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Abstract

Deep learning has become a prominent tool for video denois-
ing. However, most existing deep video denoising methods
require supervised training using noise-free videos. Collect-
ing noise-free videos can be costly and challenging in many
applications. Therefore, this paper aims to develop an unsu-
pervised deep learning method for video denoising that only
uses a single test noisy video for training. To achieve this, an
unsupervised loss function is presented that provides an unbi-
ased estimator of its supervised counterpart defined on noise-
free video. Additionally, a temporal attention mechanism is
proposed to exploit redundancy among frames. The experi-
ments on video denoising demonstrate that the proposed un-
supervised method outperforms existing unsupervised meth-
ods and remains competitive against recent supervised deep
learning methods.

1 Introduction
Despite advances in optical technology, noise remains a
common degradation source for images, especially when
captured by compact devices or in high-sensitivity settings
such as low lighting or high frame rates. Denoising is an im-
portant preprocessing step in many computer vision appli-
cations, as its performance can impact the accuracy of sub-
sequent processes. Videos are a rich source of data with nu-
merous applications, but video denoising differs from image
denoising in several aspects. Although videos can be thought
of as sequences of images, video frames often have lower
signal-to-noise ratio (SNR) than individual images, due to
the faster shutter speed required for video capture. Addition-
ally, there exist high redundancies among adjacent frames in
videos, providing multiple noisy instances of the same im-
age pixel. As a result, effective and efficient exploitation of
temporal redundancy is a focus of video denoising to achieve
better performance than single-image denoising

Motivation
In the past few years, deep learning has emerged as a pow-
erful tool for video denoising. The majority of existing deep
learning methods for video denoising are based on super-
vised learning, as seen in works such as (Davy et al. 2019;
Tassano, Delon, and Veit 2020, 2019; Maggioni et al. 2021;
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Li et al. 2022). While these methods differ in terms of net-
work architectures or training schemes, they all train their
networks using numerous paired training samples consist-
ing of both noisy and noise-free videos. However, collect-
ing a large-scale dataset with noise-free videos for dynamic
scenes, as well as some applications such as dynamic med-
ical imaging and microscopy, can be both costly and chal-
lenging. Additionally, the introduction of bias from training
samples can be a concern in practice.

Recently, there has been increasing interest in studying
unsupervised methods for video denoising, which do not
require noise-free videos for training. F2F (Ehret et al.
2019) extended Noise2Noise (Lehtinen et al. 2018), a semi-
supervised image denoiser, to frame-to-frame video de-
noising. Motivated by the redundancy in adjacent frames,
MF2F (Dewil et al. 2021) imposed a loss on multiple aligned
frames for improved performance. RFR (Lee et al. 2021)
utilized a pre-trained denoiser to synthesize pseudo-clean
videos for simulating supervised learning. UDVD (Sheth
et al. 2021) extended Blind Spot (Batson and Royer 2019;
Krull, Buchholz, and Jug 2019; Laine et al. 2019), an un-
supervised image denoising network architecture, to video
denoising using a bias-free network. However, unsupervised
methods for video denoising are still in their infancy, and
there is still a noticeable performance gap between existing
unsupervised methods and their supervised counterparts.

This paper aims to develop an unsupervised deep learn-
ing method for video denoising using an untrained deep net-
work. The proposed method achieves state-of-the-art perfor-
mance among both unsupervised and supervised video de-
noising methods and does not require access to any external
training samples with noise-free videos.

Main contribution
To develop an unsupervised deep learning method for video
denoising, there are two questions to address: (a) how to
design a loss function such that one can train the network
without calling any noise-free videos; (b) how to effectively
exploit temporal redundancy among adjacent frames in the
presence of possible misalignment errors.

Our answer to Question (a) is a self-supervised loss that
provides a good estimation of the loss function defined over
noise-free videos with mathematical justification. This loss
is inspired by the R2R method (Pang et al. 2021), a self-



supervised loss defined over a pair of images constructed
from one single noisy image by a specific scheme. The
scheme proposed in (Pang et al. 2021) is only applicable
to Gaussian noise. This paper further extended the scheme
of R2R to the case where measurement noise can be more
varied and not necessarily Gaussian. This paper showed that
the resulting loss function remains a good estimation of the
loss defined over the pair of noisy/truth images. Based on
the proposed extended R2R (ER2R) loss for video denois-
ing, we first train a spatial denoising module over noisy
frames for facilitating frame alignment. Afterwards, a video
ER2R (VER2R) loss is introduced to guide the training of
the denoising network in the absence of training samples
with noise-free videos.

