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Abstract. Deep learning has proved to be a powerful tool for solving inverse problems in imaging, and most
of the related work is based on supervised learning. In many applications, collecting truth images
is a challenging and costly task, and the prerequisite of having a training dataset of truth images
limits its applicability. This paper proposes a self-supervised deep learning method for solving inverse
imaging problems that does not require any training samples. The proposed approach is built on a re-
parametrization of latent images using a convolutional neural network (CNN), and the reconstruction
is motivated by approximating the minimum mean square error (MMSE) estimate of the latent image
using a Langevin-dynamics-based Monte Carlo (MC) method. To efficiently sample the network
weights in the context of image reconstruction, we propose a Langevin MC scheme called Adam-LD,
inspired by the well-known optimizer in deep learning, Adam. The proposed method is applied
to solve linear and nonlinear inverse problems, specifically, sparse view CT image reconstruction
and phase retrieval. Our experiments demonstrate that the proposed method outperforms existing
unsupervised or self-supervised solutions in terms of reconstruction quality.
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1. Introduction. An inverse problem in imaging concerns the estimation of an image x
from the measurement y related by

(1.1) y = Φ(x) + n,

where Φ denotes the forward model of image acquisition and n denotes measurement noise.
Inverse imaging problem is an important problem with a wide range of applications in practice.
For example, compressed sensing (CS) [32], computed tomography (CT) [18] and magnetic
resonance imaging (MRI) [54] in medicine, photography restoration in optics [8], and phase
retrieval in crystallography and optics [75]. All these inverse problems can be expressed in
the form of (1.1) but with different definitions of Φ. In most cases, the problem (1.1) is
either ill-posed with many solutions, or ill-conditioned such that a direct inversion of Φ(·) will
magnify measurement noise in the solution.

To address the ill-posedness of an inverse problem, one widely-used practice is to impose
certain prior on the solution, the latent image, when solving (1.1). By expressing the problem
as an optimization problem, such an image prior is introduced as a regularization term in
the objective function. In the last few decades, many image priors have been proposed for
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solving various inverse imaging problems. The most prominent one is the ℓ1-norm relating
regularization which prompts the sparsity of certain measurement of the solution, e.g . TV
regularization and its variations [72, 19, 20], and wavelet-based regularization [15, 31].

1.1. Deep learning and inverse imaging problems. In recent years, deep learning has
become a powerful tool for image recovery with very promising performance. Most existing
studies on deep learning for image recovery focus on supervised learning, i.e., a deep neural
network (DNN), denoted by f(·; θ), is trained over a dataset Ω = {(yi,xi)}Ni=1 where xi

denotes a latent image and yi its noisy partial measurement. The network weights are often
determined by minimizing the prediction error of the network over the dataset:

(1.2) θ∗ = argminθ
1

N

N∑
i=1

∥f(yi; θ)− xi∥22.

It can be seen that the supervised deep learning is about constructing a DNN-based estimator
that approximates the so-called minimum mean square error (MMSE) estimator:

(1.3) xMMSE = f(y; θ∗) = min
u

Ex|y∥u− x∥22.

It is known that the success of a supervised learning method depends on the quality
and quantity of training samples. For image recovery, in order to generalize well on unseen
test data, a supervised learning method requires a large set of training samples which are
highly related to test data for recovery. Such a prerequisite on training samples limits the
applicability of supervised learning methods in many data-limited applications, specially the
ones in medicine and science. For medical imaging, accessing a large amount of high-quality
real-world medical images of the patients is often not possible. For scientific imaging, the
image for reconstruction might contain important structures which do not exist in existing
images.

One popular approach to relax the prerequisite on training samples is introducing some
pre-trained DNN model to regularize image reconstruction. As a regularization method often
is expressed as an iterative scheme, the so-called Plug-and-Play (PnP) method [88, 70, 59, 73,
41] replaces the operation related to the pre-defined image prior in such an iterative scheme
by a pre-trained denoising network. Although the PnP method can be conveniently called
in practice, its performance depends on how well the called pre-trained denoising network
generalizes on test data. In other words, real-world images of high quality related to test
images are still required for pre-training a denoising network.

Generative adversarial network (GAN) is another type of network whose pre-trained model
can be used for regularizing image reconstruction. A GAN model is a generative model which
generates an image of interest from an random initial seed. Then, for image reconstruction,
one can re-formulate the estimation of the latent image as the estimation of the initial seed
whose corresponding output image fits the measurement; see e.g . [12, 5, 6]. One issue of GANs
is that they often suffer from training instability and model collapse, where the generator tends
to generate a limited variety of samples [74, 4, 21]. Another issue is that a pre-trained GAN
model usually is domain-specific, e.g . face images or text images. It remains an open problem
to have a universal pre-trained GAN model that works well for all types of images. Indeed, to
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the best of our knowledge, there is no a pre-trained GAN model that can faithfully generate
images in medicine or science. where it is challenging to collect a large number of images for
training a GAN.

Recently, there is an increasing interest on developing unsupervised or self-supervised
deep learning methods for image recovery/reconstruction, which does not require any training
sample or a pre-trained network model. One pioneering work is the so-called deep image
prior (DIP) [86], which shows that the architecture of an untrained CNN has an implicit
regularization effort on the output, i.e., when training a CNN using gradient descent, the
network will prefer the output with regular patterns over the output with random noise in the
earlier stages. Thus, by using early stopping, one can train a CNN by fitting its output to the
noisy image. While the DIP provides certain regularization, for ill-posed inverse problems,
it still suffers from the over-fitting caused by the absence of ground-truth images in the loss
function. Built on the DIP, there are some works on unsupervised deep learning for addressing
the over-fitting issue from different perspectives; See e.g . [40, 53, 77, 28].

1.2. Our approach. This paper aims at studying self-supervised deep learning for solving
general inverse imaging problems. The problem setting considered in this paper is as follows.

(i) There is one testing data y to be processed.
(ii) There is no any external image to provide prior information of the test data.
(iii) There is no any pre-trained model to use.

The goal is to develop a self-supervised deep learning method for reconstructing the latent
image x from the testing measurement y.

Like most DIP-relating self-supervised methods, we also consider using an untrained CNN,
denoted by f(ϵ0; θ), to re-parameterize the latent image x:

(1.4) x = f(ϵ0; θ),

where ϵ0 has the same height and width as the unknown x, and is filled with random noise
uniformly sampled in the range of 0 to 0.1, as described in [86]. Such a re-parametrization
introduces the implicit regularization brought by the DIP. Same as [65], our approach is also
about using an untrained CNN to approximate the MMSE estimate of the solution. That is,
by re-expressing the MMSE estimate by the conditional expectation:

(1.5) xCE =

∫
xp(x|y)dx,

where p(x|y) denotes the conditional probability of x given y. Under certain condition on
p(x), we have then

(1.6) xCE =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ.

In general, the conditional probability function p(θ|y, ϵ0) is computationally intractable. Then,
the remaining question is how to calculate the integral above. In [65], a variational approxima-
tion method is proposed which approximates p(θ|y, ϵ0) by a class of computational tractable
Gaussian distributions. Instead of using variational approximation in the calculation of the
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integral, we propose to directly calculate the integral using the MC sampling method:

(1.7) x̂ =
1

K

K∑
k=1

f(ϵ0; θk), θk ∼ p(θ|y, ϵ0).

Remark 1.1. The DNN-based re-parametrization of an image is not a generative model.
The DNN-based re-parametrization x = f(ϵ; θ) learns a mapping between network weights θ

and the image x for some random initial ϵ0: θ
f(·,ϵ0)−−−−→ x. Each image has its own network

weights. In contrast, a generative model x = g(ϵ; θ∗) learns a mapping between the initial

seed ϵ and the target image: ϵ
f(·,θ∗)−−−−→ x. All images correspond to the same network weights.

For sufficient expression capability, an over-parameterized network f(ϵ0; θ) is used for
representing the image. Then, the success of such a MC method depends on whether we
can efficiently sample the posterior distribution p(θ|y, ϵ0) in a very high dimensional space.
Motivated by the effectiveness of the Langevin MC method, a Markov Chain Monte Carlo
(MCMC) sampler, in the context of Bayesian inference and neural network training, this paper
studies the Langevin MC method for efficiently sampling the posterior distribution p(θ|y, ϵ0)
of network weights. Such a Langevin MC method will then be used for approximating the
MMSE estimate of the image x from the measurement y. In the context of solving inverse
problems, one viable technique [38] is adopting conditional stochastic normalizing flow, which
transforms a simple base distribution into the desired target distribution using a trainable
network. This transformation facilitates efficient sampling from the target distribution, often
achieved through methods like Markov Chain samplers. However, to keep the implementation
simplicity, this paper chooses not to employ this technique for facilitating the sampling process.

