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Self-Supervised Low-Light Image Enhancement
Using Discrepant Untrained Network Priors

Jinxiu Liang†, Yong Xu, Yuhui Quan∗, Boxin Shi, and Hui Ji

Abstract—This paper proposes a deep learning method for low-
light image enhancement, which exploits the generation capability
of Neural Networks (NNs) while requiring no training samples
except the input image itself. Based on the Retinex decomposition
model, the reflectance and illumination of a low-light image are
parameterized by two untrained NNs. The ambiguity between the
two layers is resolved by the discrepancy between the two NNs in
terms of architecture and capacity, while the complex noise with
spatially-varying characteristics is handled by an illumination-
adaptive self-supervised denoising module. The enhancement is
done by jointly optimizing the Retinex decomposition and the
illumination adjustment. Extensive experiments show that the
proposed method not only outperforms existing non-learning-
based and unsupervised-learning-based methods, but also com-
petes favorably with some supervised-learning-based methods in
extreme low-light conditions.

Index Terms—Low-light image enhancement, Retinex decom-
position model, Untrained network priors

I. INTRODUCTION

Low-light images refer to the images captured in low-light
conditions, which often suffer from poor visibility with low
contrast and low signal-to-noise-ratio (SNR). Low-light image
enhancement (LIE) is about improving the visual quality of
a low-light image to have the one with better visibility and
higher SNR. Such a technique not only demonstrates its
practical value in digital photography, but also benefits many
downstream computer vision applications such as surveillance
and tracking in low-light conditions.

There has been an enduring effort on developing effective
techniques for LIE. In recent years, the Retinex decomposition
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(a) Input (b) ZeroDCE [16]

(c) EnGAN [21] (d) Ours

Fig. 1. Visual results of two external-dataset-based unsupervised methods and
the proposed dataset-free one. It can be seen that ZeroDCE fails to recover
textures from the low-light image with severe noise as it is not present in
training data, and EnGAN produces undesired distorted color which is biased
by its training data. In contrast, the proposed method restores the global
illumination well while suppressing the noise.

model (RDM) that assumes an image could be decomposed
as the element-wise product of a reflectance layer and an
illumination layer has been one prominent choice for devel-
oping powerful LIE techniques [10], [17], [47], [56], [27].
The performance of existing RDM-based LIE methods heavily
relies on hand-crafted priors which might be inaccurate for
characterizing the reflectance and illumination layers on real-
world images.

More recently, supervised deep learning has been widely
used for LIE with impressive performance [4], [42], [50],
[52], [27]. However, their success largely depends on a large
quantity of paired training samples with statistical charac-
teristics aligned with test images. The collection of such
data is often costly or technically challenging, e.g., collect-
ing paired normal/low-light images of the same scene with
moving objects in outdoor environments. A few unsupervised
learning approaches [21], [16] that avoid using paired data
have been proposed. However, these approaches pose higher
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requirements on the distribution of training data to satisfy their
assumptions, and therefore they still take considerable efforts
and costs to collect and organize the data.

In many scenarios, training data is insufficient or biased. An
NN trained on a specific dataset may not perform consistently
well across all test images. Often, novel patterns not present
in training data are hardly recovered from test samples by
the trained NN (Fig. 1 (b)). Similarly, undesired artifacts may
appear in an enhanced image (Fig. 1 (c)). Such issues are
critical for many applications such as forensics and clinical
diagnosis [7], [1]. It is certainly valuable to have an LIE
method that leverages the power of deep learning for good
performance while requiring no training data.

To achieve this goal, our main idea is to model illumination
and reflectance in RDM by the recently developed untrained
network priors [41], which show that the structure of an NN
(rather than the weights learned from training data) is able to
capture low-level image statistics. That is, while optimizing
an NN with randomly initialized weights to generate a given
noisy image, regular image structures and textures will be
fitted before random noise. Inspired by this, we propose to
solve RDM by optimizing two untrained NNs for modeling
the two layers such that their element-wise product yields the
given low-light image. Then its normal-light counterpart can
be obtained by re-illuminating the image using an adjusted
illumination subsequently.

1) Challenges: The above process does not require data for
pre-training, which satisfies our need; however, implementing
it for LIE is highly non-trivial due to the following issues:

• Ambiguity between two layers. Illumination expresses the
light intensities striking surfaces of scene/objects, while
reflectance encodes the physical characteristics of sur-
faces of scene/objects, e.g., textures and other fine details.
As light intensities striking over a surface often vary
slowly, illumination is usually assumed to be smoother
than reflectance [17], [2], [42], [49]. Appropriate dis-
crepancy between the two untrained NNs is needed for
accurately determining the attribution of image gradients.

• Difficulty on noise handling. Retinex decomposition is
sensitive to noise. Consider a simplified setting where
we already have an accurate estimation of illumination.
As many entries of the illumination are close to zero for
a low-light image, a direct inversion for estimating the
reflectance will significantly magnify the measurement
noise. To make it worse, the measurement noise for a
low-light image usually has complex spatially-varying
statistical characteristics [48]. Also, many details (edges)
in low-light images are of very small magnitude, which
are hard to preserve during noise removal.

• Flexibility on illumination adjustment. Without looking
at any normal-light image, it is not easy to determine the
best hyper-parameter of illumination adjustment for each
input image. Therefore, developing an adaptive illumina-
tion adjustment mechanism for our case is challenging.

2) Solutions and Contributions: In this paper, we tackle
the three challenges by proposing the following strategies:
i) Motivated by the empirical observation that an untrained
NN with lower capacity tends to fit smoother structure, we

propose to resolve the ambiguity between illumination and
reflectance by introducing discrepancy on both the architecture
and model capacity between the two NNs. ii) Since pixels with
different SNRs should be processed adaptively, we propose
a self-supervised denoising scheme with a spatially-varying
characteristic driven by illumination. It is motivated by the
observation that SNR is related to illumination intensity. iii)
We introduce a differentiable histogram balance loss such
that the parameterized illumination adjustment module can be
jointly optimized with the two NNs for maximizing the quality
of the enhanced image in terms of entropy.

