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Abstract. Deep learning has been one promising tool for compressive
imaging whose task is to reconstruct latent images from their compres-
sive measurements. Aiming at addressing the limitations of supervised
deep learning-based methods caused by their prerequisite on the ground
truths of latent images, this paper proposes an unsupervised approach
that trains a deep image reconstruction model using only a set of com-
pressive measurements. The training is self-supervised in the domain of
measurements and the domain of images, using a double-head noise-
injected loss with a sign-flipping-based noise generator. In addition, the
proposed scheme can also be used for efficiently adapting a trained model
to a test sample for further improvement, with much less overhead than
existing internal learning methods. Extensive experiments show that the
proposed approach provides noticeable performance gain over existing
unsupervised methods and competes well against the supervised ones.

Keywords: Self-supervised deep learning, Compressed sensing, Model
adaption, Compressive imaging, Image reconstruction

1 Introduction

Compressed Sensing (CS) provides an acceleration technique for imaging, with
a broad spectrum of applications in different domains, such as computed to-
mography (CT) and magnetic resonance imaging (MRI) in medicine, as well
as energy-efficient cameras, holography and scanning microscopy in science. In
general, CS captures a small number of linear measurements of an image and
then reconstructs the image from these measurements. Let x ∈ RN denote the
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image of interest, y ∈ CM the measurements with M ≪ N , and Φ ∈ CM×N the
sensing matrix. Then, compressive imaging (i.e. CS-based imaging) solves

y = Φx+ ϵ, (1)

where ϵ ∈ CM denotes the measurement noise (e.g. Gaussian white noise). How
to suppress the propagation of noise to the solution and how to resolve the solu-
tion ambiguity caused by the under-determinedness of Φ are two main concerns.

Deep learning has emerged as a promising tool for compressive imaging; see
e.g., [37, 24, 17, 42, 39, 4, 31, 45, 44, 43, 11, 40]. These methods train a deep neural
network (NN) in a supervised manner, i.e., using an external dataset with many
ground truth (GT) images and their measurements. The NN’s performance de-
pends on both the size of training data and the coherence between training and
test data. Unfortunately, in many data-limited domains, e.g., MRI and CT in
medicine, it is often very difficult or costly to collect sufficient GT images. Then,
the possible bias in a limited amount of training data can lead to poor general-
ization performance of a pre-trained model, e.g., novel pathology not present in
training data might disappear in the reconstructed images of test data.

Recently, there has been an increasing interest in developing deep learning
methods for compressive imaging with relaxed requirements on training data.
Nevertheless, existing works along this line have various issues in practice. The
weakly-supervised learning method [14] takes unpaired images and measure-
ments for training, which still requires the access to GT images. The unsu-
pervised learning methods [21, 2, 3] avoid accessing GT images. However, their
performance is not competitive with their supervised counterparts. The internal
learning methods [25, 41, 28] learn an NN from the test sample itself by exploit-
ing its internal statistics, whereas the millions of gradient updates on each test
sample result in high computational cost, especially when processing many sam-
ples. There are also some unsupervised methods working on specific settings
of sensing matrices, e.g., paired ones [35] or varying ones [21, 6]. The resulting
specific sensing setups limit the wider adoption of these methods.

This paper is devoted to developing an self-supervised deep learning approach
for compressive imaging, which enjoys competitive performance against existing
supervised methods, while its training only requires measurements collected in a
general sensing setup (i.e., using a single fixed sensing matrix). Such an approach
is applicable to data-limited environments and makes the sensing more flexible
in practice than those using paired or varying sensing matrices.

Recall that the linear system in (1) is under-determined. It has a non-zero
kernel (also called null space) defined by ker(Φ) = {x|Φx = 0}. Therefore, the
measurement vector y only provides the noisy information of image x within
im(ΦH) = ker(Φ)⊥ where im(ΦH) denotes the image (also called column space)
of the adjoint operator of Φ, i.e., its Hermitian transpose ΦH. The remaining
information of x in ker(Φ), is not available in y. Then, two critical parts of an
unsupervised approach are: (a) Training the NN to predict the image in im(ΦH)
when only noisy measurements are available; and (b) Training the NN to predict
the image in ker(Φ) when no information is available. Note that while the latter
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one can be partially addressed if the training dataset contains measurements
from varied Φ, it is not assumed in our setup as mentioned before.

In this work, those two parts are implemented by a self-supervised training
scheme. Regarding the first part, as the measurement vector y encodes the image
x by Φx, we use y as the “labels” for self-supervision and train the NN to
predict an image x′ from y such that Φx′ ≈ y under some loss defined in the
domain of measurements. Since y can be noisy, the key is then how to make
the training robust to the measurement noise, which is treated by extending
the self-supervised loss introduced in the self-supervised Gaussian denoiser [26]
to the measurement domain. Built on a double-head symmetric noise injection,
where the injected noise is drawn from the same distribution as measurement
noise, the proposed loss is equivalent, in terms of expectation, to the loss with
noise-free labels Φx in the measurement domain. Such a loss enables us to train
the NN to predict the GT in im(ΦH), in analogy with supervised learning. We
also show that the loss has a close connection to Stein’s unbiased risk estimator
(SURE) [10, 21] in the presence of Gaussian noise.