Our answer to Question (b) is a temporal attention mech-
anism for effectively and efficiently exploiting the redun-
dancy of image pixels in their temporal neighbourhoods.
The attention mechanism has been utilized in some ex-
isting supervised video denoising networks. ST-PAN (Xu
et al. 2020) and KPN (Mildenhall et al. 2018) learned a
3D spatial-temporal attention weight/kernel to aggregate the
neighbouring pixels in spatial-temporal domain. As such,
3D attention blocks lead to very high computational cost.
RViDeNet (Yue et al. 2020a) and BPN (Xia et al. 2020) im-
proved computational efficiency by either adopting a sepa-
rate and parallel attention module, or compacting the kernel
space by a linear space over some learned bases.

To account for alignment errors, we incorporate a resid-
ual neural network for motion correction and introduce a
lightweight temporal attention module for predicting the
weights related to the correlation of the target pixel and
its neighbouring pixels. These weights are used for fusing
the temporal neighbours of the target pixel for denoising.
Such a lightweight attention mechanism makes the proposed
method computationally efficient yet provides competitive
performance. See below for the summary of the contribu-
tions of this paper.

• A self-supervised loss function for general random
noise. With mathematical justification, a self-supervised
loss function without accessing noise-free data is pro-
posed for approximating the supervised loss defined over
noise-free data.

• A light-weight temporal attention module for exploit-
ing temporal redundancy of video frames. Combining
with the proposed self-supervised loss, a simple temporal
NN with a light-weight temporal attention mechanism is
developed for effectively exploit temporal redundancy in
video while remaining computationally efficient.

• An unsupervised video denoising network with com-
petitive performance. The proposed method not only
outperformed existing unsupervised denoising methods,
but also remained very competitive against recent super-
vised deep learning methods.

2 Related work
Unsupervised deep learning methods for image
denoising.
Classical image denoising methods impose a pre-defined
image prior on truth images for regularizing the denoising
process. For example, the TV method (Rudin, Osher, and
Fatemi 1992) imposed a sparsity prior on image gradients
for image denoising. The BM3D method (Dabov et al. 2007)
imposed a recurrence prior on image patches. Such a regu-
larization approach can also be integrated with representa-
tion learning (see e.g. (Aharon, Elad, and Bruckstein 2006;
Cai et al. 2014)) or ensemble learning (Yang et al. 2020).

In recent years, deep learning has become a prominent
tool for image denoising. While supervised deep learning
methods have shown impressive performance, their pre-
requisite of training samples with noise-free images lim-
its their practical usage. Recently, some unsupervised/self-
supervised deep denoisers have been proposed to re-
lax this prerequisite.One early work is deep image prior
(DIP) (Ulyanov, Vedaldi, and Lempitsky 2018) which shows
the implicit regularization induced by a CNN. Another pio-
neering work is Noise2Noise (N2N) (Lehtinen et al. 2018)
which allows one to replace noisy/clean image pairs by in-
dependent noisy/noisy pairs for training. Furthermore, the
blind-spot relating methods (Krull, Buchholz, and Jug 2019;
Batson and Royer 2019; Laine et al. 2019) can effectively
train the denoising network on unpaired noisy images, where
the main idea is to predict the centering pixel using its neigh-
bours which can alleviate the overfitting. Based on the as-
sumption of Gaussian noise. Self2Self (S2S) (Quan et al.
2020) proposed to use a dropout network for training and in-
ference on a single noisy image. Recorrupted2Recorrupted
(R2R) (Pang et al. 2021) proposed a construction scheme
for synthesizing a pair of noisy/noisy images which simu-
lates well the pair in N2N such that one can train a denoising
network on a set of only noisy images.

Supervised deep learning methods for video
denoising.
The study on video denoising is currently dominated by su-
pervised deep learning. As there is a strong correlation be-
tween different frames in videos, an effective video denois-
ing method should utilize temporal correlation to achieve
better performance than independently denoising each im-
age frame. Based on a pre-processing step of patch match-
ing which stacks together similar image patches in a spatial-
temporal neighborhood, VNLNet(Davy et al. 2019) fed
matched image patches into an image denoising network,
DnCNN (Zhang et al. 2017). PaCNet (Vaksman, Elad, and
Milanfar 2021) is also patch-based and it improves effi-
ciency by introducing the concept of patch-craft frames.
These frames are synthesized using nearest neighbors in
a spatial-temporal window and then augmented to video
frames for denoising. However, these patch-based networks
have a high computational cost as they extensively call patch
matching.

