of using ℓ2-norm for error measurement of kernel estimation, we162

measures the estimation error by the correlation between the true kernel a0 and the estimation163

a up to a circled translation [15, 38]:164

(1.7) C(a0,a) = max
0≤i≤k

|⟨a0,Si(a)⟩|
∥a0∥2 ∥a∥2

, where Si(·) is the translation operator.165

Such a metric handles the translation ambiguity of kernel estimation which does not impact166

the information of the recovered signal. The soundness of the model (1.4) for estimating a0167

is closely related to the separation of non-zero entries of the sparse signal x0.168

Definition 1.1. A signal x ∈ Rn is k-separable, if its support satisfies169

(1.8) min
i ̸=j;i,j∈supp(x)

|(i− j) mod n| ≥ k,170

where supp(x) = {ℓ : x[ℓ] ̸= 0}.171

For a blind SaS deconvolution problem where the signal is k-separable and the measurement172

is noise-free, we have the following results regarding the model (1.4) used for solving the SaS173

blind deconvolution problem:174

Theorem 1.2 (k-separable signal with noise-free measurement). Consider a non-zero signal175

x0 and its noise-free measurement b defined by b = a0 ⊗ x0. If x0 is k-separable, then the176

true pair (a0,x0) is a global minimum of the model (1.4) with the feasible set S0b defined by177

(1.5) with ϵ = 0, for 0 < ν ≤ ∥x0∥1
2∥a0∥22

.178
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It can be seen from Theorem 1.2 that as long as the minimal distance between two non-zero179

entries of the signal is no less than the support size of the kernel, the model admits the truth,180

up to a shift, as its one global minimizer. However, it is not necessarily the unique global181

minimizer. A stronger separation condition is needed for the model (1.4) to admit the truth,182

up to a shift, as the unique global minimizer.183

In the next, we establish a sufficient condition for guaranteeing the truth, up to a shift, is
the unique minimizer of the model (1.4). For a sparse signal x, decompose it to the summation
of two sparse signals:

x = x+ + x−,

where184

(1.9) x+[k] =

{
x[k], x[k] > 0
0, x[k] ≤ 0;

x−[k] =

{
x[k], x[k] < 0
0, x[k] ≥ 0;

for k = 1, 2, . . . , n.185

186

Definition 1.3. A signal x ∈ Rn is signed 2k-separable, if x is k-separable and x+,x−187

defined by (1.9) are 2k separable.188

For a signed 2k-separable signal, we have then189

Theorem 1.4 (Signed 2k-separable signal with noise-free measurement). Consider a non-190

zero signal x0 and its non-zero noise-free measurement b defined by b = a0 ⊗ x0. If x0 is191

k-separable and x+
0 ,x

−
0 defined by (1.9) are 2k-separable, the set of all global minimum of the192

model (1.4) with 0 < ν ≤ ∥x0∥1
2∥a0∥22

is then {(Si(a0),S−i(x0))| − k < i < k,Si(a0) ∈ Rn
k}.193

For guaranteeing the soundness of the model (1.4), the signed 2k-separation condition on the194

signal x0 stated in Theorem 1.4 appears to be very strong. While many signals in practice,195

e.g . natural images, do not satisfy such separation condition as a whole, one often can find196

certain regions of natural image where the signal can be well approximated by a signed 2k-197

separable signal. The question is then if a sparse signal x can be well-approximated by a198

signed 2k-separable signal, will the truth remains to be close to the global minimizer of the199

model (1.4) (up to a cyclic shift)?200

Theorem 1.5 (Approximate signed 2k-separable signal with noisy measurement). Consider a201

non-zero sparse signal x0 and its noisy measurement b = a0 ⊗ x0 +n with non-zero a0 ⊗ x0202

and ∥n∥1 ≤ ϵ. Suppose x0,s2k is a nonzero signed 2k-separable approximation to x0 such that203

x0 = x0,s2k +∆x0.204

Let (a∗,x∗) denote an optimal solution to the problem (1.4) with the feasible set Sϵb. Then,205

assume
∥∆x0∥1+ϵ

∥x0∥1
< 0.21, by setting ν =

∥x0∥1
2∥a0∥22

, we have206

C(a0,a
∗) ≥ 1− 2

∥∆x0∥1
∥x0∥1

−
∥a0∥∞
∥a0∥22

2ϵ

∥x0∥1
.207

It can be seen from Theorem 1.5 that, as long as noise is not significant and the signed 2k208

approximation residual to the signal x0, ∆x0, is small, the global minimum of the model (1.4)209
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Figure 1. A demonstration of approximate signed 2k-separable signal and its blurred observation by a
Gaussian kernel. (a) An approximately signed 20-separable signal x0; (b) The signed 20-separable approximation

of x0 with approximation error:
∥∆x0∥1
∥x0∥1

≈ 0.16; (c) The blurred signal x0 ⊗ a0 where a0 is a Gaussian blur

kernel of size 10 shown in the top right corner of the graph.

is close to the true kernel a0 (up to a cyclic shift). In other words, the model (1.4) is sound210

for an approximately signed 2k-separable signal. The hyper-parameter ν plays an important211

role when using the model (1.4) to solve SaS blind deconvolution problem. The setting of ν212

in the above theorem depends on ∥a0∥22 and ∥x0∥1.213

Remark 1.6. In Theorem 1.5, we assume x0 is non-zero. If x0 is zero, then in both noiseless214

and noisy cases, for ν > 0, the optimal solution is a∗ = [1/k, 1/k, ..., 1/k], x∗ = [0, 0, ..., 0];215

for ν = 0, the optimal solution is x∗ = [0, 0, ..., 0], a∗ can be any positive kernel satisfying216

∥a∗∥1 = 1.217

Remark 1.7. For a signal which can be well-approximated by a signed 2k-separable signal,218

one possible concern is whether the kernel with support size k can be trivially found from the219

blurred signal. See Figure 1 for an illustration. It can be seen that the local shapes of the220

signal are not consistent with the true kernel, a Gaussian kernel.221
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1.3. Region selection for blind SaS deconvolution. From the results shown in Sec-222

tion 1.2, the signed 2k separability condition on a sparse signal x is very strong, even in223

the approximate sense, for guaranteeing the soundness of the model (1.4). The distribution of224

non-zero entries of a sparse signal is not necessarily uniform. It is possible that the non-zero225

entries of a sparse signal are dense in some small regions. In other words, the model (1.4) can226

not guarantee a good estimation to the kernel a0 for general sparse signals. However, recall227

that the focus of blind SaS deconvolution is about kernel estimation, the recovery of the image228

in the model (1.4) is for the purpose of estimating blur kernel. One solution is then selecting229

the regions with small 2k-separable approximation residual and using them to estimate the230

kernel.231

The model (1.4) is usually solved via an iterative scheme that alternatively estimates232

the image and the kernel for the blind image deblurring. Motivated by Theorem 1.5, the233

deconvolution of enough separable signal is more faithful than a general sparse signal. There234

are two approaches to take such advantages into consideration in deconvolution algorithms.235