Regarding the second part, the training scheme above does not address the
solution ambiguity caused by ker(Φ), as Φ(x + n) = Φ(x) ≈ y,∀n ∈ ker(Φ).
While no information of x in ker(Φ) exists in y, the prediction from an NN with
specific structures, e.g., a convolutional NN (CNN) or an unfolding-based NN, is
an estimate biased to smooth and regular structures; see e.g. [7, 32]. Thus, one
can utilize the intermediate prediction from an NN as another noisy observation
of “labels” (GT images) for the self-supervision in ker(Φ). The training in ker(Φ)
is implemented by defining a similar double-head symmetric noise-injected loss
in image domain, which further refines the estimate from the NN regarding the
information in both ker(Φ) and im(Φ). Note that the “noise” in this case refers
to the residual of the intermediate GT estimate, whose statistical distribution
is complex and unknown. We introduce random sign flipping to simulate the
samples drawn from the distribution of the residuals.

The above ideas lead to a dual-domain loss for self-supervised learning of
compressive imaging, which brings noticeable performance gain over existing
unsupervised methods. Motivated by the benefits of internal learning, we also
apply the proposed loss to adapting a trained model to each test sample, which
alleviates possible bias of training data and possible inconsistency of sensing
matrices between training and test data. Such a model adaption scheme brings
further performance gain. See below for the summary of our main contributions.

– A dual-domain self-supervised loss is proposed for handling possible ambigu-
ity and overfitting when only noisy measurements are available in training.

– A model adaption scheme is proposed to exploit specific internal character-
istics of a test sample for performance improvement. It also provides much
higher computational efficiency than existing internal learning methods.

– A self-supervised learning approach for compressive imaging is introduced
with a relaxed requirement on training data. Its performance is noticeably
better than existing unsupervised methods and is competitive against state-
of-the-art supervised methods.
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2 Related Work

Image priors play an important role in compressive imaging for regularizing
the solution of (1). Traditional methods use handcrafted image priors, such as
transform-induced sparsity [18], non-local low-rankness [9], and the denoising
prior from some manually-designed denoiser [22]. These methods require solving
an optimization problem with some time-consuming iterative scheme.

Deep learning-based methods encode image priors into a measurements-to-
image reconstructive NN. For supervised learning, the effort is mainly on the de-
sign of NN architectures; see e.g. [38, 29, 30, 45, 1, 8]. Among them, physics-aware
NNs are the most prominent ones, which are often designed by an unfolding strat-
egy that replaces the prior-related operations in a traditional iterative method
by some NN blocks; see e.g. [24, 19, 39, 42, 44, 43, 40]. Dual-domain architectures
are also superior in supervised methods; see e.g. [31, 45, 44]. In comparison to
these works, the concept of dual domain used in the proposed approach is mainly
for unsupervised training, rather than NN structures.

The prerequisite on many paired samples is one limitation of supervised meth-
ods. Plug-and-play methods (e.g. [34, 15, 12]) partially address this limitation by
calling pre-trained models of denoising or generative NNs. These methods still
require GT images in the target domain for model pre-training. When the target
image is not in the domain of training data, the performance of these methods
is likely to see a big drop. In the unpaired learning method [14], the prerequisite
of GT images is still required.

To remove the prerequisite on GT images, there have been a few studies
on unsupervised deep learning for compressive imaging. Xia et al. [35] used the
measurement samples collected by two sensors. Cloe et al. [6] trained a genera-
tive adversarial NN using unpaired measurement samples collected by different
sensing matrices. Both Metzler et al. [21] and Zhussip et al. [46] proposed to
train a learned denoiser-approximate message passing NN with a SURE-based
denoiser. The former addressed the ambiguity caused by the null space via using
varied sensing matrices for collecting measurement data, while the latter mainly
relies on the regularization provided by the SURE-based denoiser to resolve the
ambiguity. Chen et al. [2, 3] proposed to exploit the equivariance present in la-
tent images so that the missing null-space information of one sample in can
be supervised by the reconstructed range-space information of another sample.
By assuming the equivariance, they showed that the unsupervised training with
equivariant transforms is an unbiased estimator to the GT. In comparison, the
proposed dual-domain training scheme uses the NN’s prediction to refine the
learning in both spaces and leads to further improvement.

