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Abstract

Fingerprinting is a promising non-invasive method for
protecting the intellectual property rights (IPR) of deep neu-
ral network (DNN) models. It extracts a feature called a
fingerprint from a DNN model to identify its ownership. Ex-
isting fingerprinting methods focus only on classification-
related models that map images to labels, while inapplica-
ble to models for image restoration that map images to im-
ages. This paper proposes a fingerprinting framework for
DNN models of image restoration. The proposed framework
defines the fingerprint using a critical image, which exhibits
strongly discriminative patterns and is robust to modest
model modifications. Model ownership is then verified by
comparing the distance of color histograms and local gra-
dient pattern histograms of critical images between the sus-
pect and source models. We apply the proposed framework
to two representative tasks, denoising and super-resolution.
It outperforms the baselines of fingerprinting and competes
against existing invasive model watermarking methods.

1. Introduction
Deep learning has become a prominent tool for solving

problems in computer vision, ranging from high-level im-
age classification problems to low-level image restoration
problems. However, the cost of designing and training a
DNN model for specific applications has grown exponen-
tially, leading to expenses in many areas such as hardware
resources, data collection and labeling, and paying for engi-
neers and researchers. Although sharing pre-trained DNN
models has become a common practice in the community,
many companies and institutes charge for the commercial
usage of pre-trained models. This creates a strong incentive
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for adversaries to plagiarize/steal the models, using meth-
ods such as malware infection or internal leaks, to bypass
the expensive training process. Consequently, both the com-
munity and companies have a strong motivation to protect
the IPR of their DNN models.

One popular approach for protecting the IPR of DNN
models is model watermarking (e.g. [44, 1, 10, 7, 53, 8, 39,
20, 54, 21]), which invasively embeds specific information
called watermark into the source model and examines its
existence in the suspect model for ownership verification.
However, modifying model weights can potentially affect
the model’s utility, making it less desirable in practice.

Recently, a non-invasive approach called model finger-
printing has gained attention. Unlike watermarking, finger-
printing keeps the model intact and creates a unique feature
called fingerprint from the model for identifying ownership.
The ownership of a model is verified by comparing the fin-
gerprint of the source model with that of the suspect model.
While fingerprinting is still in its early stages with few ex-
isting works [3, 24, 11, 60, 33], it is gaining popularity as a
non-invasive alternative to model watermarking.

1.1. Motivation

In this paper, we focus on protecting the IPR of DNN
models used for low-level image restoration tasks. These
types of models map degraded images or measurements to
high-quality target images. Deep learning has proven to
be a powerful tool for solving a variety of image restora-
tion problems, e.g., image denoising [57, 35, 36, 32], super-
resolution (SR) [22, 47, 59, 43, 15], deblurring [58, 29, 40,
17, 41], and bad weather removal [34, 45, 37, 50, 51, 38].

Most existing works on IPR protection for DNN models
focus on high-level vision tasks such as image classifica-
tion, where the DNN outputs a label in a finite discrete set.
In contrast, DNN models for image restoration output an
image in a very high-dimensional space. Though there are a
few works on watermarking DNN models for various image
restoration tasks (e.g.[53, 39, 54]), these image restoration
models can be vulnerable to modifications of DNN weights
required in watermarking, resulting in the loss of important
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Figure 1: Main idea of our model fingerprinting approach
for an image recovery DNN. We aim to find a critical image
(blue point) around the DNN’s performance border zone.

image details and the addition of undesired artifacts.
Fingerprinting is a more attractive option for image

restoration DNNs, as it does not require any modification to
model weights. However, to the best of our knowledge, no
existing study has explored fingerprinting for DNN models
used in image restoration tasks. The existing fingerprinting
methods are designed for classification DNNs which can
be fully characterized by their decision boundaries. These
methods use adversarial examples to characterize the deci-
sion boundaries and generate a fingerprint for the model.
In contrast, image restoration generates an image in a high-
dimensional space, and its accuracy is measured by a con-
tinuous metric such as mean squared error to the ground
truth. Therefore, the concept of ”decision boundary” is not
well-defined for image restoration models.

Due to the significant differences between image restora-
tion and image classification, the existing fingerprinting
methods for classification DNNs cannot be easily extended
to image restoration DNNs. As a result, we were motivated
to develop a new fingerprinting framework specifically de-
signed for image restoration DNN models.

1.2. Main Idea

An image restoration task (e.g. denoising and SR) is
to predict a latent image X from its degraded or partial
measurements Y = D(X), where D denotes the degrad-
ing/measuring process. In deep learning, a DNN model
M : Rn×m → RN×M is trained to accurately predict X
from the input D(X) in some task-related domain D. While
the prediction error for most images in D, measured by
∥X−M(D(X))∥22, is small, there exists a complementary
set D where the DNN has large prediction errors.