The plain over-damped Langevin Monte Carlo (MC) method [89, 68, 69, 33] is designed
for general Monte Carlo sampling, which is closely related to the stochastic gradient descent
(SGD) method used to train deep neural networks (DNNs). In the context of deep learn-
ing, by exploiting the connection between sampling and gradient descent optimization, we
develop more efficient sampling methods for sampling network weights that are built on im-
proved optimizers for training network. While stochastic gradient descent (SGD) serves as
the fundamental optimizer for deep learning, numerous extensions have been proposed that
exhibit better empirical performance. Currently, the most prominent optimizer utilized in
deep learning is adaptive moment optimization (Adam) method, which extended the SGD
with techniques. One is the adaptive learning rate for each iteration, which resembles the
existing Root Mean Square Propagation (RMSprop) algorithm. The other is the momentum
term to accumulate the gradient of the past, when defining the updating direction. The su-
perior empirical performance of Adam over plain SGD inspires us to study new Langevin MC
methods from the perspective of the optimizer for deep learning. In this paper, we proposed
a pre-conditioned under-damped Langevin dynamics for MC sampling of network weights,
named as Adam-LD. The resulting Langevin MC method is closely connected to the Adam
optimizer for deep learning.

With such an efficient Langevin MC method, one then can apply it to sample the posterior
distribution p(θ|y, ϵ0), and the samples are used via (1.7) to approximate the MMSE estimate
of the truth image x. Together with the implicit regularization induced by the DIP, we
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have a powerful self-supervised deep learning method for image recovery/reconstruction. To
evaluate its empirical performance, extensive experiments are conducted on two representative
inverse imaging problems: (1) sparse-view computerized tomography (CT) reconstruction for
medical imaging and (2) phase retrieval for scientific imaging. The experiments showed that
the method outperformed existing self-supervised deep learning solutions by a large margin.

2. Related works.

2.1. Regularization method with pre-defined/learnable prior. Regularization methods
impose a pre-defined image prior to address the ill-posedness in solving (1.1). One widely used
prior is sparsity-based, assuming the output of the latent image after applying some operator
is sparse. The TV regularization method assumes the gradient of the image is sparse, while
wavelet-based regularization assumes the wavelet coefficients of an image are sparse. These
ℓ1-norm related regularizations are widely used in image recovery tasks [10, 71, 14, 43]. These
methods can also be interpreted as a maximum a posteriori (MAP) estimator in Bayesian
inference. Instead of using a pre-defined sparsity-related image prior, some works learn the
sparsity-based prior for image recovery. For image denoising, K-SVD [1] learns an over-
complete dictionary for sparse coding of image patches, and Cai et al . [16] learn a wavelet
tight frame for sparse approximation of an image. These learnable sparsity-based priors also
have applications in other image restoration tasks.

2.2. Supervised deep learning method. In recent years, deep learning has shown promis-
ing performance in many image recovery applications, including denoising, image deblurring,
compressive sensing, and computerized tomography, among others (e.g . [61, 93, 56, 92, 91,
76, 63, 30]). The majority of existing deep learning methods for general image recovery are
based on supervised learning, requiring a training dataset with many pairs of measurements
and corresponding latent images. An end-to-end deep neural network is then trained to
have the least prediction error over the dataset. While earlier works trained an end-to-end
neural network to predict the latent image directly from the measurement in a model-free
way, for image recovery with a non-trivial forward model, a better approach is to encode
the knowledge of the forward operator in the network architecture via unrolled optimization
techniques [92, 91, 63, 30, 55]. The trained network models, however, are problem-specific
and cannot be adapted to consider changes in the inverse problems, including the forward
operator and instrumental configurations.

2.3. Deep learning with pre-trained DNN model. Training a DNN from scratch can be
a troublesome and costly process. To avoid this, one approach is to use a pre-trained network
model for regularizing image recovery. In the past, various types of pre-trained network models
have been employed in image recovery tasks. One such method is the Plug-and-Play (PnP)
approach, which utilizes a pre-trained denoising network model in image recovery. Similar to
most optimization unrolling schemes, the PnP method unrolls an iterative scheme, where the
prior-relating operation can be interpreted as a denoising process for removing artifacts. In
the PnP method, this denoising process is replaced by a pre-trained denoising network model,
which has shown promising empirical performance in various inverse imaging problems [45,
82, 94]. The PnP can be applied and interpreted within the context of MAP [80, 62] and
approximate MMSE estimator [2, 37, 44, 50].
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There have been some studies on the convergence properties of the PnP method with
pre-trained denoising networks. However, most existing studies are limited to denoisers with
very specific properties. For instance, in the context of the MAP estimator, differentiable
and non-expansive denoisers with symmetric Jacobian [80] and linear denoisers [62] have been
studied. Certain conditions on the denoising network, hyper-parameters, and Lipschitz con-
tinuity have been imposed for the convergence of the PnP method from the viewpoint of
fixed-point iterations in [82, 83, 73, 90]. It is difficult to learn a good denoiser that approxi-
mates the MMSE estimator, as Gribonval [36] showed. Recently, the theoretical convergence
of PnP as the MMSE estimate was studied in [50]. However, the applicability of these studies
is limited, and in practice, most widely used denoising network models, such as DnCNN, are
not applicable. The empirical performance of these PnP methods depends on the general-
ization performance of the pre-trained denoising network model over test data. In order to
have good generalization performance, the pre-training of the denoising network still requires
a large number of truth images related to the test data. As a result, its applicability remains
limited in data-limited environments

Generative adversarial network (GAN) has also been used as a pre-trained model for
image recovery. A pre-trained GAN model is usually domain-specific, taking a random initial
seed as input and outputting an image in the specific domain. With such a pre-trained
GAN model, one can convert the estimation of the latent image to the estimation of the
initial seed, whose corresponding latent image fits the measurement. This GAN-based method
has been employed in various applications, such as compressive sensing [12], denoising, and
inpainting [5], image deconvolution [6], and phase retrieval [39]. However, GANs often suffer
from training instability and model collapse, where the generator tends to generate a limited
variety of samples [74, 4, 21]. Such training problems limit their application in general inverse
problems. The existing successful GAN models are mostly in specific domains, such as face
images or text images. For applications where it is challenging to have a large-scale dataset of
latent images, it remains an open problem to have a generative model with good performance.

In addition to denoising models and GANs, pre-trained diffusion-based generative models
can also be employed for solving inverse problems. These pre-trained diffusion models enable
the generation of new samples from the empirical distribution of the given dataset [42, 79].
In inverse problems, the goal is to sample from the conditional density p(x|y). By decoupling
this to the likelihood p(y|x) and the prior p(x) in Bayesian inference, diffusion-based genera-
tive models allow one to sample the prior distribution and thus solve the problem [47, 46, 78].
However, diffusion models are often large and domain-specific, which can lead to some is-
sues associated with diffusion-based methods. These issues may include high computational
demands and limited generalization performance, particularly when the target domain is sig-
nificantly different from the domain for which the diffusion model was specifically trained.

2.4. Self-supervised or unsupervised deep learning method. Self-supervised or unsuper-
vised deep learning refer to deep learning without using any training sample, which refers to
the pair of a latent image and its measurement in the context of image recovery. Recently, for
its practical value in data-limited environments, self-supervised or unsupervised deep learning
for image recovery is receiving an increasing interest in the community. There has been rapid
progress on image denoising. The pioneering work is DIP [86] which shows that regular image
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structures appear before random noise when training a CNN-based denoising network. Then,
early stopping can be used to have a self-supervised image denoising network. Another ap-
proach to self(un)-supervised deep denoising network is to construct the loss functions without
using truth images that can simulates the loss function supervised over truth images; See e.g .
[49, 9, 51, 67, 66]. Metzler et al . [58] is based on Stein’s unbiased risk estimator (SURE) for
regularizing the training of a denoising network without truth images.

In comparison to image denoising with Φ = I, existing studies are much fewer on self-
supervised learning for ill-posed inverse imaging problems with other operators Φ. How to
address ill-posedness of the problem is the main focus of the study, and the techniques for
image denoising cannot be trivially generalized to solve these ill-posed problems.