Instead of leveraging a dataset, internal learning exploits the implicit im-
age priors encoded by an untrained CNN which enables one to exploit sample-
specific statistics for good performance. It is GT-free as it only takes test samples
for learning. Inspired by the dropout-based unsupervised denoiser [27], Pang et
al. [25] utilized the model uncertainty of a Bayesian CNN to refine the result
of internal learning. For accelerated MRI, Zalbagi et al. [41] used an under-
parameterized CNN with few and simplified convolutional layers for addressing
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the overfitting in internal learning. Wang et al. [33] proposed to run Monte Carlo
sampling on the NN’s weights to approximate the Bayesian estimator of latent
images. These methods suffer from high computational costs due to sample-wise
model learning. In comparison, the proposed model adaption scheme exploits
internal statistics of test data with much higher computational efficiency.

3 Dual-Domain Self-Supervised Training

Given a full row-rank matrix Φ, we have

CN = im(ΦH)⊕ ker(Φ). (2)

Recall that there are two issues to address in unsupervised training: measurement
noise in im(ΦH) and solution ambiguity in ker(Φ). Let fΦ(·;ω) : CM → RN
denote a deep NN model parameterized by ω which predicts an image from
input measurements with the sensing matrix Φ. We will omit the parameters ω
or the subscript Φ if not causing notational confusion.

In supervised learning, by minimizing the error between the output f(y) and
GT x, one can train f to simultaneously minimize the prediction errors in both
im(ΦH) and ker(Φ). In unsupervised learning, as only y is available, we only
have the noisy information of x in im(ΦH). Then, the key is how to train f for
prediction with small prediction errors in both im(ΦH) and ker(Φ). To address
this, we propose a dual-domain self-supervised loss function LDual:

LDual(ω) := LMeasure(ω) + λLImage(ω), (3)

with a pre-defined hyper-parameter λ. The first part LMeasure concerns the pre-
diction error in im(ΦH). The second part LImage measures the prediction error
in image domain CN that covers the error in ker(Φ).

3.1 Loss Function

For the prediction in im(ΦH), we use the noisy measurement y to train the NN.
Motivated by [26], we run data augmentation on y to eliminate the noise effect.
Let y′ = y+γ denote an augmented version of y with random noise γ. Consider

ΦfΦ(y
′) → y ≈ Φx+ ϵ. (4)

Once the measurement noise ϵ can be handled by LMeasure, f can learn accurate
predictions in im(ΦH), as if using the noise-free measurements Φx.

Since y carries no information about x in ker(Φ), we use the output of f ,
denoted by z, as a noisy version of the GT image for supervising the training. As
the structure of a CNN itself imposes certain implicit prior on its prediction [7,
32], z can be viewed as a regularized solution that contains some information
of x in ker(Φ). Similarly, consider an augmented version of z: z′ = z + r with
random noise r and the following scheme:

fΦ(Φz′) → z = x+ e. (5)
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If the residual e can be effectively handled by the loss LImage, then the ambiguity
in null-space prediction can be effectively alleviated during learning. Note that
while f is expected to learn accurate prediction in im(ΦH) by the loss LMeasure,
the training with LImage also provides certain refinement on its prediction in
ker(Φ) due to the implicit regularization of the NN structure.

To effectively handle the noise in y and the error in z, we define

LMeasure(ω) := Ey∼Y,γ∥ΦfΦ(y + γ;ω)− y + γ∥22,
LImage(ω) := Ey∼Y,r∥fΦ(Φ(z + r);ω)− z + r∥22,

(6)

where z := f(y;ω0) (ω0 is the NN parameters obtained in the previous epoch),
Y is the training dataset of measurement samples, and both γ and r are injected
random noises drawn from some distributions. The resulting self-supervised loss
LDual is connected to its supervised counterpart as shown in Proposition 1 .

Proposition 1. Consider y = Φx + ϵ. Let P1 and P2 denote the conditional
distribution of ϵ and the residual e := fΦ(y;ω0) − x on x respectively, where
ω0 denotes the NN parameters obtained in the previous step, i.e., ϵ|x ∼ P1 and
e|x ∼ P2. Assume the random noise γ (resp. r) is drawn from P1 (resp. P2) and
independent from ϵ (resp. e) conditioned on x. Then, the loss function LDual

defined by (3) and (6) satisfies

LDual(ω) = Ex,ϵ,γ∥ΦfΦ(y+γ;ω)−Φx∥22+λEx,ϵ,r∥fΦ(Φ(z+r);ω)−x∥22+C,

where z = fΦ(y;ω0) and C is a constant.

Proof. See supplementary materials for the proof.

Proposition 1 states both LMeasure and LImage are the unbiased estimates of
their supervised counterparts under certain conditions. Therefore, the proposed
self-supervised loss enables us to train with only noisy measurements, provided
that we can draw samples from P1 and P2. Sampling from P1 is easy when the
distribution of measurement noise is known, e.g., Gaussian white noise. Sampling
from P2 is hard as its distribution is in general complex and unknown.