Indeed, an image restoration DNN usually works well
only for target images that lie within a low-dimensional
manifold in RN×M . It is not expected that a DNN will per-
form well for all points in RN×M . For instance, consider
image denoising where Y = D(X) = X+N, with N rep-
resenting Gaussian white noise. Let X1 be a constant matrix

and X2 be a random matrix with entries randomly sampled
from a normal distribution. Since adding two independent
Gaussian random variables results in a new Gaussian ran-
dom variable [18], Y2 also corresponds to a constant image
corrupted by larger Gaussian white noise. Suppose a de-
noising model performs well on predicting X1 (a constant
matrix) from its noisy version Y1. Then, the denoiser will
consistently take Y2 as the noisy version of a constant ma-
trix and output a constant matrix, which is far away from the
ground-truth matrix X2 (a random matrix). In other words,
a denoising model designed to work well for constant ma-
trices may not work well for random matrices.

To summarize, just like the decision boundary in classi-
fication, there exists a “performance border zone” that sep-
arates the set of images that the restoration model can ac-
curately restore and the set of images that it cannot. This
zone encodes essential characteristics of the model, and the
points close to it can be used for its characterization. Partic-
ularly, these points can be the images in the complementary
set D that are close to the set D of images that the DNN can
restore accurately (i.e., their prediction errors by the DNN
are small). See Figure 1 for an illustration of this concept.

In this paper, we define the term ”critical images” to re-
fer to the points near the performance border zone. Suppose
that the target images in D follow some prior, such as the
sparsity prior of gradients. Then, a critical image for the
model M is an image X that minimizes the prediction error
∥X −M(D(X))∥22 (i.e., X is close to D) while also max-
imizing a penalty that reflects the prior on the images in D
(i.e., X is close to D̄). This ensures that X is simultaneously
close to both D and D̄, i.e., it lies near their border zone.

Empirical observations suggest that the critical images
obtained from independently-trained DNNs using the pro-
posed approach consist of strong spatial patterns that not
only convey discriminative information, but are also ro-
bust to moderate modifications in model weights. There-
fore, these critical images can serve as the fingerprints of a
model. For model verification, we measure the distances be-
tween the fingerprints using two standard image descriptors:
color histograms and local gradient patterns (LGP) [13].

1.3. Contributions

The construction of a critical image forms the foundation
of our proposed fingerprinting approach for image restora-
tion models. Our approach is applied to two representative
image restoration tasks: denoising and SR. Denoising is a
core problem in many image restoration tasks, and SR is one
of the most successful applications of deep learning in im-
age restoration. Extensive experiments on these two tasks
have demonstrated that our proposed approach is more ro-
bust than the baseline fingerprinting methods and competi-
tive with recent intrusive watermarking methods. See below
for a summary of the main contributions:



• A fingerprinting framework is proposed for protecting
the IPR of image restoration DNN models. To the best
of our knowledge, this is the first study on fingerprinting
DNN models of image restoration.

• Analogous to decision boundaries in classification, the
concept of performance border zone is introduced to
characterize image restoration DNN models.

• The concept of critical images, points in proximity to
the performance border zone, is introduced to showcase
discriminative and robust patterns that can serve as ef-
fective fingerprints for image restoration DNN models.

2. Related Works
2.1. Model Fingerprinting

Model fingerprinting shares a similar spirit with the zero-
watermarking for digital images (e.g. [48]), where discrim-
inative yet robust features are extracted from an image to
represent its ownership. While it is possible to extract
features directly from the weights of a DNN by treating
them as digital media, this method is not robust to mod-
ifications of the model. To improve robustness, existing
works [3, 24, 11, 60, 60, 33] extract features from the de-
cision boundaries of a classification DNN, as these fea-
tures are often transferable for plagiarism models but not
for independently-trained models.

Cao et al. [3] proposed to fingerprint decision bound-
aries via using nearby data points defined by adversarial
examples. The ownership is verified by checking whether
the suspect model predicts the same labels as the source
model on those data points. Lukas et al. [24] proposed to
fingerprint the overlap of adversarial subspaces around de-
cision boundaries between the source model and its surro-
gates. They synthesized conferrable adversarial examples
that transfer exclusively with a target label from the source
model to its surrogates. Zhao et al. [60] proposed to im-
prove adversarial examples for fingerprinting by encourag-
ing them to mimic the logits vector of a target sample ran-
domly chosen from the target category. Peng et al. [33]
proposed to profile decision boundaries by characterizing
the universal adversarial perturbations [26]. Additionally,
they trained an encoder via contrastive learning to map fin-
gerprints from two models to a similarity score for owner-
ship verification. Chen et al. [5] proposed to quantify the
similarity between two models using a diverse set of test-
ing metrics and test case generation algorithms to produce a
chain of evidence for verification. This method can include
many existing fingerprinting algorithms as test metrics.