In addition to image denoising, DIP also has been using for solving inverse problems such
as inpainting [86], which addresses the over-fitting by using early stopping. However, its
performance is not very competitive as the implicit regularization effect by DIP is not very
powerful. Some extensions of DIP are developed solving various inverse problems. Heckel et
al . [40, 28] proposed to use an under-parameterized network deep decoder as the untrained
NN for solving inverse problems. While the over-fitting is alleviated by using fewer network
weights, its representative capacity is also reduced and it leads to performance loss. Shi et
al . [77] proposed to accelerate the training and correct spectral bias of DIP, by adopting
a Lipschitz-controlled convolution layer and a Gaussian-controlled up-sampling layer in the
network architecture.

Bostan [13] proposed to use an untrained deep decoder for phase retrieval, where the
overfitting is handled by dimension reduction induced by the decoder. Zhussip et al . [97]
proposed to regularize the denoiser by SURE in the iterative approximate message passing
(AMP) scheme for image reconstruction from under-sampled measurements. For compressing
sensing, Pang et al . [65] proposed to train a Bayesian neural network (BNN) whose network
weights following a normal distribution. The BNN is trained as the approximating distri-
bution to the posterior distribution in the variational approximation method of an MMSE
estimator. The BNN method is quite computationally expensive. For phase retrieval, Chen
et al . [24] proposed to use dropout-based network for approximating the MMSE estimator.
Chen et al . [22] proposed a task-dependent data augmentation to train the network model via
compensating the under-sampled observations in CT or image inpainting.

2.5. Organization. The paper is organized as follows. In section 3, we give an introduc-
tion to the DNN-based re-parametrization, the MMSE estimator, and the plain Langevin MC
sampling. Section 4 presents a new method related to the Langevin MC method motivated
from the Adam optimizer, for efficiently sampling network weights. Then they are used for
developing a self-supervised deep learning solution for general image recovery. Section 5 is
devoted to the experimental evaluation of the proposed self-supervised method on two repre-
sentative image recovery problems: linear sparse-view CT image reconstruction and nonlinear
phase retrieval. Section 6 concludes the paper.

3. CNN-based re-parametrization, MMSE estimator, and MCMC sampling. This sec-
tion is devoted to the discussion of the MMSE estimator for a DNN-based re-parametrization
of latent image.
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3.1. CNN-based re-parametrization and MMSE estimator. In this paper, the inverse
problem y = Φ(x)+n is discussed from the perspective of Bayesian inference, i.e., the latent
image x is treated as one sample from a probability density p(x). Then, the MAP estimator
is about finding a single mode which maximizes the density p(x|y). By Bayes’ rule, the MAP
estimator can be formulated as solving the following optimization problem:

(3.1) xMAP := argmax
x

log p(x|y) = argmin
x
− log p(x|y) = argmin

x
− log p(y|x)− log p(x),

where p(x) denotes the prior distribution of latent image x. In traditional regularization
methods, p(x) is pre-defined. For example, by assuming

(3.2) p(x) ∝ exp(−λ∥∇x||1),

the resulting MAP estimator is indeed the solution of the classic TV regularization method.
In addition to MAP, MMSE is another estimator whose estimate minimizes the mean

squared error

(3.3) xMMSE = min
u

Ex|y∥u− x∥22,

whose solution is indeed the conditional expectation:

(3.4) xMMSE = xCE =

∫
xp(x|y)dx.

Same as the MAP estimator, the MMSE estimator also needs to know the distribution p(x|y).
Moreover, the computational complexity of the MMSE estimator is often higher than the MAP
estimator as it needs to calculate an integral in a high-dimensional space.

In this paper, we propose to use an untrained CNN for representing latent image, and
estimate the corresponding MMSE estimate. Such an approach is motivated from DIP [86],
the implicit regularization induced by the network architecture of CNN. Such an implicit
regularization can be beneficial for tackling the ill-posedness of the problem, as observed in
many existing works. Thus, we consider an untrained CNN f(ϵ0; θ) such that the image x
can be replicated by the network:

(3.5) x = f(ϵ0; θ)

for some fixed initial seed ϵ0. In other words, the image x is re-parameterized by the vector
of network weights θ such that

(3.6) θ
f(ϵ0,·)−−−−→ x.

Remark 3.1. For a function f(ϵ0; θ) expressed by a CNN with ReLU/LeakyReLU acti-
vation function, universal approximation theorems [7, 96] have shown that, f(ϵ0; θ) can ap-
proximate any continuous function to an arbitrary accuracy when the depth of the network is
large enough. Despite not being differentiable in only a set with zero measure, such a function
can still be optimized with gradient descent-based optimizers. The function is not injective,
meaning there are many sets of network weights that will give the same output. This property
is desirable in deep learning, as it increases the likelihood of finding a good solution among
the many possible solutions of a highly non-convex problem.
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With such a re-parametrization, under certain condition on the distribution functions of
x and θ, the conditional mean still have an analytic:

(3.7)

∫
xp(x|y)dx =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ.

For the completeness, we outlines its derivation in the following. For two measurable distri-
bution function px(x) and pθ(θ), define their cumulative distribution functions by

(3.8) dPx(x) = px(x)dx, dPθ(θ) = pθ(θ)dθ

respectively. Suppose that both cumulative distribution functions Px(x) and Pθ(θ) are abso-
lutely continuous. Then, we have

(3.9)

∫
xp(x|y)dx =

∫
x
p(y|x)
p(y)

px(x)dx =

∫
x
p(y|x)
p(y)

dPx(x)

Using x = f(ϵ0; θ), we have
(3.10)∫

xp(x|y)dx =

∫
x
p(y|x)
p(y)

dPx(x) =

∫
f(ϵ0; θ)

p(y|f(ϵ0, θ))
p(y)

dPθ(θ) =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ.

As p(θ|y, ϵ0) in (3.7) is not available, we re-express it by Bayes’ rule:

(3.11) p(θ|y, ϵ0) ∝ p(y|θ, ϵ0)p(θ).

In this paper, we impose a Gaussian prior on network weights θ:

(3.12) θ ∝ exp(−∥θ∥
2
2

2σ2
θ

).

Then, in the presence of i.i.d. Gaussian white noise n ∝ exp(−∥n∥22
2σ2

n
), we have

(3.13) − log p(θ|y, ϵ0) =
M

2σ2
n

L(θ) + const.,

where

(3.14) L(θ) :=
1

M
∥Φ((f(ϵ0; θ))− y∥22 +

σ2
n

σ2
θM
∥θ∥22 .

Here, we employ the conventional loss definition normalized by the dimension M of the data

y. The regularization parameter σ2
n

σ2
θM

is referred to as the parameter for weight decay. Then,

the conditional probability distribution function p(θ|y, ϵ0) can be expressed as

(3.15) p(θ|y, ϵ0) :=
1∫

exp(− 1
2σ2

n/M
L(θ))dθ

exp(− 1

2σ2
n/M

L(θ)).

In summary, to utilize the implicit regularization induced by DIP of a CNN, we re-
parameterize the image x = f(ϵ0; θ) by a untrained CNN model. Then, the MMSE estimator
for x can be computed via calculating the integral defined in (3.7) where p(θ|y, ϵ0) is given
by (3.15).
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3.2. Review on overdamped Langevin MC sampling and Plain SGD. For an MMSE
estimator expressed by (3.7), one needs to calculate an integral in a very high-dimensional
space. Thus, a natural choice is using the MC method for calculating the integral. There
are many MC sampling methods. In this paper, we propose to use Langevin MC sampling
method for our purpose. The motivations come from the deep connection between Langevin
MC sampling and stochastic gradient descent (SGD) method widely used in the optimizer for
deep learning. For the completeness, we first give a brief introduction on plain Langevin MC
method.

The plain overdamped Langevin MC method is connected to the following stochastic
differential equation (SDE):

(3.16) dθt = −∇L(θt)dt+
√
2dWt,

where Wt denotes Brownian motion. For each time stamp t, the stochastic dynamics (3.16)
defines a random variable θt. The evolution of the distributions of θt can be described by
the Fokker-Planck equation. To facilitate the analysis of other dynamics, we present the
Fokker-Planck equation for a general SDE.

Lemma 3.2 (Fokker-Planck equation [35]). Considering the SDE:

dxt = g(xt)dt+
√

2D(xt)dWt,

where xt ∈ Rn, g(xt) ∈ Rn, D(xt) ∈ Rn×n is a positive semi-definite matrix. Assume that the
element functions gi(·), Dij(·) belong to C2(Rn), then the distribution pt(x) is governed by the
following equation

∂tpt(x) = −
n∑
i

∂xi [gi(x)pt(x)] +
n∑
i

n∑
j

∂xi∂xj [Dij(x)pt(x)]

where Dij(x) denotes the (i, j)-th entry of the matrix D.