The proposed dataset-free unsupervised method produces
competitive performance to the dataset-based ones for LIE
from only the test image itself (Fig. 1 (d)). To summarize, this
paper proposes a training-data-free LIE method with following
contributions:

• Integrating discrepant untrained NN priors into RDM,
which successfully exploits untrained NN priors for LIE.

• Proposing an illumination-adaptive self-supervised de-
noising scheme for handling spatial-variant real noise.

• Unifying the workflows of Retinex decomposition and
illumination adjustment for LIE with better adaptivity.

II. RELATED WORK

A. Conventional methods

Earlier works of LIE directly adjust image intensity to
improve the contrast, e.g., the classic gamma correction. The
adaptivity of adjustment is later improved by using certain
parametric S-shape tone curves with parameters estimated
from camera response models [53], [38] or estimated under
designed criteria of good exposure [5]. Histogram equalization
is another intensity/color adjustment technique, which modi-
fies pixel values to fit certain distribution [24]. These methods
focus on contrast enhancement, which often result in unnatural
visual appearance.

LIE can be recasted as the Retinex decomposition problem,
which requires priors to resolve the ambiguity between the two
layers. Local smoothness is a prominent prior for illumination
with various implementations, such as bilateral filtering [8],
ℓ2-penalty on gradients [23], [9], [11], weighted ℓ1-penalty
on gradients [33], [15], [17], [2], [49], and some others [40].
Statistical priors [44], [10], [43] and physical models [54], [45]
on lighting are also used in many methods. In comparison to
illumination, reflectance is more challenging to characterize. A
widely-used assumption is that a reflectance layer contains fine
textures [2], and thus the piece-wise continuity prior is often
used for reflectance layers in existing work e.g., [30], [31],
[33], [23], [55], [2], [49]. Note that texture of a reflectance map
is easily confused with noise. Thus, there have been extensive
studies on the robust Retinex decomposition [8], [26], [37].

B. Supervised Learning on Paired Data

There are some studies treating LIE as an image-to-image
mapping obtained via supervised learning on a dataset with
a large number of paired samples. Lore et al. [28] trained a
stacked denoising auto-encoder to fit the mapping. Chen et
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Fig. 2. Overview of the proposed method. The two untrained NNs GE,GR are randomly initialized to map fixed random seeds zE, zR onto illumination E
and reflectance R, whose element-wise product is optimized towards the known low-light image I . For reflectance denoising, an illumination-guided dropout
module is introduced inside GR. Then a CNN F is adopted to map E onto Ê for illumination adjustment. At last, the enhanced image Î is obtained from
the adjusted illumination Ê and the denoised R. Our framework is optimized in an end-to-end manner by minimizing three loss functions LRE,LE,LI.

al. [4] used a U-Net to learn the mapping with a focus on
raw input instead of RGB, which was further improved by the
idea of multi-exposure fusion in [58]. Li et al. [25] trained
a recursive NN to enhance low-light images in a progres-
sive way. Some methods learn the mapping via frequency
decomposition. Cai et al. [3] proposed to learn separately for
the low/high-frequency parts of a low-contrast image and its
high-contrast counterpart. Similarly, Xu et al. [50] proposed to
learn the mapping from low-light image to low/high-frequency
parts of the normal-light reference sequentially. Ren et al. [36]
proposed a hybrid NN that performs layer decomposition and
then recovers global content and local details separately.

The RDM has also been exploited with supervised deep
learning. Shen et al. [39] presented a deep NN for LIE which
is built on the traditional multi-scale Retinex algorithm. Wei et
al. [47] proposed to perform Retinex decomposition by an
NN and then adjust illumination by another NN. Its off-
the-shelf denoiser for reflectance refinement is replaced by
a separately-trained NN in [56]. Focusing on underexposed
images with negligible noise, Wang et al. [42] proposed to
estimate the illumination by per-pixel affine transform learned
by bilateral upsampling. To bridge the gap between fidelity
and perceptual quality, Yang et al. [52] combined unpaired
training to supervised learning on a recursive banded NN. All
these methods require paired data for training, which is critical
toward the success of supervised learning methods. Some work
studies how to synthesize paired real-world normal/low-light
images [39], [28] or how to collect them in an economic
manner [3], [47], [4]. Even with such efforts, collecting
sufficient real-world training data for real applications remains
costly and troublesome. This issue is avoided in our method.

C. Unsupervised Learning on an Unorganized Dataset

There are a few works attempting to relax the prerequisite
on paired training images for deep-learning-based LIE. Jiang et
al. [21] leveraged adversarial learning with dual discriminators
to effectively exploit unpaired data as positive and negative

samples. Guo et al. [16] proposed to learn a set of parameter-
ized curves for light enhancement, using a dataset containing
images of different exposures. This is achieved through a set
of well-designed non-reference loss functions. Liu et al. [27]
proposed a lightweight and efficient optimization-inspired NN
with searched architecture. While relaxing the prerequisite on
paired data, these methods still require training samples highly
related to the test image in terms of both image content and
noise statistics for good performance.

D. Untrained NN Priors
In recent years, there is a rapid progress on studying

untrained NN priors for image recovery [41], [19], [12], [35],
[20], so as to avoid using training datasets. In these works,
the images or image layers are modeled as being lying in the
range of an untrained NN fed with a fixed seed. It is shown
in [41] that optimizing the output of an untrained NN to fit a
corrupted observation, instead of training the NN with massive
input-target pairs, can capture local image correlation and act
as a powerful image prior. Such untrained NN priors have
been extensively explored in the context of denoising [41],
deblurring [35], compression [19], layer decomposition [12],
compressive sensing [20], background matting [51], etc.

