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Abstract

Single image defocus deblurring (SIDD) refers to recov-
ering an all-in-focus image from a defocused blurry one. It
is a challenging recovery task due to the spatially-varying
defocus blurring effects with significant size variation. Mo-
tivated by the strong correlation among defocus kernels of
different sizes and the blob-type structure of defocus ker-
nels, we propose a learnable recursive kernel representa-
tion (RKR) for defocus kernels that expresses a defocus ker-
nel by a linear combination of recursive, separable and pos-
itive atom kernels, leading to a compact yet effective and
physics-encoded parametrization of the spatially-varying
defocus blurring process. Afterwards, a physics-driven and
efficient deep model with a cross-scale fusion structure is
presented for SIDD, with inspirations from the truncated
Neumann series for approximating the matrix inversion of
the RKR-based blurring operator. In addition, a reblurring
loss is proposed to regularize the RKR learning. Extensive
experiments show that, our proposed approach significantly
outperforms existing ones, with a model size comparable to
that of the top methods.

1. Introduction
Defocus blurring is a type of degradation that can occur

in optical systems when capturing an image with varying
scene depths. In an optical system, in order to project an im-
age of objects onto film, a lens is used to bend the incoming
light inwards, causing the light rays to trace out the shape
of a cone and converge at the cone apex. When the distance
between an object and the lens makes the cone apex just
touch the film, the light rays will produce tiny illuminated
circles and the object will appear in focus. In other words,
the captured image is only clear for objects that are at a cer-
tain distance from the lens, known as the focal plane, which
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is determined by the distance between the lens and the film.
For the objects away from the focal plane, the light rays
will spread out, resulting in big illuminated circles (called
circle(s) of confusion, CoC) that overlap with others. As a
result, these objects appear blurry in the image.

As defocus blurring can cause the loss of image details
that are crucial for subsequent vision tasks, many appli-
cations can benefit from the recovery of all image details
from a defocused image, such as photo refocusing, seman-
tic segmentation, text recognition, and object detection; see
e.g. [25]. Single image defocus deblurring (SIDD) is a tech-
nique for this purpose, i.e., recovering an all-in-focus (AIF)
image with sharp and clear details from a defocused image.

In a defocused image, each pixel is associated with a de-
focus kernel Kh,w related to CoC. As the CoC of a pixel
is determined by the distance of its scene point to the focal
plane, pixels with different scene depths will have differ-
ent defocus kernels, i.e., the defocus blurring is spatially-
varying. The relation between a defocused image Y and its
AIF counterpart X can be expressed as Y = D ◦ X , i.e.
applying a blurring operator D to X as follows:

Y [h,w] = (D◦X)[h,w] :=
∑
r,c

Kh,w[r, c]X[h−r, w−c].

SIDD then needs to estimate X and {Kh,w}h,w, which is a
challenging non-uniform blind deblurring problem.

Most existing studies on SIDD are a by-product of defo-
cus map estimation [4,7,9,16,17,20,26,29,37,42,44,50,51].
That is, a defocused image is deblurred by calling some
non-blind deblurring method using the defocus kernels de-
rived from an estimated defocus map; see e.g. [10, 18, 19,
22,26,33,43]. Such an approach often suffers from the sen-
sitivity of non-blind deblurring to kernel estimation errors
and is usually computationally expensive. In recent years, it
has emerged as a promising approach to train an end-to-end
deep neural network (DNN) for SIDD using one or more
datasets; see e.g. [1, 14, 21, 25, 27, 32, 35, 49]. However, ex-
isting work still has a large room for performance improve-
ment. The aim of this paper is to develop an end-to-end



deep learning-based approach for SIDD that brings notice-
able performance improvement over existing methods.

1.1. Main Idea

Given a defocused image, estimating the defocus kernel
Kh,w for each pixel suffers from severe solution ambiguity.
As their sizes have significant variations, a plain matrix ex-
pression of these kernels with the maximum size will lead to
an overwhelming number of unknowns and overfitting. It is
critical to have a compact representation of defocus kernels
with a much reduced number of unknowns, yet sufficient to
express a wide range of defocus kernels. Our solution is the
so-called recursive kernel representation (RKR) model.

The RKR model expresses a defocus kernel via a linear
combination over a learnable dictionary composed by a set
of atom kernels. The atom kernels are defined using the
tensor product of 1D positive kernels in a recursive scheme.
Such a recursive and separable structure leads to a compact
parametrization of defocus kernels whose sizes may vary
over a wide range, as well as a fast computational scheme
for the spatially-varying blurring operator, involving only a
few convolutions and point-wise multiplications. In addi-
tion, RKR also encodes implicit physical priors of defocus
kernels, such as strong correlation among defocus kernels
of different sizes in the same image, and blob-type kernel
supports. Further, RKR provides a learnable and more ex-
pressive representation for real-world defocus kernels, com-
pared to predefined Gaussian-based models [32, 37].