All the methods discussed above are limited to classifi-
cation DNNs. Our approach, however, is specifically de-
signed for fingerprinting models of image restoration by us-
ing critical images instead of adversarial examples. It is
noted that while the aforementioned methods aim to detect

model plagiarism, He et al. [11] proposed a fingerprinting
method to examine model integrity. This method identifies
a small set of human-unnoticeable transformed inputs that
make a model’s outputs sensitive to its parameters.

2.2. Model Watermarking

Model watermarking serves a similar purpose as model
fingerprinting; however, it involves embedding a code or
opening a backdoor inside a DNN that could potentially
harm the DNN’s performance. Most existing watermark-
ing methods are designed for classification DNNs (e.g. [44,
42, 56, 1, 10, 27, 4, 28, 7, 16, 53, 8, 20, 54, 21, 19, 23]),
but there are also a few works that target image restoration
DNN models (e.g. [53, 39, 31, 54]). Zhang et al. [53, 54]
proposed to train the DNN to automatically embed an invis-
ible watermark in its output image. The model ownership
is verified by detecting the presence of watermarks in the
output images of the suspect DNN. Quan et al. [39] pro-
posed to train the DNN to map a random image to its naive
recovered version that is unlikely to be generated by other
independently well-trained DNNs. The model ownership is
verified by checking whether such a mapping holds for the
suspect DNN. Ong et al. [31] proposed to train the DNN so
that an input image embedded with a visible key can lead to
an output image with a visible logo. The model ownership
is verified by attempting to trigger the logo via the key.

3. Methodology
3.1. Problem Statement and Overview

Threat model In a typical attack-defense scenario, an
owner has trained a source model using private resources.
An adversary attempts to plagiarize or steal the model. The
owner is both a victim and a defender, with the goal of de-
termining whether the suspect model is a plagiarized one.
This involves verifying ownership in a white-box setting.
An adversary or attacker who steals a model may mod-
ify it to avoid detection of ownership while maintaining its
functionality and performance, but the access to the original
training data is not given. Under this setting, we consider
often-seen attacks that modify model weights, e.g., pruning,
finetuning, and quantization.
Principles Discriminability is a fundamental property of
model fingerprinting. A model fingerprint is trustworthy for
protecting IPR only if it is distinguishable for different mod-
els. Given the importance of training data and open sources
of DNN architecture, two models with the same architec-
ture but trained independently using different data are con-
sidered as independent models, and their fingerprints should
be distinguishable from each other. Robustness is another
critical property of model fingerprinting. A model finger-
print is expected to remain nearly unchanged under various
modifications (attacks) on the model. However, these two
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Figure 2: Proposed model fingerprinting framework.

properties often conflict with each other, and an ideal model
fingerprinter should balance them carefully. It is worth not-
ing that the fidelity of model performance, a desirable prop-
erty for model watermarking, is not necessary for a non-
invasive method like fingerprinting.
Framework The proposed fingerprinting method for im-
age restoration DNN models is outlined in Figure 2, involv-
ing 3 steps. First, a fingerprint defined over critical images
is extracted from the source model and registered. Second,
the fingerprint of a suspect model is computed for notariza-
tion. Finally, ownership is verified by comparing the fea-
tures of the two fingerprints. The remaining issues are (i)
how to extract a discriminative yet robust fingerprint from a
model, and (ii) how to efficiently compare two fingerprints.

3.2. Fingerprint Extraction

As discussed in Section 1.2, we use critical images to
fingerprint a model. These critical images are located near
the performance border zone of an image restoration DNN.
Now we focus on the restoration problems for natural im-
ages which are assumed to follow a Laplacian prior. Such a
prior is generally true for natural images. Specifically, the
total variation (TV) |∇X|1 of an image X in the domain D
is small, while an image X in D has a large value of |∇X|1.
Our proposed approach is also applicable to images in other
domains, provided that there is some prior knowledge avail-
able for latent images.

Given a DNN model M trained for an image restora-
tion task T , we define the critical image S by solving the
following optimization problem:

S := argmin
X∈[0,1]M×N

∥X−M(DT (X))∥22 − λ∥∇X∥1, (1)

where DT denotes a degradation operator associated with
the task T , and λ ∈ R+ is a weight. The objective of the
first term in (1) is to find an image close to the set D. The
second term encourages the image to be close to D. This
is achieved by maximizing the value of ∥∇X∥1, which is a
necessary condition for images in D.