Generation of injected noise r To sample from P2, one simple way is
to approximate it using normal distribution N (0, σ2

eI). Such a treatment cer-
tainly is sub-optimal and how to set the noise level σe is non-trivial either. We
develop a sign-flipping-based scheme to generate the samples which empirically
approximate the samples from P2 better.

Let z′ = fΦ(Φz+γ) denote an intermediate prediction during training which
is detached from back prorogation. Suppose z′ is a good estimate of x. Then
the residual e′ = z − z′ can be viewed as an approximation to the residual e.
Using e′ as the injected noise is sub-optimal, as it remains correlated to e. To
reduce the correlation, we apply random sign-flipping to e′ so as to generate new
samples {r}, i.e., r is generated by r = e′ ⊙ s, where ⊙ denotes element-wise
product and s(i) takes values from {1,−1} with probability 0.5 for all i. It is
easy to show that E(r⊤e) = 0 (see supplementary materials). Although the zero
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covariance between r and e does not guarantee that they are independent, the
correlation between them is likely to be reduced. Furthermore, if the distribution
of e′ is symmetric w.r.t. the origin (which is observed empirically; see Fig. 1),
flipping sign does not destroy the statistics, i.e., r follows the same distribution
as e′. In summary, the noises generated by the random sign-flipping simulate
the samples from P2 better with weak correlation to z.
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Fig. 1. Distribution of the residual e = z − x at different epochs. The results are
computed in the configuration of Gaussian sensing matrices with ϵ ∼ N (0, 10

255
I),

using our NN trained with LMeasure. Kernel density estimator is applied to the t-SNE
projections of 1000 instances to show the distribution. It can be seen that e are roughly
symmetrically distributed around the origin.

Relation to SURE The proposed self-supervised loss is also closely related
to the SURE-based loss. When applied to the measurements contaminated by
Gaussian noise ϵ ∼ N (0, σ2I), the SURE loss takes the form:

LSURE(ω) := ∥ΦfΦ(y;ω)− y∥22 + 2σ2tr
(
ΦH ∂fΦ(y;ω)

∂y

)
. (7)

By injecting noise into the NN input, we modify the above SURE loss to be

LSURE+(ω) := ∥ΦfΦ(y + ϵ′;ω)− y∥22 + 2σ2tr
(
ΦH ∂fΦ(y + ϵ′;ω)

∂y

)
, (8)

where ϵ′ ∼ N (0, σ2I) is i.i.d. to ϵ. Then see below for the connection to SURE+.

Proposition 2. Let y = Φx+ ϵ ∈ RM . Assume ϵ, ϵ′ ∼ N (0, σ2I) are indepen-
dent from each other and x. Then,

Ey,ϵ′LSURE+ = Ey,ϵ′LMeasure −Mσ2. (9)

Proof. See supplementary materials for the proof.

Proposition 2 shows that, for Gaussian noise, training with the loss LMeasure can
be roughly viewed as a data-augmented version of SURE applied to y. Differ-
ent from SURE, no regularization term on partial derivatives are introduced in
LMeasure, which results in more efficient computation. Together with LImage, the
proposed loss LDual noticeably outperformed SURE-based methods.
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3.2 NN Architecture

Motivated by the studies in [7] which show that the unfolding of the proximal
gradient descent algorithm (PGDA) has a certain regularization effect on the
NN’s prediction during unsupervised learning, we adopt a similar NN that un-
folds the PGDA for the problem: minx ∥y−Φx∥22+ψ(x), with the regularization
function ψ : RN → R. The iterative scheme of PGDA reads

x(k) = proxψ(x
(k−1) − ρΦH(Φx(k−1) − y)), (10)

where proxψ is the proximal operator and ρ is a learnable step size. The NN
is defined by replacing proxρψ with a convolutional block. It contains K phases,
each of which mimics one iteration in (10). See Fig. 2 for the detailed structure.
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Fig. 2. NN architecture used in the proposed approach. The estimate x(0) is initialized
as the least-squares solution during training and initialized as the prediction from the
pre-trained model during test-time adaption.