Different from uniform blurring modeled by a convolu-
tion, whose inversion can be efficiently calculated via fast
Fourier transform (FFT), the inversion of a defocus blur-
ring operator has no known transform for fast calculation.
Inspired by the approximation of truncated Neumann series
(NS) to matrix inversion, we utilize truncated NS expansion
and the RKR model to express such an inversion, leading to
an efficient formulation that only involves standard convo-
lutions and point-wise multiplications. Then, we develop
a DNN called NRKNet (Neumann Recursive Kernel Net-
work) for SIDD, with a cross-scale fusion structure inspired
from the truncated NS expansion expressed in a coarse-
to-fine fashion. The NRKNet mainly contains a learnable
atom kernel set for RKR and a learnable module for predict-
ing coefficient matrices at different scales for cross-scale
fusion-based deblurring, both of which are efficient. In ad-
dition, we introduce a reblurring loss for further regulariz-
ing the learning of RKR-based defocus kernel prediction,
which measures the reconstruction error w.r.t. input image
using learned atoms kernels and predicted coefficients.

1.2. Contributions

Modeling defocus kernels and designing a deblurring
process are two key parts for developing an effective SIDD
approach. This paper provides new solutions to both. Com-

pared to existing Gaussian-based models of defocus ker-
nels, our RKR model is applicable to more-general non-
Gaussian and non-isotropic defocus kernels. Moreover,
our proposed cross-scale fusion structure inspired from the
truncated NS approximation leads to a computationally-
efficient physics-driven DNN for SIDD. See below for a
summary of our technical contributions:

• An RKR model for compact parametric representation
of defocus kernels, with physical priors encoded;

• An efficient DNN for SIDD with a cross-scale fusion
structure inspired from truncated NS approximation;

• A reblurring loss for regularizing the learning of defo-
cus kernel prediction.

The results in extensive experiments show that our proposed
approach brings noticeable performance gain over existing
ones, with a relatively-small model size.

2. Related Work
2.1. Two-Stage Methods for SIDD

SIDD can be done via a two-stage approach: estimate
a defocus map from input and then apply some non-blind
deblurring method with the defocus kernels estimated from
a defocus map; see e.g. [4, 18, 22, 26, 33, 43]. One closely-
related work is the generalized Gaussian model proposed by
Liu et al. [26] for representing defocus kernels. This model
needs to estimate two parameters embedded in a non-linear
function, and its resulting blurring operator cannot be effi-
ciently computed. In comparison, our RKR model allows
calculating the blurring operator via standard convolutions
and point-wise multiplications, which is very efficient.

Indeed, defocus map estimation itself is a challenging
task, with abundant literature on it, e.g., non-learning meth-
ods [7, 17, 37, 42] and deep learning-based methods [4, 5, 9,
16, 20, 29, 44, 50, 51]. A defective defocus map will yield
blur kernels with large errors. Robust deblurring with erro-
neous kernels is another challenging task [6, 15, 28, 31, 40].
Gilton et al. [11] unrolled the NS expansion to design a
DNN for non-blind robust deblurring but with restriction
on uniform blur. In contrast, we combine the NS expansion
with both a multi-scale scheme and the RKR model to de-
sign an efficient DNN to tackle non-uniform defocus blur.

2.2. Deep Defocus Deblurring Using Dual Pixels

In existing studies on end-to-end learning for defocus de-
blurring, some consider using two view images captured by
a dual-pixel (DP) sensor as the DNN’s input. One seminal
work is done by Abuolaim and Brown [2]. They proposed to
train a U-Net for predicting an AIF image from DP images
and contributed a dataset of quadruples: a defocused im-
age, its AIF counterpart, and a DP image pair. Abuolaim et
al. [3] proposed an effective method to generate realistic DP



data synthetically to address the data capture bottleneck of
a DP sensor, together with a recurrent CNN to improve de-
blurring results. Zhang and Wang [45] combined a CNN
and a transformer for further improvement. When applying
a DNN designed for DP images to a single defocused image,
the performance may decrease significantly; see e.g. [2].

2.3. End-to-End DNNs for SIDD

Using a single defocused image as input, a few works
trained a DNN with an auxiliary task defined on defocus
maps [25, 27] or DP data [1, 21]. Ruan et al. [25] proposed
a two-stage DNN where the first stage for defocus map pre-
diction is supervised by the defocus maps provided in [21],
and the second stage for deblurring is supervised by the
paired data they constructed from light-field images. Ma et
al. [27] constructed a dataset with both defocused/AIF pairs
and the defocus maps, for better training a two-stage DNN.
Abuolaim et al. [1] trained a single-encoder multi-decoder
DNN to predict the AIF image and its associated DP views
respectively. Lee et al. [21] proposed an auxiliary task that
predicts the defocus disparity between DP views. In com-
parison to these methods, ours does not require additional
data but only the pairs of defocused/AIF images for train-
ing, with wider applicability.