We note a recently concurrent work RetinexDIP proposed
in [57], which explores untrained NN priors for LIE; however
it is remarkably different from the proposed method. The keys
for applying untrained NN priors for LIE are: how to address
a) the ambiguity between two NNs and b) the spatially-varying
noise. For a), RetinexDIP combines hand-crafted priors with
both NNs, while ours additionally exploits discrepancy be-
tween NN architectures. For b), RetinexDIP does not have
an explicit mechanism, while ours uses a self-supervised
illumination-guided denoising module. Furthermore, instead
of taking a two-stage approach in RetinexDIP, we propose
a unified illumination adjustment scheme. Thanks to these
techniques developed in this work, the proposed method
demonstrates superior performance over RetinexDIP in the
experiments presented in Sec. IV.
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III. PROPOSED METHOD

To restore a normal-light image Î ∈ [0, 1]M×N×C from
a given low-light image I ∈ [0, 1]M×N×C with spatial size
M × N and channel number C (C = 1 or 3), the proposed
approach optimizes three NNs over only a single input image
I , with the workflow shown in Fig. 2.

Based on RDM, an image I can be decomposed into a
reflectance R and an illumination E as follows,

I = E ⊙R+N , (1)

where ⊙ denotes element-wise multiplication, and N denotes
image noise. LIE built on the decomposition (1) is an ill-posed
inverse problem. In this paper, we solve it by re-parameterizing
R and E with two NNs denoted by

E := GE(zE;ωE),R := GR(zR;ωR) ∈ [0, 1]M×N×C , (2)

where GE(zE;ωE) (GR(zR;ωR)) is an NN parameterized by ωE
(ωR) with a fixed random seed zE (zR) as its input. The seeds
are independently drawn from the same Gaussian distribution.
Given an M×N image, zR is also M×N , and zE is M/2L×
N/2L, where L is the number of upsampling layers in GE.
The two NNs act as natural illumination/reflectance models
that incorporate the priors on their intermediate layers.

Once the decomposition is done, we can obtain a new image
Î with better visibility by re-illuminating the image using a
new illumination map Ê:

Î := Ê ⊙R, (3)

where the adjusted version Ê is produced by another NN
F(·;θ) from E by

Ê := F(E;θ) ∈ [0, 1]M×N×C . (4)

The Retinex decomposition and the illumination adjustment
are jointly optimized in an end-to-end manner, via optimizing
the parameters

min
ωE,ωR,θ

LRE(R⊙E, I) + λELE(E) + λILI(Î), (5)

where LRE is the reconstruction loss, LE,LI are the reg-
ularization on E and Î respectively, and λE, λI are pre-
defined weights. During inference, the sufficiently optimized
NNs GE(·;ω⋆

E),GR(·;ω⋆
R),F(·;θ⋆) generate E⋆,R⋆, Ê⋆ re-

spectively. Then the result Î⋆ is obtained in analogous to (3).
See Algorithm 1 for the pseudo-code of the proposed method.

A. Retinex Decomposition via Untrained NN Priors

Illumination is often assumed smoother than reflectance. We
also observe that while GE(·) ⊙ GR(·) is optimized towards
an image, the NN with lower capacity tends to fit smoother
structure. Motivated by this, we propose to resolve the ambi-
guity between E and R by introducing certain discrepancy
on both the NN architecture and model capacity between
GE and GR. Briefly, GE is set to a small under-parameterized
CNN while GR a large over-parameterized one. Together with
simple regularizations on illumination, the layer ambiguity is
well addressed. The NN architectures and loss functions are
detailed as follows.

Algorithm 1 LIE using discrepant untrained NN priors

Input: Low-light image I; parameters λE, λI, τ ; maximum
iterations S for optimization of NN parameters ωE,ωR,θ;
iterations T for dropout ensemble; update iterations K for
dropout probability maps {P (l)}Ll=1

Output: Normal-light image Î
1: for s = 0 to S do
2: Sample z

(s)
E and z

(s)
R from N (0, σ2)

3: Sample ω
(s)
R according to {P (l)}Ll=1 ▷ Eq. (8)

4: E(s) ← GE(z
(s)
E ;ω

(s)
E ),

R(s) ← GR(z
(s)
R ;ω

(s)
R ) ▷ Eq. (2)

5: Ê(s) ← F(E(s);θ(s)) ▷ Eq. (4)
6: Î(s) ← Ê(s) ⊙R(s) ▷ Eq. (3)
7: Compute the gradients w.r.t. ωE,ωR,θ ▷ Eq. (5-7,14)
8: Update ω

(s+1)
E ,ω

(s+1)
R ,θ(s+1) using the Adam

9: if s = (2n+ 1)K and n ∈ N then
10: update {P (l)}Ll=1 according to E(s) ▷ Eq. (9-10)
11: end if
12: end for
13: ω⋆

E ← ω
(S)
E ,ω⋆

R ← ω
(S)
R ,θ⋆ ← θ(S)

14: Sample z⋆E and z⋆R from N (0, σ2)
15: Et ← GE(z

⋆
E,ω

⋆
E)

16: for t = 0 to T do
17: Sample ω

⋆(t)
R according to {P (l)}Ll=1 ▷ Eq. (8)

18: R⋆(t) ← GR(z
⋆
R;ω

⋆(t)
R ) ▷ Eq. (11)

19: end for
20: R⋆ ← 1

T

∑T
t=1 R

⋆(t) ▷ Eq. (12)
21: Ê⋆ ← F(E⋆;θ⋆)
22: Î ← Ê⋆ ⊙R⋆

1) Architecture of Reflectance Generator GR: The En-
coderDecoder [41] is adopted for GR, which contains five en-
coder blocks and five decoder blocks with following structures
respectively:

Encoder: Conv↓2 → BN→ LR→ Conv→ BN→ LR,

Decoder: ↑ 2→ Conv→ BN→ LR→ Conv→ BN→ LR,

where Conv,Conv↓2 denote convolutional layer with kernel
size 3 × 3 and stride 1, 2 respectively; and BN,LR, ↑ 2
denote batch normalization layer, leaky rectified linear activa-
tion function, and bilinear upsampling operation, respectively.
Please see more details in [41]. The number of output channels
for all convolutional layers is set to 128, which leads to strong
expressibility. To perform dropout ensemble for improving
noise robustness of the prediction, we configure dropout before
the last convolutional layer in all blocks. To handle spatially-
varying noise, the dropout probability is varied spatially ac-
cording to the illumination intensity estimated by GE.