4 Inference with Test-Time Model Adaption

The proposed loss LDual not only can be used for unsupervised training, but also
can be applied for adapting a deep model trained over an external dataset to
unseen data. One such extension is adapting the model to a test sample under a
specific sensing matrix (seen or unseen), so as to exploit sample-specific statistics
for performance boost. Let ω̂ denote the NN parameters of a trained model. For
a test sample (y⋆,Φ⋆), we first initialize ω⋆ = ω̂ and then update it by the
gradient of (3) on y⋆:

ω⋆ := ω⋆ − τ∇ω⋆LDual
y⋆ (ω⋆), (11)

with T steps. Once done, the final prediction is given by

x⋆ = fΦ⋆(y⋆;ω⋆), (12)

with the adapted NN parameters ω⋆. See an algorithmic description of the whole
adaption process in supplementary materials.
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5 Experiments

The proposed approach is evaluated on three tasks compressive imaging in CT,
MRI, and natural image reconstruction (NIR) respectively. The configuration is
as follows: (a) NN: K = 12 for all tasks; (b) Initialization: Kaiming initialization
is used for all learnable weights, except that the step size ρ and the bias terms
are initialized by 0.5 and 0 respectively. (c) Training: We set λ = 0.25 in LDual

and call the Adam optimizer with 500 epochs and with learning rate fixed at
10−4; and (d) Adaption: The Adam optimizer is used with T = 200 epochs
and with fixed learning rate 10−4. The performance of the proposed approach
is evaluated with and without using test-time adaption respectively, which are
denoted by Ours-TA and Ours-NA correspondingly. For the comparison with
existing methods, we quote their results directly from the literature whenever
possible; or we use their reproducible codes with efforts on hyper-parameter
tuning-up to obtain the results; otherwise we leave them blank in tables.

5.1 Sparse-View CT from Randon Measurements

Following [2], the CT measurements are taken by the discrete Radon transform
based sensing matrix without noise. The 100 real in-vivo CT images of size
128×128 from the CT100 dataset [5], collected from the cancer imaging archive
which consists of the middle slice of CT images taken from 69 patients, are used
for the experiment: 90 for training and 10 for test. The methods for compari-
son include (a) two supervised methods: FBP [13] and FISTANet [36]; (b) an
internal learning method: BCNN [25]; and (c) a very recent state-of-the-art un-
supervised method: EI [2]. Since EI is an unsupervised method whose focus is on
the training scheme design, for a fair comparison, we replace its NN with ours
and retrain it with the same data as ours throughout the experiments, which
brings performance improvement to the original EI.

The quantitative comparison is presented in Table 1. Ours-TA is the best per-
former among all methods including both the internal learning and unsupervised
ones. Its performance is close to that of the supervised-trained FISTANet. Even
without adaption, Ours-NA still performs noticeably better than other GT-free
methods. Such results have indicated that the proposed approach is very effective
for unsupervised compressive imaging. See also Fig. 3 for a demonstration.

Table 1. Mean PSNR (dB) and SSIM values in sparse-view CT reconstruction. The
best results among GT-dependent methods, GT-free methods, and all methods are
marked in green, marked in blue, and underlined respectively.

Metric FBP FISTANet BCNN EI Ours-NA Ours-TA

PSNR 30.24 41.85 39.82 40.48 41.35 41.99
SSIM - 0.983 0.970 0.968 0.979 0.985
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5.2 MRI Reconstruction from k-Space Measurements

Following [17, 25], the k-space measurements in MRI are taken by Φ : x →
β⊙(Fx), where β is a fixed binary mask for downsampling and F denotes the dis-
crete Fourier transform. The measurement noise is generated by ϵ = Φ(ϵ1+iϵ2),
where ϵ1, ϵ2 ∼ N (0, σ2I). The 2D Gaussian masks and radial masks of different
CS ratios are used for β. The images from the Alzheimer’s Disease Neuroimaging
Initiative are used: 279 for training and 21 for test. Both the noiseless setting
(σ = 0) and noisy setting (σ = 0.1max(x)) are considered. We train an individ-
ual model for each sensing matrix and each noise setting. In each setting, each im-
age is called only once for measurement generation. Then we have 279 measure-
ment samples in total for training. In addition to the BCNN and EI, the methods
for comparison include (a) a classic non-learning method: SparseMRI [18]; (b)
five supervised methods: GAN [17], ADMMNet [39], DDN [1], CDDN [44] MAC-
Net [11]; and (c) a very recent internal learning method: ConvDec [41].

Table 2. Mean values of PSNR(dB) (even rows) and SSIM (odd rows) in MRI recon-
struction. The best results among GT-dependent methods, GT-free methods, and all
methods are marked in green, marked in blue, and underlined respectively.

Mask Radial 2D Gaussian

Noise Level 0 0.1*MaxValue 0 0.1*MaxValue

CS Ratio 1/3 1/4 1/5 1/3 1/4 1/5 1/3 1/4 1/5 1/3 1/4 1/5

GAN
34.49 32.29 30.10 26.72 25.55 25.02 35.12 32.96 31.79 26.49 26.31 25.79
0.94 0.90 0.84 0.75 0.74 0.73 0.94 0.91 0.89 0.76 0.75 0.75

ADMMNet
35.31 33.70 32.32 26.50 25.97 25.44 36.34 34.95 33.82 26.17 25.82 25.40
0.94 0.93 0.92 0.60 0.61 0.59 0.95 0.94 0.93 0.56 0.60 0.61

