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Abstract

When taking a picture, any camera shake during the
shutter time can result in a blurred image. Recovering a
sharp image from the one blurred by camera shake is a chal-
lenging yet important problem. Most existing deep learning
methods use supervised learning to train a deep neural net-
work (DNN) on a dataset of many pairs of blurred/latent
images. In contrast, this paper presents a dataset-free deep
learning method for removing uniform and non-uniform
blur effects from images of static scenes. Our method in-
volves a DNN-based re-parametrization of the latent image,
and we propose a Monte Carlo Expectation Maximization
(MCEM) approach to train the DNN without requiring any
latent images. The Monte Carlo simulation is implemented
via Langevin dynamics. Experiments showed that the pro-
posed method outperforms existing methods significantly in
removing motion blur from images of static scenes.

1. Introduction
Motion blur occurs when the camera shakes during the

shutter time, resulting in a blurring effect. Blur is uniform
when the scene depth is constant and moves along the im-
age plane. For other camera movements, the blur is non-
uniform. In dynamic scenes with moving objects, the blur
is also non-uniform. Different types of motion blur are illus-
trated in Figure 1. This paper aims to address the problem
of removing uniform and non-uniform motion blur caused
by camera shake from an image. Removing motion blur
from an image is a blind deblurring problem. It is a chal-
lenging task as it requires estimating two unknowns the la-
tent image and blurring operator from a single input.

Deep learning, particularly supervised learning, has re-
cently emerged as a powerful tool for solving various im-
age restoration problems, including blind deblurring. Many
of these works rely on supervised learning, as seen in
e.g. [1–15]. Typically, these supervised deep learning meth-
ods train a deep neural network (DNN) on a large number
of training samples, which consist of pairs of latent/blur im-
ages. Furthermore, to address general blurring effects, most
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Figure 1. Different motion-blurring effects. (a)–(b) Uniform and
non-uniform blurring caused by camera shake; (c) Non-uniform
blurring of the dynamic scene (not addressed in this paper).

methods take a physics-free approach. In other words, these
methods directly learn a model that maps a blurred image to
a latent image without using any prior information about the
blurring process.

The advantage of a physics-free supervised learning
method is its ability to handle many types of motion blur
effects. However, it has a significant disadvantage: to
achieve good generalization, the training dataset must cover
all motion-blurring effects. Because motion blur is de-
termined by both 3D camera motion (six parameters) and
scene depth, which can vary significantly among images,
an enormous number of training samples are required to ad-
equately cover the motion blur effects. This task can be very
costly and challenging. One possible solution is to synthe-
size blurred images. However, as shown in [16], a model
trained on samples synthesized using existing techniques
(e.g. [17]) does not generalize well to real-world images.

Some approaches consider the physics of motion blur.
Phong et al. [18] proposed learning a family of blurring op-
erators in an encoded blur kernel space, and Li et al. [19]
proposed learning a more general class of degradation op-
erators from input images. However, these physics-aware
methods also rely on supervised learning and thus face the
same dataset limitations as the physics-free methods.

1.1. Discussion on existing dataset-free methods

Motivated by the challenge of practical data collec-
tion, there is a growing interest in relaxing the require-
ment for training data when developing deep learning solu-
tions for motion deblurring. Some approaches require spe-



cific data acquisition, such as multiple frames of the same
scene [20], while others are semi-supervised, relying on un-
paired training samples with ground truth images for train-
ing a GAN [21]. There are also a few works on dataset-free
deep learning methods for uniform blind image deblurring;
see e.g. [22–24].

When training a DNN to deblur an image without see-
ing ground truth images, it is necessary to incorporate prior
knowledge of the physics of motion blur. However, existing
dataset-free methods [22] for blind deblurring are limited to
uniform blur, where the blur process is modeled by a convo-
lution: g = k⊗ f , where f denotes the latent image, g de-
notes the input, and k denotes the blur kernel. Uniform mo-
tion blur only occurs when the scene depth is constant and
camera motion is limited to in-image translation, making it
not applicable to more complex camera motion. Moreover,
these methods have a lot of room for improvement, as they
do not achieve competitive performance compared to state-
of-the-art non-learning methods.

1.2. Main idea

In this paper, our goal is to develop a dataset-free deep
learning method for removing motion blur from a single im-
age, caused by general camera shake. Similar to existing
dataset-free methods, when training a DNN to deblur an
image without seeing any truth image, some prior knowl-
edge about the physics of motion blur needs to be utilized.
In this paper, we limit our study to recovering images of
static scenes without any moving objects. In our proposed
approach, we utilize the so-called space-variant overlap-
add (SVOLA) formulation [25,26] to model motion blur of
static scenes. This formulation describes the relationship
between a blurred image g and its corresponding latent im-
age f as follows:

g = F (f ,K)+n =

P∑
i=1

ki⊗ (w(·−ci)⊙Pif)+n, (1)

Here, ⊙ denotes entry-wise multiplication, ⊗ denotes con-
volution, and Pi is a mask operator that extracts the i-th
patch from the image. ki is the i-th kernel and w(· − ci) is
a window function that is translated to align with the center
ci of the i-th image patch. The window function w is nor-
malized such that

∑P
i=1 w(· − ci) = 1, for example, using

the 2D Modified Bartlett-Hanning window [27]. When all
P kernels {ki}Pi=1 are the same, the SVOLA model degen-
erates to the case of uniform blurring:

g = k ⊗ f . (2)

For an SVOLA-based model, there are two unknowns: the
latent image f and the kernel set K = {kj}Pj=1.