(1) During each iteration, once the estimation of the signal x is updated, we select those image236

regions {x(t)
k }k with small relative 2k-separable approximation residual ∥∆xk∥1

∥xk∥1 . Then, these237

image regions are used as the image in the model (1.4) to estimate the kernel a. (2) We first238

select a good region of the input blurred image, we say a region is good if the selected region is239

with the most possible enough separation. Comparing the two approaches, the latter approach240

is easier to implement and the size reduction of deblurring problem saves computational time241

for kernel estimation. To select several regions during iteration, we should take care of the242

boundary effect of possible region overlapping. In our experiments in this paper, we follow243

the second approach to estimate kernel with a selected good region from blurred image. Once244

a faithful a is obtained, we then deconvolve the whole image x using updated a.245

The region selection technique for blind SaS deconvolution is not completely new. It246

has been adopted in quite a few methods for blind image deblurring with different empirical247

strategies. Xu and Jia [34] demonstrated that edges of smaller size than the blur kernel may248

have adverse effect on kernel estimation, which coincides with our theoretical analysis. Hu and249

Yang [15] proposed a learning based region selection method. This method needs two stages:250

At stage one, they collect some blurred images with corresponding ground true kernel, then251

they separate each blurred image into several patches and estimate the blurring kernel using252

each patch. They use the correlation C(·, ·) to measure the similarity between the estimated253

kernel and the ground truth, and evaluate each patch using the kernel similarity. At stage254

two, they train a logistic function to predict the good region using the data prepared at stage255

one. Compared with them, this paper provides a region selection technique, which is easier256

to use and more computationally efficient, with strong mathematical motivations.257

2. Main body. In this section, we first prove Theorem 1.2 and Theorem 1.4, and construct258

some cases to show that the separation condition assumed on signal is necessary to guarantee259

the soundness of the model in these cases. Then we present a detailed proof of Theorem 1.5260

and discuss its implification. At last, we present the region selection method inspired from261

our theorems.262
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2.1. Model (1.4) for noisy-free measurement. First we give a proof of Theorem 1.2263

and 1.4.264

Proof of Theorem 1.2 and 1.4. Suppose (a∗,x∗) is an optimal solution to the model (1.4).265

We show that ground true pair (a0,x0) attains the same minimum of (1.4) given by ∥x∗∥1 +266

ν ∥a∗∥22. Then (a0,x0) obviously belongs to the optimal solution set. As x0 is k-separable,267

we have268

∥b∥1 = ∥a0 ⊗ x0∥1 = ∥a0∥1 ∥x0∥1 = ∥x0∥1 .269

From the inequality270

∥a∗ ⊗ x∗∥1 ≤ ∥a
∗∥1 ∥x

∗∥1 ,271

we have ∥x∗∥1 ≥ ∥x0∥1. By the optimality of (a∗,x∗), we have272

ν ∥a∗∥22 + ∥x
∗∥1 ≤ ν ∥a0∥22 + ∥x0∥1 ,273

which implies ∥a∗∥2 ≤ ∥a0∥2. Taking an inner product between a0 ⊗ sign(x0) and the both274

sides of a∗ ⊗ x∗ = a0 ⊗ x0, we have275

⟨a0 ⊗ sign(x0),a
∗ ⊗ x∗⟩ = ⟨a0 ⊗ sign(x0),a0 ⊗ x0⟩.276

Writing a∗ ⊗ x∗ as
∑

i x
∗
iSi(a∗), we have277

⟨a0 ⊗ sign(x0),a
∗ ⊗ x∗⟩ =

∑
i

x∗
i ⟨a0 ⊗ sign(x0),Si(a)⟩ ≤

∑
i

|x∗
i ||⟨a0 ⊗ sign(x0),Si(a)⟩|.278

When x0 is k-separable, we have the inequality279

|⟨a0 ⊗ sign(x0),Si(a∗)⟩| ≤ ∥a∗∥2 ∥a0∥2 ,280

and the equality281

⟨a0 ⊗ sign(x0),a0 ⊗ x0⟩ = ∥a0∥22 ∥x0∥1 .282

Therefore,283

∥a∗∥2 ∥a0∥2 ∥x
∗∥1 ≥ ∥a0∥22 ∥x0∥1 ,284

which means ∥x∗∥1 ≥
∥a0∥2∥x0∥1

∥a∗∥2
. Consider ∥x∗∥1 + ν ∥a∗∥22 − ∥x0∥1 − ν ∥a0∥22 with 0 < ν ≤285

∥x0∥1
2∥a0∥22

, we have286

∥x∗∥1 + ν ∥a∗∥22−∥x0∥1 − ν ∥a0∥22 ≥ ∥x0∥1
(
∥a0∥2
∥a∗∥2

− 1

)
− ν(∥a0∥22 − ∥a

∗∥22)287

= ∥x0∥1
∥a0∥2 − ∥a∗∥2
∥a∗∥2

− ν
(
∥a0∥22 − ∥a

∗∥22
)

288

= (∥a0∥2 − ∥a
∗∥2)

(
∥x0∥1
∥a∗∥2

− ν(∥a∗∥2 + ∥a0∥2)
)

289

≥ (∥a0∥2 − ∥a
∗∥2)

(
∥x0∥1
∥a∗∥2

− 2ν ∥a0∥2
)

290

≥ (∥a0∥2 − ∥a
∗∥2)

(
∥x0∥1
∥a∗∥2

−
∥x0∥1
∥a∗∥2

)
= 0.291

292
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Now we have293

∥x∗∥1 + ν ∥a∗∥22 ≥ ∥x0∥1 + ν ∥a0∥22 .294

By the fact (a∗,x∗) is one optimal solution to model (1.4), we have ∥x∗∥1 + ν ∥a∗∥22 =295

∥x0∥1 + ν ∥a0∥22. So (a0,x0) is also an optimal solution and all the above inequalities should296

be equalities. Therefore, we have for all i such that x∗
i ̸= 0, |⟨a0 ⊗ sign(x0),Si(a∗)⟩| =297

∥a∗∥2 ∥a0∥2. If x0 is signed 2k-separable, then298

|⟨a0 ⊗ sign(x0),Si(a∗)⟩| ≤ |⟨Sj(a0),Si(a∗)⟩|,299

for some j being the index of the support set of a0. So we must have |⟨Sj(a0),Si(a∗)⟩| =300