The operator DT varies depending on the specific image
restoration task. For instance, it corresponds to noise cor-
ruption for image denoising, downsampling for image SR,
and blurring for image deblurring. For image denoising and
SR, we adopt the following construction schemes for DT :

DT (X) := X+N, N ∼ N (0, σ2I), [Denoising] (2)
DT (X) := X↓4, [Image SR] (3)

where N denotes normal distribution and ↓4 denotes dyadic
downsampling that reduces the image size by half. The def-
inition of DT can be adapted to other restoration tasks.

To solve (1), we use the Adam solver [14]. However,
since the problem involves a DNN, it is highly non-convex,
and the output of an iterative solver depends on the initial-
ization of X. We use random initialization for solving (1),
i.e., we set S(0), the initial point of S, as follows:

S(0) ∼ N (0, β2I), β ∈ R. (4)

Figure 3 illustrates the critical images calculated using dif-
ferent instances of S(0) generated via (4). We observe that
critical images from the same model with different S(0) ex-
hibit similar (homogeneous) patterns, while those from dif-
ferent models differ significantly from each other.

Next, we construct the fingerprint denoted by F via (1).
To form a fingerprint of arbitrary length, one can solve (1)
for multiple times using different S(0):

F = {(S(0)
1 ,S1), ·, (S(0)

K ,SK)}, (5)

where Sk is the critical image calculated using S
(0)
k as the

initial point for solving (1). Note that different Sk of the
same model contain the same patterns (see Figure 3) and
image restoration models usually allow input (output) im-
ages of varying sizes. To obtain a similar amount of finger-
print information while avoiding multiple extractions, we
can set K = 1 and use a single large S to approximate
multiple Sk of smaller sizes. It is worth noting that solving
Sk from (1) does not require accessing the model weights
of M, but only the gradients of M(DT (X)) w.r.t. X, in a
similar spirit to federated learning.

3.3. Verification of Ownership

Verification of ownership is accomplished by comparing
fingerprints between the source and suspect models. While
critical images can be visually compared, automated veri-
fication is often desirable in practice. Because critical im-
ages display distinct patterns in terms of color distribution
and texture, we characterize them using color histograms (a
standard color descriptor) and an improved version of LGP
histograms [13] (a classic texture descriptor) based on the
idea of [30]. Further details can be found in the supple-
mental material. Our approach is learning-free and does not
require collecting training data for a learning-based verifier.



Figure 3: Critical images of DBSN [49] (upper) and
EDSR [22] (bottom) calculated by using S(0) ∼ N (0, I)
while fixing all other hyper-parameters.

Let hsou,hsus ∈ RL be the features. i.e., the concate-
nation of normalized color and LGP histograms, computed
from the fingerprints of the source model and the suspect
model, respectively. When K > 1, the features from mul-
tiple Sk are averaged. In essence, these features serve as a
refined version of the fingerprints. Then the suspect model
will be identified as plagiarism if

d = ∥hsou − hsus∥22/L < η, (6)

where η is a threshold (the bound of negligible error) de-
termined by a probabilistic scheme with the same spirit
of [39]. Suppose that the error e(j) = hsou(j)− hsus(j) ∼
N (0, σ2),∀j, where σ = 0.015 (see supplemental material
for our idea to determine this value). Then, the random vari-
able Z =

∥e∥2
2

σ2 follows a Chi-squared distribution X 2
L. By

applying the p-value approach with p < 0.05, we can find
a value of γ such that P [Z ≤ γ] < 0.05, or equivalently,
P [d ≤ η] < 0.05. This allows us to safely reject the null
hypothesis that hsou and hsus are similar.

4. Experiments
We assess the effectiveness of the proposed approach for

two restoration tasks, namely image denoising and image
SR, by measuring their discriminability and robustness.

4.1. Experimental Setup

Source models We choose six DNNs from existing lit-
erature as the source models for each task, respectively. (a)
Image denoising: DnCNN [57], DBSN [49], Nei2Nei [12],
Restormer [50], SimBase [6], and NAFNet [6]; (b) Im-
age SR: EDSR [22], RRDBNet [47], RNAN [59], Mo-
bileSR [43], RFLN [15], and DRLN [2]. To comprehen-
sively evaluate the effectiveness of fingerprinting, we con-
sider models with varying structures, training data, and
training strategies, for both tasks. We either use the pre-
trained models or train them using their released codes. See
more details in the supplemental material.

Implementation details In fingerprint extraction, we
use a single critical image of size 128 × 128, for all mod-
els in both tasks. We set β = 1 in (4) for initializing X.
The learning rate of Adam for solving (1) is set to 0.1. A
total number of 5000 iterations is used. In ownership ver-
ification, we form a 30-dimensional RGB+LGP histogram.
The resulting threshold is η = 1.39 × 10−4. For denois-
ing DNNs, we set σ = 1 for constructing DT in (2). For
both denoising and SR, we set λ = 0.001. The seeds in-
volved in our approach are fixed to make the whole process
deterministic and reproducible.