Similar to existing works, such as Double-DIP for im-
age decomposition and Ren et al. for uniform deblurring,
we re-parameterize the latent image and kernel set using

two DNNs. This DNN-based re-parametrization is moti-
vated by the implicit prior induced by convolutional neural
networks (CNNs), known as the deep image prior (DIP).
However, the regularization effect induced by DIP alone is
not sufficient to avoid likely overfitting. One approach is to
introduce additional regularization drawn inspiration from
traditional non-learning methods.

Discussion on MAP-relating methods. For simplicity,
consider the case of uniform blur where g = k⊗ f . As the
ML (maximum likelihood) estimator of the pair (k,f) by

max
k,f

log p(g|k,f) (3)

does not resolve solution ambiguity of blind deblurring,
most non-learning methods are based on the maximum a
posteriori (MAP) estimator, which estimates (k,f) by

max
k,f

log p(k,f |g) = min
k,f

− log p(g|k,f)−log p(f)−log p(k).

An MAP estimator requires the definition of two prior dis-
tributions: p(k) and p(f). A commonly used prior distribu-
tion for motion deblurring assumes that f follows a Lapla-
cian distribution: log p(f) ∝ −∥∇f∥1, also known as total
variation (TV) regularization. Such a TV-based MAP esti-
mator is proposed in [22] for blind uniform deblurring.

There are two concerns about a TV-relating MAP esti-
mator. One is the pre-defined TV regularization for latent
images limits the benefit of data adaptivity brought by a
DNN. The other is the possible convergence to an incor-
rect local minimum far away from the truth (f ,k) or even
degenerated trivial solution (g, δ). Indeed, the second is-
sue has been extensively discussed in existing works; see
e.g. [28–30].

From MAP estimator of (f ,K) to EM algorithm for
ML estimator of K. Besides MAP, many other statisti-
cal inference schemes have also been successfully used for
blind uniform deblurring, e.g. variational Bayesian infer-
ence [30, 31]; and EM algorithm [32]. EM is an iterative
scheme to find maximum likelihood (ML) estimate with the
introduction of latent variables. For blind deblurring, EM
aims at finding ML estimate of the marginal likelihood of
the unknown parameter K only by marginalizing over the
image f (latent variable).

Our approach. Inspired by the effectiveness of the EM al-
gorithm and marginal likelihood optimization for uniform
deblurring in terms of performance and stability, we pro-
pose to use the EM algorithm as a guide to develop a self-
supervised learning approach. Specifically, we introduce
a dataset-free deep learning method for both uniform and
non-uniform blind motion deblurring, which is based on
the Monte Carlo expectation maximization (MCEM) algo-
rithm. In summary, our method is built upon the efficient
EM algorithm in DNN-based representation of latent image
and blurring operator.



1.3. Main contribution

In this paper, we present a self-supervised deep learning
approach for restoring motion-blurred images. Our main
contributions can be summarized as follows:

1. The first dataset-free deep learning method for removing
general motion blur (uniform and non-uniform) from im-
ages due to camera shake. To our knowledge, all existing
dataset-free methods are limited to uniform motion blur.

2. The first approach that combines DNN-based re-
parametrization and EM algorithm, bridging the gap be-
tween classical non-learning algorithms and deep learn-
ing. The proposed MCEM-based deep learning method
can see its applications in other image recovery tasks.

3. A powerful method that significantly outperforms exist-
ing solutions for blind motion deblurring. Our method
demonstrates superior performance in recovering images
affected by both uniform and non-uniform motion blur.

2. Related works

Non-learning methods for motion deblurring. Most ex-
isting non-learning methods focused on uniform motion and
rely on the concept of the MAP estimator, which involves
defining priors on the image and kernel. For instance, spar-
sity priors based on image gradients [33–36] or wavelet
transforms [37, 38], image-patch recurrence priors [39, 40],
and dark/extreme channel priors [41,42]. Another approach
relies on the variational Bayesian inference of the blur ker-
nel, where the latent image is considered as a hidden vari-
able [28, 30, 31, 43]. To address the computational issue of
the posterior distribution of the latent image, some methods
rely on certain conjugate probability models of the distri-
bution [30, 31, 43]. Other methods, such as the VEM algo-
rithms e.g. [29, 32], approximate the posterior distribution
of image gradients using a normal distribution.

The literature on non-uniform motion deblurring mainly
focuses on modeling the non-uniform blurring effect. Ji
and Wang [44] proposed a piece-wise convolution model,
while Tai et al. [45] proposed a homography-based model,
which was later simplified in [46,47]. Harmeling et al. [25]
presented an SVOLA model in Equation (1), and Hirsch et
al. [25,26] presented a filter flow approximation model. The
estimation of kernels on edge-less regions is addressed by
either penalizing the similarity of nearby kernels in the cost
function [25] or interpolating the local kernels using nearby
kernels [44]. Other works have explored the use of depth
estimation for layer-wise deblurring, see e.g. [48].

Supervised learning for blind motion deblurring. For
uniform motion blur of static scene, existing deep learn-
ing methods trained the network over many pairs of
blurred/truth image. They either explicitly (e.g. [2–4]) or
implicitly (e.g. [49]) estimate the motion-blur kernel.

For non-uniform motion blurring of static scene, there
are both physics-based and physics-free methods. Sun et
al. [6] trained a CNN to estimate local kernels, which were
used to form a dense motion field via MRF. Gong et al. [7]
predicted a flow field from a trained NN to define the blur-
ring process. Tran et al. [18] proposed to learn a family of
blurring operators in an encoded blur kernel space.

The physics-free methods directly train a DNN to map
blurred images to clear images. The main differences
among them lie in the design of the DNN. Aljadaany et
al. [8] unfolded a Douglas-Rachford iteration. Different
coarse-to-fine schemes are proposed in [13, 50, 51]. Kupyn
et al. [52] used a GAN-based model, and Park et al. [9]
leveraged multi-temporal training schemes. Depth informa-
tion was exploited in [53]. However, training data is critical
to the performance of supervised methods, which do not
generalize well to images with blur effects that were not
seen in the training samples.