Regarding DNN architectures, some existing works fo-
cus on improving the spatially-variant or multi-scale pro-
cessing ability of DNNs to handle spatially-varying blur.
Lee et al. [21] proposed a DNN with iterative adaptive con-
volutional layers to generate pixel-wise separable filters for
deblurring. Ruan et al. [35] proposed a DNN composed of
dynamic filtering layers in a multi-scale cascade manner, to-
gether with a training strategy to utilize both synthetic and
real-world data. Zhang and Zhai [47] proposed a generative
adversarial DNN with an attention disentanglement mech-
anism to distinguish blurry and clear regions. Compared
to the DNNs in [21, 35], ours can be viewed as combining
separable kernels via the RKR model for deblurring, or as a
specific kind of dynamic filtering with physical kernel pri-
ors. Unlike ours, the three methods above do not explicitly
encode the physics of defocus blurring into their DNNs.

By assuming that defocus kernels have nearly the same
shapes, Son et al. [14] proposed a DNN with kernel-sharing
parallel atrous convolutions and channel attention to model
inverse filtering. In comparison, our approach models de-
focus blurring via RKR that allows more variations in the
shapes of defocus kernels. Quan et al. [32] modeled defocus
kernels by Gaussian scale mixture and proposed a DNN by
unrolling the fixed-point iteration. While their model allows
defocus kernels to have different shapes, the base Gaussian
kernels are fixed and isotropic whose mixture might not fit
real-world defocus kernels well. In contrast, our RKR mod-
els defocus kernels by the mixture of a set of atom kernels
learned from training data, leading to higher expressivity.

3. Proposed Approach
3.1. RKR-Based Modeling for Defocus Blurring

RKR model for defocus kernels Suppose a DNN is
trained to predict spatially-varying defocus kernels Kh,w

for each location (h,w). As the kernel sizes vary in a wide
range, a compact yet expressive parametric model of Kh,w

is necessary. Our RKR model expresses Kh,w by a linear
expansion over a set of atom kernels {A1, · · · ,AJ}:

Kh,w = Γ1[h,w]A1 + · · ·+ ΓJ [h,w]AJ , (1)

where Γ1, · · · ,ΓJ denote the expansion coefficient matri-
ces. To reduce the number of learned parameters, RKR de-
fines the atom kernels by the tensor product of 1D kernels.
Then, the separable atom kernels are defined via a recursive
scheme to generate kernels of wide-range support sizes in
an economic manner. This leads to a recursive and separa-
ble structure for the atom kernels:

A1 = ∆, Aj = Aj−1 ⊗ (aj ⊗ a⊤
j ), j > 1, (2)

where aj ∈ R3
+ is an 1D positive kernels with three taps,

∆ denotes the Dirac delta, and ⊗ represents convolution.
Properties of RKR model The atom set {A1, · · · ,AJ}
has a multi-scale structure, where Aj (current scale) is the
composition of Aj−1 (previous scale) and a 3×3 atom aj⊗
a⊤
j , with an increasing support size of (2j − 1)× (2j − 1)

over scale j. One can rewrite Aj by a cascade form:

Aj = (a1 ⊗ a⊤
1 )⊗ · · · ⊗ (aj ⊗ a⊤

j ). (3)

By direct calculation, the total number of the parameters to
learn for all atom kernels is only 3J , while the largest kernel
support size is (2J − 1)× (2J − 1), implying a noticeable
reduction of parameter number via RKR.

The RKR model also encodes physical priors of defo-
cus kernels. Empirically, defocus kernels of the same im-
age vary mainly in their sizes [14], while their shapes are
quite similar, exhibiting blob-type structures. By imposing
positivity on atom kernels, the recursive definition in RKR
includes such priors in a weak sense implicitly. Indeed, the
RKR can be viewed as a diffusion process and the kernels
Aj will recursively isotropically expand their supports over
j, leading to blob-type kernel supports.

Recall that any 2D Gaussian kernel can be factorized us-
ing two 1D Gaussian kernels or several 2D Gaussian kernels
with smaller variances. Thus, RKR can be viewed as a gen-
eralization of the classic Gaussian model [17,20,29,37,42]
and the Gaussian mixture model [32], which can represent
a larger class of defocus kernels (e.g. non-isotropic ones).
When defocus kernels of the data show strong symmetry, as
assumed in the Gaussian or Gaussian mixture-based repre-
sentations, we can use symmetric atom kernels to impose
symmetry onto the represented kernels.



To conclude, the RKR model can both exploit the physi-
cal priors of defocus kernels and compactly represent defo-
cus kernels of wide-range sizes.
RKR-based blurring operator Using the RKR model,
we express the blurring operator as

D(·) =
∑J

j=1 Γj ⊙ (· ⊗Aj), (4)

where ⊙ represents point-wise multiplication. It can be
seen that the RKR model brings acceleration to the calcu-
lation of the blurring operator, as the spatially-variant con-
volution now reduces to J spatially-invariant convolutions
by {Aj}Jj=1 and the weighted summation of the convolu-
tion results. In addition, further acceleration can be imple-
mented by noting that

Y ⊗Aj =
(
(Y ⊗Aj−1)⊗ aj

)
⊗ a⊤

j , j > 1. (5)

We can sequentially calculate Y ⊗ Aj for j = 1, · · · , J .
Then, with Y ⊗ Aj−1 pre-computed in the previous step,
the 2D convolution Y ⊗Aj reduces to two 1D convolutions
of a small size, which is faster. Consider an N -pixel image
and a kernel size of S×S, the computational complexity of
spatially convolution vs. RKR-based blurring operation is
O(NS2) vs. O(6NJ), as RKR involves 2J- 1D convolu-
tions with kernel length of 3. In practical SIDD, S2 is much
larger than 6J , e.g., 392 vs. 6×72 in our practice.