DDN
33.58 32.76 31.79 31.48 30.83 29.69 34.82 32.73 31.16 31.10 30.89 29.87
0.92 0.88 0.89 0.85 0.85 0.82 0.91 0.89 0.87 0.85 0.84 0.84

CDDN
36.58 34.70 33.46 30.71 30.79 30.28 37.93 36.01 34.76 30.90 30.93 30.74
0.97 0.95 0.95 0.85 0.86 0.86 0.97 0.96 0.96 0.84 0.85 0.86G

T
-D

e
p
e
n
d
e
n
t

MACNet
36.70 34.76 33.42 30.98 30.97 30.25 38.22 35.84 34.81 31.04 30.92 30.81
0.98 0.97 0.95 0.87 0.87 0.86 0.98 0.96 0.96 0.86 0.86 0.86

SparseMRI
34.58 32.31 30.72 25.32 25.13 24.68 34.93 32.79 31.69 24.91 24.92 24.97
0.94 0.90 0.86 0.49 0.49 0.49 0.93 0.90 0.89 0.47 0.49 0.51

ConvDec
35.02 33.99 32.14 29.00 28.27 27.48 36.77 35.82 32.92 28.94 28.66 28.24
0.94 0.94 0.91 0.85 0.83 0.71 0.94 0.96 0.91 0.85 0.84 0.84

BCNN
35.58 34.08 32.28 29.58 29.47 28.38 37.60 36.10 33.81 29.46 29.20 29.17
0.94 0.95 0.92 0.85 0.87 0.84 0.94 0.95 0.93 0.86 0.85 0.85

EI
36.16 33.49 32.35 30.22 29.56 29.77 37.03 36.11 34.01 29.00 29.61 29.82
0.94 0.92 0.90 0.81 0.75 0.76 0.93 0.95 0.92 0.72 0.72 0.73

Ours-NA
36.25 34.32 33.47 30.66 30.62 30.16 37.42 36.20 34.80 30.87 30.65 30.29
0.94 0.94 0.93 0.85 0.86 0.85 0.94 0.96 0.93 0.86 0.86 0.85

36.43 34.70 33.97 31.68 31.04 30.44 37.82 36.72 35.46 31.62 31.30 30.89

G
T
-F

re
e

Ours-TA
0.95 0.95 0.95 0.86 0.88 0.87 0.95 0.96 0.95 0.87 0.86 0.86

See Table 2 for quantitative comparison. Ours-TA outperforms other GT-free
methods in all settings. By exploiting both the external knowledge from training
data and the internal statistics of a test sample, Ours-TA even outperforms the
supervised methods in many settings. Without model adaption, Ours-NA still
performs better than other GT-free methods overall, and competes with the
supervised methods. See Fig. 3 for the visual comparison of some reconstruction
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FISTA DIP BCNN EI Our-NA Our-TA GT

CDDN MACNet BCNN EI Ours-NA Ours-TA GT

AMPNet-9 COAST EI BCNN Ours-NA Ours-TA GT

Fig. 3. Visual results. The first row: CT reconstruction. The second row: MRI recon-
struction from noisy measurements with radial mask of CS ratio 25% The last two
rows: NIR from noiseless Gaussian measurements of CS ratio 40% and 25%.

results, where our result is closer to the GT in comparison with other GT-
free methods. Both quantitative and qualitative results have clearly verified the
effectiveness of the proposed approach.

5.3 NIR from Blockwise Gaussian Measurements

Following [16, 42], the measurements are taken by a blockwise row-orthogonalized
Gaussian matrix Φ ∈ RM×N with different CS ratios defined by M/N . Both
the noiseless setting with ϵ = 0 and the noisy setting with ϵ ∼ N (0, 10

255I)
are considered. Same as the previous experiment, we train an individual model
for each sensing matrix and each noise setting. The 88912 image blocks of size
33×33 (i.e. N = 1089) provided by [16] are used to generate 88912 measurement
samples for the training. Two datasets including Set11 [42] and BSD68 [20] are
used for test, each image of which is cropped into non-overlapping blocks of
size 33 × 33 for measurement generation. In addition to DDN, BCNN, EI (its
robust version REI [3] is used for noisy cases), we also compare with (a) a
non-learning method: DAMP [23]; (b) five supervised methods: ISTANet+ [42],
DPANet [31], MACNet [4], AMPNet-9 [43], COAST [40]; (c) a plug-and-play
method: SSLIP [15]; and (d) a recent unsupervised method: LDAMP-SURE [21].

The quantitative comparison is given in Table 3. Ours-TA is the best per-
former among the GT-free methods through all settings. Again, it is very com-
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Table 3. Mean values of PSNR(dB) (even rows) and SSIM (odd rows) in NIR. The
best results among GT-dependent methods, GT-free methods, and all methods are
marked in green, marked in blue, and underlined respectively.