Interested readers are referred to [35] for more details. For our purpose, consider the specific
Langevin dynamics (3.16). By Lemma 3.2, the governed equation of the distribution pt(x) is

∂tpt(θ) =
∂

∂θ
[∇L(θ)pt(θ)] +

∂2

∂θ2
[pt(θ)].

It can be shown [35] that, under mild conditions, that the θt is a random variable of the
distribution pt(θ), which converges to a stationary distribution p∞(θ) ∝ exp(−L(θ)) by taking
∂tpt(θ)→ 0.

The discretization of the over-damped Langevin dynamics (3.16) gives an MCMC sampling
scheme (SGLD): for k = 0, 1, . . . ,

(SGLD) θk+1 = θk − γk · ∇L(θk) +
√
2γk · ϵ,

where ϵ ∼ N (0, I). It can be seen that the iteration (SGLD) indeed is a plain SGD method
defined by adding i.i.d. Gaussian white noise to the gradient descent method for minimizing
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the loss function L(θ). Though the SGLD (a.k.a. ULA, unadjusted Langevin algorithm)
can converge to the stationary distribution, its convergence rate is quite slow [68, 69, 33],
which might result in very high computational cost. To meet practice needs in computational
efficiency, we need to consider more efficient Langevin diffusions to enable its application to
practical sampling task.

Now, with in hand an MCMC sampling method such as the over-damped Langevin
MC scheme given by (SGLD), one can efficiently sample the distribution p(θ|y, ϵ0) defined
by (3.15). One common practice is running (SGLD) for total T iterations, and we assume
after T ′ (burning-in) iterations, the distribution of the samples is close to the distribution
p(θ|y, ϵ0). By MC-based integration scheme, we can approximate the MMSE estimate by

(3.17) xMMSE =

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ ≃

1

T − T ′

T∑
i=T ′

f(ϵ0; θi).

Similarly, by the same scheme, we can also compute the variance of the estimated image

(3.18) Var(xMMSE) ∼
∫

f2(ϵ0; θ)p(θ|y, ϵ0)dθ − (

∫
f(ϵ0; θ)p(θ|y, ϵ0)dθ)2.

It can be used for measuring the uncertainty of the estimate.

4. Langevin MC method motivated from the Adam optimizer. The classic Langevin
MC method (SGLD) is connected to plain SGD. Nevertheless, plain SGD is a basic optimizer
for training a DNN, and there are many other extensions of SGD for better efficiency and
effectiveness when training a DNN. For example, plain SGD uses a constant learning rate
for all network weights, which is not only sub-optimal but also has a negative impact on the
generalization performance of the trained model. In this section, for the purpose of effectively
sampling network weights for calculating MMSE estimate, we presented one Langevin MC
method which are motivated by one prominent optimizer widely adopted in deep learning,
the Adam method. There are two parts in Adam. One is adaptive learning rate borrowed
from RMSprop, and the other is the momentum-based acceleration. While it is not clear
how the training efficiency of an SGD-based optimizer for deep learning is connected to the
sampling efficiency of the corresponding Langevin MC method, extensive experiments showed
that there is a close correlation between two. Before proceeding, we would like to note that the
stationary distribution is derived from the continuous SDE, while the algorithm is based on
its discretization. It is important to recognize that the discretized stochastic process may not
necessarily converge to the continuous one, as pointed out in [29]. Therefore, the discretization
introduces a bias to the target distribution, which asymptotically approaches zero with a small
and decreasing step size.

4.1. RMSprop and Preconditioned overdamped Langevin MC sampling. When training
a deep network, for each iteration, the plain SGD uses a constant learning rate for all network
weights. The learning rate plays an important role in deep learning, in both computational
efficiency and generalization performance. The RMSprop is an unpublished yet well-known
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adaptive learning rate method. For a loss function L(θ), RMSprop updates the estimates by

vt = βvt−1 + (1− β)(∇L(θt))2;(4.1)

G(θt) = diag(
1

√
vt + ϵ

);(4.2)

θt+1 = θt − ηG(θt)∇L(θt),(4.3)

where η is a constant learning rate and β is called the moving average parameter. RMSprop
optimizer is closely related to a preconditioned overdamped Langevin MC method, referred
as p-LD method in [52]. Li et al . [52] considered the following governed stochastic dynamics

(4.4) dθt = −G(θt)∇L(θt)dt+ Γ(θt)dt+
√
2G(θt)dWt,

where G(θt) > 0 is the preconditioned matrix and Γ(θt) ∈ Rn is a vector and its i-th entry

Γi(θt) =
∑

j
∂Gi,j(θt)

∂θt,j
, where Gi,j(θt) is the (i, j) entry of G(θt).

By Lemma 3.2, one can verify that the distribution evolution of the dynamics (4.4) satisfies

(4.5)
∂tpt(θ) =

∂

∂θ
{[G(θ)∇L(θ)− Γ(θ)]pt(θ)}+

∂2

∂θ2
[G(θ)pt(θ)]

=
∂

∂θ
{G(θ)∇L(θ)pt(θ) +G(θ)

∂

∂θ
pt(θ)}.

Let ∂tpt(θ) = 0. By G(θ) > 0, we have the stationary distribution p∞(θ) ∝ exp(−L(θ)).
When the preconditioned matrix G(θ) = I, the dynamics (4.4) degenerates to the classical
over-damped Langevin dynamics (3.16).

The discrete preconditioned overdamped Langevin dynamics scheme can be written as

(4.6) θt+1 = θt − ηG(θt)∇L(θt) + ηΓ(θt) +
√
2ηG(θt)N (0, 1),

where η denotes the learning rate. Li et al . [52] leveraged the following diagonal matrix whose
entries are the moving average of squared gradient, i.e.,

(4.7) G(θt) = diag(
1

√
vt + ϵ

), where vt = βvt−1 + (1− β)(∇L(θt))2,

where ϵ > 0 is to avoid the overflow of the division by zero. As a comparison to RMSprop,
there are two differences: the inclusion of Γ(θt) term and the scaled Gaussian injection noise√
2ηG(θt)N (0, 1).
According to the finite-time convergence analysis presented in [52], the MSE between the

expectation average and the practical sample average can be upper bounded, and the error
asymptotically approaches zero. By omitting Γ(θt), an extra term is introduced in the upper
bound that is controlled by the moving average hyperparameter β and is close to zero if the
parameter is close to 1. In this case, the effect of Γ(θt) is negligible and then this term is
neglected for practical implementation. The resulting Langevin dynamics is refereed to p-LD,
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which runs as

(p-LD)

vt = βvt−1 + (1− β)(∇L(θt))2;

G(θt) = diag(
1

√
vt + ϵ

);

θt+1 = θt − ηG(θt)∇L(θt) +
√
2ηG(θt)N (0, 1).

In short, the preconditioned matrix for the equalized gradient makes the update of weights to
be dependent on the local curvature of the landscape. That is, for flat regions, the effective
learning rate is larger while for a curved region, the effective learning rate is smaller.

4.2. SGD with momentum and underdamped Langevin dynamics. Another modifica-
tion to plain SGD is to include the momentum in the gradient update scheme, which help
gradient descent method avoiding being trapped at local minima or a saddle point [84]. For
a loss function L(θ), the SGD with momentum updates the parameter by

(4.8)
vk = (1− α)vk−1 − η∇L(θk−1);

θk = θk−1 + vk,

where α denotes the hyper-parameter and η denotes the learning rate. The SGD with mo-
mentum (4.8) is closely related to an underdamped Langevin dynamics.

Considering the underdamped second-order Langevin dynamics

(4.9)
d2θt
dt2

= −dθt
dt
−∇L(θt) +

√
2z(t),

where z(t) denotes Gaussian random variable. It can be re-expressed as

(4.10)
dθt = mtdt

dmt = −∇L(θt)dt−mtdt+
√
2dWt,

where the variable mt is called the momentum variable. Recall a Hamilton system reads

(4.11)
dϑt

dt
=

∂H
∂µt

,
dµt

dt
= −∂H

∂ϑt
,

where the Hamilton is defined as H(ϑt, µt) := L(ϑt) +
1
2µ

T
t µt. Then, the first-order dynamics

system (4.10) can be interpreted as a Hamilton system with an artificial fraction term and
an additional Brownian motion. This interpretation implies that the underdamped Langevin
dynamics performs similarly as the HMC sampling method. Indeed, the stationary distri-
bution of the underdamped Langevin dynamics is p∞(θ,m) ∝ exp(−H(θ,m)). Hence its
marginalization distribution of θ is proportional to exp(−L(θ)).