3.2. NS-Based Efficient Approximate Inversion

The RKR-formulated defocus blurring operator allows a
DNN to exploit the physics of image formation, which is
typically done by unfolding an iterative numerical scheme
for solving a regularization model. In a typical unfolding
DNN for image recovery, there are two steps in each stage
and one is the inversion of the forward process D. In uni-
form image deblurring (e.g. [23,24,46]), it can be efficiently
calculated using FFT-based deconvolution. However, it is
not the case for non-uniform defocus blurring. Considering
computational efficiency, we need a physics-aware DNN
without involving the inversion of D.

Our solution is inspired by the truncated NS approxima-
tion to matrix inversion. Let P : RN → RN denote a linear
operator with spectral norm ρ(P) < 1 and I : RN → RN

an identity operator. Then, one can express the inversion of
I − P by its NS expansion [13] as follows:

(I − P)−1 =
∑∞

k=0 Pk = I + P + P2 + P3 + · · · . (6)

For a blurring operator P with 0 < ρ(P) ≤ 1, we have
ρ(I − P) < 1. Substituting P by I − D in (6) gives

D−1 = I + (I − D) + (I − D)2 + (I − D)3 + · · · , (7)

A truncated NS, e.g., the 4-term expansion that reads

D̃ : Y → Y +
∑3

k=1
(I − D)k ◦ Y , (8)

will then approximate D−1. Based on (8), we have an ef-
ficient computational scheme which only involves convolu-
tions and point-wise multiplications. Note that when ρ(D)
does not satisfy the condition for NS, the truncated NS still
can be viewed as an approximation to the inversion with
some implicit regularization. Together with the implicit reg-
ularization from a CNN structure and supervised training, it
is still capable of learning an effective deblurring process.

Multi-scaling processing is an effective strategy for blind
image deblurring to achieve efficiency and stability. Let Yt

denote the downsampled version of Y with the factor of
2t−1 (i.e. Y1 = Y ). A plain scheme for multi-scaling pro-
cessing is to separately calculate (8) in different scales:

Zt = Yt +
∑3

k=1
(I − Dt)

k ◦ Yt, t = 1, 2, · · · . (9)

where Dt denotes the blurring operator at the tth scale.
Then all Zt are integrated for estimating X . To improve
the computational efficiency of inference, we propose the
following cross-scale fusion pipeline:

Z0 = Y1+(I−D1)◦Y1+
(
(I−D2)

2◦Y2

)
↑2+

(
(I−D3)

3◦Y3

)
↑4,

(10)
where the notation ↑c denotes the upsampling operator with
the factor of c. In (10), we apply higher-order terms of (I −
D) to images with smaller sizes for acceleration.

3.3. DNN Architecture

Our NRKNet is built upon the cross-scale fusion pipeline
of (10) and the RKR-formulated blurring operator of (4).
We extend Γj in (4) to the scale-dependent version Γj,t and
define Dt in (10) by

Dt(·) :=
∑J

j=1 Γj,t ⊙ (· ⊗Aj), (11)

where Aj parameterized by {aj}j via (2) is shared across
different scales. All aj are trainable parameters, and all Γj,t

are estimated by a trainable module. The NRKNet infers an
AIF image from an input image Y using (10). At scale t, it

1. estimates Γj,t from Yt to construct Dt; and
2. calculates (I − Dt)

t ◦ Yt.

Afterwards, the results from all scales are upsampled to the
original size and summed together with Y1 (Y ) to obtain the
final output Z0. See Figure 1 for the outline of NRKNet.

Module for estimating Γj,t Inspired by [32, 39], a U-
Net [34] with weights shared across scales is first employed
to extract features from Yt for each scale t. Then, convo-
lutional long short-term memory (ConvLSTM) [38] units
across different scales are used for estimating Γj,t from the
extracted features. As a result, NRKNet relates the learn-
ing at different scales not only by passing the result from
one scale to the next, but also by the recurrence mechanism
of the ConvLSTM units. The U-Net sequentially connects 3
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Figure 1. Outline of proposed NRKNet for SIDD.

encoder blocks, 1 residual block and 3 decoder blocks. Each
encoder/decoder block contains a Conv layer with down/up-
upsampling, and a residual block with 2 Conv layers and a
residual connection. The output of the i-th encoder block
is added to the input of the (3 − i)-th decoder block via
a skip connection. The ConvLSTM units capture depen-
dencies of blurring among different scales, and their hidden
states capture useful information from different scales and
benefit deblurring across different scales. This can progres-
sively improve the estimation of coefficient matrices.