2) Architecture of Illumination Generator GE: Considering
the illumination is usually assumed to be smoother than the re-
flectance, we adopt a simple under-parameterized architecture
for GE. It contains five decoder blocks of following structures:

Decoder: Conv→ ↑ 2→ReLU→ BN,

where ReLU denotes rectified linear activation function. It
is very similar to DeepDecoder [19], except that the 1 × 1



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

Dropout map
1 − 𝑷(𝑙+1)

𝑬

𝑹

Dropout map
1 − 𝑷(𝑙)

Gaussian Filtering + 
Adaptive Average PoolingEncoderDecoder Block

…

(Keep Dropout On)

…

… …

Fig. 3. The illumination guided dropout module in GR. The dropout
probability map 1−P (l) for the l-th layer is generated from the illumination
map E recursively by (9) and (10).

convolution is replaced with a 3 × 3 one to pursue more
smoothness. The successive bilinear upsampling operations
implicitly induce piece-wise smoothness to the illumination
layer E. The number of output channels for all linear trans-
form layers is set to 16, resulting in significant discrepancy
(about 200 : 1 parameters) between GR and GE in terms of
model capacity. This helps to reduce the ambiguity between
E and R. Regarding the other configuration, we use the same
setting as that in the experiment of [19]. In practice, we set
E consistent on all color channels by duplicating the single-
channel output of GE.

3) Weighted Reconstruction Loss: The loss LRE measures
the reconstruction error between R ⊙ E and I . Let P =
Z[1,M ] × Z[1,N ] denote a set of spatial indices. Considering
Poisson noise has higher variance on brighter pixels, we use
the following weighted ℓ2 loss:

LRE :=

C∑
c=1

∑
p∈P

2

max (Rc
pE

c
p + Ic

p, ϵr)
(Rc

pE
c
p − Ic

p)
2, (6)

where Rc
p,E

c
p, I

c
p denote the element of R,E, I at p ∈ P

of the c-th channel, and ϵr is a stabilizer set to 10−3. It uses
(Rc

pE
c
p + Ic

p)/2 to estimate noise-less pixels for weighting.
4) Illumination Regularization Loss: While the discrepant

NN priors regularize gradient distribution, the loss LE aims
at regularizing the intensity distribution in E. Following
the commonly-used white-patch prior that there is a patch
with perfect reflectance in the image causing the maximum
response across color channels and reflecting the intensity of
the illumination [44], [10], [17], [2], we define LE by

LE :=
C∑

c=1

∥(Ec)↓16 − (Ẽ)↓16∥22, (7)

where Ẽp := maxc I
c
p and (·)↓16 denotes average pooling

with kernel size 32×32 and stride 16. It is noted that the white-
patch prior may not always hold on a fine image scale but can
be more accurate for a coarser scale. Thus, we impose it on a
coarse scale by via downsampling. We empirically found that
the downsampling factor of 16 could lead to higher accuracy
than the factors of 2 and 4.

B. Reflectance Denoising via Dropout Ensemble

The estimation of R is sensitive to noise, due to the
existence of many zero entries of E. Moreover, the over-
parameterized nature of GR makes it vulnerable to overfitting,
i.e., the prediction fits both image and noise. To make the
estimation of R robust to noise, we integrate a self-supervised
denoising mechanism to our method, which is inspired by the
dropout ensemble for dealing with i.i.d noise [34]. Briefly, GR
is optimized with dropout switched on. Then by performing
multiple inference of the optimized GR with dropout remained
switched on, diverse predictions on reflectance with statistical
independence are produced, whose average with reduced noise
and artifacts is used as a denoised R. We observe that
the dropout probability is closely related to the denoising
strength. In addition, pixels with different SNRs should be
processed with different denoising strengths. Thus, the dropout
probability of a feature point should be set according to the
SNR of the pixels associated to the feature point.

Recall that a point in a feature of a CNN only affects some
pixels in the output, which is determined by the receptive field
size. Then, the dropout probability of a feature point should
be set according to the noise variances of the pixels it can
affect. Usually, the SNR is higher in brighter regions for low-
light images. Thus, we propose to guide the generation of a
spatially-variant dropout probability map with the estimated
illumination with the receptive field size.

1) Optimization: Let A(ℓ) ∈ RMℓ×Nℓ denote a feature map
output by the ℓ-th convolutional layer after activation. The
dropout can be formulated as

Â(ℓ) = M (ℓ) ⊙A(ℓ), ℓ = 1, · · · , L, (8)

where M
(ℓ)
q ∼ B(P (ℓ)

q ) at location q, B(p) denotes the
Bernoulli distribution with success probability of p, and the
keep probability map P (ℓ) is a matrix storing the probabilities
of retaining the elements of A(ℓ) at different locations during
dropout, which is the exact opposite of the dropout probability
1− P (ℓ). We configure dropout before the last convolutional
layer in all blocks of GR.

The proposed illumination guided dropout (IGD) module
is shown in Fig. 3. We define the guidance map U by the
following recursive rule:

U (L) = E, U (ℓ) = (GKℓ
∗U (ℓ+1)) ↓Mℓ×Nℓ

(9)

for layer ℓ = L − 1, · · · , 1, where ∗ denotes convolution,
Kℓ×Kℓ is the size of receptive field of the ℓ-th convolutional
layer, GKℓ

is a Kℓ×Kℓ Gaussian kernel, and ↓Mℓ×Nℓ
denotes

resizing to Mℓ×Nℓ by adaptive average pooling. To align the
keep probability to [0.5, 1], let

Pq = (1 + exp(−U (ℓ)
q /τ))−1 ∈ [0.5, 1], (10)

where τ > 0. U is initialized at the K-th iteration, then
updated every 2K iterations during optimization and kept
unchanged in later iterations.

2) Inference: In inference, the nodes of the sufficiently
optimized GR are kept randomly dropped out so that T
instances of GR are generated to make inferences with certain
degree of statistical independence, whose average leads to
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better denoising result. As shown in Fig. 4, T predictions of
reflectance are generated first (T = 100 by default),

R⋆(t) = GR(zR;ω
⋆(t)
R ), t = 1, ..., T. (11)

Then they are averaged to generate the estimated reflectance

R⋆ =
1

T

T∑
t=1

R⋆(t). (12)

In Fig. 5, we show the advantage of the proposed module
over [34] for handling noise in low-light image.