4.2. Discriminability Analysis

We begin by a visual inspection on the fingerprints ex-
tracted via our approach. See Figure 4 for the critical im-
ages extracted from various source models, all of which
contain unique and distinguishable patterns that vary in
scale, appearance, local shape, regularity and color, across
different images. For instance, larger-scale patterns are vis-
ible for SimBase while the smaller-scale ones for DnCNN.
The fingerprint of DnCNN exhibits random patterns, while
that of NAFNet shows regular ones. Moreover, the red tone
of fingerprint of NAFNet differs from the chromatic tone of
SimBase. These significant visual differences demonstrate
the strong discriminability of the extracted fingerprints.

The discriminability is further quantitatively assessed by
computing the feature distances (6) between critical images
for every pair of source models. The distance matrices
in Figure 5(a) and (b) show the ratios between the result-
ing distances and the threshold η, for denoising DNNs and
SR DNNs, respectively. In both tasks, all off-diagonal ele-
ments, i.e., distances between every model pair, exceed the
threshold, indicating no confusion among the models. The
results indicate excellent discriminability of our extracted
critical images, and the simple RGB+LGP histograms are
able to effectively capture their patterns for verification.

We also test whether our approach can differentiate
models with the same architecture but trained on differ-
ent datasets. The Restormer model [50] is retrained on
six different datasets; see the details in the supplemental
material. Figure 4(c) visually compares the fingerprints of
each model, and Figure 5(c) shows the resulting distance
matrix. Our approach effectively differentiates the models,
even those with the same architecture, with many large off-
diagonal values observed in the distance matrix.

4.3. Robustness Analysis

We conduct robustness analysis using three common at-
tacks: model pruning, model finetuning, and model quanti-
zation. A meaningful attack should only have a minor ef-
fect on the original function of a model. For analysis, we
quantify the impact of an attack on the model’s performance
based on the resulting average PSNR gap on the recovered
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Figure 5: Visualization of pairwise feature distance of fingerprints between source models. The ratios between the distance
and the threshold are shown. For better illustration, all the color bars are set as follows. The color goes from purple to blue
when the value decrease from 1, while the color goes from orange to yellow when the value increase from 1.

images. Each attack has its strength controlled such that it
only leads to ≤ 1dB change in the average PSNR value for
all the models on a test set. This ensures that all attacks are
not meaningless. The robustness is measured by the times
of successful ownership verification under an attack.
Baselines So far, no fingerprinting method is available
that is specifically designed for image restoration DNNs,
making our work the first in this area. For experimental
comparison, we construct two baselines by adapting exist-
ing fingerprint methods designed for classification DNNs:

1. ProjCL: Each image restoration source model is con-
verted to a classification DNN by adding a random pro-
jection layer with softmax activation in the end, so as to
output a 100-dimensional label vector. Then, the well-
known fingerprinting method IPGuard [3] is applied for
the classification DNNs.

2. PoolCL: The output of each source model is downsam-
pled to form a 10 × 10 image, which is then vector-
ized and subjected to a Softmax function, producing a
100-dimensional label vector. This converts each source
model into a classification DNN, and then we fingerprint
it using the IPGuard [3].

We tune the baselines’ hyper-parameters, including label
vector dimensions, for their discriminability. We set their
verification thresholds to the minimum values that ensure
all tested models pass the discrimination test. These thresh-
old values optimize the robustness metrics, as reducing the
verification threshold improves robustness.

Furthermore, we present three watermarking methods
specifically designed for image restoration DNNs to com-
pare the performance gap between non-invasive fingerprint-
ing and invasive watermarking:
1. Zhang et al. [55]: The source model is retrained to em-

bed an invisible watermark in each output.
2. Ong et al. [31]: The source model is retrained to com-

posite a visible watermark region into the output when
the input is composed of a specific trigger region.

3. Quan et al. [39]: The source model is retrained to pro-
duce a copyright image for a specific input noise.

We tune the hyper-parameters for the watermark embed-
ding in these methods to maintain high fidelity on the PSNR
performance of the source models on test data. To facilitate
a more informative comparison between fingerprinting and
watermarking, we create a baseline called ”WeakWM” by
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Figure 6: Fingerprints (critical images) calculated from different models under three attacks.
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Pr
un

in
g

SimBase ! ! ! ! ! % ! DRLN % ! ! ! ! ! !

DBSN ! ! ! ! ! % ! EDSR % ! ! ! ! % !

DnCNN % % ! ! ! % ! MobileSR % % ! ! ! % !

NAFNet % % ! ! ! ! ! RLFN % ! ! ! ! % !

Nei2Nei ! ! ! ! ! ! ! RNAN % % ! ! ! % !

Restormer ! ! ! ! ! % ! RRDBNet % % ! ! ! % !
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SimBase ! ! ! ! ! % ! DRLN % ! ! ! ! % !