Deblurring dynamic scenes is different from deblurring
static scenes. Its focus is on separating moving objects and
background. Different deep learning methods introduced
different modules, e.g. attention modules [10–12, 54], de-
formable modules [12], nested-skip connection [55] pixel-
adaptive RNN [56], and learning degradation model [19].

Semi-supervised deep learning for blind uniform motion
deblurring. Lu et al. [21] trained the GAN with unpaired
datasets for domain-specific deblurring, which might suf-
fer from domain shift problems for wider adoption. Liu et
al. [20] proposed another uniform deblurring NN with the
input of multiple frames, generated by adjacent frames of
video aligned by optical flow.

Dataset-free deep learning for blind uniform deblurring.
Ren et al. [22] proposed a TV-based MAP estimator for
blind uniform deblurring. In [22], two NNs are used to pre-
dict the latent image and blur kernel, with the prediction of
the latent image regularized by TV. Chen et al. [24] pro-
posed a DNN-based approach to blind uniform deblurring
via an ensemble learning scheme. Li et al. [23] proposed
a method that uses two NNs to represent the latent image
and blur kernel, and learns the NN weights using Bayesian
inference implemented via Monte-Carlo sampling.

3. Integrating DNN and MCEM

This paper proposes a dataset-free deep learning solution
for removing general motion blur from static scene, includ-
ing both uniform blur and non-uniform blur. However, since
this is a dataset-free learning method, introducing certain
prior on the blurring effect becomes necessary to address
the training issue in the absence of truth images. For general
motion blur, each pixel of the blurred image is a weighted
average of its neighboring pixels, with the weights varying
for different pixels. In this paper, we utilize the SVOLA



model (1) to characterize motion blur in static scenes, which
encompasses uniform motion blur (2) as a specific instance.

DNN-based re-parametrization of the image f and ker-
nel set K. The CNN has an implicit prior on the images it
represents, called DIP [57]. This prior favors regular image
structures over random patterns when training a denoising
CNN with only a noisy image. By reparametrizing an im-
age using a CNN, we implicitly impose DIP on the latent
image, which can help alleviate overfitting in a dataset-free
setting. To represent the latent image, we adopt a 5-level
U-Net CNN, as in [22]:

f = Tf (θf , z),

where θf denotes NN weights and z denotes an initial seed.
To handle non-uniform motion blur, it is necessary to

estimate many kernels, each of which is associated with a
small image region. However, in the absence of truth im-
ages during training, the kernels can only be estimated in
edge-rich regions and not in edge-free regions. To estimate
kernels over all image regions, a prior on the kernel set must
be introduced to share information among different kernels
such that the information on edge-rich regions can be prop-
agated to edge-free regions. In this paper, we propose a
specific network structure with a specific prior for estimat-
ing the kernel set:

K = TK(θK , z̃),

where θK denotes NN weights and z̃ is some initial seed.
Note that each kernel (point spread function) is associ-

ated with both the 3D camera motion and the scene depth.
All kernels share the same 3D camera motion, meaning
that there exists a lower-dimensional manifold for the ker-
nels [44,58]. Two commonly used priors for the blur kernel
are listed below.

1. Implicit prior on the set of kernels: There is certain im-
plicit prior existing in the set of the kernels {ki}, as they
are corresponding to the same 3D camera motion.

2. Physical constraints: Each element of the kernel ki is
non-negative, and the sum of all elements equals one.

To utilize these implicit priors, we designed a kernel net-
work with shared components in the first stage for feature
extraction. We used a U-Net with an encoder-decoder struc-
ture, whose output is used as the sole input in the sec-
ond stage for predicting the kernels associated with differ-
ent regions. In the second stage, a multi-head neural net-
work is implemented, where each kernel has its own layers
but shares the same input. The network outputs different
kernels while maintaining certain correlations. We impose
physical constraints on the kernels ki by adding a softmax
layer in the multi-tail output. Please refer to Figure 2 for the
architecture and Figure 3 for an illustration of the correla-
tion among the set of kernels.

Input

Shared U-net backbone Generating kernels with variations

Conv2d+ReLUSoftmax Down Up SkipConv2d

Figure 2. The structure of the U-Net TK with shared component.

Outline of MCEM-based algorithm. As a reminder, we
re-parameterize the two unknowns using two networks:
f := Tf (θf , z) and the kernel set K := TK(θK , z̃). In
other words, the estimation of the image and kernel set is
equivalent to estimating the NN weights (θf ,θK). Our
goal is to train the two NNs to maximize the likelihood,
motivated by the maximum likelihood (ML) estimator that
estimates the image and kernel set (f ,K):

max
θf ,θK

log p(g|θf ,θK). (4)

For simplicity of notation, we omit the use of initials
for randomly generated vectors z and z̃ since they do not
require estimation. Assuming Gaussian white noise n ∼
N (0, σ2

g), the ML estimator for the image and kernel set
(f ,K) can be expressed as follows:

min
θf ,θK

1

2σ2
g

∥F (Tf (θf ), TK(θK))− g∥22 . (5)

However, the NNs trained using the loss function derived
from the ML estimator may not effectively address the is-
sue of over-fitting, as they tend to bias the solution towards
the no-blur case (g,ki = δi). Refer to Figure 3 (b) for an
illustration of this bias.

Instead of replacing the ML estimator with the MAP esti-
mator to address overfitting, we propose a self-training pro-
cess derived from the EM algorithm. Instead of using the
popular VEM method in existing works, we consider the
MCEM algorithm [59, 60] for network training. The main
difference between VEM and MCEM is that, in MCEM, the
expectation in the E-step is numerically calculated through
Monte Carlo simulation. The proposed MCEM algorithm
is set up as follows.