C. Illumination Adjustment via Histogram Balancing

1) Architecture of F for Illumination Adjustment: For
illumination adjustment, a point-wise mapping fγ(x) =
max (x, ϵf )

γ is applied on E, where the parameter γ > 0
controls the curve shape, and ϵf is a stabilizer set to 10−6. We
employ a lightweight CNN F to generate the parameter γ of
the point-wise mapping function for illumination adjustment
on E. F concatenates the given low-light image I and the
illumination map E estimated from GE as input, which is
sequentially passed to four convolutional layers with kernel
size 3×3 and channels 8, 8, 8, 4 respectively, each of which is
followed by a max pooling layer with stride 2 and an ReLU
activation function. Then the resulting feature maps are sent
to two fully-connected layers with number of hidden unit 8
and 1 respectively. The output scalar is passed to a sigmoid
activation function to obtain γ.

2) Histogram balance loss: The visual quality of the re-
covered normal-light image Î is measured by LI in terms of
contrast. Inspired by histogram equalization [24], we define
histogram balance loss LI using the entropy of a soft his-
togram on Î . Let H1, · · · ,HJ ∈ R denote the histogram bins
and δ denote the bin size. Let S : R → [0, 1] denote the
sigmoid function. The soft histogram h ∈ RJ is defined by

hj =
∑
p∈P
S(Īp −Hj +

δ

2
)− S(Īp −Hj −

δ

2
),∀j, (13)

where Ī ∈ ZM×N
[0,1] denotes the mean of Î along the channel

dimension. Then LI is given by

LI := −
∑
j

hj loghj . (14)

Minimizing LI indeed equalizes the histogram. In practice, we
simply set δ = 1/256, J = 256 and Hj = (j − 1)/255.

IV. EXPERIMENTS

A. Benchmark Datasets and Experimental Details

Five benchmark datasets covering a wide range of lighting
conditions are used for evaluation: (i) LOL [47] contains 15
low/normal-light image pairs of size 400 × 600 captured in
real scenes. (ii) LIME [17] contains 10 low-light images.
(iii) NPE [44] contains 8 outdoor natural scene images. (iv)
MEF [29] contains 17 high-quality image sequences including
natural scenarios, indoor and outdoor views, and man-made
architectures. Each image sequence has several multi-exposure
images, and we select one of poor-exposed images as input
to perform evaluation. (vi) DICM [24] contains 69 captured
images from commercial digital cameras. It is noted that LOL
is collected under extreme low-light conditions with normal-
light references provided, while the other four are collected
under moderate low-light conditions without ground truths.

The scores of three no-reference metrics that are widely
used in the studies of LIE [11], [2], [26], [45], [37] are
reported: (i) Natural Image Quality Evaluator (NIQE) [32]
does not relate to subjective quality scores and can measure the
image quality with arbitrary distortion. (ii) AutoRegressive-
based Image Sharpness Metric (ARISM) [14] estimates the
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TABLE I. PSNR/SSIM/NIQE/ARISM/NIQMC scores on five datasets. The best and second best are highlighted in red and yellow respectively. The overall
‘Rank’ is calculated by averaging the per-dataset average rankings among different methods, while ‘RoR’ denotes the rank of the overall ‘Rank’. ↑ (↓) means
higher (lower) is better.

Setting Method
LOL LIME NPE MEF DICM

Rank RoR
P↑ S↑ N↓ A↓ C↑ N↓ A↓ C↑ N↓ A↓ C↑ N↓ A↓ C↑ N↓ A↓ C↑

Non-learning

MSR 13.17 0.479 8.114 4.194 5.350 3.764 3.621 5.464 4.366 3.047 5.328 3.309 3.859 5.489 3.677 3.436 5.480 12.8 12
Dong et al. 16.72 0.582 8.316 4.036 4.525 4.052 3.197 4.885 4.126 2.951 5.366 4.099 3.470 5.115 4.119 3.229 5.056 13.7 17

NPE 16.97 0.589 8.439 4.058 4.692 3.905 3.217 4.617 3.952 2.992 5.174 3.529 3.530 4.861 3.760 3.211 5.034 14.4 19
PIE 12.28 0.515 7.506 3.958 3.532 4.050 3.018 4.592 4.137 2.941 5.148 3.451 3.146 4.803 3.978 3.071 5.008 14.2 18

SRIE 11.86 0.498 7.287 3.967 3.489 3.786 3.115 4.503 3.979 2.923 5.185 3.474 3.304 4.704 3.899 3.161 4.985 15.1 21
MF 16.97 0.605 8.877 3.977 4.502 4.067 3.118 4.869 4.105 2.944 5.284 3.492 3.270 5.042 3.844 3.141 5.115 11.8 8

BIMEF 13.88 0.577 7.515 3.908 3.711 3.860 3.103 4.721 4.133 2.959 5.227 3.329 3.236 4.879 3.846 3.144 5.047 13.0 15
JIEP 12.05 0.512 6.872 3.985 3.527 3.719 3.049 4.545 4.226 2.920 5.207 3.391 3.195 4.772 3.569 2.813 4.940 12.9 14

LIME 16.76 0.564 8.378 4.063 5.487 4.155 3.292 5.496 4.263 3.056 5.448 3.702 3.523 5.417 3.859 3.248 5.295 13.1 16
NPIE 16.70 0.594 8.159 4.042 4.557 3.579 3.322 4.890 4.025 2.947 5.202 3.337 3.548 5.188 3.736 3.210 5.098 11.5 6
RRM 13.88 0.658 5.810 3.465 3.318 4.643 2.903 4.816 4.845 2.989 5.159 5.062 2.862 4.914 4.597 2.876 4.924 15.1 22
STAR 12.64 0.538 6.205 3.720 3.651 3.684 3.045 4.580 4.052 2.950 5.184 3.296 3.171 4.824 3.512 3.075 4.902 12.1 11
LR3M 10.22 0.399 7.522 2.663 2.143 5.180 2.716 4.742 4.641 2.845 5.134 5.508 2.705 4.806 4.568 2.845 4.975 15.0 20