The spatial-temporal correlation of video frames can also
be exploited by specific neural network designs. DVD-



Net (Tassano, Delon, and Veit 2019) first runs a spatial de-
noising block for motion compensation by estimating op-
tical flow and then feeds the aligned frames to a temporal
denoising block for fusion. FastDVDNet (Tassano, Delon,
and Veit 2020) modifies DVDNet by using multi-scale U-
Nets as denoising blocks without explicitly estimating op-
tical flow, leading to better performance and less computa-
tional cost. ST-PAN (Xu et al. 2020) develops an attention-
based network to aggregate spatial-temporal pixels using an
offset network to sample pixels and an attention NN to pre-
dict weights for those sampled pixels. RViDeNet (Yue et al.
2020a) aims to denoise raw videos and contributes a dy-
namic raw video dataset with noisy-clean pairs. They sep-
arately denoise RGBG channels and finally fuse these four
channels to form a denoised video. EMVD (Maggioni et al.
2021) proposes a recurrent multi-stage neural network for
video denoising with much lower complexity. BiRNN (Chan
et al. 2021) proposes to use bidirectional recurrent modules
for information propagation. FloRNN (Li et al. 2022) im-
proves computational efficiency by using only lookahead re-
current modules, not backward recurrent modules.

Unsupervised deep learning methods for video
denoising.
The non-learning methods for video denoising include
VBM4D (Maggioni et al. 2011), which extends BM3D from
image denoising to video denoising by searching for sim-
ilar patches in a spatial-temporal volume. VNLB (Arias
and Morel 2018) is another patch-based method that mod-
els each group of similar patches as a Gaussian distribu-
tion and employs empirical Bayesian estimation. Recently,
some unsupervised deep learning methods for image denois-
ing have been extended to video denoising. Frame2Frame
(F2F) (Ehret et al. 2019) registers consecutive frames us-
ing the optical flow estimated by TV-L1 (Pérez, Meinhardt-
Llopis, and Facciolo 2013) and treats aligned frames as in-
dependent noisy realization of the same clean image. Then
they are used to fine-tune a pre-trained denoising network
using N2N. The work et al. (Yu et al. 2020) and Multi-
Frame2Frame (MF2F) (Dewil et al. 2021) are also based on
N2N. The former designs a flow estimation module, which
is jointly trained with the denoising module. The later ex-
tends F2F from single frame to multi-frame. Unsupervised
Deep Video Denoiser (UDVD) (Sheth et al. 2021) extended
the blind-spot technique for image denoising to video de-
noising, which takes several consecutive noisy frames as
input and produces a denoised centering frame as output.
In addition, the bias-free network used in UDVD implicitly
introduces motion compensation. The restore-from-restored
(RFR) method (Lee et al. 2021) employs a pre-trained video
denoising network to synthesize the pairs of pseudo clean
and noisy video frames, which are then used to fine-tune the
denoising network.

3 Main Body
This section is devoted to a detailed discussion of the pro-
posed unsupervised video denoising method. Figure 1 shows
the pipeline of the proposed method. The training takes a

Figure 1: The pipeline of the proposed method. The input
volume Yi consists of five consecutive frames centering at
yi, while Yi\yi and Ỹi\ỹi contains only four neighbour-
ing frames without the centering one; zi denotes the simu-
lated random noise which follows the same distribution as
the measurement noise in yi.

two-stage approach: (i) Stage one: pre-training the spatial
denoiser Sθs using the ER2R loss Ls(θs), which gives a
pre-trained model Sθ

s ; (ii) Stage two: training the whole
NN using the VER2R loss Lall(θ). The proposed network
architecture consists of three modules: one spatial denois-
ing module for pre-processing, one motion-compensation
module for handling alignment errors, and a temporal fusion
module with attention mechanism for refining the estimation
of video frames.

ER2R self-supervised loss function
In the absence of noise-free data, it is necessary to design
a loss function that can accurately measure the prediction
error of the network. In the following section, we present
a self-supervised loss function defined only on noisy image
frames. This loss function is inspired by R2R (Pang et al.
2021) for removing Gaussian white noise from noisy im-
ages. The ER2R loss goes one step further to deal with more
general random noise. We first define the ER2R loss for a
single image and then extend it to multiple frames.