1. Observation data: the blurred image g

2. Latent variable: the weights θf of image-relating net-
work T (θf , z)

3. Parameters: the weights θK of kernel-relating network
T (θK , z̃).

The EM algorithm estimates the parameters by iteratively
maximizing the log-likelihood:

θ∗
K = argmax log p(g|θf ,θK)

= argmax log

∫
p(g|θf ;θK)p(θf )dθf .

(6)
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Figure 3. Illustration of different algorithms for the DNN-based ML estimator with the loss (5). (a) Blurry image; (b) The image and kernel
set estimated by gradient descent; (c) The image and kernel set estimated by the proposed MCEM algorithm; (d) The ground truth.

There are two steps in each iteration:

1. E-step: Calculating the expectation of logarithm like-
lihood with respective to p(θf |g;θt−1

K ):

Q(θK |θt−1
K ) = Eθf∼p(θf |g;θt−1

K ) [log p(g|θf ;θK)] ;

(7)
2. M-step: Maximize the expectation of the likelihood:

θt
K = argmax

θK

Q(θK |θt−1
K ). (8)

The computation of the expectation in the E-step is gener-
ally intractable for p(θf |g;θt−1

K ). Instead of attempting to
calculate the exact expectation, the MCEM method approx-
imates the integral through Monte Carlo simulation:

Q(θK |θt−1
K ) ≈ 1

ns

ns∑
i=1

log p(g|θi
f ;θK),θi

f ∼ p(θf |g;θt−1
K ).

Once the NN weights θf and θK are estimated using the
MCEM method, the estimated weights can be used to call
the NNs for predicting the latent image.

Remark 1 (MCEM vs. VEM). The main difference be-
tween VEM and MCEM lies in how the expectation is cal-
culated in the E-step. In VEM, the expectation is approx-
imated by replacing the distribution with a tractable one.
In MCEM, the expectation is approximated by calculating
the integral using Monte Carlo simulation. The motivation
for using MCEM is its computational efficiency over VEM,
particularly in the case of estimating DNN weights.

4. MCEM algorithm for dataset-free training

4.1. E-step and M-step

The MCEM algorithm consists of the E-step (7) and
the M-step (8). In the E-step of MCEM, one approxi-
mates Q(θK |θt−1

K ) using Monte Carlo simulation. This
requires effectively sampling the posterior distribution
p(θf |g;θt−1

K ) and using the samples to approximate the in-
tegral through Monte Carlo simulation.

By Bayes rule, we have

p(θf |g;θt−1
K ) ∝ p(g|θf ;θt−1

K )p(θf ).

By assuming the prior distribution p(θf ) is an uniform dis-

tribution over a sufficiently large cube. We have then

p(θf |g;θt−1
K ) ∝ exp

(
−
∥∥F (Tf (θf ), TK(θt−1

K ))− g
∥∥2
2

2σ2
g

)
.

Motivated by the effectiveness of Langevin dynamics (LD)
as a Monte Carlo sampler of NN weights in Bayesian deep
learning [61], we propose to sample p(θf |g;θt−1

K ) using
LD. Interested readers can find a detailed introduction to
LD in the supplementary file.

LD samples the distribution p(θf |g;θt−1
K ) by the so-

called stochastic gradient Langevin dynamics (SGLD): For
i = 1, 2, . . . , ns

θi
f = θi−1

f + α∇θf
log p(θi−1

f |g;θt−1
K ) +

√
2αw, (9)

where w ∼ N (0, I). The hyperparameter α is the step size
that satisfies the Robbins-Monro condition. The iteration
scheme (9) enables us to quickly generate approximate sam-
ples from the posterior distribution p(θf |g;θt−1

K ), which is
used to approximate the expectation in the E-step:

Q(θK |θt−1
K ) ≈ 1

ns

ns∑
i=1

log p(g|θi
f ;θK), (10)

where θi
f are generated from (9). The M-step updates the

estimates of the kernel set by solving the problem (10),
which is equivalent to train the NN TK(θK) by minimiz-
ing corresponding loss function.

4.2. Warm-up trick

Good initialization of the kernel can improve the stabil-
ity and computational efficiency of blind deblurring. There-
fore, a warm-up strategy is implemented in the proposed
training scheme. First, we train the NNs assuming all ker-
nels in K are the same, and then copy the trained weights
of the last Conv layer to initialize the weights of each ker-
nel. In other words, at the beginning, the network is trained
using a degenerate version of SVOLA which reads

min
θf ,θK

Lwarm up := ∥g − [TK(θK)]1 ⊗ Tf (θf )∥22, (11)

where [TK(θK)]1 denotes the first branch of the kernel
set. After training the NN for a certain number of steps,
we initialize the corresponding NN {TK(θ̃K)i}Pi=1 with
the weights of the last convolution layer corresponding to



[TK(θK)]1. Then, we train the network using the full ker-
nel set from the network TK , and we optimize

min
θf ,θK

L := ∥g − F (Tf (θf ), TK(θK))∥22. (12)

See Alg. 1 for the implementation and Figure 4 for visual
comparison of two examples of the kernel estimate at the
stage of warm-up training and at the last stage.

(a) Example 1 (b) Example 2

Figure 4. Kernels after the warm-up (left) and convergence (right).

Algorithm 1 Dataset-free non-uniform motion deblurring.
Input: Input image g; No. of warm-up iterations N ; No. of
total iterations T ; Grid size P ; No. of samples ns and No.
of iteration for inner M-step nℓ.
Output: Estimated image f and the kernel set {ki}Pi=1.