∥a∗∥2 ∥a0∥2, (a∗,x∗) = (a0,x0) up to a cyclic shift.301

In a quick glance, the k-separation condition on the signal x0 is a very strong condition302

to ensure that the truth is one of the global minima of the model (1.4). The next example303

shows that it is indeed tight to ensure the soundness of the model.304

Example 2.1 (The necessity of k-separation). Consider a measurement b = a0 ⊗ x0 where305

the pair (a0,x0) is defined by306

a0 = [1/18, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/18] ∈ R10,

x0 = [b, . . . , b︸ ︷︷ ︸
9

,−b, . . . ,−b︸ ︷︷ ︸
9

] ∈ R162, where b = [1, 0, . . . , 0︸ ︷︷ ︸
8

].307

Then, the kernel size k = 10 and the signal is k− 1 separable. Consider another pair (a1,x1)308

defined by309

a1 = [1/10, 1/10, 1/10, 1/0, 1/10, 1/10, 1/10, 1/10, 1/10, 1/10] ∈ R10,

x1 = [0, b1, . . . , b1︸ ︷︷ ︸
8

, 0,−b1, . . . ,−b1︸ ︷︷ ︸
8

] ∈ R162, where b1 = [10/9, 0, . . . , 0︸ ︷︷ ︸
9

].310

We have that (a1,x1) ∈ S0b . By direct calculation, we have ∥a0∥2 =
√

17
162 , ∥a1∥2 =

√
1
10 ,311

∥x0∥1 = 18 and ∥x1∥1 = 160/9. Thus, for any ν > 0,312

∥x1∥1 + ν ∥a1∥22 < ∥x0∥1 + ν ∥a0∥22 .313

In other words, for the true pair (a0,x0) where the signal is (k − 1)-separable, neither it nor314

its variations with cyclic translations is a global minimum of (1.4).315

While the k-separation condition is sufficient to guarantee that the truth is one of the global316

minimum of the model (1.4), it is not sufficient to guarantee that the truth is an unique one317

up to a cyclic shift.318

Example 2.2 (Insufficiency of k-separation for unique global minimum). Consider the mea-319

surement b = a0 ⊗ x0 defined by320

a0 = [1, 1, 0, 0, 0, 0, 2]/4 ∈ R7,

x0 = [x̄0, x̄0, x̄0] ∈ R24 where x̄0 = [1, 0, . . . , 0︸ ︷︷ ︸
7

],321
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Then, the pair (a1,x1) ∈ S0b given by322

a1 = [2, 0, 1, 1, 0, 0, 0]/4 ∈ R7,

x1 = [x̄1, x̄1, x̄1] ∈ R24 where x̄1 = [0, . . . , 0︸ ︷︷ ︸
6

, 1, 0],323

is also a global minimum of (1.4). Note that a1 is not any shift of a0.324

2.2. Model (1.4) for approximately signed 2k-separable with measurement noise. In325

this subsection, we consider the estimation error of the kernel for general sparse signals when326

using the model (1.4) in the presence of measurement noise. Consider a noisy measurement327

b = a0 ⊗ x0 + n. Let ∥n∥1 ≤ ϵ. Before proving Theorem 1.5, we first establish the following328

lemmas.329

Lemma 2.3. Suppose x0,s2k is nonzero and signed 2k-separated and x0 = x0,s2k + ∆x0.330

Suppose (a∗,x∗) is an optimal solution to model (1.4) with feasibility set Sϵb, then331

C(a0,a
∗) ≥ (1− 2

∥∆x0∥1
∥x0∥1

−
∥a0∥∞
∥a0∥22

2ϵ

∥x0∥1
)

∥a0∥2 / ∥a∗∥2
1 + ν

∥x0∥1
(∥a0∥22 − ∥a∗∥22)

.332

Proof. Since (a∗,x∗) belongs to the feasible set, there exists a z such that a∗ ⊗ x∗ =333

a0 ⊗ (x0,s2k +∆x0) + z, ∥z∥1 ≤ 2ϵ. We have334

335

⟨a0 ⊗ sign(x0,s2k),a
∗ ⊗ x∗⟩336

= ⟨a0 ⊗ sign(x0,s2k),a0 ⊗ x0,s2k⟩+ ⟨a0 ⊗ sign(x0,s2k),a0 ⊗∆x0⟩+ ⟨a0 ⊗ sign(x0,s2k), z⟩,337338

which means339

n−1∑
i=0

|x∗
i | · |⟨a0 ⊗ sign(x0,s2k),Si(a∗)⟩| ≥ ∥a0∥22 (∥x0,s2k∥1 − ∥∆x0∥1)− ∥a0∥∞ ∥z∥1 ,340

Define341

A := max
τ∈[n]

{|⟨a0 ⊗ sign(x0,s2k),Sτ (a∗)⟩|} .342

As x0,s2k is signed 2k-separable, we also have A ≤ maxτ∈[n] {|⟨a0,Sτ (a∗)⟩|}. Then343

A ∥x∗∥1 ≥ ∥a0∥22 (∥x0,s2k∥1 − ∥∆x0∥1 − 2
∥a0∥∞
∥a0∥22

ϵ).344

On the other hand, (a∗,x∗) is the minimizer of the problem, so we have345

ν ∥a∗∥22 + ∥x
∗∥1 ≤ ν ∥a0∥22 + ∥x0∥1 .346

The Combination of the two inequalities gives347

∥a0∥22 (∥x0∥1 − 2 ∥∆x0∥1 − 2
∥a0∥∞
∥a0∥22

ϵ)

A
≤
∥a0∥22 (∥x0,s2k∥1 − ∥∆x0∥1 − 2

∥a0∥∞
∥a0∥22

ϵ)

A
348
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349
≤ ν(∥a0∥22 − ∥a

∗∥22) + ∥x0∥1 .350

Hence we have an estimation about A:351

A ≥
∥a0∥22 (∥x0∥1 − 2 ∥∆x0∥1 − 2

∥a0∥∞
∥a0∥22

ϵ)

ν(∥a0∥22 − ∥a∗∥22) + ∥x0∥1
,352

which leads to353

A

∥a0∥22
≥
∥x0∥1 − 2 ∥∆x0∥1 − 2

∥a0∥∞
∥a0∥22

ϵ

ν(∥a0∥22 − ∥a∗∥22) + ∥x0∥1
=

1− 2
∥∆x0∥1
∥x0∥1

− ∥a0∥∞
∥a0∥22

2ϵ
∥x0∥1

1 + ν
∥x0∥1

(∥a0∥22 − ∥a∗∥22)
.354

Thus, we have355

356

C(a0,a
∗) ≥ A

∥a0∥2 ∥a∗∥2
=

A

∥a0∥22

∥a0∥2
∥a∗∥2

357

≥ (1− 2
∥∆x0∥1
∥x0∥1

−
∥a0∥∞
∥a0∥22

2ϵ

∥x0∥1
)

∥a0∥2 / ∥a∗∥2
1 + ν

∥x0∥1
(∥a0∥22 − ∥a∗∥22)