Implementation of (I − Dt)
t ◦ Y We sequentially ap-

ply I − Dt for the calculation of (I − Dt)
t and compute

(I−Dt)◦Y = Y −Dt◦Y via (4) and (5). A softmax layer
is attached behind each aj to enforce non-negativeness and
ℓ1-normalization on aj . The summation in (11) is imple-
mented by 1× 1 convolution.

3.4. Loss Functions

Let Z0 denote the DNN’s output and Y the input. Let
Z1,Z2,Z3 denote the images at different scales: Zt =∑t

k=1(I − D)k ◦ Y , which are only for training and not
calculated in inference. Let X be the ground truth and Xt

the downsampled version of X with factor 2t−1(t > 0).
For convenience, we define Y0 = Y ,X0 = X . The train-
ing loss is defined in a multi-scale manner as follows:

L :=
∑3

t=0 λtLpredict(Zt,Xt)+α
∑3

t=1 λtLreblur(Yt,Xt),
(12)

where the weights [λ0, · · · , λ3] at different scales are set to
a decreasing sequence: [1, 0.75, 0.5, 0.25]. Note that t starts
from 0 and 1 in the two terms respectively. The function
Lpredict is the prediction loss defined as:

Lpredict(Zt,Xt) := ∥Zt −Xt∥22 + β∥F(Zt)−F(Xt)∥1,
(13)

where F denotes FFT. The first term of Lpredict is the
standard mean-squared error, and the second term is the
frequency-domain reconstruction (FDR) loss [8] for better

restoring corrupted high frequency information. The func-
tion Lreblur is our proposed reblurring loss. It is defined as

Lreblur := ∥Dt(Xt)− Yt∥22. (14)

The reblurring loss encourages the estimated blurring op-
erator Dt at each scale to synthesize the original blurred
image Yt back using the ground truth Xt. As a result, it
can regularize the learning of both the atom set {Aj}Jj=1 of
RKR and the prediction module of Γj,t. This loss differs
from the reblurring loss of [21] that needs to train another
DNN for reblurring.

4. Experiments
4.1. SIDD Datasets and Implementation Details

Benchmark datasets Experiments for performance eval-
uation are conducted on five benchmark datasets, includ-
ing DPDD [2], LFDOF [25], RealDOF [21], RTF [9] and
CUHK-BD [36]. These datasets are captured by differ-
ent devices with different resolutions. Since only DPDD
and LFDOF provide train-test split, following the protocols
of existing works on them, we train two models using the
training sets from DPDD and LFDOF, respectively. The
DPDD-trained model is evaluated on DPDD (test set), Re-
alDOF, and RTF. The LFDOF-trained model is evaluated on
LFDOF (test set) and RTF. CUHK-BD that has no ground
truths is used to evaluate both the models qualitatively.
Implementation details The hyper-parameters of our
approach are consistently set through all experiments. We
fix J = 20 for RKR and α = β = 0.1 for the train-
ing loss. All learnable DNN parameters are initialized by
Xavier [12]. The Adam optimizer [30] is called for training,
with epoch number 4000 and batch size 4. Similar to [35],
the learning rate is fixed at 10−4 in the first 2000 epochs and
decayed with a factor of 0.5 for every 1000 epochs. Random
flipping, rotation, and cropping (to 256 × 256 pixels) are
used for data augmentation. Our approach is implemented
in PyTorch and run on an NVIDIA RTX 2080Ti GPU.



Method DPDD RealDOF RTF # Parameters
(Million)

# MACCs
(Billion)

Time
(Second)PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Input 23.890 0.725 0.349 22.333 0.633 0.524 24.200 0.717 0.248 - - -
DPDNet-S 24.348 0.747 0.277 22.870 0.670 0.425 23.608 0.591 0.296 32.3 485 0.3
AIFNet 24.213 0.742 0.309 23.093 0.680 0.413 24.041 0.758 0.289 41.6 985 0.5
MDP 25.347 0.763 0.268 23.500 0.681 0.444 24.012 0.738 0.312 46.9 1081 0.5
KPAC 25.221 0.774 0.226 23.975 0.762 0.338 24.618 0.777 0.236 2.1 197 0.1
IFANet 25.366 0.789 0.217 24.712 0.748 0.306 24.924 0.801 0.227 10.5 363 0.3
GKMNet 25.468 0.789 0.219 24.257 0.729 0.390 24.972 0.791 0.262 1.4 148 0.2
DRBNet 25.485 0.792 0.254 24.884 0.751 0.376 24.463 0.773 0.311 11.7 347 0.2
NRKNet 26.109 0.810 0.210 25.148 0.768 0.338 25.931 0.829 0.215 6.1 553 0.3

Table 1. Quantitative comparison of DPDD-trained models on three datasets. Best (second best) results are boldfaced (underlined).