Let Fθ denote an NN parametrized by θ. Consider the
model y = x + n, where y is the noisy image, x the truth
and n measurement noise. The ER2R scheme re-corrupts y
to generate image pairs {y + z,y − z}, where z is inde-
pendently simulated from the same noise distribution as n.
Then, we define the ER2R loss by

ℓER2R(θ;y,Fθ) := Ez∥Fθ(y + z)− (y − z)∥22. (1)

The ER2R loss (1) indeed is a good estimator of the super-
vised loss defined on image pairs {y + z,x}.

Theorem 3.1. Consider y = x + n. Assume that condi-
tioned on x, n and z are independent and identically dis-
tributed (i.i.d.) noise. Then it holds that

EyℓER2R(θ;y,Fθ) = Ex,n,z∥Fθ(y + z)− x∥22 + const.
(2)



Proof. We can rewrite EyℓER2R(θ;y,Fθ) as

EyℓER2R(θ;y,Fθ) = Ex,n,z∥Fθ(y + z)− (y − z)∥22
=Ex,n,z∥Fθ(y + z)− x∥22 + En,z∥n− z∥2

+ 2Ex,n,z ((Fθ(y + z)− x)(n− z))
(3)

The second term En,z∥n − z∥2 in (3) is a constant irrele-
vant to θ. Then, the remaining is to prove the third term in
(3) vanishes. Note that n and z are i.i.d. conditioned on x,
we have Ex,n,z(·) = Ex(E(n,z)|x(·)) = Ex(En|xEz|x(·))
and the conditional distribution satisfies pn|x(·) = pz|x(·).
Denote p0(·) := pn|x(·) = pz|x(·). Switching the notation
n and z, we can obtain

Ez|xEn|x
(
(Fθ(x+ n+ z)− x)n

)
=

∫ (
(Fθ(x+ n+ z)− x)n

)
p0(n)p0(z)dndz

=

∫ (
(Fθ(x+ z + n)− x)z

)
p0(z)p0(n)dndz

=Ez|xEn|x
(
(Fθ(x+ n+ z)− x)z

)
,

Thus, we have

Ex,n,z

(
Fθ(y + z)− x)(n− z)

)
= Ex

(
Ez|xEn|x

(
(Fθ(x+ n+ z)− x)(n− z)

))
= 0.

The proof completes.

Remark 3.1.1. Both ER2R and R2R (Pang et al. 2021) take
a recorrputed-to-recorrupted scheme for defining the loss.
The mathematical justification of R2R calls the statistical
property of Gaussian noise. In contrast, the mathematical
justification of proposed ER2R loss is based on the symmetry
of the original noise and the injected noise for connecting it
to the supervised counterpart. Thus, different from that of
R2R, the justification of ER2R is applicable to more general
noise.

Extension of ER2R from image to video
In our video denoising pipeline, we use the ER2R loss twice:
once for pre-training the spatial module and another for
training the entire video denoising NN. The spatial module
is denoted by Sθs , while the entire network is denoted by
Gθ. The spatial module processes each frame independently
using the same weights. On the other hand, the entire video
denoising NN takes in multiple adjacent frames to leverage
the temporal redundancy and outputs the denoised version
of each center frame. The details of the NN architecture are
discussed in the next section.

Recall that our aim is to recover the clean video frames xi

(i = 1, 2, . . . , T ) from their noisy version

yi = xi + ni, (4)

where the measurement noise ni is assumed to be indepen-
dent across frames.
Stage one: pretraining of Sθs . In our approach, we align
video frames using optical flow to exploit temporal redun-
dancy across frames efficiently. However, estimating optical

flow can be challenging in the presence of high levels of
image noise. Therefore, we first pretrain a spatial denois-
ing network using the unsupervised ER2R loss over noisy
frames in the video. This process produces denoised frames
that can be more accurately aligned using optical flow meth-
ods. The loss function for the spatial denoising module is
given by:

Ls(θs) =
1

T

T∑
i=1

ℓER2R(θ
s;yi,Sθs), (5)

where yi(i = 1, 2, . . . , T ) denote the frames in the noisy
video. Note that Ls(θs) can be viewed as an empirical ap-
proximation to the expectation EyℓER2R(θ

s;y,Sθs). Ac-
cording to Theorem 3.1 and the central limit theorem,
Ls(θs) is equivalent to the supervised loss up to a con-
stant (which does not affect the NN training) as T → ∞,
if yi(i = 1, 2, . . . ) are i.i.d. samples from p(y). This im-
plies that the self-supervised training of Sθs using the ER2R
loss can closely approximate supervised training when the
test video has a sufficiently large number of frames.
Stage two: training of the video denoising NN Gθ. Con-
sider each centering reference frame yi. We use its 2t0 + 1
adjacent frames, including itself, y−t0+i, . . . ,yi, . . . ,yt0+i,
to denoise it. For the centering frame yi itself, we can
employ the ER2R scheme directly to generate the training
frame pairs (yi + zi,yi − zi), where zi is i.i.d. noise to ni.
For the other neighboring frames, since the noise in them is
independent of both ni and zi, it does not affect the symme-
try between ni and zi, which is the key point for establishing
a link with the supervised loss. Applying ER2R to video de-
noising, we design an unsupervised loss function for each
centering frame yi, where y−t0+i, . . . ,yi + zi, . . . ,yt0+i

are used as input (where only the centering frame yi is recor-
rupted) and yi − zi is used as the target.

We use the bold capital letters to denote volumes, with
a subscript indicating the centering frame index and a su-
perscript as the total number of frames in the volume.
For example, Y 2t0+1

i denotes the the stack of frames
{y−t0+i, . . . ,yi, . . . ,yt0+i}. The subscript and superscript
are omitted for simplicity unless necessary. A convenient
abuse of notation Y + z represents only adding z to the
centering frame y in the volume Y . For each Y centred at
y, our video ER2R (VER2R) loss is defined by

ℓV ER2R(θ;Y ) = Ez∥Gθ(Y + z)− (y − z)∥22. (6)

Similar as the image ER2R loss, the VER2R loss can also
be proved as an unbiased estimator of its supervised coun-
terpart. See the theorem below.

Theorem 3.2. Consider the noisy video model Y = X+N
with independent noise across frames and centering at the
frame y = x+ n. Assume that conditioned on X , z and n
are i.i.d. and independent from noise in other frames. Then
the VER2R loss function defined by (6) satisfies

EY ℓV ER2R(θ) = EX,N ,z∥Gθ(Y +z)−x∥22+const. (7)

Proof. See the supplemental materials.



Note that Theorem 3.2 holds true regardless of the archi-
tecture of Gθ. Specifically, the optical flow, motion correc-
tion and temporal fusion process in our method does not vi-
olate the conditions in Theorem 3.2 . One limitation of The-
orem 3.2 is it assumes the availability of prior information
regarding p(N |X).

The entire NN is trained with the VER2R loss over all
volumes {Yi} to denoise every centering frame yi in the
video:

Lall(θ) =
1

T

T∑
i=1

ℓV ER2R(θ;Yi). (8)

It is worth noting that the adjacent volumes Yi and Yi+1 are
overlapped and correlated due to the sliding window used
to generate the volumes. However, despite this correlation,
Lall(θ) can be regarded as an empirical approximation to
the supervised loss EY ℓV ER2R(θ), as guaranteed by The-
orem 3.2. This means that, in principle, the self-supervised
training of the neural network using the VER2R loss can
closely mimic supervised training, provided that the number
of volumes T is sufficiently large.

Remark 3.2.1. Many video denoisers have pointed out that
flow estimation errors in challenging cases, such as occlu-
sion or strong noise, can cause noticeable artifacts in the
results. Our self-supervised training with VER2R loss im-
plicitly addressed this issue to certain degree, as it mimics
the supervised training with clean target video according to
our theoretical analysis.

Temporal attention
To exploit spatio-temporal redundancy, we have incorpo-
rated both a spatial denoising module and a temporal fu-
sion module in our NN. The spatial denoising module is
pre-trained using an unsupervised image ER2R loss to pre-
process the noisy frames. The preprocessed frames are then
aligned using optical flow estimated by DIS (Kroeger et al.
2016). Although this image alignment process can handle
large motions between frames, some misalignment errors
can occur in certain regions, which are handled by a resid-
ual NN. The residual NN takes the pre-aligned neighboring
frames and the spatially denoised centering frame as input
and outputs the neighboring frames with refined alignment.

At the last stage of temporal fusion, we fuse the well-
aligned neighbouring frames and the spatially-denoised cen-
tering frame to obtain the final denoised centering frame. To
achieve this, we sample pixels in the temporal neighborhood
of each pixel in the centering frame and aggregate them us-
ing weights predicted by a lightweight NN. This is where
the attention mechanism comes into play in the network.