1: %% Warm-up training
2: for t = 1 : N do
3: Set θ0

f = θt−1
f and produce ns samples by

4: θi
f = θi−1

f − α∇θf
Lwarm up +

√
2αw, i = 1, . . . , ns

5: Optimize 1
ns

∑ns

i=1 ∥g−[TK(θK)]1⊗Tf (θ
i
f )∥22 using

nℓ Adam steps and obtain the solution θt
K

6: To initialize TK(θ̃K), use TK(θKN ) and replicate
the last convolutional layer for predicting kernels.

7: %% Training
8: for t = N + 1 : T do
9: Set θ0

f = θt−1
f and produce ns samples by

10: θi
f = θi−1

f − α∇θf
L+

√
2αw, i = 1, . . . , ns

11: Optimize 1
ns

∑ns

i=1 ∥g − F (Tf (θ
i
f ), TK(θK))∥22 us-

ing nℓ Adam steps and obtain the solution θt
K

12: f = Tf (θ
T
f ); {ki}Pi=1 = {TK(θ̃T

K)i}Pi=1

5. Experiments
Parameter settings. The image NN Tf (θf ) is imple-
mented as 5-level U-Net with channel size 64. The ker-
nel NN TK(θK) is implemented as U-Net with 4 levels
whose channel size is [32, 32, 64, 64]. The learning rate
is set to be 0.01 for Tf and 0.0001 for M-step when op-
timizing TK . They are halved after 2000 and 3000 it-
erations. We train our framework for T = 5000 steps
with warming up N = 500 steps. The grid size P is
set to 5 × 10. The code is publicly accessed at https:
//github.com/Chilie/Deblur_MCEM.

Algorithm 1 consists of two inner loops: one is an iter-
ative scheme (9) for generating samples to approximate the
function Q, and the other is an iterative scheme for mini-
mizing the loss (10) using gradient descent. An empirical
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Figure 5. The PSNR gain over elapsed time for different (ns, nℓ).

study on the performance of Algorithm 1 on a sample image
with different configurations of (ns, nℓ) is shown in Fig-
ure 5. The results indicate that the values of (ns, nℓ) have
a greater impact on computational efficiency than on per-
formance. Therefore, for computational efficiency, we set
(ns, nℓ) = (1, 1) in our experiments.

Network architecture for the image. The same U-net
as [22, 57] is adopted for image network Tf . It contains
five downsampling modules and upsampling modules with
skip connections. Apart from the Down/Up sampling layer,
each module also comprises the Conv → BN → ReLU lay-
ers. As image deblurring is sensitive to noise, the Decoder
part is then trained with dropout to regularize the prediction.
Finally, a 1×1 convolution layer is used to generate the im-
age. To keep the values of the image in the range [0, 1], we
concatenate a Sigmoid layer to the output layer.

5.1. Evaluation on non-uniform motion deblurring

This study aims to compare our proposed blind deblur-
ring method with existing methods for deblurring static
scenes1. In the comparison table, the best result is high-
lighted in blue, and the second-best result is underlined.
Note that the scores are calculated with alignment to ac-
count for possible shift ambiguity in the results.

Benchmark dataset from Köhler et al. [62]. Köhler
et al.’s dataset is a real non-uniform dataset that records
the motion-blurred images caused by 6-dimensional cam-
era motions. It contains 48 images captured in 4 scenes,
each with 12 motion trajectories. These trajectories exhibit
diverse levels of non-uniformity ranging from mild to se-
vere. Table 1 presents a performance comparison between
our proposed method and other methods, including both
non-learning and supervised deep-learning methods, on this
dataset. On average, our method outperforms the second-
best method by 0.37 dB in PSNR and 0.013 in MSSIM.

Benchmark dataset from Lai et al. [66]. The dataset con-
tains 100 images that were obtained by recording camera
motions using inertial sensors in a cellphone. The spatially-
varying blur kernels were constructed from these motion

1The method [35] used in this study is not its uniform version, but the
extension from the authors for handling non-uniform blurred images.

https://github.com/Chilie/Deblur_MCEM
https://github.com/Chilie/Deblur_MCEM


Table 1. Average PSNR/MSSIM comparison on the non-uniform dataset of Köhler et al. [62]

Non-learning methods Supervised learning methods Self-supervised

No.
Xu et al. Whyte et al. Vasu et al. Tao et al. Kupyn et al. Zamir et al. Cho et al. Li et al. Liu et al.

Ours
2013’ [35] 2014’ [63] 2017’ [64] 2018’ [50] 2019’ [52] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [20]

1 29.19/0.806 29.77/0.850 32.44/0.940 29.14/0.850 28.99/0.845 29.86/0.865 27.66/0.812 29.82/0.866 27.21/0.808 32.41/0.942
2 24.43/0.757 24.27/0.809 26.52/0.927 23.10/0.798 23.78/0.805 22.57/0.782 21.69/0.741 22.56/0.784 21.19/0.736 26.84/0.932
3 29.97/0.854 30.73/0.887 32.60/0.936 29.96/0.887 30.00/0.874 28.04/0.859 28.09/0.846 30.21/0.889 28.20/0.853 33.18/0.951
4 25.76/0.766 26.60/0.818 27.99/0.906 25.22/0.820 25.09/0.798 24.78/0.803 23.91/0.765 24.95/0.807 23.49/0.757 28.60/0.936

Avg. 27.34/0.796 27.84/0.841 29.89/0.927 26.85/0.839 26.97/0.830 26.32/0.827 25.34/0.791 26.89/0.837 25.02/0.789 30.26/0.940

Table 2. Average PSNR/SSIM comparison on the non-uniform dataset of Lai et al. [66]

Non-learning methods Supervised learning methods Self-supervised
Xu et al. Whyte et al. Vasu et al. Tao et al. Kupyn et al. Zamir et al. Cho et al. Li et al. Liu et al.