.358

359

The proof is done.360

It can be seen that the estimation error is also related to the term

Rν(∥a∗∥2, ∥a0∥2) :=
∥a0∥2 / ∥a∗∥2

1 + ν
∥x0∥1

(∥a0∥22 − ∥a∗∥22)
,

which depends on the value ν. In the next lemma, we give a lower bound of such an estimator361

for a specific value of ν.362

Lemma 2.4. Under the same assumptions as Lemma 2.3, setting ν =
∥x0∥1
2∥a0∥22

, assuming363

∥∆x0∥1+ϵ
∥x0∥1

<
√
3−1
2
√
3
, we have364

Rν(∥a∗∥2, ∥a0∥2) ≥ 1.365

Proof. There are two cases for the relation between ∥a∗∥2 and ∥a0∥2.366

367

Case 1: ∥a∗∥2 ≥ ∥a0∥2.368

In this case, from the definition of (a∗,x∗), we have a∗ ⊗ x∗ = a0 ⊗ x0 + z with ∥z∥1 ≤ 2ϵ,369

and370

ν ∥a∗∥22 + ∥x
∗∥1 ≤ ν ∥a0∥22 + ∥x0∥1 .371

Moreover,372

∥x∗∥1 ≥ ∥a
∗ ⊗ x∗∥1 = ∥a0 ⊗ x0 + z∥1 ≥ ∥x0∥1 − 2 ∥∆x0∥1 − 2ϵ.373

and thus374

ν ∥a∗∥22 + ∥x0∥1 − 2 ∥∆x0∥1 − 2ϵ ≤ ν ∥a∗∥22 + ∥x
∗∥1 ≤ ν ∥a0∥22 + ∥x0∥1 ,375
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which implies376

ν(∥a∗∥22 − ∥a0∥22) ≤ 2 ∥∆x0∥1 + 2ϵ.377

Together with (∥a∗∥22−∥a0∥22) = (∥a∗∥2+ ∥a0∥2)(∥a∗∥2−∥a0∥2) ≥ 2 ∥a0∥2 ((∥a∗∥2−∥a0∥2),378

we have379

(∥a∗∥2 − ∥a0∥2) ≤
∥∆x0∥1
ν ∥a0∥2

+
ϵ

ν ∥a0∥2
.380

Thus,381

∥a0∥2
∥a∗∥2

≥ 1−
∥∆x0∥1

ν ∥a0∥2 ∥a∗∥2
− ϵ

ν ∥a0∥2 ∥a∗∥2
≥ 1−

∥∆x0∥1 + ϵ

ν ∥a0∥22
,382

when ν =
∥x0∥1
2∥a0∥22

, we have383

∥a0∥2
∥a∗∥2

≥ 1− 2
∥∆x0∥1 + ϵ

∥x0∥1
.384

Therefore, as long as 1−2∥∆x0∥1+ϵ
∥x0∥1

> 1√
3
, we have the denominator 1+ ν

∥x0∥1
(∥a0∥22−∥a∗∥22) >385

0, for ν ≤ ∥x0∥1
2∥a0∥22

. The following inequality holds:386

∥a0∥2 / ∥a∗∥2
1 + ν

∥x0∥1
(∥a0∥22 − ∥a∗∥22)

≥ (1 +
ν

∥x0∥1
(∥a∗∥22 − ∥a0∥22))

∥a0∥2
∥a∗∥2

387

= (1 +
ν

∥x0∥1
(∥a∗∥2 + ∥a0∥2)(∥a

∗∥2 − ∥a0∥2))
∥a0∥2
∥a∗∥2

388

≥ (1 +
2ν ∥a0∥2
∥x0∥1

(∥a∗∥2 − ∥a0∥2))
∥a0∥2
∥a∗∥2

389

=
2ν ∥a0∥22
∥x0∥1

+ (1−
2ν ∥a0∥22
∥x0∥1

)
∥a0∥2
∥a∗∥2

.390
391

Case 2: ∥a∗∥2 ≤ ∥a0∥2.392

∥a0∥2 / ∥a∗∥2
1 + ν

∥x0∥1
(∥a0∥22 − ∥a∗∥22)

≥ (1− ν

∥x0∥1
(∥a0∥22 − ∥a

∗∥22))
∥a0∥2
∥a∗∥2

393

= (1− ν

∥x0∥1
(∥a0∥2 + ∥a

∗∥2)(∥a0∥2 − ∥a
∗∥2))

∥a0∥2
∥a∗∥2

394

≥ (1−
2ν ∥a0∥2
∥x0∥1

(∥a0∥2 − ∥a
∗∥2))

∥a0∥2
∥a∗∥2

395

=
2ν ∥a0∥22
∥x0∥1

+ (1−
2ν ∥a0∥22
∥x0∥1

)
∥a0∥2
∥a∗∥2

.396
397

Based on the discussions on the two cases above, we have the following inequality:

Rν(∥a∗∥2, ∥a0∥2) ≥
2ν ∥a0∥22
∥x0∥1

+ (1−
2ν ∥a0∥22
∥x0∥1

)
∥a0∥2
∥a∗∥2

.
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When ν =
∥x0∥1
2∥a0∥22

, we have

Rν(∥a∗∥2, ∥a0∥2) ≥ 1.

The proof is done.398

Remark 2.5. In practice, ∥a0∥2 and ∥x0∥1 are not accessible. Thus, we use ν ≈
√
k∥b∥1
2399

as the initial value ν. Then, we use the the estimation of these two quantities to update the400

value of ν during the iteration.401

Proof of Theorem 1.5. The proof is done by combining Lemma 2.3 and Lemma 2.4, and402

the fact 0.21 <
√
3−1
2
√
3
.403

In the case where the noise n is negligible and the kernel erases a significant portion of the404

information of x in terms of the energy of the measurement: ∥a0⊗x0∥ < ∥x0∥− c0, where c0405

is a non-negligible positive constant. Our theorem shows that the recovery of the kernel can406

be robust to such a loss of information. When ∥a0 ⊗∆x0∥1 ≤ ϵ, we can treat a0 ⊗∆x0 as407

noise and the above theorem can be applied.408

Corollary 2.6. Suppose that the measurement b = a0⊗x0 is noise-free, x0,s2k is a nonzero
signed 2k-separable approximation to x0 such that

x0 = x0,s2k +∆x0.

Moreover, assume ∥a0⊗∆x0∥1 ≤ ϵ, ϵ

∥x0,s2k∥1
≤ 0.21. Let (a∗,x∗) denote an optimal solution409

to the problem (1.4) with the feasible set Sϵb. Then, by setting ν =
∥x0∥1
2∥a0∥22

, we have410

C(a0,a
∗) ≥ 1−

∥a0∥∞
∥a0∥22

2ϵ

∥x0,s2k∥1
.411

Proof. Replace x0 and n in Theorem 1.5 by x0,s2k and a0 ⊗∆x0.412

2.3. Region selection for blind SaS deconvolution and its application in blind image413

deblurring. Theorem 1.5 shows that the error between the true kernel and the global minimum414

of the model (1.4) depends on ∥∆x∥1/∥x∥1, measuring how close the signal is to a signed 2k-415

sparse signal. In other words, as long as the entries of the signal with significant magnitude416

are well separated, the model (1.4) is good for estimating the kernel. In general, For a sparse417

signal, there are the areas containing non-zero entries with sufficient separation and the areas418

contains dense non-zero entries. For blind SaS problem, the signal size is much larger than419

kernel size. Thus, one might only select certain parts of the signal which only contains well-420

separated non-zero entries, and use these parts to estimate the blur kernel. After the blur421

kernel is accurately estimated. Then, a non-blind deconvolution method is called to deconvolve422

the whole signal.423

In the blind deblurring application, the blurring is modeled by B = a ⊗ I, where I/B424

are the clean/blurred images respectively. In certain cases, the gradient image ∇I is assumed425

with SaS structure. Thus when we estimate kernel a, we regard the measurement model in426

gradient domain, i.e., b = ∇B = a⊗x where x is the gradient of I. It is empirically observed427

that the intermediate estimate xt with least fitting error is indeed not a good candidate for428
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refining the estimation of the kernel. Many empirical techniques are proposed for processing429

the intermediate result to facilitate the refinement of the kernel; see e.g . [11, 34, 26, 15, 13, 35].430