4.2. Performance Comparison

Methods for comparison Seven latest deep learning-
based SIDD methods are used for comparison, including
DPDNet-S [2], AIFNet [25], KPAC [14], IFANet [21],
GKMNet [32], MDP [1] and DRBNet [35]. All these meth-
ods, except AIFNet and DRBNet, provide the models pre-
trained on DPDD. We directly use their models for the
comparison with our DPDD-trained model, while retraining
their models on LFDOF using their released codes for the
comparison of LFDOF-trained models. AIFNet provides
a model trained on LFDOF and the SYNDOF dataset [20]
(used for its defocus map estimation stage). We use it for the
comparison with LFDOF-trained models and retrain it with
DPDD and SYNDOF for the comparison of DPDD-trained
models. DRBNet provides a model trained on LFDOF and
fine-tuned on DPDD. For fair comparison, we retrain its
model on two datasets, respectively.

Quantitative comparison of DPDD-trained models Ta-
ble 1 compares the results of the DPDD-trained models on
three datasets, in terms of three widely-used metrics: PSNR
(Peak Signal to Noise Ratio, dB), SSIM (Structural SIM-
ilarity index) [41], and LPIPS (Learned Perceptual Image
Patch Similarity) [48]. Pixel values of deblurred images
are cropped to [0, 255] before evaluation. Our NRKNet
achieves the highest PSNR and SSIM values among all the
compared methods across all the three datasets. In terms
of LPIPS, NRKNet also performs the best on DPDD and
RTF, and the second best on RealDOF. The PSNR gain of
NRKNet over other DNNs is quite noticeable, e.g., 0.624dB
on DPDD, 0.264dB on RealDOF, and 0.959dB on RTF.
Such improvement on the datasets captured by different de-
vices indeed shows that the superior generalization perfor-
mance of NRKNet. Table 1 also compares the computa-
tional complexity of different methods, in terms of num-
ber of model parameters, number of MACCs (Multiply-
ACCumulate operations), and running time on a 1280×720
image. NRKNet has the third smallest model size, with a
medium level of MACCs and running time.

Quantitative comparison of LFDOF-trained models
See Table 2 for the quantitative comparison of the LFDOF-

Method LFDOF RTF
PSNR SSIM LPIPS PSNR SSIM LPIPS

Input 25.874 0.777 0.320 24.200 0.717 0.248
AIFNet 29.677 0.884 0.202 27.552 0.882 0.176
MDP 28.069 0.834 0.185 25.580 0.809 0.228
KPAC 28.942 0.857 0.174 25.959 0.803 0.230
IFANet 29.787 0.872 0.156 26.437 0.838 0.238
GKMNet 29.081 0.867 0.171 26.989 0.855 0.247
DRBNet 30.253 0.883 0.147 26.717 0.853 0.200
NRKNet 30.481 0.884 0.147 28.047 0.889 0.145

Table 2. Quantitative comparison of LFDOF-trained models. Best
(second best) results are boldfaced (underlined).

trained models on LFDOF and RTF. On both the datasets,
NRKNet achieves the best results among all the compared
methods in terms of all three metrics. The PSNR gain of
NRKNet over the second best is 0.228dB on LFDOF and
0.495dB on RTF. These results have again demonstrated the
effectiveness of our proposed approach.

Qualitative comparison Figure 2 shows some deblurred
images from the previous experiments for visual compar-
ison. The deblurred images on CUHK-BD are separately
shown in Figure 3. The visual quality of the deblurred im-
ages consists with the quantitative results above. Overall,
in comparison to other methods, NRKNet achieves higher
visual quality, e.g., NRKNet recovers the image structures
and details better, restores clearer text, and produces less ar-
tifacts. See also supplementary materials for the visualiza-
tion of the learned atom kernels and predicted coefficients,
where regions with larger blur amount tend to have larger
coefficients on large-size kernels, and vice versa.

4.3. Ablation Studies ans Analysis

RKR learning We construct three baselines to analyze
the proposed RKR learning. 1) Non-adaptive: all the atoms
Aj are fixed to Gaussian kernels with the same number and
the same size, using the scheme suggested in [32]. 2) Non-
recursive: removing the recursive structure from RKR by
defining independent atoms: Aj = âj ⊗ âj , āj ∈ R2j−1

+ .
3) Non-separable: disabling the separability of atoms by
directly defining Aj ∈ R(2j−1)×(2j−1)

+ .



D
PD

D
R

ea
lD

O
F

R
T

F
L

FD
O

F
R

T
F

Input AIFNet MDP KPAC IFANet GKMNet DRBNet NRKNet Ground Truth

Figure 2. Deblurred images from DPDD-trained models (first three rows) and LFDOF-trained models (last two rows).

Model PSNR SSIM LPIPS # MACCs(B) # Para(M) Time(s)

NonAdaptive 25.309 0.797 0.255 76.81 9261 0.3
NonRecursive 25.994 0.807 0.218 2.03 440 0.4
NonSeparable 26.071 0.807 0.221 12.99 12340 0.5
Full RKR 26.109 0.810 0.210 1.60 60 0.3

Table 3. Results (DPDD) of ablation study on RKR.