Dataset w/
paired data

RetinexNet 16.77 0.559 8.879 3.911 4.225 4.598 3.458 4.697 4.567 2.968 4.967 4.410 3.551 4.747 4.415 3.204 4.763 19.4 24
DeepUPE 11.04 0.412 7.366 3.821 3.477 3.959 3.035 4.894 3.994 2.943 5.221 3.527 3.053 4.989 3.884 2.988 5.136 11.0 5

KinD 17.65 0.760 4.710 3.050 4.504 4.763 2.781 4.942 4.161 2.886 5.207 3.877 2.759 5.093 4.151 2.762 5.009 9.3 4
HybridNet 16.60 0.668 3.391 3.037 3.983 4.801 2.767 4.491 3.728 2.761 4.931 4.000 2.762 4.711 4.097 2.724 4.776 12.0 9

FIDE 19.41 0.732 4.366 2.745 4.362 4.424 2.775 4.628 4.747 2.772 4.926 4.220 2.759 4.578 4.155 2.736 4.709 12.8 13
DRBN 16.75 0.659 4.724 2.720 4.583 4.433 2.717 4.844 4.211 2.739 5.344 4.253 2.689 5.077 4.333 2.701 5.063 8.5 3

Dataset w/o
paired data

EnGAN 17.49 0.658 4.684 3.445 4.682 3.657 3.035 5.082 4.125 2.914 5.153 3.221 3.068 5.115 3.562 3.007 5.095 6.8 2
ZeroDCE 14.86 0.585 7.767 3.964 4.015 3.769 3.150 4.839 4.275 2.889 5.166 3.283 3.310 4.944 3.560 2.814 4.934 12.0 10

RUAS 16.40 0.583 6.340 3.635 5.009 4.262 3.091 4.965 5.512 3.003 4.717 3.830 3.186 4.734 5.115 3.125 4.432 16.3 23

Dataset-free RetinexDIP 9.442 0.322 7.070 3.838 2.836 3.674 3.115 4.766 4.096 2.932 5.347 3.288 3.287 4.979 3.719 3.103 5.020 11.7 7
Ours 15.49 0.654 3.731 3.487 5.476 4.123 2.949 5.453 3.973 2.888 5.417 3.070 3.091 5.486 3.649 3.003 5.388 5.6 1

sharpness/blurriness of images based on analysis in the au-
toregressive (AR) parameter space. (iii) No-reference Image
Quality Metric for Contrast distortion (NIQMC) [13] utilize
the concept of information maximization to access the image
quality of contrast-changed images. On LOL, we also report
the full-reference metrics Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM) Index [46], although they
are not appropriate for unsupervised methods without the
notion of reference. It is known that different metrics assess
different aspects of image quality. Following [37], we use
non-parametric metrics for a more comprehensive and fair
comparison, average ranking (denoted by ‘Rank’) as well as
the rank of rank (denoted by ‘RoR’). Specifically, average
rankings of different metrics on each dataset are computed
first and then averaged to obtain the overall rank, and RoR is
the rank of the overall Rank.

We implemented the proposed approach using PyTorch and
set its hyper-parameters as follows: λE = 0.01, λI = 10−5

through all datasets, and τ = 0.1 for LOL and τ = 0.01
for other four datasets. We use Adam with a fixed learning
rate of 10−3 for optimization. The optimization is stopped
after 1× 105 iterations. The weights for all convolutional and
fully-connected layers are initialized by [18] and all biases are
initialized to 0.

B. Comparison with State-of-the-Art Methods

Twenty-three methods including the state-of-the-art ones are
selected for comparison, including (i) non-learning methods:
MSR [22], Dong et al. [6], NPE [44], PIE [9], SRIE [11],
MF [10], BIMEF [53], JIEP [2], LIME [17], NPIE [43],
RRM [26], STAR [49] and LR3M [37]; (ii) models trained
on paired data: RetinexNet [47], DeepUPE [42], KinD [56],

HybridNet [36], FIDE [50], and DRBN [52]; (iii) models
trained on an unorganized dataset: EnlightenGAN (EnGAN
for short) [21], ZeroDCE [16], and RUAS [27]; and (iv) model
trained without training data: RetinexDIP [57]. The results
of these methods are produced by their released codes with
recommended parameter setting.

The results of different methods on the five datasets are
summarized in Table I. As shown in the table, the rankings
of different IQA metrics for a method can vary a lot, e.g.,
LR3M performs quite well in terms of ARISM, but almost
the worst for NIQMC; LIME performs quite well in terms of
NIQMC, but almost the worst for NIQE. RetinexNet performs
well on a few metrics (e.g., PSNR) but much worse on
others. In comparison, our method achieved the best rank. In
particular, it achieved very competitive NIQE and NIQMC
on the LOL dataset. This is impressive as our model never
saw other images including normal-light and low-light ones.
Noted that it is very challenging for an untrained-NN-based
method to perform fully better than supervised methods in
terms of all metrics and all test images. Our aim is to develop
an untrained-NN-based method that performs on a par with the
supervised methods so as to address the difficulty in the case of
limited training data. Indeed, it is also very difficult to have a
supervised method with the best performance across all images
in all metrics. A good LIE method should win the trade-off
among different aspects. As shown in the experimental results,
the proposed method can achieve a very good balance among
different aspects of image quality, while being competitive to
state-of-the-art supervised methods.