Dataset Set11 BSD68

Noise Level 0 10 0 10

CS Ratio 0.40 0.25 0.10 0.40 0.25 0.10 0.40 0.25 0.10 0.40 0.25 0.10

G
T
-D

e
p
e
n
d
e
n
t

ISTANet+
36.02 32.44 26.49 31.09 29.20 24.55 32.17 29.29 25.29 28.98 27.26 23.86
0.96 0.92 0.80 0.89 0.86 0.70 0.92 0.85 0.70 0.83 0.77 0.60

DDN
27.38 26.18 23.30 25.64 24.39 17.22 28.84 26.42 23.44 21.98 22.99 20.61
0.80 0.78 0.70 0.73 0.69 0.35 0.85 0.78 0.64 0.49 0.52 0.46

DPANet
35.04 31.74 26.99 30.17 29.31 25.13 31.43 29.21 25.88 28.95 27.25 24.39
0.95 0.92 0.84 0.89 0.86 0.75 0.91 0.83 0.61 0.81 0.76 0.63

AMPNet-9
35.75 32.08 25.95 29.00 28.06 24.53 32.41 29.38 25.33 27.50 26.64 24.03
0.96 0.92 0.79 0.77 0.78 0.71 0.92 0.85 0.70 0.74 0.71 0.62

COAST
36.94 33.85 28.34 31.16 29.37 25.71 33.02 30.07 26.25 29.15 27.43 24.02
0.96 0.93 0.80 0.89 0.86 0.78 0.92 0.87 0.70 0.83 0.77 0.60

SSLIP
33.73 30.42 25.02 30.58 28.71 24.48 30.72 28.26 24.72 28.47 26.91 24.25
0.93 0.89 0.75 0.89 0.85 0.73 0.88 0.81 0.66 0.83 0.75 0.67

G
T
-F

re
e

DAMP
33.51 28.31 21.18 29.19 26.34 20.79 28.06 25.54 21.93 26.54 24.83 21.72
0.93 0.85 0.60 0.86 0.80 0.58 0.79 0.70 0.52 0.72 0.65 0.51

LDAMP 33.36 31.37 25.12 28.79 28.16 23.39 31.83 28.77 23.17 27.82 26.81 23.65
-SURE 0.95 0.90 0.65 0.81 0.82 0.64 0.90 0.84 0.65 0.77 0.73 0.60

BCNN
35.71 32.30 27.49 30.39 28.67 25.23 31.28 28.63 25.24 28.13 26.47 23.79
0.95 0.92 0.83 0.88 0.84 0.76 0.90 0.84 0.71 0.81 0.75 0.64

EI/REI
35.63 31.11 22.79 28.86 28.10 22.25 31.79 28.45 23.11 28.07 27.02 22.34
0.95 0.90 0.64 0.76 0.76 0.60 0.90 0.82 0.63 0.68 0.72 0.59

Ours-NA
36.37 32.70 26.89 31.42 29.17 25.41 32.17 28.97 25.61 28.24 27.23 24.10
0.95 0.93 0.82 0.90 0.86 0.78 0.91 0.86 0.70 0.81 0.77 0.66

Ours-TA
37.18 33.41 27.57 31.94 29.84 26.06 32.63 29.66 26.15 29.32 27.61 24.63
0.96 0.94 0.84 0.91 0.87 0.79 0.92 0.87 0.72 0.84 0.78 0.68

petitive with the supervised methods and even outperformed them in nearly half
settings. This is attributed to both the effectiveness of the unsupervised learning
as well as the benefit from the model adaption. Without adaption, Ours-NA still
performs competitively to supervised methods and is better than other GT-free
methods. Particularly, with the dual-domain learning, it outperforms LDAMP-
SURE significantly. We can observe a bigger improvement brought by model
adaption in NIR than that in MRI. This is mainly because natural images ex-
hibit larger variations between training and test samples, in comparison to the
medical images in MRI. See also Fig. 3 for some visual comparison, where Ours-
TA produces more details than other GT-free methods. To conclude, the results
have again demonstrated the effectiveness of the proposed approach.

5.4 Additional Analysis on Test-Time Model Adaption

The benefit of the proposed model adaption scheme has been demonstrated
by the result comparison between Our-TA and Ours-NA in Table 1,2,3. Those
experiments use the same sensing matrix through training and test. We further
examine the performance gain for the case when sensing matrices differ between
training and test in MRI reconstruction. See Table 4 for the results. When dealing
with Gaussian masks, the models trained on radial masks in Table 4 do not
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perform as well as the models trained on Gaussian masks in Table 2. However,
their performance is noticeably improved after the model adaption.

Table 4. Mean PSNR(dB) values of MRI reconstructions in cross-mask adaption test.