DBSN ! ! ! ! ! ! ! EDSR % ! ! ! ! ! !

DnCNN % % ! ! ! % ! MobileSR % ! ! ! ! % !

NAFNet % ! ! ! ! % ! RLFN % ! ! ! ! % !

Nei2Nei ! ! ! ! ! % ! RNAN % ! ! ! ! % !

Restormer ! ! ! ! ! % ! RRDBNet % % ! ! ! % !
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SimBase ! ! ! ! ! ! ! DRLN % % ! ! ! % !

DBSN ! ! ! ! ! ! ! EDSR % ! ! ! ! ! !

DnCNN % % ! ! ! % ! MobileSR % ! ! ! ! % !

NAFNet % ! ! ! ! % ! RLFN % % ! ! ! % !

Nei2Nei ! ! ! ! ! % ! RNAN % ! ! ! ! ! !

Restormer ! ! ! ! ! % ! RRDBNet % % ! ! ! % !

Success Rate 67% 78% 100% 100% 100% 28% 100% Success Rate 0% 61% 100% 100% 100% 22% 100%

Table 1: Verification under attacks. Blue: fingerprinting; Purple: watermarking;%: failure;!: success.

reducing the watermark embedding strength of Quan et al.’s
method [39] to a sufficiently low value where no significant
loss in fidelity is observed. The fingerprints extracted by
our approach for both tasks are shown in Figure 6, under
various attacks. Verification results for different methods
are listed in Table 1.

Model pruning We prune the source models by zero-
ing the top p% of smallest weights in the DNN’s layers,
where p = 10 for denoising and p = 5 for SR. The pat-

terns are nearly the same for both tasks under model prun-
ing. Our approach achieves successful verification on all
models under all pruning ratios for both tasks, outperform-
ing the two baselines that fails in nearly half the cases. No-
tably, the baselines perform much worse for SR models than
for denoising models. The baseline ProjCL fails in all SR
cases, suggesting that the methods designed for classifica-
tion DNNs are ineffective when applied to image restoration
DNNs. The watermarking methods succeed for all mod-



els, which is expected due to their invasive manner. How-
ever, when the watermark embedding strength is very weak,
WeakWM fails in most cases during watermark verification.
Model finetuning We fine-tune the source models with
their original tasks on the BSD68 dataset [25] for 500 iter-
ations (steps). Little change can be observed in the patterns
of the resulting critical images. Our fingerprinting approach
and the three watermarking methods successfully verify all
models. However, among the baselines, PoolCL fails in one
denoising and one SR case, ProjCL fails in two denoising
and all SR cases, and WeakWM succeeds only once in each
task due to weak watermark strength.
Model quantization When Int8 quantization with sim-
ple rounding is applied to the source models, our approach
still produces robust yet discriminative fingerprints. It suc-
cessfully verifies all models, like the three watermarking
methods. WeakWM only succeeds in one half cases. Pro-
jCL fails in two denoising cases and all SR cases. PoolCL
performs acceptably on denoising models but fails in a half
of the SR cases.

4.4. Ablation Study

We form additional two baselines of our approach for
further study, which are as follows:
1. w/o TV: Removing the TV (second term) in (1) for cal-

culating the critical image.

2. MaxObj: Replacing the critical image in our approach
with an image generated by maximizing the objective
function in (1) instead of minimizing it. The resulting
image is expected to be as smooth as possible while hard
to recover, which can be seen as an adversarial sample.

For the ”w/o TV” case, we observe that the resulting crit-
ical images tend to degenerate into a constant image eas-
ily for some models, meaning that its discriminability could
not be guaranteed. Therefore, we only compare the success
rates of MaxObj and our approach in terms of robustness.
See Table 2 for the results, where our approach outperforms
MaxObj. This may be because the fingerprints generated by
MaxObj are not as close to the performance border zone as
those generated by our approach.

Method Compression Finetuning Quantization

Denoising SR Denoising SR Denoising SR

MaxObj 5/6 4/6 6/6 4/6 6/6 3/6
Ours 6/6 6/6 6/6 6/6 6/6 6/6

Table 2: Success rates of baselines in ablation study.