Ours
2013’ [35] 2014’ [63] 2017’ [64] 2018’ [50] 2019’ [52] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [20]

Manmade 17.90/0.497 17.33/0.433 17.93/0.474 18.45/0.488 18.73/0.512 17.42/0.435 16.78/0.379 17.28/0.414 17.39/0.452 19.17/0.572
Natural 21.99/0.607 21.04/0.543 21.94/0.598 22.28/0.610 22.24/0.601 20.76/0.530 19.88/0.474 20.59/0.513 20.90/0.518 22.70/0.641
People 25.42/0.801 23.92/0.746 25.63/0.803 26.87/0.834 26.71/0.828 23.95/0.770 23.64/0.754 24.23/0.777 24.76/0.770 26.90/0.825

Saturated 18.39/0.644 17.33/0.606 17.57/0.612 20.10/0.699 17.91/0.618 16.73/0.561 16.58/0.539 16.67/0.551 18.52/0.529 21.46/0.754
Text 18.97/0.749 13.22/0.420 19.19/0.765 18.66/0.756 19.11/0.781 15.63/0.608 17.17/0.668 17.45/0.696 17.42/0.660 21.91/0.872

Average 20.53/0.660 18.57/0.550 20.45/0.650 21.27/0.677 20.94/0.668 18.90/0.581 18.81/0.563 19.25/0.590 19.80/0.581 22.42/0.738

Input Tao et al. Kupyn et al. Park et al. Zamir et al. Li et al. Ours
[50] [52] [9] [65] [19]

Figure 6. Visual comparison of the results for samples images from real dataset of Lai et al. [66] and Sun et al. [6]. More visual comparison
can be found in supplementary file.

Table 3. Ablation study on Lai et al.’s dataset

MLE (5) MAP ((5)+TV) EM w/o warm-up Proposed MCEM
19.49/0.609 19.97/0.643 21.14/0.669 22.42/0.738

trajectories, assuming constant scene depth. The blurred
images were generated by convolving the latent images with
these kernels and adding 1% Gaussian noise. The images
were divided into 5 categories, each containing 20 images,



Table 4. Average PSNR/SSIM for uniform blind deblurring on Lai et al.’s dataset [66].

Non-learning methods Supervised learning methods Self-supervised

Metric
Xu & Jia Yan et al. Yang & Ji Tao et al. Kupyn et al. Kaufman et al. Zamir et al. Cho et al. Li et al. Ren et al.

Ours
2010’ [36] 2017’ [42] 2019’ [32] 2018’ [50] 2019 [52] 2020’ [5] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [22]

PSNR 20.93 21.12 21.79 16.72 17.02 20.18 16.15 16.36 16.43 21.11 23.62
SSIM 0.654 0.673 0.704 0.471 0.49 0.643 0.454 0.461 0.469 0.671 0.766

with complex scenes and severe non-uniform blur effects.
Table 2 presents the comparison of our proposed method

with other non-learning and supervised learning methods
on this dataset. The results show that our method outper-
forms the second-best performer by an average of 1.15 dB
in PSNR and 0.061 in SSIM. These results demonstrate that
our method provides a significant performance gain over ex-
isting methods for the challenging Lai et al.’s dataset.

Visual comparison on real-world images. As ground truth
are not available for real-world images, we have only in-
cluded visual comparisons of a few deblurred results from
different methods. The sample images are taken from both
Lai et al. [66]’s dataset and Sun et al. [6]’s dataset. Visual
comparisons of more examples can be found in the supple-
mentary file. As shown in Figure 6 and the supplementary
file, the proposed method yields results of the best visual
quality, with fewer artifacts and sharper details.

5.2. Evaluation on uniform motion deblurring

The proposed method is designed to remove general mo-
tion blur caused by camera shake from a single image.
Thus, it is applicable to both non-uniform motion blur and
uniform motion blur of static scenes. Uniform motion blur
occurs when there is only in-plane camera translation and
constant scene depth. By reducing the SVOLA model to
the case with a single kernel P = 1, we obtain a convolu-
tion model (2) for modeling uniform motion blur.

To evaluate the performance of the proposed general
blind deblurring method on uniform motion deblurring,
we conducted an experiment on one popular benchmark
dataset, Lai et al.’s dataset [66]. Table 4 presents the results
of representative non-learning methods, recent supervised-
learning methods and dataset-free method. Our proposed
method performs very competitively against these blind uni-
form deblurring methods, as shown in Table 4. More related
experiments can be found in the supplementary file.

5.3. Ablation study

MCEM for ML estimator of K vs ML estimator of
(f ,K). The proposed MCEM method is an EM approach
designed to find the ML estimation of K. It is compared
to the results obtained by training DNNs using the loss
function (5), referred to as ”MLE”, which aims to find the
MLE of both f and K. The performance gain achieved
by the proposed MCEM algorithm is approximately 2.9 dB,

demonstrating its effectiveness for training. While the TV
regularization on the image (λ = 5e− 2) does improve the
”MLE” performance, its effectiveness is much lower than
that of the MCEM method.

With vs without warm-up training. The warm-up train-
ing strategy not only speeds up the training process, but also
provides a good initialization for the NNs. As shown in Ta-
ble 3, compared to the model trained without warm-up, the
warm-up training strategy results in a performance gain of
about 1.3 dB, indicating the significant benefit of the warm-
up training strategy.