The visual comparison results on LOL are shown in Fig. 6
and Fig. 7. The images of LOL are taken under extreme low-
light conditions, with very low SNR and severe noises. Most
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(a) Input (b) MSR (non-learning) (c) Dong et al. (non-learning) (d) NPE (non-learning) (e) PIE (non-learning)

(f) SRIE (non-learning) (g) MF (non-learning) (h) BIMEF (non-learning) (i) JIEP (non-learning) (j) LIME (non-learning)

(k) NPIE (non-learning) (l) RRM (non-learning) (m) LR3M (non-learning) (n) STAR (non-learning) (o) RetinexNet (supervised)

(p) HybridNet (supervised) (q) KinD (supervised) (r) FIDE (supervised) (s) DeepUPE (supervised) (t) DRBN (semi-supervised)

(u) EnGAN (unsupervised) (v) ZeroDCE (unsupervised) (w) RUAS (unsupervised) (x) RetinexDIP (dataset-free) (y) Ours (dataset-free)

Fig. 6. Visual quality comparison of enhancement results. LIME and KinD can restore vivid color; however, it reveals significant noise (see e.g., red boxes).
KinD produces over-smoothed results in some regions (see e.g., the ball of red wool in the middle), and the color of its result is less vivid in comparison
to that of the proposed method and LIME. In contrast, the proposed method can enhance low-SNR regions while preserving color, even though it never sees
any well/over-exposed images.
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(a) Input (b) MSR (non-learning) (c) Dong et al. (non-learning) (d) NPE (non-learning) (e) PIE (non-learning)

(f) SRIE (non-learning) (g) MF (non-learning) (h) BIMEF (non-learning) (i) JIEP (non-learning) (j) LIME (non-learning)

(k) NPIE (non-learning) (l) RRM (non-learning) (m) LR3M (non-learning) (n) STAR (non-learning) (o) RetinexNet (supervised)

(p) HybridNet (supervised) (q) KinD (supervised) (r) FIDE (supervised) (s) DeepUPE (supervised) (t) DRBN (semi-supervised)

(u) EnGAN (unsupervised) (v) ZeroDCE (unsupervised) (w) RUAS (unsupervised) (x) RetinexDIP (dataset-free) (y) Ours (dataset-free)

Fig. 7. Visual quality comparison of enhancement results on a low-light image. The global illumination can be well restored by LIME, RUAS and the
proposed method. However, LIME and RUAS reveals significant noise. Although HybridNet, KinD can suppress noise while restoring color, they tend to
over-smooth the input image, which leads to loss of rich details. The proposed method is able to preserve vivid color as well as fine details.
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(a) A(GE) = A(GR) (b) Nc(GE) = 64 (c) Nc(GE) = 32 (d) Nc(GE) = 16

Fig. 8. Ablation study on the discrepant priors. Top: Illumination; Bottom: Reflectance. The input low-light image is shown in Fig. 9 (a). A(·) denotes the
architecture of the NN, while Nc(·) denotes the number of output channel for each convolutional layers. It can be seen that less discrepancy between GE and
GR, more edges are wrongly assigned to the illumination map.

(a) Input (b) W/o LI (c) W/o LE (d) Ours

Fig. 9. Ablation study on the regularization loss. (b)-(d): Top: Illumination; Bottom: Output. As shown in (b), using a fixed γ instead of an adaptive one
guided by LI produces unsatisfactory result and contrast. As shown in (c), without the intensity distribution regularization LE, GE outputs a trivial constant
illumination map.

compared methods either fail to remove noise or to recover
high contrast. For instance, RetinexNet produces results with
vivid color and pleasing appearances in most cases; however,
it also produces severe artifacts and cartoonish effects in
the results and cannot well handle the severe noise. This
is the main reason why its performance rank is not very
high. In comparison, the proposed method can enhance low-
SNR regions while preserving color, even though it never
sees any well/over-exposed images. Such good performance is
attributed to the accurate Retinex decomposition by untrained
NN priors, while the noise robustness is mainly attributed to
the spatially-variant dropout ensemble for handling noise.

C. Ablation Study

1) Effectiveness of the Discrepant NN Priors: In the pro-
posed method, discrepant network architectures and model
capacity are designed to resolve the ambiguity between the two
layers. To examine its effectiveness, we set the architecture
A(GE) of GE the same as GR except the dropout module.
See Table II for result of such a variant. Its performance
drops noticeably in terms of SSIM, NIQE and NIQMC. As
shown in Fig. 8 (a), textures and fine details are more likely
to be wrongly assigned to the illumination map in such a
configuration. Furthermore, we compare our default setting

TABLE II. PSNR/SSIM/NIQE/ARISM/NIQMC scores for ablation studies
on the LOL dataset. The best and second best are highlighted in red and
yellow respectively. ↑ (↓) means higher (lower) is better.

Configuration P↑ S↑ N↓ A↓ C↑ Rank

Proposed 15.49 0.654 3.731 3.487 5.476 2.2
Nc(GE) = 32 14.33 0.617 3.833 3.409 5.376 3.0
Nc(GE) = 64 12.99 0.569 4.338 3.542 4.823 5.8

A(GE) = A(GR) 14.16 0.582 4.306 3.643 3.525 5.4
w/o dropout 15.77 0.579 3.837 4.031 5.594 4.4

w/o IGD 15.53 0.661 4.580 3.391 5.387 3.0
w/o LE 13.79 0.515 4.023 3.716 4.059 6.2
w/o LI 11.61 0.503 4.187 3.310 3.513 6.0

with increased number of output channels Nc(GE) of GE,
which eliminates the discrepancy between GE and GR. The
performance also drops for these setting as shown in Table II.
Less discrepancy between GE and GR, more edges are wrongly
assigned to the illumination map. This validates the design of
discrepant NN architecture in the proposed method. See also
Fig. 8 (b)-(d) for the visual comparison.

2) Effectiveness of the IGD Module: We evaluate the effec-
tiveness of the proposed IGD module by comparing it with two
variants: (i) w/o dropout: removing dropout in optimization
and inference, i.e. no dropout ensemble is used; and (ii) w/o
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(a) Input (b) LIME (non-learning) (c) NPIE (non-learning) (d) KinD (supervised) (e) DBRN (semi-supervised)

(f) EnGAN (unsupervised) (g) ZeroDCE (unsupervised) (h) RUAS (unsupervised) (i) RetinexDIP (dataset-free) (j) Ours (dataset-free)

Fig. 10. Visual comparison of enhancement results on a fluorescent image. It can be seen that the performance of ZeroDCE, RUAS, and RetinexDIP is
relatively poor. Although NPIE and EnGAN improve the contrast, they also greatly amplify the noise. KinD and DBRN can improve contrast while suppressing
noise, but they also blur out some important details. In contrast, the proposed method can improve the contrast while preserving details during denoising.