For example, Cho and Lee [11] propose to modify the estimated image by shock filter before431

being used for refining the kernel estimation. Xu and Jia [34] proposed to run a salient432

edge selection scheme to erase certain edges of the intermediate result. These methods post-433

process the intermediate image recovery with heuristic strategies to promote the separation434

of remained edges. There exists another approach to obtain more accurate kernel estimation435

from a good region extracted from the input blurred image. In this direction, Hu and Yang [15]436

proposed a learning method to learn which region is selected for kernel estimation. In this437

paper, we follow the region selection approach to estimate the kernel. Considering a motion-438

blurred natural image, it usually contains both cartoon regions and texture regions and image439

gradients are usually well-separated in cartoon regions. Let x denote image gradient ∇I and440

the whole image is divided into several overlapping regions {xi}. For better kernel estimation,441

we use the good regions from {xi}. Here the good regions means the regions whose residual442

component ∥∆xi∥1/∥xi∥1 is sufficiently small. In other words, based on our analysis shown443

in Section 2.2, only these regions should be used for estimating kernel, not the whole image.444

Based on the analysis conducted in Section 2.1 and 2.2, we proposed a computational
scheme to identify such region. Instead of attempting to identifying the regions with ap-
proximate signed 2k separability, we identify a subset of such regions which can be well
approximated by 2k separable signals, i.e., we consider

x0 = x0,2k +∆x0,

where x0,2k is a nonzero 2k-separable signal. It is noted that the 2k-separable signals are a445

subset of signed 2k-separable signals defined in Definition 1.3.446

Corollary 2.7. Under the same assumption as Theorem 1.5, let x0,2k denote a non-zero
2k-separable approximation to x:

x0 = x0,2k +∆x0.

Let (a∗,x∗) denote an optimal solution to the problem (1.4) with the feasible set Sϵb, we have447

C(a0,a
∗) ≥ 1− 2

∥∆x0∥1
∥x0∥1

−
∥a0∥∞
∥a0∥22

2ϵ

∥x0∥1
.448

Proof. By Definition 1.3, a 2k-separable signal is also a signed 2k-separable. By directly449

calling Theorem 1.5, we have the conclusion.450

The main idea to identify the regions with approximate 2k-separability is based on the fol-451

lowing observation. Notice that the convolution between a k-separated signal y0 and a nor-452

malized non-negative kernel a0 with size up to k does not change the ℓ1 norm of signal, i.e.,453

∥y0∥1 = ∥a0⊗y0∥1. Then, consider a normalized Gaussian smooth kernel g with size ≤ k+1.454

The kernel g ⊗ a0 has size ≤ 2k. Assume x0 = x0,2k +∆x0 with x0,2k a 2k-separable signal.455

Each entry of ∆x0 follows some i.i.d. with zero expectation. Then we have456

∥a0 ⊗ x0,2k∥1 = ∥E∆x0 [a0 ⊗ x0]∥1 ≤ E∆x0 [∥a0 ⊗ x0∥1] ≤ ∥a0 ⊗ x0,2k∥1+E∆x0 [∥a0 ⊗∆x0∥1].457
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Replacing a0 by g ⊗ a0, we have458

∥a0 ⊗ x0,2k∥1 = ∥g ⊗ a0 ⊗ x0,2k∥1 = ∥E∆x0 [g ⊗ a0 ⊗ x0]∥1 ≤ E∆x0 [∥g ⊗ a0 ⊗ x0∥1].459

Combine the above two inequalities and the fact ∥g ⊗ a0 ⊗ x0∥1 ≤ ∥a0 ⊗ x0∥1, we have460

0 ≤ E∆x0 [∥a0 ⊗ x0∥1 − ∥g ⊗ a0 ⊗ x0∥1] ≤ E∆x0 [∥a0 ⊗∆x0∥1] ≤ E∆x0 [∥∆x0∥1].461

Therefore, statistically, the smaller the ∥∆x0∥1 is, the smaller the gap between ∥a0 ⊗ x0∥1462

and ∥g ⊗ a0 ⊗ x0∥1 is.463

Such property can be used to detecting approximately 2k-separable regions, e.g ., the464

regions with well-separated prominent gradients are likely to be the ones whose ℓ1-norm change465

less after smoothed by a Gaussian smooth kernel. By Corollary 2.7, the model can recover466

the kernel with good accuracy in these regions. As our goal is to find the regions with small467

relatively residual component, we restricted the regions to be selected in the set of the ones468

with sufficient large ∥∇I∥1. In the implementation, we first erase the regions whose ℓ1-norm469

of gradients are smaller than a pre-defined threshold. Then, we select the regions whose ℓ1-470

norm of gradients change relative little after smoothing the image by a Gaussian filter. See471

Algorithm 2.1 for the outline of such a region selection scheme. To facilitate the iteration and472

save computational time, we only select just one region to predict kernel. The extension to473

multiple regions is straightforward with careful boundary management.474

Algorithm 2.1 Region selector for kernel estimation in blind image deblurring

Input: The input blurred image B, the kernel size [k1, k2], predefined region size [m,n]
Output: A good region patch.
1: Pre-processing the blurred image by erasing the small edges following [34], obtain hori-

zontal and vertical gradient image b = [bx, by]
2: Computing the re-blurred image feature bg = [bx⊗ g, by ⊗ g] with a Gaussian blur kernel

g
3: Computing the change map of reblurring: c = |b| − |bg|
4: Computing the feature map bf of the whole image with box filter f ∈ Rm,n: bf =
|bx ⊗ f |+ |by ⊗ f |

5: Masking out the region using mask M = (bf >= 0.95max(bf )), remained element is set
to Inf

6: Selecting the center index of region: index = argmin(c⊙M)
7: Outputting the selected region

Initialization of kernel estimation. In addition to region selection, a multi-scale coarse-475

to-fine strategy is implemented for providing a good initialization which is close to the true476

kernel. The basic idea is that after downsampling a blurred image , the resulting blur kernel477

will has a smaller size too. The smaller the size of the kernel, the easier the problem becomes.478