5.4. Limitation

The proposed method is designed for removing gen-
eral motion blur caused by camera shake from a single
image. Recovering dynamic scenes with moving objects
is not within the scope of the proposed method, as the
SVOLA model cannot capture the ”blending” effect around
the boundary of moving objects. A limited experiment is
conducted by applying the proposed method on both static
scenes and dynamic scenes from GOPRO [17], a dataset
for dynamic scene deblurring. Our method works well on
those images dominated by static scenes, but not so on those
images of dynamic scenes. See the supplementary file for
more related experimental results.

6. Conclusion

This paper proposes a self-supervised deep learning
method that can remove general motion blur (both uniform
and non-uniform) from a single image, without requiring a
dataset. The main idea is to train NNs using a scheme de-
rived from the MCEM algorithm for maximum likelihood
estimation. Our method outperforms existing non-learning
and deep learning methods, including both supervised and
self-supervised approaches, as demonstrated by extensive
experiments on standard benchmark datasets. In the future,
we plan to investigate the extension of our proposed method
to recover motion-blurred images of dynamic scenes
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1. Introduction to Monte Carlo (MC) sampling via Langevin dynamics (LD)
In the section, we give a brief introduction to MC sampling via LD, a Markov chain Monte Carlo (MCMC) sampling

method, which is used in our work for sampling the network weights. More details can be found in most textbooks on MC
sampling. LD is about sampling a given distribution π(θ) ∝ exp(−L(θ)). Suppose that L(θ) ∈ C2(Rn), we consider the
following Langevin dynamics, which is governed by the continuous-time stochastic differential equation (SDE)

dθt = −∇L(θt)dt+
√
2dWt, (1)

where Wt is a Brownian motion and the equality ∇ log π(θ) = −∇L(θ) is used. By the dynamics, θt is a random variable
for each time t, which is associated with a distribution pt(θ). Let t → ∞ and assume that pt(θ) → p∞(θ), the limiting
distribution p∞(θ) is defined as the stationary distribution of the SDE (1). The Fokker-Planck equation [2] is the tool to
investigate the evolution of the distribution pt(θ). The evolution dynamics of pt(θ) is given by

∂tpt(θ) =
∂

∂θ
[∇L(θ)pt(θ)] +

∂2

∂θ2
[pt(θ)]. (2)

Let t → ∞, then
∂

∂θ
[∇L(θ)p∞(θ)] +

∂2

∂θ2
[p∞(θ)] = 0, (3)

holds, where ∂tpt(θ) → 0 when t → ∞ is used. By solving the equation (3), we have the stationary distribution p∞(θ) ∝
exp(−L(θ)).

The discretization of the SDE (1) gives a Markov chain Monte Carlo (MCMC) sampling method:

θk+1 = θk − γk∇L(θk) +
√
2γkz, z ∼ N (0, 1). (4)

The above scheme is closely related to the stochastic version of gradient descent method where the stochastic behavior comes
from the injected random noise. Thus, the resultant sampling method is called stochastic gradient Langevin dynamics
(SGLD) sampling method. The convergence of the discretization scheme (4) to the continuous-SDE (1) requires that the
stepsize {γk} satisfies the Robbins-Monro condition [3]. When k is large enough, the iterative sequence {θk} from (4) can
be regarded as the samples from the stationary distribution p∞(θ) ∝ exp(−L(θ)).

1



2. Computational cost on processing blurred images
See Table 1 for the comparison of computational efficiency when processing a color 800× 800 blurred image in a work-

station with a single NVIDIA TITAN RTX GPU. It is noted that for non-learning iterative methods, e.g. [4–6], the time cost
is calculated on CPU, as no GPU version of their codes is available online. It can be seen that the proposed self-supervised
method has comparable time cost when running on GPU, in comparison to existing iterative methods for non-uniform blind
motion deblurring running on CPU.

The only available self-supervised deep learning method for blind deblurring is Ren et al. [7], which is only applicable to
uniform deblurring. Our method is also applicable to uniform motion deblurring by degrading the SVOLA model to uniform
blurring model with P = 1 in (2). Under the same hardware, for a color 800× 800 blurred image, the blur kernel size is set
to 75 × 75, the comparison of time cost of two methods is: 844 (ours) vs 1357 ( [7]). It can be seen that ours is faster than
the existing method [7].

It is noted that there is no concept of ”pre-trained” model for an self-supervised method, as it directly trains a NN when
processing a blurred image. While such a scheme avoids the expensive time cost of training, the lack of a pre-trained model
makes it more suitable for processing a small to modest size of dataset.

Table 1. Comparison of time cost when deblurring a color 800× 800 image using nonuniform deblurring model.

Non-learning methods (on CPU) Self-supervised (on GPU)

Methods
Hirsch Xu Whyte

Ours
et al. [4] et al. [5] et al. [6]

Time (s) 1567 1128 1002 1082

3. Visual comparison on Köhler et al.’s dataset
In this section, we visualize the results from Köhler et al.’s dataset [8]. See Figure 1–2 for visual inspection. It can be

seen that our methods recover more sharp details compared with the existing non-uniform deblurring methods, ranging from
modest to severe non-uniform blurring degree. The advantage of our methods over others on visual quality is consistent with
the advantage of our method in quantitative comparison reported in Table 1 in the main manuscript.

Input Hirsch et al. [4] Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 1. Visual comparison of the deblurred result of ”Church” from the dataset of Köhler et al. [8]. Zoom-in for better inspection.

4. Visual comparison on the non-uniform dataset of Lai et al. [1]
In this section, we showed the results on Lai et al.’s [1] non-uniform dataset for visual inspection. See Figure 3–5 for

the visual comparison of some results. It can be seen that our recovered results are consistently better than that from the
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Figure 2. Visual comparison of the deblurred result of ”Roof” from the dataset of Köhler et al. [8]. Zoom-in for better inspection.

compared methods in terms of visual quality, which is consistent with the quantitative evaluation shown in Table 2 in the
main manuscript.