IGD: fixing dropout probabilities according to [34], instead of
using the illumination guidance. See Table II for the results on
LOL. It can be seen that dropout ensemble is very helpful for
the performance improvement in terms of SSIM and ARISM.
However, it results in a high NIQE, which can be improved
by the proposed IGD module. For further analysis, a visual
comparison is given in Fig. 5. It can be seen that without
dropout ensemble, the generator for reflectance is prone to
overfitting and revealing significant noise in low-SNR regions,
e.g., that in the red box. Using the dropout ensemble with
fixed setting across different regions, the generator produces
cleaner results. However, since it processes regions of different
SNRs uniformly, when noise is well removed in low-SNR
regions (see e.g., red box), the high-SNR regions may be
over-smoothed (see e.g., blue box). In contrast, with spatially-
varying dropout probabilities in the IGD module, our method
can handle regions with different SNR better.

3) Effectiveness of the Regularization Loss: We examine
the effectiveness of LE by removing it from the loss function.
This configuration is denoted by ‘w/o LE’ and its result on
LOL is listed in Table II. The performance drops noticeably
without the use of regularization loss on the illumination.
This is because only the discrepancy between GE and GR
is not sufficient to address the ambiguity in terms of the
intensity distribution. We also validate the effectiveness of LI
for adaptive illumination adjustment by comparing it to gamma

correction (a common practice) with γ = 2.2, which is denoted
by ‘w/o LI’. See also Fig. 9 for the visual comparison.

D. Analysis on Computational Complexity and Iterations

While the dropout ensemble brings some additional time
cost, the main computational burden in the the proposed
method is caused by the large iteration number, which is
used for achieving as high performance as possible for the
case where image quality is main focus. Fortunately, it can
be largely reduced for the case where processing time is
taken into consideration. Please see Table III for the perfor-
mance rank and computational complexity of the proposed
method with different iteration numbers. The computational
complexity is measured by the average running time per image
calculated on 100 test images with a size 600× 400 from the
LOL dataset. The performance is measured by the aforemen-
tioned metrics, the overall Rank as well as the rank of rank
(RoR). It can be seen that the proposed method outperformed
RetinexDIP after 1,000 iterations with acceptable additional
time cost (2.4 times the running time of RetinexDIP). In
addition, it already achieved the second best and the best
ranking after 10,000 and 14,000 iterations, respectively, which
are much less than 100,000 iterations. In such cases, the
running time of the proposed method is less than 12 minutes
per image.
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Fig. 11. Performance-iteration curves of the proposed method.

The performance-iteration curves of the proposed method
are shown in Fig. 11. Such curves are consistent with analysis
above. That is, using 10, 000 iterations rather than 100, 000
iterations can have a very competitive performance, and us-
ing around 1, 000 iterations can result in better performance
than RetinexDIP (see Fig. 11 (f)). In addition, it is worth
mentioning an interesting phenomenon in the figure. That is,
unlike other DIP or DIP-based methods whose performance
will decrease noticeably without early stopping, the proposed
method does not suffer from such an overfitting issue and it
performs stably after a long time of learning.

Same as other untrained-NN-prior based image recovery
methods, the online manner of the proposed approach makes
it slower than a pre-trained NN model. However, owing to
its training-data-free nature, it is of value to applications
where sufficient unbiased training data are hard to collect.
Indeed, such a method is not against the dataset-based learning
methods for LIE, but provides a complement to address the
cases where training data is insufficient or of low quality
for dataset-based learning. It can also inspire further studies
on exploiting untrained NN priors for solving other bi-linear
inverse problems involving noise in low-level vision. In future
work, we will investigate the combination of NN trained on
dataset and the proposed untrained NN prior to build up an
efficient and unbiased learning system.

TABLE III. Comparison of running time, which is calculated on 100 test
images with size 600 × 400. Our method is ranked with different iteration
numbers respectively.

Method Time (seconds) Rank RoR

RetinexNet 0.119 19.4 24
KinD 0.181 9.3 4
FIDE 0.594 12.8 13

DBRN 0.053 8.5 3
EnGAN 0.010 6.8 2

ZeroDCE 0.003 12.0 10
RUAS 0.016 16.3 23

RetinexDIP 21.288 11.7 7
Ours (100, 000 iterations) 5926.836 5.6 1

Ours (1, 000 iterations) 53.265 10.2 4
Ours (10, 000 iterations) 506.627 7.7 2
Ours (14, 000 iterations) 665.728 6.7 1

E. An Example of Application to Scientific Imaging

We provide an example of application to scientific imaging
in Fig. 10, which shows a fluorescent image of tumor cells
with low visibility and the corresponding image enhancement
results produced by different methods. We show the results
of two non-learning method (b) LIME and (c) NPIE, two
supervised method (d) KinD, a semi-supervised method (e)
DBRN, two dataset-based unsupervised methods (f) EnGAN
and (g) ZeroDCE, and (h) RUAS, an existing dataset-free
method (i) RetinexDIP and (j) the proposed dataset-free
method. Thanks to the training-data-free nature, the proposed
method exhibits strong generalization performance, which is
of value to applications where sufficient unbiased training data
are hard to obtain, such as clinical diagnosis.

V. CONCLUSION

In this paper, we successfully exploited untrained NN priors
for enhancing low-light images with noise. This led to an
effective unsupervised approach that provided state-of-the-
art performance while requiring no data for training. The
key ingredients of our method include the discrepant NN
architectures and capacity for addressing layer ambiguity,
the illumination-guided self-supervised denoising scheme for
handling noise with spatially-varying variance, and the joint
optimization of NN-based Retinex decomposition and illumi-
nation adjustment. The effectiveness of the proposed approach
has been demonstrated by extensive experiments with diverse
lighting conditions, particularly extreme low-light conditions.
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