Thus, one can first estimate a blur kernel from a down-sampled version of the input image and479

then up-sampled the kernel to provide a good initialization to the input image. Such a strategy480

can be recursively used to provide a good initialization of the kernel. In the implementation, a481
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pyramid of the input image is constructed with downsampling rate 2 between two consecutive482

scales, and the image in the coarsest scale has a kernel size no larger than 3 × 3. Then,483

starting with the coarsest scale, the kernel is initialized by a 3 × 3 constant kernels. The484

kernel estimated in one scale is then be used as the initial kernel used in the finer scale, after485

being upsampled by the factor 2 using linear interpolation.486

Built on the selected region, we propose using the proximal alternating iterative minimiza-487

tion to solve the variational formulation of the model (1.4) for blind image deblurring. For488

blind image deblurring, we first estimate the blur kernel a using (2.1) in the domain of im-489

age gradients. In the presence of Gaussian white noise, the resulting variational optimization490

reads as491

(2.1) min
a∈Ω,x

1

2
∥b− a⊗ x∥22 + λ(∥x∥1 + ν ∥a∥22)492

where Ω denotes the feasible set for the kernel and b denotes the gradient of the input blurred493

image ∇B or its selected region. The model (2.1) is a challenging nonconvex problem. In this494

paper, the proximal alternating minimization scheme alternatively solves the following two495

convex sub-problems:496

(2.2)

x-subproblem : xk+1 = argmin
x

1

2
∥b− ak ⊗ x∥22 + λ ∥x∥1 +

1

2λk
∥x− xk∥22 ;

a-subproblem : ak+1 = argmin
a∈Ω

1

2
∥b− a⊗ xk+1∥22 + λν ∥a∥22 +

1

2µk
∥a− ak∥22 ,

497

where λk, µk denote the step sizes at the k-th iteration.498

The two sub-problems in (2.1) are convex and can be solved efficiently by the primal dual499

hybrid gradient algorithm (Chambolle-Pock algorithm) [8]. For the a-subproblem, we first500

solve it using the primal dual hybrid gradient algorithm without considering the feasible set501

Ω. Then the solution is projected to the feasible set Ω. Such a strategy is widely used in blind502

deblurring [27, 17] with satisfactory empirical performance. For the x-sub-problem, we simply503

call the same primal dual hybrid gradient algorithm. Briefly, these two sub-problems without504

feasible set constraints can be expressed as the following standard composite optimization505

with proximable function:506

(2.3) min
z

F (Az) +G(z),507

where F (·) denote the differentiable fidelity term, and G(·) denotes the regularization term.508

The minimization (2.3) is then solved by the following iterative scheme:509

zk+1 = prox
σF

(zk − σA∗yk)

yk+ 1
2 = yk + σA(2zk+1 − zk)

yk+1 = yk+ 1
2 − σ prox

σ−1G

(σ−1yk+ 1
2 ).

510

where the stepsize satisfies 0 < σ < 1/ ∥A∥2. For the terms ∥x∥1 and ∥a∥22, their related511

proximities can be efficiently computed.512
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As the problem (2.1) is nonconvex, the proximal alternating minimization scheme (2.2)513

can not guarantee the convergence to one global minimizer of (2.2). Nevertheless, suppose514

that two sub-problems in (2.2) are exactly solved during the iteration. Then, one can show515

that by [2, Theorem 9], the sequence generated by the scheme (2.2) converges to a critical516

point of the problem517

(2.4) Ψ(a,x) :=
1

2
∥b− a⊗ x∥22 + λ(∥x∥1 + ν ∥a∥22) + δΩ(a),518

where δΩ is the indicator function of the feasible set Ω of kernel a. For the completeness of519

the paper, we provide a sketch of the proof.520

Definition 2.8 (Subdifferential [28]). Consider a proper low semi-continuous function f :
Rn → R ∪ {+∞}. Denote its domain by domf := {x|f(x) < +∞}. Then, the Fréchet
subdifferential of f at x ∈ domf , written as ∂̂f(x), is the set of vectors v ∈ Rn satisfying

lim inf x̸=y,y→x
1

∥x− y∥
[f(y)− f(x)− ⟨v,x⟩] ≥ 0.

If x /∈ domf , then ∂̂f(x) = ∅. he subdifferential of f at x ∈ domf , written as ∂f(x), is
defined as

∂f(x) := {v ∈ Rn : ∃xn → x, f(xn)→ f(x),vn ∈ ∂̂f(xn)→ v}.

Definition 2.9 (Critical Point). A point x is called critical point of f if 0 ∈ ∂f(x), where521

∂f(x) denotes the subdifferential of f .522

It is noted that 0 ∈ ∂f(x) is only a necessary condition for x being a local minimizer of f .
It is shown in [2, Theorem 9] that, for the sequence {(ak,xk)}k generated from (2.2), either
∥(ak,xk)∥ tends to infinity or converges to a critical point of (2.4), if the objective function
ψ satisfies the following properties:

(K-L) : Ψ satisfies the so-called Kurdyka-Lojasiewic property [2];

(H) :


Ψ(a,x) = f(a) +Q(a,x) + g(x),
f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper lower semicontinuous,
Q : Rn × Rm → R is a C1 function,
∇Q is Lipschitz continuous on bounded subsets of Rn × Rm;

(H1)


infRn×Rm Ψ > −∞,
The function Ψ(·,x0) is proper,
There exsit constants 0 < λ− < λ+ such that λ− < λk, µk < λ+, for all k ≥ 0.

For the objective function Ψ of the problem (2.4), let Q(a,x) = 1
2∥a ⊗ x − b∥22, f(a) =523

λν∥a∥22 + δΩ(a), g(x) = λ∥x∥1. It can be seen that the function Ψ satisfies both Condition524

H and Condition H1. Also, as Q, g, λµ∥a∥22 are all semi-algebraic functions, and Ω is a semi-525

algebraic set, the function Ψ is thus a semi-algebraic function, which satisfy the K-L property526

[2]. In other words, the objective function Ψ defined by (2.4) satisfies all conditions assume527

in [2, Theorem 9]. Furthermore, Lemma 5 in [2] shows that Ψ(ak,xk) ≤ Ψ(ak−1,xk−1) ≤528

Ψ(a0,x0), therefore, λ(∥xk∥1 + ν ∥ak∥22) ≤ Ψ(ak,xk) ≤ Ψ(a0,x0). The initial kernel a0 is529
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chosen to be in the feasible set, so Ψ(a0,x0) < +∞. Therefore, {(ak,xk)} is bounded, by [2,530

Theorem 9], the sequence generated by (2.2) converges to a critical point of Ψ.531

Furthermore, as long as the initialization is close enough to one global minima, the proxi-532

mal alternating minimization scheme will converge to such a global minima; See [2, Theorem533

10]. In practice, a good initialization is possible using the coarse-to-fine strategy. For better534

empirical performance, we use the continuation decreasing technique of ν to reduce the regu-535

larization effect of ∥a∥22 and shift correction to address the shift ambiguity. Once we obtain536

the kernel a, we solve the non-blind deblurring537

(2.5) I = argmin
I

∥B − a⊗ I∥1 + λ ∥∇I∥1538

to produce the deblurred image using the resolved blur kernel a. We use ℓ1 relating data539

fidelity for its robustness to outlier. This problem can be reformulated as an ℓ1 minimization540

problem. There are many numerical solvers for solving such convex problem, and we use541

iteratively reweighted least squares method in the implementation. See Algorithm 2.2 for542

the outline for the blind deblurring algorithm using model (2.1) and good region selector.543