Theorem 4.1 (Stationary distribution). Considering an underdamped Langevin dynamics
system defined by (4.10). Assume L(θ) ∈ C2(Rn). Then, its stationary distribution p∞(θ,m)
satisfies

p∞(θ,m) ∝ exp(−H(θ,m)),

where the Hamilton is defined as H(θ,m) := L(θ) + 1
2m

Tm. Furthermore, the marginalized
distribution p∞(θ) ∝ exp(−L(θ)).
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Proof. Let F =

(
0 −I
I 0

)
and D =

(
0 0
0 I

)
, and consider the stacked variable (θ,m).

Then, the dynamics system can be written as follows.

d

(
θ
m

)
= −

(
0 −I
I I

)(
∇L(θ)
m

)
dt+

√
2dWt = −[D + F ]∇H(θ,m)dt+

√
2DdWt,

where
√
D denotes the Hadamard element-wise operation of taking square root.

The evolution of the joint distribution pt(θ,m) under the dynamics is governed by the
Fokker-Planck equation

(4.12) ∂tpt(θ,m) = ∇T [(D + F )∇H(θ,m)pt(θ,m)] +∇T [Dpt(θ,m)]∇,

where the operator in the last term is defined as

(4.13)

∇T [Dpt(θ,m)]∇ =
∑
i,j

∂θi∂θj [D
11
ij pt(θ,m)] +

∑
i,j

∂θi∂mj [D
12
ij pt(θ,m)]

+
∑
i,j

∂mi∂θj [D
21
ij pt(θ,m)] +

∑
i,j

∂mi∂mj [D
22
ij pt(θ,m)],

where D =

(
D11 D12

D21 D22

)
. The right-hand side of (4.12) can be re-written as

RHS = ∇T {[D + F ][∇H(θ,m)pt(θ,m) +∇pt(θ,m)]} ,

since D,F are independent of both (θ,m), and we have ∇T (F∇pt(θ,m)) = ∂m∂θpt(θ,m) −
∂θ∂mpt(θ,m) = 0. Then, let ∂tpt(θ,m) = 0. We conclude that the invariant stationary distri-
bution p∞(θ,m) ∝ exp(−H(θ,m)). The marginalized distribution can be obtained similarly.

The discrete scheme of the system (4.10) is closely related to the SGD with momentum [25].
We write down the discredited scheme of the system (4.10). Suppose that the step-size for the
system is set to ϵ, using backward difference and forward difference formula for the derivative,
the discretization scheme of (4.10) is

θk − θk−1 = ϵmk

mk −mk−1 = −ϵ∇L(θk−1)− ϵmk−1 +
√
2ϵN (0, 1).

By setting v = ϵm and α = ϵ, η = ϵ2, we have the Langevin dynamics with the name SGm-LD:

(SGm-LD)
vk = (1− α)vk−1 − η∇L(θk−1) +

√
2αηN (0, 1)

θk = θk−1 + vk.

The difference between SGm-LD and the SGD with momentum optimizer (4.8) is the injection
of Gaussian noise along the iteration.
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4.3. Adam and Preconditioned underdamped Langevin dynamics. In the previous sec-
tions, we discussed two extensions of plain SGD and their connections to the related Langevin
dynamics: adaptive learning rate and the usage of momentum. The combination of these two
extensions leads to the Adam optimizer, a widely used one in training DNN. In this section,
we present a complete discussion on the Langevin dynamics that is related to Adam, which
results in a Adam-motivated Langevin MC method for effectively calculating the integral of
the MMSE estimator.

The dynamics related to Adam is defined as follows.

(4.14)
dθt = G(θt)mtdt;

dmt = −G(θt)∇L(θt)dt−mtdt+ Γ(θt)dt+
√
2dWt,

where Γ(θt) :=
∂
∂θG(θt). The stationary distribution associated to the new dynamics (4.14) is

given in the following theorem.

Theorem 4.2 (Stationary distribution). Consider the dynamics (4.14).Assume that L(θ) ∈
C2(Rn) and G(θ) > 0, then its stationary distribution of θ satisfies p∞(θ) ∝ exp(−L(θ)).

Proof. Denote F =

(
0 −G(θt)

G(θt) 0

)
and D =

(
0 0
0 I

)
. Consider the stacked variable

(θ,m). Then, the dynamics system (4.14) can be re-written as follows.

d

(
θ
m

)
= −

(
0 −G(θt)

G(θt) I

)(
∇L(θt)

m

)
dt+

(
0

Γ(θt)

)
dt+

√
2DdWt

= −[D + F ]

(
∇L(θt)

m

)
dt+

(
0

Γ(θt)

)
dt+

√
2DdWt.

By Lemma 3.2 , the evolution of the joint distribution pt(θ,m) is governed by the Fokker-
Planck equation:

∂tpt(θ,m) = ∇T [(D + F )

(
∇L(θ)
m

)
pt(θ,m)−

(
0

Γ(θt)

)
pt(θ,m)] +∇T [Dpt(θ,m)]∇.

Using the notation (4.13), we have

(4.15) ∇T [Fpt(θ,m)]∇ = −
∑
i,j

∂2

∂θi∂mj
(G(θt)pt(θ,m)) +

∑
i,j

∂2

∂mi∂θj
(G(θt)pt(θ,m)) .

By the interchange property of partial derivatives of a smooth function, we conclude that
∇T [Fpt(θ,m)]∇ = 0. Thus we have

∂tpt(θ,m) = ∇T [(D + F )

(
∇L(θ)
m

)
pt(θ,m)−

(
0

Γ(θt)

)
pt(θ,m)] +∇T [(D + F )pt(θ,m)]∇.

Notice that the matrix F only depends on the variable θt. By the chain rule, we have

∇T [(D + F )pt(θ,m)]∇ = ∇T [(D + F )∇pt(θ,m)] +∇T [((D + F )∇) pt(θ,m)].
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Therefore, we have the Fokker-Planck equation

∂tpt(θ,m) = ∇T

[
(D + F )

((
∇L(θ)
m

)
pt(θ,m) +∇pt(θ,m)

)]
−∇T [

(
0

Γ(θt)

)
pt(θ,m)] +∇T [((D + F )∇) pt(θ,m)].

Notice that

(D + F )∇ =

(
0 −G(θt)

G(θt) I

)(
∂
∂θ
∂
∂m

)
=

(
0

Γ(θt)

)
,

Thus, the Fokker-Planck equation becomes

∂tpt(θ,m) = ∇T

[
(D + F )

((
∇L(θ)
m

)
pt(θ,m) +∇pt(θ,m)

)]
.

Let ∂tpt(θ,m) = 0. Suppose the matrix D + F is positive semi-definite. The stationary
distribution of the dynamics is then proportional to exp(−L(θ) − 1

2 ∥m∥
2
2). Then, one can

conclude the marginalized distribution of θ.

Same as [52], we also neglect the Γ(θt) term in the practical implementation of the dy-
namics (4.14). The computation of Γ(θt) is not manageable in high-dimensional problem such
as training a deep neural network. Although the finite-time convergence of our Adam-LD and
the effect of Γ(θt) on convergence are still unknown, we expect similar convergence properties
as p-LD to hold. Then, the discrete dynamics of (4.14) is closely connected to Adam optimizer
in deep learning.

Suppose that the step-size for the system is set to ϵ and the Γ(θt) term is neglected. Using
the backward difference and forward difference, one can express a discretization scheme as the
following:

θk − θk−1 = ϵG(θk)mk;

mk −mk−1 = −ϵG(θk−1)∇L(θk−1)− ϵmk−1 +
√
2ϵN (0, 1)

Define v = ϵm and α = ϵ, η = ϵ2. One have

vk = (1− α)vk−1 − ηG(θk−1)∇L(θk−1) +
√
2αηN (0, 1);

θk = θk−1 +G(θk−1)vk−1.

Equivalently, it can be rewritten as

(4.16)
vk = (1− α)vk−1 + α∇L(θk−1);

θk = θk−1 − αG(θk)G(θk−1)vk +
√
2αG(θk)N (0, 1).