Train
Test Gaussian, Ratio = 20% Gaussian, Ratio = 25%

w/o adaption w/ adaption w/o adaption w/ adaption

Radial, Ratio=25% 34.45/0.93 35.31/0.95 35.18/0.95 35.86/0.96
Gaussian, Ratio=25% 34.80/0.94 35.46/0.95 36.39/0.96 36.72/0.96

Table 5. Running time (in seconds) of different methods for reconstructing all images
in BSD68. All the tests are conducted on an RTX 3090Ti GPU.

CS Ratio ISTANet+ DDNet DPANet COAST LDAMP-SURE BCNN Ours-NA Ours-TA

40% 2.56 0.06 2.94 3.28 310.21 90013 2.91 2178
25% 2.61 0.07 2.93 3.31 321.56 89652 2.86 2136
10% 2.29 0.05 2.80 3.30 320.43 91089 2.79 2134

While the model adaption brings notable performance gain by exploiting
the internal statistics of a test sample, it also has a much less computational
overhead than the internal learning methods. See Table 5 for the testing time of
some selected methods on all images of BSD68, with the comparison to ours. The
speed of Ours-NA is not bad among the compared methods. With an additional
model adaptation process in the inference phase, Ours-TA is slower than Ours-
NA but is significantly faster than BCNN. We also select the supervised methods
including COAST and ISTANet+ for comparison.

5.5 Ablation Studies

See Table 6 for the ablation studies and results, whose details are as follows.

Without LImage We retrain the NN by removing the loss LImage in (3). No-
ticeable performance degradation is observed when compared to Our-NA. This
has indicated the effectiveness of LImage for handing the null-space ambiguity in
unsupervised learning. It is interesting to see that using only the measurement-
domain loss LMeasure may yield reasonable performance. This is probably because
the measurement-domain training together with the unfolding-based architec-
ture has certain implicit bias to smoothness on the NN’s output, which resolves
the null-space ambiguity to some degree.

Without LMeasure We remove the loss LMeasure in (3) and retrain the NN.
It causes Ours-NA not to work. This is not surprising as the reconstruction from
available measurements does play a critical role in the whole reconstruction and
the effectiveness of the loss LImage also relies on the success of the reconstruction
in im(ΦH) by sharing the NN weights during learning.
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Without outer noise injection We only inject noise into the NN inputs
y and z, and remove the outer noise injection in (3). A noticeable performance
decrease is observed when compared to Ours-NA. The reason may be that the
resulting loss function loses its connection to the supervised counterpart and
leads to larger training error.

Using Gaussian noise for injected r The sign-flipping-based generation
scheme for injected noise is replaced by a simple scheme where r ∼ N (0, αI) with
α estimated from e′. The PSNR results are fine but lower than that using the
proposed generation scheme.

Supervised training We retrain our NN with a supervised ℓ2 loss using
the same paired data as those compared supervised methods. It leads to certain
improvement over Ours-NA, but not significant. This demonstrates that the
proposed dual-domain self-supervised loss is even as effective as the supervised
loss, which coincides with Proposition 1.

Using other NN structures We replace the NN structure with that of
the ISTANet+, a representative NN in supervised compressive imaging. The re-
sulting performance is very close to the original one. We also apply the test-time
model adaption to the supervised ISTANet+. There is also a noticeable im-
provement over the original one in Table 3. All these results suggest the possible
applicability of both our training and adaption schemes to other NNs.

Table 6. Results of ablation studies in terms of mean PSNR(dB) values on Set11.

Noise Level 0 10

CS Ratio 0.4 0.25 0.1 0.4 0.25 0.1

NA

w/o LImage 34.11 31.03 24.32 30.12 27.52 22.16

w/o LMeasure 16.67 15.09 11.25 15.21 14.16 10.32
w/o Outer Injection 28.20 20.83 15.66 27.33 18.37 13.24
Gaussian injected r 35.67 31.65 26.18 31.39 29.31 24.81
Supervised Training 36.98 32.93 27.02 31.57 29.60 26.55

TA

Ours-NA 36.37 32.70 26.89 31.42 29.17 25.41
Ours-TA (ISTANet+) 36.67 33.23 27.18 31.02 29.31 25.85
Adaptive ISTA-Net+ 36.70 33.71 27.34 31.48 29.63 26.21

Ours-TA 37.18 33.41 27.57 31.94 29.84 26.06

6 Conclusion

We proposed an unsupervised deep learning approach for compressive imaging.
It is based on a dual-domain self-supervised training scheme which not only al-
lows effective learning in both measurement domain and image domain without
any GT image, but also allows test-time model adaption for enjoying the advan-
tages from both external and internal learning. The effectiveness of the proposed
approach is grounded by mathematical analysis and has been demonstrated by
extensive experiments on three imaging tasks. The developed techniques can be
extended to solving other ill-posed problems, which is our future work.
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