Let Ỹi (i denotes the index of the centering reference
frame) denote the intermediate frames that are passed into
the temporal fusion module and Wθw denote the weight
network for fusion. We use the notation Ỹi[j, k] to repre-
sent the j-th pixel at the k-th frame. For each reference
pixel j at the centering frame, the weight network outputs
weights for pixels in a temporal neighbourhood, denoted by{
Wθw(Ỹi)[j, k]

}t0+i

k=−t0+i
. Then the attention module pro-

duces an output as

x̂i[j] =

t0+i∑
k=−t0+i

Wθw(Ỹi)[j, k] · Ỹi[j, k], (9)

where x̂i[j] denotes the j-th pixel in x̂i.

Network architecture. Both the spatial denoising mod-
ule and the temporal attention module are based on the
U-Net with skip connections, which contains two and
three Downsampling(Upsampling) blocks respectively. The
motion-correction module is a five-layer DnCNN(Zhang
et al. 2017). See the supplemental materials for more details.

4 Experiments
The experiments are conducted on two tasks: additive white
Gaussian noise(AWGN) removal and real raw video denois-
ing. For all the experiments, we train our network directly
on the test video itself.

Implementation detail
Our method is implemented using PyTorch. In the first stage
of training, the iteration number does not exceed 1500 or
30N (the number of frames). In the second stage, we train
the whole network for 50 epochs to denoise each frame se-
quentially. Recall that we use DIS optical flow (Kroeger et
al., 2016) to warp the frames for large motion compensation
after the spatial denoising block Sθs . To speed up training,
we only calculate the flow once using the initial value of ỹi

and deactivate the backward gradient flow through the warp-
ing operators. The exponential moving average of the inter-
mediate outputs is used as the final prediction. The code is
available at https://github.com/huanzheng551803/VER2R.

For comparison, we cite the results directly from the lit-
erature whenever possible. Otherwise, we run the authors’
code with an effort on parameter tuning. If the code is not
available, we leave the corresponding results blank in the ta-
ble.
Remark 4.0.1. In quantitative comparison of all unsuper-
vised learning methods, the best result is emphasized in
Bold; and the second best one is emphasized in Underline.

Experiments on AWGN removal
AWGN removal is evaluated following FastDVDNet (Tas-
sano, Delon, and Veit 2020), a benchmark for video de-
noising. We use two datasets, DAVIS(Khoreva, Rohrbach,
and Schiele 2018) and Set8(Tassano, Delon, and Veit 2020).
DAVIS has a training set and a test set for supervised meth-
ods, with the test set containing 30 videos. Set8 includes 4
color sequences from the Derf’s Test Media collection1 and
4 color sequences from a GoPro camera. AWGN with a stan-
dard deviation σ varying from 10 to 50 uniformly is added to
the datasets. The compared methods are VBM4D(Maggioni
et al. 2011), DVDNet(Tassano, Delon, and Veit 2019), Fast-
DVDnet(Tassano, Delon, and Veit 2020), PaCNet(Vaksman,
Elad, and Milanfar 2021), FloRNN(Li et al. 2022), RFR(Lee

1https://media.xiph.org/video/derf



Dataset σ
Non-learning Supervised learning Unsupervised learning

V-BM4D DVDNet FastDVDNet PaCNet FloRNN UDVD RFR Ours

DVAIS

10 37.86/4.02 38.45/4.21 39.01/3.26 39.97/3.03 40.16/2.68 35.65/9.57 39.31/3.32 39.52/3.21
20 34.02/10.67 35.95/7.39 35.98/6.72 37.10/6.16 37.52/4.73 35.40/8.98 36.15/7.00 36.49/6.41
30 31.74/21.64 34.27/11.92 34.22/11.48 35.07/10.72 35.89/7.51 34.19/12.52 34.28/12.40 34.60/11.09
40 30.12/36.50 33.01/17.79 32.96/17.65 33.57/16.91 34.66/11.01 32.93/19.72 32.92/19.41 33.29/17.40
50 28.85/54.75 31.99/25.08 31.99/25.24 32.39/24.78 33.67/15.28 31.93/28.82 31.86/28.47 32.25/26.09