The discretization scheme (4.16) is related to Adam optimizer by replacing the preconditioned
matrixG(θk−1) byG(θk) in (4.16) and generating it by the moving average of squared gradient:

G2(θt) = diag(
1√

m̃k + ϵ
), where m̃t = βm̃t−1 + (1− β)(∇θL(θt−1))

2.
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The iterative scheme (4.16) clearly resembles Adam optimizer. The parameter α affects both
the learning rate and the weighting parameter 1 − α for the gradient to update vk, while
β serves as the weighting parameter for the squared gradient update of the preconditioned
matrix. To minimize bias error in the expectation average and practical sample average, it
is recommended to set the parameter β close to 1 [52]. Consequently, in our experiments,
we set β to 0.99. The stepsize α plays an important role in controlling both the asymptotic
accuracy and the convergence speed to the stationary state of Adam-LD. In our experiments,
we set α to 1e− 2 to achieve fast convergence to the stationary regime, even though it comes
at the expense of some asymptotic bias. This practice closely follows the default setting used
in the Adam optimizer to smoothen the convergence path for nonconvex learning problems
and enhance learning efficiency.

The main difference between Langevin dynamics and Adam lies in the additional scaled
noise term in Langevin dynamics. See Alg. 4.1 for the outline of the proposed Langevin MC
algorithm motivated from Adam, which is called Adam-LD in this paper. Alg. 4.1 is for
sampling from the distribution proportional to exp(−h−1L(θ)). The scaling parameter h is
the temperature of the posterior distribution density. In the presence of measurement noise,
the scaling parameter h corresponds to the temperature of the posterior distribution density,
which is proportional to the variance of measurement noise σ2

n. Motivated by the effectiveness
of the step-size correction of Adam, we also include such a correction step in Alg. 4.1, i.e.
Step 7 in Alg. 4.1. Different from Adam, the moving average parameter for the gradient of
the Langevin sampling scheme depends on the learning rate α.

Remark 4.3 (Hyper-parameter h for noise-free measurement). The theoretical derivation for
the hyper-parameter h is not applicable to noise-free data. Strictly speaking, the averaging is
not the MMSE prediction for deterministic noiseless scenario. Nevertheless, empirical results
show that setting the value of h to 0 performs well. In this case, the resulting algorithm
becomes deterministic, relying on the deterministic Adam algorithm for training the network
and regularization provided by DIP [86]. However, our approach differs from DIP in that
we use sample averaging for estimation, while DIP uses exponential moving averaging for
prediction.

Remark 4.4 (Connection to other langevin MC samplers in deep learning). Based on a stan-
dard overdamped Langevin dynamics, SGLD has been employed in [26] for image denoising
and inpainting using an untrained network. The proposed Adam-LD methods extended the
dynamics to a preconditioned underdamped dynamics, which is connected to the Adam opti-
mizer. The motivation of such an extension is for faster convergence rate and more efficient
sampling. The proposed Adam-LD is also applicable to general image recovery problem with
arbitrary measurement matrix. There are also some Langevin MC samplers for deep learning
with the extension to a preconditioned dynamics; See e.g . Adam SGLD [11] and Adaptively
preconditioned SGLD [48]. Both the proposed Adam-LD and Adam SGLD introduce adaptive
bias to the drift term. The injected Gaussian noise in the proposed Adam-LD is modified with
a pre-conditioned matrix, and injected Gaussian noise in the Adam SGLD method is plain
Gaussian noise without any pre-conditioning. Both Adam-LD and adaptively preconditioned
SGLD inject pre-conditioned Gaussian noise. The proposed Adam-LD utilizes the drift term,
while adaptively preconditioned SGLD method does not consider the drift term.
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Algorithm 4.1 Adam motivated Langevin MC sampling method (Adam-LD)

Input: Scaling h, step-size α, moving average parameter β, tolerance ϵ, objective function
L(θ), maximum iteration number T ;

Output: Samples from π(θ) ∝ exp(−h−1L(θ)): {θt}t=T ′,...,T , where T ′ is the number for
”burn-in” iterations

1: Initialization: t← 0, v0 ← 0
2: while t < T do
3: t← t+ 1
4: gt ← ∇θL(θt−1)
5: mt = βmt−1 + (1− β)g2t , %Moving average of the moving squared gradient
6: vt = (1− α)vt−1 + αgt, %Moving average of the gradient
7: m̂t = mt/(1− βt), v̂t = vt/(1− αt), %Step correction
8: G = diag( 1√

m̂t+ϵ
), %Preconditioned matrix

9: θt ← θt−1 − αGv̂t +
√
2αhGN (0, I) %Parameter updating

10: end while

5. Experiment. The proposed method, Adam-LD, is applicable to any network architec-
ture with DIP property. To focus on the evaluation of sampling effectiveness, the same U-Net
as DIP [86] is adopted for performance evaluation through all experiments. The DNN is a
5-layer auto-encoder with skip connections where each layer contains 128 channels. See [86]
for more details on network architecture. Recall that the regularized squared ℓ2-norm of the
fitting error in the domain of measurement, normalized by the dimension of measurement, is
used as the loss function for training the DNN:

(5.1) L(θ) =
1

M
∥y − Φ(f(θ; ϵ0))∥22 + λwd ∥θ∥22 ,

where weight decay parameter λwd = σ2
n

σ2
θM

affects the final performance. They vary with the

problem and the dataset. DIP [86] is as the baseline in this study. For DIP, the learning loss
is given by

(5.2) LDIP(θ) =
1

M
∥y − Φ(f(θ; ϵ0))∥22 .

For both DIP and the sampling methods, we use the same strategy for network weights
initialization. The weights are randomly initialized using the Xavier method, which is a
default initialization technique in the PyTorch library. For DIP, the setting is the same as
[86] where Adam is used for training with learning rate 1e−2 and no weight decay is imposed.
In addition, for noisy measurement, early stopping is needed in DIP for avoiding over-fitting,
thus we terminate the iteration once the loss objective LDIP(θ) in (5.2) is less than 0.9h, where
h is the noise level. Due to the normalization in the loss objective, the optimal value for h is
h = 2σ2

n/M , where σn denotes the standard variance of measurement noise.
The proposed Adam-LD method is evaluated on two image reconstruction problems: lin-

ear sparse-view CT reconstruction problem and nonlinear phase retrieval problem. For the
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experimental data, we used the CT100 dataset [27] for CT image reconstruction and Natural-6
and Unnatural-6 for phase retrieval [59]. CT100 dataset contains 100 real-world in-vivo CT
images where the last 10 images are used for testing, and the remaining is used as training
data for supervised learning methods. Using the same configuration in [22], the CT images
are resized to 128×128 pixels and we apply Radon transform on them to generate the 50-view
sinograms. For phase retrieval, there are six images in each Unnatural-6 and Natural-6 cate-
gory set [59] and they are of size 256× 256. We used three bipolar random masks to generate
the coded diffraction patterns as the measurements in frequency domain. Both the noiseless
and noisy measurements (corrupted by Gaussian white noise) are evaluated in the experi-
ments. For noisy measurement, its noise level is measured by signal-to-noise ratio (SNR).
The larger the SNR is, the less noise the measurement contains, and SNR= ∞ for noiseless
measurements. For noisy measurement y = Φ(x) + n, the Gaussian white noise

n = n′
∥∥∥ynoiseless

∥∥∥
2
/
∥∥n′∥∥

2
/
√

10SNR/10, n′ is Gaussian white noise vector,

is added to noiseless measurement ynoiseless to yield to noisy measurement. For CT, three
noise levels 30, 40, 50, 60, 70 in SNR are evaluated. For phase retrieval, three SNR levels 10, 15
and 20 are considered.

Other parameters. Except for the investigation of the convergence analysis, in the experi-
ments, the iteration number for sparse-view CT is set to T = 20, 000, the burn-in iteration is
set to T ′ = 14, 000. For phase retrieval, the maximum iteration T is set to 5000 and burn-in
iteration number T ′ = 2000.