While there is no guarantee on finding one global minima using the proximal alternating544

minimization scheme, it is likely to converge to a solution close to the truth kernel545

3. Experiments. The analysis conducted in Section 2 reveals the importance of the sep-546

aration of significant non-zero entries, when using ℓ1-norm relating regularization for kernel547

estimation. As the problem (1.4) is nonconvex, the proximal alternating minimization algo-548

rithm cannot guarantee the convergence to a global minimizer. In this section, we run some549

experiments on the synthesized 1D sparse signals to examine the landscape of the variational550

regularization formulation of problem (1.4). In the second part of this section, the proposed551

algorithm with region selection is applied to solve the problem of blind motion deblurring. The552

experiments are conducted on two popular benchmark datasets, and the proposed method is553

compared to other existing related techniques seen in blind motion deblurring. The results554

show the effectiveness of the proposed method which is inspired by the analysis conducted in555

this paper.556

3.1. Landscape visualization on 1D blind SaS deconvolution. As the proposed algorithm557

cannot guarantee finding a global minimizer of the non-convex problem (1.4), it can be a558

concern on the convergence of the iterative scheme adopted in this paper to a local minimizer559

far away from the truth. In this section, we visualize the landscape of the problem (1.4) with560

respect to different values of the ν in the 1D case. In the experiment, the problem (1.4) is561

solved by considering the following regularized form:562

(3.1) min
a∈Ω,x

1

2
∥b− a⊗ x∥22 + λ(∥x∥1 + ν ∥a∥22),563

where Ω = {a ∈ Rn
k |a ≥ 0,

∑
ai = 1}, and λ is an appropriate parameter.564

While the loss function in (3.1) is of two variables, blind SaS deconvolution focuses on the565

kernel estimation. Thus, we consider the alternating minimization iteration which marginal-566

izes the variable x by solving a convex Lasso related to x, and the approximately optimal567
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Algorithm 2.2 Coarse-to-fine SaS Blind Deconvolution with Region Selection

Input: Observation blurred B, regularization parameter λ, ν0 and the minimum value νmin,
the stepsizes for the proximal alternating minimization r1, r2, continuation parameter
βν > 1, shift correction step Ic, maximum iteration itermax.

Output: Kernel estimation ak, and the recovered image I
1: Call Algorithm 2.1 to infer a good region Bgood

2: Construct blurred image pyramid Bs
good, s = 1, . . . , S from fine-to-coarse

3: for s = S : −1 : 1 do
4: Set k = 1, if s = S, generate random initialization a1 and ν1 ← ν0, otherwise a1 ←

resize(aitermax , s) and ν1 ← νitermax

5: repeat
6: Solve x-subproblem. Set a = ak,xk = ∇Bgood and λk = r1, solve xk+1 =

argminx
1
2 ∥∇Bgood − a⊗ x∥22 + λ ∥x∥1 +

1
2λk
∥x− xk∥22

7: Solve a-subproblem using post-projection. Set ν = νk, µk = r2 and solving
problem ak+1 = argmina∈Ω

1
2 ∥∇Bgood − a⊗ xk+1∥22 + λν ∥a∥22 +

1
2µk
∥a− ak∥22

8: if k ∈ Ic then
9: Kernel shift correction

10: end if
11: Set νk+1 = max{νk/βν , νmin}
12: k ← k + 1
13: until k > itermax

14: end for
15: (Optional): Using the kernel ak as an initialization, solve a few alternating minimization

to refine the kernel using the whole deblurred image
16: Non-blind deblurring: Using the estimated kernel ak, solve I =

argminI ∥B − ak ⊗ I∥1 + λ ∥∇I∥1

solution568

(3.2) a∗ = argmin
a∈Ω

ϕν(a) = argmin
a∈Ω

{
min
x

1

2
∥b− a⊗ x∥22 + λ(∥x∥1 + ν ∥a∥22)

}
,569

where λ = 0.03 in the experiments. Then, we visualize the landscape of the function ϕν(a) to570

see the distribution of local minimizers of the problem.571

In the experiments, the 1D data with SaS structure is synthesized as follows. The kernel572

a0 = [1, 1, . . . , 1, 1]/10 ∈ R10 is used in the experiment. A sparse signal x0 ∈ R1000
20 is generated573

with totally 40 nonzero Gaussian random elements which are separated by at least 20 entries.574

In this configuration, Theorem 1.2 states that the ground truth is a global minimizer. To575

visualize its landscape of the function with 10-dimensional unknown vector, we project it576

onto 2-dimensional plane defined by three points a0, a1 = [1, 0, . . . , 0] ∈ R10 and a2 =577

[1, 1, 1, 1, 1, 0, . . . , 0]/5 ∈ R10. The 2-dimensional function is defined as ϕν(α, β) = ϕν(a0 +578

α(a1 − a0) + β(a2 − a0)). To fulfill the constraint on a := a0 + α(a1 − a0) + β(a2 − a0), we579

have that580

1 + 9α+ β ≥ 0, 1− α− β ≥ 0, 1− α+ β ≥ 0,−1/4 ≤ α ≤ 1,−1 ≤ β ≤ 5/4.581
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See Figure 2 for landscape visualization of ϕν(α, β) with 3 different ν: i.e. ν ∈ {1, 0.1, 0.01}.582

It can be seen that the landscape of the function is impacted by different values of ν. A larger583

ν leads to a large cost at the Dirac kernel, which makes the algorithm more likely to be away584

from the Delta Dirac kernel δ. When the ν is set to 1 and 0.1, in a large region around the true585

kernel, there is no local minimizer. In other words, as long as ν is set to a sufficiently large586

value, an alternating iterative scheme is likely to converge to the global minimizer, provided587

the initialization is reasonably close to the truth.588

(a) (b) (c)

Figure 2. 2D Geometry of the function ϕν(a) with varying ν. (a) ν = 1; (b) ν = 0.1; (c) ν = 0.01. The
true solution a0 is marked in red +, and another two points a1,a2 are marked in red diamonds. The last row
shows the contour of function (3.2).

3.2. Application on blind motion deblurring. In this section, we applied the proposed589

iterative blind SaS deconvolution algorithm with region selection, Alg. 2.2, to solve the problem590

of blind motion deblurring. We consider two datasets: Hu et al .’s dataset [15] and Sun et591

al .’s dataset [31]. There are 120 burred images synthesized from 10 clean image with 12592
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kernels in Hu et al .’s dataset1. No true images are provided in Hu et al .’s dataset. There593

are 640 images in Sun’s dataset [31], which are synthesized from 80 clean images convolved594

by 8 kernels from [21] and contaminated by 1% Gaussian noise2. Both true images and true595

kernels are available in Sun et al .’s dataset. See Figure 3 for the 8 blur kernels and some596

sample images from Sun et al .’s dataset. The parameters of Alg. 2.2 are set as follows. The597

maximum iteration is set to 1000, λ is set to 0.03, the stepsizes for the proximal alternating598

minimization are set as r1 = r2 = 1e − 3, ν0 is set to 0.1, νmin = 0.01 and the kernel shift599

correction step is set to 200. Two experiments are conducted in this section. The first is to600

examine the effectiveness of region selection technique described in Alg. 2.1 for blind motion601

deblurring, and the second is for quantitative performance comparison of Alg. 2.2 and the602

other very related methods on Sun et al .’s dataset.603

Figure 3. The blur kernels (top row) and sample images (bottom row) from Sun et al.’s dataset [31].