4.5. Demos Beyond Denoising and SR

To further examine the applicability of our approach to
other image restoration tasks, we provide demos on addi-
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Figure 7: Fingerprints calculated from different pre-trained
and attacked DNN models on other tasks. See supplemental
material for the results on deraining.

tional tasks: deblurring (including motion deblurring and
defocus deblurring), deraining, and low-light enhancement.
The operator DT s are defined as follows:

DT (X) := K⊗X+N, [Deblurring]

DT (X) := Norm(X3), [Low-light Enhancement]
DT (X) := X+R, [Deraining]

where K is a blur kernel, Norm(·) denotes min-max normal-
ization, and R is a synthetic rain layer; see supplemental
material for details. We select three DNNs with published
pre-trained models for each task: IFAN [17], GKMNet [40]
and NRKNet [41] for defocus deblurring; Restormer [50],
SimBase [6] and NAFNet [6] for motion deblurring;
Restormer [50], MPRNet [51] and VRGNet [45] for de-
raining; and MIRNetv2 [52], DLN [46] and ZeroDCE [9]
for low-light enhancement. The results in Figure 7 (for de-
focus deblurring and low-light enhancement) and supple-
mental material (for motion deblurring and deraining) show
that, the extracted fingerprints exhibit discriminative pat-
terns, and meanwhile they remain similar under pruning and
quantization attacks.

5. Conclusion and Discussion
Given the prevalence of DNN models used in image

restoration, protecting their IPR has become increasingly
important. Toward this end, we proposed a non-intrusive
fingerprinting framework for verifying the model ownership
of image restoration DNNs, with its effectiveness demon-
strated in two important tasks: image denoising and SR.
Similar to existing white-box methods, ours requires the
access to model weights. One possible future direction is
exploring online model encryption techniques to extend our
approach to the black-box setting. In addition, the theoreti-
cal aspects of the critical image such as uniqueness, as well
as the extensions to other low-level vision DNNs, will be
investigated in our future work.
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Fingerprinting Deep Image Restoration Models
(Supplemental Material)

1. Details of LGP and Color Histograms in Fingerprint Feature Comparison
The LGP operator [6, 7] assigns an integer code to each image pixel based on its neighboring local structure. Let yc denote

the pixel value at the spatial location c. Consider a circle of radius R centered at c and take P sampling points along on the
circle with a fixed order. The pixel values of those sampling points, denoted by y0, y1, · · · , yP−1, are obtained via bi-linear
interpolation wherever necessary. Let gp = |yp − yc| and ḡ = 1

P

∑P−1
p=0 gp. The LGP code is defined as

LGPP,R =

P−1∑
p=0

s(gp − ḡ)2p, s(x) =

{
1, x ≥ 0,

0, x < 0.
(1)

The LGP code is indeed a binary string in the form of an integer. Such a bit string will be circularly shifted w.r.t. image
rotation and may be sensitive to noise. Thus, borrowing the idea of uniform rotation-invariant transform [11], we enhance
rotational invariance by taking the minimum value under bit-wise cyclic shifting and reduce noise sensitivity by eliminating
the patterns with frequent bit-wise jumps. This leads to a uniform rotation-invariant version of LGP:

LGPri
P,R =

{
mink Sk(LGPP,R), if U(LGPP,R) ≤ u0,

P + 1, otherwise,
(2)

where Sk denotes the circular bit-wise right shift on the input by k times, and U is a uniformity measure that counts the
number of bit-wise transitions from 0 to 1 or vice versa. The LGP is applied with P = 10, R = 2, u0 = 2 and it results
in a 12-dimensional LGP histogram. An 18-dimensional color (RGB) histogram is also used and thus we finally have a
30-dimensional feature vector of a fingerprint image.

2. Determining Value of σ for Model Ownership Verification
The reason we set σ = 0.015 is two-fold. First, similar to [33], we simply assume hsou(j),hsus(j) ∼ N (µ0, σ

2
0) to

facilitate hypothesis test. So e(j) ∼ N (0, σ2) with σ =
√
2σ0. Considering hsou is implemented by a 30-dim normalized

vector where hsou(j) is around 1/30 = 0.033 when it is uniformly distributed, we assume µ0 = 0.033 and σ0 = 0.011 so
that µ0 ± 3σ ∈ [0, 1]. Here µ0 ± 3σ is considered due to the 3-sigma rule in statistics. Then we set σ to 0.015 which is
around

√
2σ0. Second, as hsou(j),hsus(j) ∈ [0, 1], the Gaussian distribution of e(j) should be truncated into [−1, 1]. To

approximate the truncated Gaussian distribution, one way is ensuring Pr[-1≤ e(j) ≤1]≈1, and σ = 0.015 satisfies it.