For the noisy sparse-view CT experiment, the weight decay is set to 1e−6, and α = 1e−2
and β = 1e − 2. For the noisy phase retrieval experiment, the weight decay varies with the
dataset and the noise level. Specially, for Unnatural-6 dataset, weight decay is set to 1e− 4,
1e− 5, 1e− 6 for noise levels 10, 15, 20 respectively. For Natural-6 dataset, weight decay is set
to 1e − 3, 1e − 4, 1e − 5 for noise levels 10, 15, 20 respectively. The hyperparameters α and
β are still set to 1e − 2. For the noiseless case for both experiments, the weight decay is set
to zero. Langevin dynamics requires to set the scaling parameter h proportional to the noise
level of the measurements. In the experiments, we use the noisy measurement and its SNR

level to set the hyper-parameter h =
2∥y∥22

M210SNR/10 . For noiseless case, we set h = 0.
Computing machine specifications. We implemented the algorithms in Python, using the

PyTorch library. Our experiments were conducted on a server equipped with an Intel(R)
Xeon(R) Gold 6246 CPU and a NVIDIA TITAN RTX GPU. For the sparse-view CT appli-
cation, with 20,000 iterations, the algorithm took 1,663 seconds to process an image of size
128×128. In the case of phase retrieval with 5,000 iterations, the running time is 282 seconds
for an image of size 256× 256.

5.1. Study on statistical properties of the different samplers . When applying the sam-
pling algorithm to inverse problems, it is important to examine how the state space is randomly
explored. In pursuit of this objective, we present a partial empirical study on the convergence
behavior of four samplers: SGLD, SGm-LD, p-LD, and Adam-LD. We subject these samplers
to a comparative analysis under the same computational procedure and employing the same
neural network (NN).
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To check the exploration ability of the Markov chain, we run the four sampling methods for
the sparse-view CT experiment over a long time. The experiment is conducted on sparse-view
CT image reconstruction for one sample image (img 98) with (SNR=60dB). We run the four
algorithms for 3.85 × 106 iterations, where the first 2.5 × 106 iteration as the burn-in phase.
Only the 1.35e6 samples after the burn-in period is taken to compute the MMSE estimation.

For high-dimensional image estimation problems, such as those involving images of size
256 × 256, computing multivariate autocorrelation functions (ACFs) of the Markov chain to
study correlations between samples is not feasible. Therefore, following the approach in [50],
we tracked only the evolution of the mean squared error (MSE) between the MMSE xMMSE,
computed using the 100,000 samples after the burn-in phase, and the samples generated
by xi = f(θi; ϵ0). This provides a partial view of the correlations between the samples.
Figure 5.1 shows the MSE Euclidean distance between the final MMSE estimate and the
generated samples of the chain for the four sampling methods, including SGLD, SGm-LD,
p-LD and Adam-LD. It is observed that the samples fluctuate around the average values. The
presence of the structure of the MSE distance shows that the convergence is not achieved. The
MSE are decreasing for the SGLD and SGm-LD methods, which indicates that the samples
are not close to the stationary regime. The MSE plot of p-LD and Adam-LD exhibits more
unstructured, which means the samples are almost uncorrelated. Compared to p-LD, the
concentration belt of the samples from Adam-LD is narrower, which shows that the proposed
Adam-LD converges faster.

(a) SGLD (b) SGm-LD

(c) p-LD (d) Adam-LD

Figure 5.1. Evolution of the MSE (Mean Squared Error) distance between the final MMSE estimate and
the samples generated by the four samplers for the sparse-view CT application after the burn-in period. The
samples randomly oscillate around the average values means that they are uncorrelated. The samples from p-LD
and Adam-LD are almost uncorrelated.

ACFs in Fourier domain. Although the posterior covariance matrix is intractable in our
problem, we focus on the approximations of the posterior covariance of the reconstructed
images using the Fourier frequency. We depict the sample ACFs associated with the sparse-
view CT experiment. This is achieved by tracking the variance statistics of the magnitude
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of Fourier coefficient along the iteration. We sort the final empirical marginal variances of
the reconstruction in ascending order, and locate the indices corresponding to the smallest
values, the values at the first quarter position, the values at the half position, and the largest
values. Then we investigate the autocorrelation function (ACF) of the one-dimensional array,
whose elements are the magnitude of the Fourier coefficient of the generated samples at a
certain position. The slowest and the fastest converging direction correspond to the Fourier
coefficients with the lowest and the highest marginal empirical variances. The ACFs for other
two positions are called the median converging directions. More specially, we denote the
median converging directions median-.25, and median-.50 respectively. See Figure 5.2 for
the sample ACFs in the Fourier domain. For the four sampling methods, the ACF along
the fastest direction vanishes, which indicates that the independence has achieved after the
burn-in period. For Adam-LD, the ACF along the slowest direction vanishes quickly after
the burn-in period. However, the slowest converging directions for SGLD, SGm-LD has a
decreasing curves with oscillation, which indicates that the Markov chain does not achieve
the stationary regime after the burn-in period. The comparison demonstrates the efficiency
advantage of the Adam-LD for sampling the neural network.

(a) SGLD (b) SGm-LD

(c) p-LD (d) Adam-LD

Figure 5.2. ACFs for the sparse-view CT experiment. The ACFs are shown for lags up to 1.35e6 for
the four samplers. Independence is not achieved along the two median directions and the slowest direction
(correspond to the final empirical marginal variances of the samples in the Fourier domain). The comparison
demonstrates the efficiency advantage of the Adam-LD.

Evolution of the empirical standard deviation. To the best of our knowledge, there is also
lack of full investigation on the convergence of second-order moment statistics of Langevin
dynamics-based method for the nonconvex learning. We only depict the evolution of the
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empirical standard deviation in the revision by setting a long running time, i.e., 3.85e6 iteration
with 2.5e6 burn-in iteration. See Figure 5.3 the evolution of the RMSE (Root Mean Squared
Error) between the current empirical standard deviation computed using all the generated
samples from the burn-in iteration to the current iteration and the final empirical standard
deviation. The decreasing curve demonstrates that the convergence of second order moment
of the sampling method is not achieved with the running iterations.

Figure 5.3. Evolution of the RMSE (Root Mean Squared Error) between the final standard deviation and
the estimated current standard deviation for the sparse-view CT experiment. The decreasing curves shows that
the convergence of the second order moment is not achieved.

5.1.1. Ablation study.
Setting of the method with different samplers. For SGLD and SGm-LD, we set the learning

η = 1e − 3 to avoid exploding loss. The α is set to 0.9 for SGm-LD borrowed from the
literature [84]. For p-LD and Adam-LD, we set the β = 0.99 and ϵ = 1e − 8 by the default
values in the PyTorch library. For other hyper-parameter, the learning rate η, α are set to
1e− 2 for p-LD and Adam-LD respectively.

Trade-off between reconstruction performance and computational cost. In this experiment,
we study the reconstruction performance with respect to the number of iterations. Note that
the setting of maximum iteration to 2e4 in our experiment can not lead to the convergence
to the stationary, and the MMSE is computed with a biased distribution.

In the remaining experiments, the total iterations setting is the same as before. The
iteration number for sparse-view CT is set to T = 20, 000, the burn-in iteration is set to
T ′ = 14, 000. For phase retrieval, the maximum iteration T is set to 5000 and burn-in iteration
number T ′ = 2000. Despite the insufficient iteration numbers to maximize the reconstruction
performance, the proposed method still provided a noticeable performance gain over existing
methods.

If the computational cost permits, the performance with more iterations can be boosted.
For example, when processing a single image in the sparse-view CT application with 1,200,000
iterations, the PSNR of the result is 39.57dB. In comparison, the PSNR of the result from
20,000 iterations is 36.31dB. However, it took 27 hours to run 1,200,000 iterations, whose
computational cost is overwhelming in practice. To meet practical need, we make a trade-off
between reconstruction performance and computational cost.
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Efficiency and effectiveness of Adam-LD MC sampler. Two image reconstruction problems
are set as the following: CT reconstruction with noisy measurement (SNR= 50) and phase
retrieval with noisy measurement (SNR= 10). See Figure 5.4 for the comparison of different
methods in terms of objective loss value and quantitative PSNR value with respect to iteration
number. Here we does not recall the sample average in the MMSE estimation. It can be seen
that for CT image reconstruction, Adam-LD is the one with the fastest decreasing speed among
all Langevin MC methods, in terms of both loss value and reconstruction error. The decay
of loss value of Adam-LD is slower than the DIP which calls Adam optimizer. However, the
DIP suffers from overfitting as its reconstruction error increases after around 2000 iterations.
In contrast, Adam-LD does not suffer from over-fitting, as its reconstruction error does not
increase with more iterations. Note that there is a sharp decrease of the PSNR in the early
stage. It may either due to abrupt mode transition of the Langevin dynamics iteration or due
to insufficient burn-in time.
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Figure 5.4. Comparison of the evolution of the PSNR metric of the individual samples from different
Langevin MC samplers for two image reconstruction problems. Top row is for CT and Bottom row for phase
retrieval. (a) and (c) Loss value over iteration; (b) and (d) reconstruction accuracy in PSNR over iteration.