See Table 3 for their results on DPDD. For highlighting
the differences on computational efficiency, the number of
MACCs and the number of parameters are calculated only
on the RKR-related modules. We have the following ob-
servations. 1) Using pre-defined Gaussian kernels as atom
kernels leads to the largest and noticeable PSNR decrease,
indicating that our learned RKR provides a better model
than the fixed Gaussian-based model for representing real-
world defocus kernels. 2) Using independent non-recursive
atoms yields worse performance and higher computational
complexity. The reason for its worse performance is proba-
bly that the recursive form for compactness does not impact
its expressibility noticeably while encoding some implicit
prior. 3) Using non-separable atoms increases the time cost
noticeably and yields a little performance degradation, indi-
cating that separability also brings some regularization. 4)
Benefiting from recursive modeling, the full RKR has the
lowest computational complexity.

Cross-scale fusion pipeline To analyze the cross-scale

Metric FullExp 2Scales 4Scales w/o LSTM Original

PSNR 26.077 25.894 26.020 24.371 26.109
SSIM 0.809 0.805 0.806 0.774 0.810
LPIPS 0.230 0.240 0.235 0.267 0.210

Time(s) 0.4 0.3 0.4 0.3 0.3

Table 4. Results (DPDD) of ablation study on DNN pipeline.

fusion pipeline in NRKNet, we construct four baselines as
follows. 1) Full expansion: At each scale of NRKNet, all
the four terms (three scales) of truncated NS expansion are
calculated, i.e., up to (I − D)3 for every scale. 2) Two
scales: Only using the first two scales of NRKNet, i.e., cal-
culation up to (I−D)2. 3) Four scales: Following the same
way in the original design, we extend the model by adding
one more scale and introducing (I −D)4 and Y4 to the 4th
scale. 4) w/o LSTM: Removing all ConvLSTM units and
increasing the number of layers of U-Net to have a similar
depth and parameter number of the original model.

See Table 4 for the results. 1) Full expansion brings no
performance gain (even worse) but much more additional
computational cost. Our cross-scale fusion scheme provides
an efficient alternate. 2) The two-scale version of NRKNet
leads to noticeable performance drop, which is probably
due to its weakened deblurring power w/o using (I − D)3.
3) The four-scale version also leads to performance drop,
but not big. This is not surprising as the 4th scale is too
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Figure 3. SIDD results from DPDD-trained models on selected images from CUHK-BD dataset. See also our supplementary materials for
the results of LFDOF-trained models.

Metric w/o Lreblur w/o FDR loss Single-scale L Full Loss

PSNR 25.816 25.887 25.973 26.109
SSIM 0.804 0.805 0.806 0.810
LPIPS 0.240 0.235 0.234 0.210

Table 5. Results (DPDD) of ablation study on loss functions.

rough to provide useful information, but just increasing the
running cost. 4) The recurrent mechanism provided by the
CovnLSTM units is very useful for coefficient prediction,
which has noticeable contribution to the performance.

Loss functions We remove the reblurring loss and the
FDR loss respectively from the total training loss to train
the NRKNet, so as to verify their effectiveness. We also
simplify the total training loss to a single-scale version. See
Table 5 for the results. Our proposed reblurring loss and
the FDR loss have similar amount of contribution to the de-
blurring performance in terms of all the three metrics. The
multi-scale scheme in the total loss also has a notable con-
tribution to the performance.

Effect of atom number To study the influence of the
atom number J of the RKR model to the deblurring per-

formance of NRKNet, we vary J to be several values re-
spectively and retrain the NRKNet accordingly. The PSNR
results on DPDD are: 25.942 (J = 15), 26.042 (J = 18),
26.109 (J = 20, original setting), 26.122 (J = 22), and
26.131 (J = 25). We can see that the PSNR decreases as J
decreases, and it gains just a bit with J > 20.

5. Conclusion and Discussion

This paper proposed an end-to-end learning approach for
SIDD with three innovative components: an efficient learn-
able RKR model for defocus kernels, an efficient cross-
scale fusion DNN architecture inspired from NS approxi-
mation, and a reblurring loss for regularizing defocus kernel
prediction learning. Extensive experiments on five datasets
demonstrated the effectiveness brought by these compo-
nents. While the proposed approach empirically achieved
the overall best deblurring results, it takes a relatively long
time for inference despite its small model size. In addition,
though the atom kernels of RKR are learned from training
data, they lack adaptivity to each test sample. Reduction
on inference time and investigation of a more adaptive ap-
proach will be the focus of our future work.



References
[1] Mahmoud Afifi Abdullah Abuolaim and Michael S Brown.