For the real-world dataset, we use the proposed method to solve the deblurring problem with the assumption of spatially-
variant blurring. See 6-10 for the results on the images from the real-world dataset Lai et al. [1] without truth images
available. It can be seen that our method consistently recovers more details with fewer artifacts compared with the existing
methods, showing that our method is very competitive when being used for processing non-uniform-blurred images.

Input Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11] Liu et al. [16]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 3. Visual comparison of the deblurred results of ”Manmade04” from non-uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

5. Studies on model hyper-parameters
Recall that the SVOLA model we adopted for modeling non-uniform blurring has a hyper-parameter P :

g = K ◦ f + n =

P∑
i=1

ki ⊗ (w(· − ci)⊙ Pif) + n. (5)
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Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 4. Visual comparison of the deblurred results of ”Saturated01” from non-uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

Input Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11] Liu et al. [16]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 5. Visual comparison of the deblurred results of ”Text02” from non-uniform dataset of Lai et al. [1]. Zoom-in for better inspection.

Such a hyper-parameter determines how fragmented the non-uniform blurring is. A larger value of P leads to a more
accurate model of non-uniform blurring, but makes the problem harder to solve. In practice, there is a trade-off between
model accuracy and computational feasibility. See Figure 11 for an illustration of how the visual quality of a non-uniform
blurred image will be impacted by the choice of different values of P . It can be seen that larger P leads to a more accurate
model and more sharp recovery in most regions, but will fail in certain regions. A smaller P leads to a more consistent
recovery without very bad results in any region, but overall the result appears to remain a little blurry.

6. Experiments of uniform motion deblurring on Levin’s dataset
The performance of our method with simplification is evaluated on the synthesized uniform blurring dataset in [1] in the

paper. We include the quantitative comparison of the performance on Levin et al. [18] in the supplementary file, see Table 2.
It shows that the supervised learning methods perform poorly for the unseen blur effects. And our proposed self-supervised
method is the best performer for the uniform motion deblurring task, our method outperforms the existing work [7]. For
visual inspection, see Figure 12-13 for visual inspection of the proposed method and other compared methods on the images
from the uniform dataset Lai et al. [1]. It can be seen that our method consistently recovers more details with fewer artifacts
compared with the existing methods, showing that our method is very competitive when being used for processing uniform-
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Figure 6. Visual comparison of the deblurred result of ”Text12” from Lai’s [1]. Zoom-in for better inspection.

Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 7. Visual comparison of the deblurred result of ”Notredame” from Lai’s [1] . Zoom-in for better inspection.

Table 2. Average PSNR/SSIM of the results from different methods on the dataset Levin et al. [18].

Non-learning methods Supervised learning methods Self-supervised

Metric
Xu & Jia Yan et al. Yang & Ji Chakrabarti Pan et al. Zuo et al. Tao et al. Kupyn et al. Li et al. Ren et al.

Ours
2010’ [19] 2017’ [20] 2019’ [21] 2016’ [22] 2017’ [23] 2016’ [24] 2018’ [11] 2019’ [12] 2022’ [15] 2020’ [7]

PSNR 31.64 31.28 32.04 25.21 30.42 32.66 26.12 25.70 25.28 33.31 34.34
SSIM 0.910 0.912 0.912 0.785 0.907 0.933 0.797 0.790 0.780 0.943 0.939

blurred images.

7. Demonstration on processing the images of dynamic scenes from GOPRO dataset
Recall that the proposed approach is designed to recover blurred images of static scenes with non-uniform blurring with

static scenes. The ”blending” effect often seen in the images of dynamic scenes is not considered in our method. As a result,
the proposed method cannot process most images in GOPRO dataset [12], which are the ones of dynamic scenes.

For the purpose of illustration, we select some images from the GOPRO dataset, whose contents are dominated by static
scenes. See Figure 14 for a demonstration. It can be seen that the proposed method works well. However, when being used
for processing the images whose blurring are mainly caused by moving objects, the proposed method fails. See Figure 15
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Figure 8. Visual comparison of the deblurred result of ”Harubang” from Lai’s [1]. Zoom-in for better inspection.

Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]
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Figure 9. Visual comparison of the deblurred result of ”Text3” from Lai’s [1]. Zoom-in for better inspection.

for an illustration. It would be our future work to extend the proposed method to process the images of dynamic scenes, i.e.,
how to deal with the ”blending” effect caused by moving objects.
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Figure 10. Visual comparison of the deblurred result of ”Wall” from Lai’s [1]. Zoom-in for better inspection.

P = 3× 4 P = 5× 8 P = 11× 16 P = 3× 4 P = 5× 8 P = 11× 16

Figure 11. Visual comparison of the recovered results w.r.t the different choices of number of patch P . Noted that the kernel for different
P has the same support. Zoom-in for better inspection.
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Figure 12. Visual comparison of the deblurred results of category ”natural” from uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

Input Xu et al. [5] Yan et al. [20] Tao et al. [11] Kupyn et al. [12]

Kaufman et al. [25] Li et al. [15] Ren et al. [7] Ours GroundTruth

Figure 13. Visual comparison of the deblurred results of ”natural” from uniform dataset of Lai et al. [1]. Zoom-in for better inspection.
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Figure 14. Visual comparison of some deblurred results of blurring images dominated by static scene in Gopro dataset [12]. Zoom-in for
better inspection.

Figure 15. Illustration of our methods can not be adapted to dynamic scene deblurring. The dynamic deblurring contains moving objects,
which needs explicitly/implicitly segmentation. Our methods can faithfully recover the static regions, but it can not account for the
boundary issue between moving objects and the background.
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