Set8

10 35.99/3.87 35.92/4.06 36.46/2.90 37.06/2.77 37.57/2.60 34.44/7.01 36.77/2.97 37.55/2.96
20 32.17/9.54 33.38/7.06 33.44/6.06 33.94/5.59 34.67/4.95 33.26/7.53 33.64/6.51 34.34/6.18
30 29.99/14.82 31.69/11.71 31.69/10.55 32.05/9.93 32.97/8.22 31.83/11.30 31.82/11.80 32.45/10.88
40 28.57/26.20 30.46/17.59 30.47/16.45 30.70/15.79 31.75/12.35 30.58/17.88 30.52/18.78 31.09/16.93
50 27.31/47.62 29.47/25.43 29.53/23.63 29.66/23.09 30.80/17.91 29.62/26.38 29.50/27.75 30.05/25.29

Table 1: The PSNR(dB)/ST-RRED results for AWGN removal on Set8 and DAVIS. For PSNR (ST-RRED), larger (smaller)
value is better.

ISO 1600 3200 6400 12800 25600 mean
RViDeNet 47.74/3.93 45.91/3.33 43.85/6.66 41.20/11.03 41.17/26.22 43.97/10.23

MaskDnGAN 47.83/3.79 45.89/3.29 43.83/6.98 41.15/13.44 41.09/26.91 43.90/10.88
FloRNN 48.81/3.41 47.05/2.72 45.09/4.83 42.63/7.24 42.19/18.96 45.15/7.43
UDVD 47.94/3.65 46.36/2.97 44.69/5.39 42.22/8.10 41.97/19.3 44.63/7.89

R2R 48.46/4.10 46.67/3.23 44.70/6.13 41.99/10.21 41.71/20.11 44.70/8.76
Ours 49.14/3.59 47.51/2.90 45.61/5.30 43.03/7.80 42.91/17.41 45.64/7.40

Table 2: Raw video denoising results in PSNR(dB)/ST-RRED(×10−3) obtained by different methods. The columns correspond
to different ISO levels, where larger levels results in noisier data. For PSNR (ST-RRED), larger (smaller) value is better.

et al. 2021), and UDVD(Sheth et al. 2021). VBM4D is
a non-learning method, while the other methods are su-
pervised video denoising benchmarks. RFR is a fine-tuned
method based on a pre-trained supervised model, and
UDVD is an unsupervised method. Our proposed method
trains an NN for each test video individually, without using
external datasets.
Quantitative comparison. Table 1 compares all methods on
DAVIS and Set8 for AWGN removal, in terms of PSNR and
ST-RRED. PSNR is Peak Signal to Noise Ratio, a measure
of image quality, while ST-RRED is Spatio-temporal Re-
duced Reference Entropic Differences, a video quality mea-
sure that evaluates temporal distortions. Our method outper-
formed the non-learning method VBM4D and two unsuper-
vised methods UDVD and RFR by a large margin in almost
all settings. Our method remained competitive with the top
supervised method in terms of PSNR, and was comparable
to one supervised method FastDVDNet on DAVIS in terms
of ST-RRED. However, since motion compensation is more
challenging when no external training data with clean videos
is available to guide the process, our self-supervised method
achieved less performance gain in terms of ST-RRED, espe-
cially on Set8, which contains 4 Go-Pro videos with vigor-
ous background motion.

Experiments on real raw video dataset
The experiment uses the real raw video dataset (Yue et al.
2020b), comprising 11 videos captured at 5 ISO levels with
a surveillance camera. Each video contains 7 frames, with
10 different noise realizations captured per frame and av-

eraged to obtain an estimated clean version. The dataset is
divided into a training set and a test set, with the first six
video sequences forming the training set and the remaining
five forming the test set. To ensure a fair comparison with
UDVD, which trains a universal model for all test videos,
we also trained our spatial denoiser Sθs on all test video se-
quences.

Note that our proposed method, ER2R, extends the R2R
method from Gaussian white noise to general random noise.
To evaluate the benefits of using ER2R over R2R in real
noise, we compare the results obtained by replacing ER2R
with R2R in our method. Following (Yue et al. 2020b), the
real noise is modeled as a mixture of Poisson and Gaussian
noise, with their mixture weights estimated by the authors.
Specifically, given the noisy observation yi = xi + ni,
where xi is the clean image and ni is the real noise, we
model ni as ni = ni,P +ni,G, where ni,P ∼ P(αxi)/α−
xi, ni,G ∼ N (0, σ2I), and α and σ are parameters related
to noise variance. To generate an independent Poisson noise
in our EVR2R, we sample from either P(αyi)/α − yi or
P(αSθs(yi))/α−Sθs(yi). When applying R2R to Poisson
noise, we approximate it using Gaussian noise with the same
variance.