Improving single-image defocus deblurring: How dual-pixel
images help through multi-task learning. In Proceedings of
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1231–1239, 2022. 1, 3, 6

[2] Abdullah Abuolaim and Michael S. Brown. Defocus deblur-
ring using dual-pixel data. In Proceedings of European Con-
ference on Computer Vision, 2020. 2, 3, 5, 6

[3] Abdullah Abuolaim, Mauricio Delbracio, Damien Kelly,
Michael S Brown, and Peyman Milanfar. Learning to re-
duce defocus blur by realistically modeling dual-pixel data.
In Proceedings of IEEE/CVF International Conference on
Computer Vision, pages 2289–2298, 2021. 2

[4] Saeed Anwar, Zeeshan Hayder, and Fatih Porikli. Deblur
and deep depth from single defocus image. Machine Vision
and Applications, 32:1–13, 2021. 1, 2

[5] Stanley H Chan and Truong Q Nguyen. Single image spa-
tially variant out-of-focus blur removal. In Proceedings of
IEEE International Conference on Image Processing, pages
677–680. IEEE, 2011. 2

[6] Mingqin Chen, Yuhui Quan, Tongyao Pang, and Hui Ji. Non-
blind image deconvolution via leveraging model uncertainty
in an untrained deep neural network. International Journal
of Computer Vision, 130(7):1770–1789, 2022. 2

[7] Sunghyun Cho and Seungyong Lee. Convergence analysis
of map based blur kernel estimation. In Proceedings of IEEE
International Conference on Computer Vision, pages 4818–
4826, 2017. 1, 2

[8] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In Proceedings of IEEE/CVF Inter-
national Conference on Computer Vision, pages 4641–4650,
2021. 5

[9] Laurent D’Andrès, Jordi Salvador, Axel Kochale, and Sabine
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Neumann Network with Recursive Kernels for Single Image Defocus Deblurring
(Supplementary Materials)

1. Visual Comparison of SIDD Results of LFDOF-Trained Models on CUHK-BD Dataset
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Figure 1. SIDD results from LFDOF-trained models on selected images from CUHK-BD dataset.

2. Code Link and Animated Versions of Visual Results
Our code is also published via the link https://github.com/csZcWu/NRKNet. We also supply animated versions

of the visual results via this link for clarity and convenient sake.

1

https://github.com/csZcWu/NRKNet


3. Results of Ablation Studies on Other Datasets

Method
RealDOF RTF LFDOF RTF

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Input 23.890 0.725 0.349 24.200 0.717 0.248 25.874 0.777 0.320 24.200 0.717 0.248
NonAdaptive 24.501 0.756 0.372 24.738 0.807 0.246 30.360 0.881 0.154 27.753 0.883 0.166
NonRecursive 25.148 0.768 0.342 25.346 0.817 0.241 30.475 0.883 0.148 27.814 0.885 0.150
NonSeparable 25.150 0.769 0.339 25.538 0.825 0.231 30.450 0.883 0.150 27.968 0.888 0.149
FullRKR 25.148 0.768 0.340 25.931 0.829 0.215 30.537 0.884 0.147 28.047 0.889 0.145

Table 1. Results of ablation study on RKR using DPDD-trained models (left part) and LFDOF-trained models (right part).

Method
RealDOF RTF LFDOF RTF

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Input 22.333 0.633 0.524 24.200 0.717 0.248 25.874 0.777 0.320 24.200 0.717 0.248
FullExp 25.149 0.768 0.340 25.569 0.813 0.225 30.517 0.883 0.149 28.028 0.891 0.147
2Scales 24.914 0.755 0.356 25.561 0.812 0.248 29.497 0.864 0.180 26.975 0.848 0.235
4Scales 25.146 0.769 0.361 25.728 0.814 0.247 30.470 0.883 0.149 27.904 0.887 0.149
w/o LSTM 24.679 0.747 0.361 24.725 0.787 0.323 29.053 0.860 0.174 25.223 0.844 0.178
Original 25.148 0.768 0.340 25.931 0.829 0.215 30.537 0.884 0.147 28.047 0.889 0.145 ]

Table 2. Results of ablation study on DNN pipeline using DPDD-trained models (left part) and LFDOF-trained models (right part).

Method
RealDOF RTF LFDOF RTF

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Input 22.333 0.633 0.524 24.200 0.717 0.248 25.874 0.777 0.320 24.200 0.717 0.248
w/oLreblur 25.009 0.758 0.352 25.052 0.812 0.233 30.006 0.880 0.156 27.674 0.885 0.163
w/o FDR Loss 24.972 0.764 0.349 25.275 0.819 0.249 30.280 0.873 0.165 27.689 0.875 0.188
Single-scale Loss 24.785 0.749 0.363 25.173 0.797 0.278 29.296 0.861 0.185 26.487 0.832 0.275
Full Loss 25.148 0.768 0.340 25.931 0.829 0.215 30.537 0.884 0.147 28.047 0.889 0.145

Table 3. Results of ablation study on loss functions using DPDD-trained models (left part) and LFDOF-trained models (right part).



4. Visualization of Learned Atoms Kernels in RKR
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Figure 2. Visualization of learned adaptive kernels in our DPDD-trained NRKNet. The kernels shown in the 4th row are the ones of the
3rd row padded with zeros to have the same size.
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Figure 3. Visualization of learned adaptive kernels in our LFDOF-trained NRKNet. The kernels shown in the 4th row are the ones of the
3rd row padded with zeros to have the same size.



5. Visualization of Coefficient Maps
See Fig. 4 for the visualization of some coefficient maps at the original image scale. We can observe that the regions with

larger blur amount tend to have larger coefficients on large-size kernels, and vice versa.
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Figure 4. Visualization of coefficient maps and learned kernels.
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