3.2.1. Performance evaluation of region selection. The main contribution in Alg. 2.2604

lies in the introduction of Alg. 2.1-based region selection. Such a motivation comes from the605

analysis which shows the importance of sufficient separation of image edges in the region. To606

show the benefit of such a region selection to kernel estimation, we run the experiments on Hu607

et al .’s dataset [15]. Following the same setting as [15], a region of size 200× 200 is extracted608

by Alg. 2.1 where the smoothing Gaussian kernel g used in Alg. 2.1 is of the same size as the609

true kernel. The kernels estimated using Alg. 2.2 on the extracted region are compared to610

their counterparts estimated using Alg. 2.2 on the whole image (without regions selection).611

See Figure 4 for the visual comparison of the estimated kernels on some sample images. It612

can be seen that the kernels estimated on the regions selected by Alg. 2.1, the rectangular613

regions bounded by red box, are certainly closer to the true kernels.614

To show the quality improvement of the deblurred results brought by region selection via615

Alg. 2.1. An experiment is conducted to show the comparison of the visual quality of the616

image deblurred by the kernel estimated by Alg. 2.2. The results from the proposed method617

is compared to several existing methods which also call some edge/region selection module618

during the iteration, including Fergus et al . [12], Xu et al . [34] and Hu and Yang [15]. Fergus619

et al . selected the regions with the highest edge energy. Xu et al . [34] removes the edges with620

small magnitude. Hu and Yang [15] learned a discrimination map and selected the region621

1The dataset is available from https://eng.ucmerced.edu/people/zhu/ECCV12 dataset.zip.
2The dataset is available from https://cs.brown.edu/people/lbsun/deblur2013/all deblurred results

SunICCP2013.zip.
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(a) (b) (c) (d) (e)

Figure 4. Comparison between the kernels estimated by Alg 2.2 on the regions selected by Alg. 2.1 and the
ones estimated on the whole image. (a) Input blurred image from Hu et al.’s dataset; (b) The regions selected
by Alg. 2.1, bounded in red box; (c) The kernel estimated on the whole image; (d) The kernels estimated on
selected regions; (e) The true kernel.

with the highest score of kernel recovery quality. See Figure 5 for visual comparison of the622

deblurred results from the methods with different edge/region selection techniques. It can be623

seen that overall, the proposed method perform consistently on the sample images and yields624

the results with the best visual quality.625

3.2.2. Quantitative evaluation for blind motion deblurring . In this section, a quanti-626

tative evaluation of the proposed method is conducted on Sun et al .’s dataset [31]. Following627

the common practice, the measurement on the accuracy of the kernel estimation is done by628

examining the quality of the image recovered by the estimated kernel using some widely-629

used non-blind deblurring method. Following most works, the robust non-blind deconvolution630

method [34] with default parameter setting is called for deblurring the image using the esti-631

mated kernel. Three metrics are used to quantitatively measure the quality of the deblurred632

images: mean PSNR, mean SSIM and mean of error ratios [21]. The last metric accounts for633

the difficulty of the non-blind deconvolution step considered. An error ratio larger than 3 is634

deemed visually unacceptable as [21] did.635

In experiment, we compare Alg 2.2 against other existing approaches, including Krishnan636

et al . [18], Cho & Lee [11], Levin et al . [22], Xu & Jia [34] and Sun et al . [31]. Except637

Krishnan et al . [18] which used a normalized TV regularization on images for blind deblurring,638

all other methods methods contain edge/region selection for more accurate blind deblurring.639

See Table 1 for quantitative comparison of different methods on the Sun et al .’s dataset. Note640

that the failed cases in Table 1 refers to the number of the cases where relative error ratio641
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(a) Fergus et al . [12] (b) Xu & Jia [34] (c) Hu & Yang [15] (d) Proposed

Figure 5. Visual comparison of the results, de-blurred images and estimated kernels, using the methods
with different region selection techniques. For each two rows, the first row shows the input and selected regions,
and the second row shows the de-blurred images and the estimated kernels on the top left of the images.
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is larger than 3. From Table 1, the proposed Alg 2.2 is the best in terms of PSNR and No.642

of failing cases, and is the second best in terms of SSIM and Error Ratio. Our algorithm643

outperforms other methods in terms of failed cases. For the comparison of visual quality, See644

Figure 6 for the comparison of different methods on some sample images. It can be seen that645

overall, the proposed one yields the results with best visual quality, with more details and less646

artifacts. See Figure 7 for the curve of cumulative error ratio, and the proposed one is the top647

performer.648

In summary, for blind motion deblurring, edge/region selection plays an important role649

in blind motion deblurring. Among all edge/region selection technique, the proposed one650

achieves the best performance. This experiments show the effectiveness of region selection651

built on the analysis conducted in this paper, i.e. the relationship between the separation of652

non-zero entries of the signal and the estimation accuracy of the kernel.653

Table 1
Average PSNR/SSIM and Error Ratio for Sun et al.’s dataset [31].

Different approaches - Edge selection Region selection

Known Krishnan Levin Cho & LeeXu & Jia Sun et al . Hu & Yang Ours
kernel et al . [18] et al . [22] [11] [34] [31] [15]

PSNR 32.4204 23.8157 25.6754 26.9552 28.2503 29.4993 28.5242 29.5939
SSIM 0.9491 0.8188 0.8657 0.8775 0.9157 0.9232 0.8959 0.9205

Error Ratio 1 2.9344 2.2561 2.2671 1.7327 1.3546 1.822 1.4252
Failed cases - 196 73 135 37 23 60 14

4. Conclusion. This paper studys an ℓ1-norm relating regularization model for solving654

the problem of blind SaS deconvolution. It is shown that the model is sound when the sparse655

signal is sufficiently separated among non-zero entries. In the presence of noise, the analysis656

also reveals that the global minimizers of the studied model remain a good approximation to657

the truth, when the signal can be well approximated by a well-separated sparse signal. Such658

a study inspires a region selection technique for blind SaS deconvolution. The experiments on659

blind image deblurring show the benefit of region selection. In future, we plan to study the660

soundness of other widely-used and efficient models to see whether we could further improve661

the theoretical results. We would also like to investigate the landscape of the ℓ1-norm relating662

regularization models and the provable algorithms for blind SaS deconvolution.663
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Figure 6. Visual comparison of the results from different methods on the images from [31]. Zoom-in for
better visual inspection.
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