Quantitative Comparison. Five methods are used for com-
parison: three supervised methods including FloRNN(Li
et al. 2022), MaskDnGAN(Paliwal, Zeng, and Kalantari
2021), RViDeNet(Yue et al. 2020b) which are specifi-
cally designed for raw data, one unsupervised method
UDVD (Sheth et al. 2021) and R2R (Pang et al. 2021) with
the same pipeline as ours. The other compared methods in



Clean RViDeNet (33.dB) MaskDnGAN (33.98dB) FloRNN (34.58dB) UDVD (34.82dB) R2R (34.17dB) Ours (35.69dB)

Figure 2: Real raw denoising on CVPD dataset. All raw data has been transferred to RGB domain for visualization. Our method
requires no external clean videos for training opposite to supervised methods..

the experiments of AWGN removal are not included here as
either the model is not applicable to raw data, or the code
for raw data is not released. See Table 2 for the quantitative
comparison and Figure 2 for some visual results. The pro-
posed method outperforms all the compared methods by a
large margin, despite that it requires no external clean videos
for training opposite to supervised methods. The experimen-
tal results also demonstrated the superiority of our proposed
loss ER2R over R2R when dealing with real noise.

More discussion
Ablation studies. To evaluate the effectiveness and effi-
ciency of each component of our method, we conduct the
following experiments on DAVIS for AWGN removal with
noise level σ = 20, 40: (a) only using the spatial denoiser;
(b) w/o the motion correction module; (c) w/o the tempo-
ral attention module; (d) using 3D spatial-temporal kernels
for fusion instead of only fusing pixels along the temporal
dimension in ours; (e) using 3 adjacent frames instead of 5
frames used in ours. See Table 3 for the results. The first
three studies show the effectiveness of each module in our
method, and the fourth study implies that motion compensa-
tion is sufficient and a fusion along only the temporal dimen-
sion is efficient to obtain a well denoised centering frame.
The last study shows that our method exploits the temporal
redundancy extensively in a large neighbourhood.

Studies σ = 20 σ = 40
using only spatial denoiser 34.77 31.91

w/o motion correction 36.17 33.18
w/o temporal attention 35.36 32.70

using 3D attention kernels 36.37 33.30
using 3 adjacent frames 36.09 33.04

ours 36.49 33.29

Table 3: Comparison of PSNR (dB) under different studies.

Computational efficiency. We compare the running time of
several methods on removing AWGN from a RGB video of
85 frames and spatial size 548 × 960. See Table 4 for the
results. UDVD(S) indicates it is trained on the single test
video. All the deep learning methods are conducted using
the same computing infrastructure as ours for time count-
ing. It can be seen that the proposed method is much faster
than VBM4D(Maggioni et al. 2011), MF2F(Dewil et al.

2021) and UDVD-S(Sheth et al. 2021). In addition, the su-
pervised method PaCNet is also slow due to its call of the
time-consuming patch matching during inference. RFR(Lee
et al. 2021) is the fastest among all, as it used a pre-trained
video denoiser which accelerates the network training. Over-
all, our method is still competitive in terms of computational
efficiency.

Category Methods Stage Time (s) PSNR

Tradional VBM4D * 2777 34.27

Supervised PaCNet I 2890 35.07

Self-supervised

UDVD(S) T+I 127800 33.68
MF2F T+I 4950 33.91
RFR T+I 1326 34.28
Ours T+I 1605 34.60

Table 4: Running time(second) of processing a RGB
video sequence of 85 frames and spatial size 540 × 960;
Stage ‘I’(‘T’) indicate the time is counted for the infer-
ence(training) stage.

Theoretical limitation. The proposed unsupervised denois-
ing method shows good empirical performance on general
measurement noise. However, the mathematical guarantee
of the proposed loss requires prior knowledge of the noise
distribution, which may not always be available in prac-
tice. In the future, we plan to investigate self-supervised
losses with mathematical guarantees that do not require prior
knowledge of the measurement noise distribution.

5 Conclusion
In this paper, we introduced an unsupervised deep video
denoiser that leverages a self-supervised VER2R loss and
a spatial-temporal denoising neural network equipped with
a lightweight temporal attention module. Experimental re-
sults show that our method outperforms existing unsuper-
vised methods by a noticeable margin and is competitive
with state-of-the-art supervised methods, all without requir-
ing any external training samples.
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