3. Details of Source Models
Denoising models Restormer, Nei2Nei, and DBSN are trained with synthetic noisy images, and DnCNN, NAFNet, and
SimBase are trained with real-world noisy images. Specifically, Restormer is trained using synthetic noisy images from the
BSD68 dataset [10] with white Gaussian noise whose level is drawn from the range [0, 50]. Note that BSD68 is often used a
test set in existing literature, but here we use it as training data for evaluating the performance of fingerprinting. DnCNN is
trained using the SIDD dataset [1]. The other four denoising models are trained using the data used in their own works.
SR models We use the pre-trained models released online for all the models. Among them, EDSR, RRDBNet, and RNAN
are provided by [5], and the other three models are obtained from their official websites.
Independent Restormer models Restormer #1 is trained using synthetic noisy images from the BSD68 dataset of [10]
with white Gaussian noise whose standard deviation is drawn from the range [0, 50]. Restormer #2∼#5 are trained using



synthetic noisy images from the DIV2K [2], Flickr2K [8], WED [9] and BSD500 [3] datasets, with white Gaussian noise
whose levels (i.e., standard deviations) are set to 15, 25, 50, and drawn from the range [0, 50], respectively. Restormer # 6 is
trained on the real-world noisy images from the SIDD dataset [1].

4. Implementation Details for Additional Restoration Tasks
Image Deblurring The operator DT for image deblurring is defined as

DT (X) := K⊗X+N,

where K denotes a blur kernel and N denotes the noise. For defocus blurring models, we define K as a 3 × 3 Gaussian
kernel with standard deviation of 1 and draw N from N (0, 15/255). The λ is set 0.05 for fingerprint extraction. For motion
deblurring models, we define K as a 9 × 9 vertical linear motion kernel and draw N from U(0, 0.1). The λ is set 0.1 for
fingerprint extraction. See Figure 1 for the fingerprints extracted from three models of motion deblurring.
Low-light Image Enhancement We use an exponential transformation of power 3 and a min-max normalization for
simulating low-light changes. Therefore, the operator DT for low-light image enhancement is defined as

DT (X) := Norm(X3),

where Norm(X) = (X−min(X))/(max(X)−min(X)).
Image Deraining The operator DT for image deraining is define as

DT (X) := X+R,

where R denotes the synthetic rain layer. Following existing work, we generate the synthetic rain layer by convolving motion
blur kernels with some points randomly sampled from a uniform distribution with a threshold of 0.995. The synthesized rain
layer is then scaled down by 0.1 to reduce the intensities. The extracted fingerprints are shown in Figure 1, which exhibit
distinctive patterns and remain similar after the pruning and quantization attacks.

Motion Deblurring Deraining
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Figure 1: Fingerprints extracted from different image DNN models of two tasks.

5. Sensitivity Analysis on Initial Critical Images
To investigate the sensitivity of our fingerprinting approach to different initial critical images S(0) sampled from a Gaussian

distribution, we using different seeds in the Gaussian random generator to obtain different instances of S(0) for calculating
the fingerprints. As shown in Figure 2 on four models, the patterns of fingerprints are consistent across different instances



of S(0) for the same model. Moreover, we evaluate the robustness under pruning, fine-tuning, and quantization attacks on
two models, with different instances of S(0). The extracted fingerprints are shown in Figure 3. We can also observe that the
changes of initial critical images have little impact on the extracted fingerprints under different attacks.
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Figure 2: Fingerprints calculated using different instances of S(0) obtained via different seeds.
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(b) Fingerprints on MobileSR.

Figure 3: Fingerprints calculated using different initialization seeds under various attacks.

6. Robustness Analysis under Finetuning Attacks with Significant Model Performance Decrease
The main paper has shown that our proposed fingerprinting approach is robust under the finetuning attack with 500

iterations (steps). We further examine the robustness under more iterations of finetuning, including 1.7k, 3.4k and 6.8k



iterations. As the number of iterations increases, the performance of the attacked models changes more significantly. See
Table 1 for the performance differences of five denoising models under finetuning with different numbers of iterations. For
instance, the performances of all the models change 2.12dB in average under the finetuning with 6.8k iterations. Such
significant changes may make the attacked models inapplicable in practice.

The extracted fingerprints are shown in Figure 4. Our approach produces consistent critical images for all source models
under attacks with 1.7k iterations. The extracted fingerprints for SimBase, DBSN, Nei2Nei, and Restormer also keep similar
under the attacks with 3.4k or 6.8k iterations. However, for NAFNet, the extracted fingerprint presents similar texture
patterns but shows a different color compared to the original one under the finetuning attacks with 3.4k or 6.8k iterations.
Note that in these case, NAFNet suffers from a significant PSNR drop of 1.6dB and 2.9dB, respectively. In conclusion, our
approach is robust under finetuning attacks with reasonable performance changes, but may fail under extreme attacks that
cause significant performance degradation of the model.

Table 1: PSNR difference(dB) of some denoising model under finetuning with different numbers of iterations.

#Iteration SimBase DBSN Nei2Nei NAFNet Restormer Avarage

1700 0.82 2.44 0.06 0.86 0.50 0.94
3400 1.58 2.55 0.57 1.64 0.81 1.43
6800 3.21 2.67 0.76 2.93 1.04 2.12
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Figure 4: Fingerprints calculated from the denoising models under finetuning attacks with different numbers of iterations.
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