Performance comparison of different Langevin MC samplers over the dataset. In this experi-
ment, the comparison of the MMSE estimate using the four different Langevin MC samplers
is conducted over the datasets for two image reconstruction tasks. See Table 5.1 for the
comparison of quantitative performance among different samplers. It can be seen that the
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proposed Adam-LD is clearly the best performer for both tasks, and it outperforms the other 3
samplers by a large margin. This clearly indicates the advantage of Adam-LD over other MC
samplers when being used for sampling network weights to approximate MMSE estimate. In
other words, the usage and momentum and the precondition in the Adam-LD is very helpful
for efficient sampling in the context of this paper.

Table 5.1
Comparison of the MMSE with different Langevin dynamics sampling methods applied to sparse-view CT

and phase retrieval. These sampling methods run 2e4 iterations with 14000 burn-in iteration for sparse-view
CT application. They run 5000 iterations with 2000 burn-in iteration for phase retrieval.

Task Dataset SNR SGLD SGm-LD p-LD Adam-LD

C
T

C
T
1
00

30 27.34 28.13 28.78 28.94
40 27.94 30.66 32.02 32.46
50 29.83 32.33 34.47 36.83
60 29.89 32.34 34.76 38.58
70 29.96 32.37 34.77 39.04
∞ 29.98 32.48 34.93 39.26

P
R

U
n
n
at
.-
6 10 22.09 26.00 30.24 31.23

15 22.12 26.05 33.68 34.29
20 22.15 26.15 36.69 37.48
∞ 22.16 26.15 42.33 43.16

P
R

N
at
u
ra
l-
6 10 19.60 23.07 24.57 25.91

15 19.70 23.25 29.42 29.86
20 20.10 24.01 32.06 32.76
∞ 20.13 24.02 41.38 44.24

5.2. Sparse-view CT image reconstruction. X-ray computed tomography (CT) imaging
is an important application in medical imaging. The measurement is a collection of the discrete
line integral (i.e. Radon transform) along a set of scanning lines. The measurement y, also
called sinograms, are related to the underlying image x of internal organs by:

y = Ax+ n,

whereA ∈ RM×N denotes the corresponding Radon transform. In this experiment, we concern
the image reconstruction problem in sparse-view CT. Sparse-view CT aims at reduce the
number of measured projections for several benefits in practice, such as reducing patient dose
and reducing scan time. In comparison to traditional CT, image reconstruction for sparse-view
CT is more challenging due to fewer measurement available for estimating the image.

For experimental data of sparse-view CT imaging, the implementation of Radon trans-
formation is from the open-sourced code 1. As the focus of this paper is on dataset-free
methods for image reconstruction, the performance evaluation of the proposed Adam-LD

1https://github.com/matteo-ronchetti/torch-radon

https://github.com/matteo-ronchetti/torch-radon
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method focuses on the comparison to other dataset-free methods, including both traditional
regularization methods and self-supervised or unsupervised deep learning methods.

The following additional methods are included: classic Filter back projection (FBP)
method with ramp filter, TV regularization method 2, four self-supervised learning meth-
ods: DIP, SBNN [65]), and (R)EI [23]. In addition, the supervised learning method [22] using
the same UNet architecture as [23], denoted as S-EI, is included for showing the performance
gap between supervised and unsupervised learning methods. As a baseline, we also include
the results of Adam for direct minimization of L(θ) in (5.1), without employing sampling or
averaging. It is worth noting that overfitting is observed for Adam, similar to DIP. To address
this concern, we employ the early stopping strategy for Adam, similar to DIP, to report the
quantitative results.

The impact of weight decay parameter to the results. In this section, we conduct an exper-
iment to demonstrate the impact of different weight decay parameters on the overall perfor-
mance. For this purpose, we test the weight decay parameters from a set 1E + 0, . . . , 1E − 9
at three different SNR levels (40, 60, and 70) in the context of the sparse-view CT experi-
ment. The comparison of performance with different choices of the weight decay parameter
is presented in Table 5.2. The experiments showed that the best performance is consistently
achieved when the parameter value is set to 1E − 6 for the sparse-view CT experiment, re-
gardless of the SNR levels.

Table 5.2
Performance of Adam-LD for sparse-view CT with different weight decay parameters

SNR 1E+00 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09

40 25.47 28.19 30.35 31.52 32.17 32.40 32.46 32.41 32.32 32.32
60 26.40 30.67 33.08 35.81 37.49 37.76 38.58 38.15 38.22 38.15
70 26.69 30.43 33.58 36.68 38.73 38.78 39.04 38.70 38.77 38.70

Quantitative and visual results. See Table 5.3 for the performance comparison between
Adam-LD and other methods for image reconstruction of sparse-view CT. Clearly, the pro-
posed Adam-LD outperformed all other dataset-free methods by a noticeable margin. The
advantage of the proposed Adam-LD method in quantitative metric is also consistent with its
advantage in visual quality. See Figure 5.5 for visual comparison of an exemplary instance
with zoomed-in regions. See Figures 5.6 and 5.7 for visual comparison of more reconstructed
results from different methods. Upon visualizing the reconstructions, it becomes evident that
the proposed Adam-LD method yields the best results, featuring sharper edges. Conversely,
the images reconstructed by REI, DIP, and SBNN exhibit oversmoothing effect in their re-
sults. This observation aligns with the fact that neural networks trained using the ℓ2 loss
tend to promote smoothed images [95, 87]. Regarding the FBP reconstruction, it is afflicted
by amplified noise artifacts, which is a well-known issue for FBP. On the other hand, the TV
solution suffers from staircasing issues, stemming from oversimplified assumptions about the

2The regularization parameter is set by the non-Bayesian discrepancy principle [85]. Here TV method only
performs MAP estimation and not MMSE estimation. There are indeed MMSE restoration method involving
TV regularization imaging problems fusing proximal MCMC sampling methods, such as [57, 34]
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anisotropic total variation prior [3] concerning real-world images.

Table 5.3
Average PSNR(dB) of the results from different methods for CT image construction w.r.t. different SNR.

Adam-LD with α = β = 1e− 2 runs 2e4 iterations with 14000 burn-in iteration.

Method Regularization Supervised (Un)Self-supervised

SNR
FBP TV S-EI DIP SBNN (R)EI

Adam Adam-LD
[64] [19] [22] [86] [65] [23]

30 13.35 26.14 26.57 24.63 24.02 25.51 27.04 28.94
40 21.42 29.79 29.53 29.11 29.29 29.36 31.91 32.46
50 29.54 34.67 33.28 32.54 30.31 32.61 35.69 36.83
60 30.16 35.55 37.04 33.27 30.22 36.56 36.43 38.58
70 30.23 35.65 37.52 32.76 30.03 36.80 37.65 39.04
∞ 30.24 35.66 38.17 34.76 33.87 36.94 37.67 39.26

Truth

Truth

FBP

FBP

TV

TV

REI

REI
DIP

DIP

SBNN

SBNN

Adam

Adam

AdamLD

AdamLD

Figure 5.5. Reconstruction of sparse-view CT using Gaussian noisy observation (SNR = 40) for ‘img 90’.
Adam-LD with α = β = 1e−2 runs 2e4 iterations with 14000 burn-in iteration. MMSE from Adam-LD produce
a noiseless restoration with sharper edges.
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Truth FBP TV REI

DIP SBNN Adam AdamLD

Truth FBP TV REI

DIP SBNN Adam AdamLD

Truth FBP TV REI

DIP SBNN Adam AdamLD

Figure 5.6. Reconstruction of sparse-view CT using Gaussian noisy observation (SNR = 40). Adam-LD
with α = β = 1e−2 runs 2e4 iterations with 14000 burn-in iteration. MMSE from Adam-LD produce a noiseless
restoration with sharper edges.
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Truth FBP TV REI

DIP SBNN Adam AdamLD

Truth FBP TV REI

DIP SBNN Adam AdamLD

Truth FBP TV REI

DIP SBNN Adam AdamLD

Figure 5.7. Reconstruction of sparse-view CT using Gaussian noisy observation (SNR = 70). Adam-LD
with α = β = 1e−2 runs 2e4 iterations with 14000 burn-in iteration. MMSE from Adam-LD produce a noiseless
restoration with sharper edges.
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5.3. Phase retrieval. Phase retrieval is an important imaging technique in scientific imag-
ing applications, which reconstructs an image from the magnitude of its measurements in
Fourier domain. It needs to solve an ill-posed non-linear problem:

b = |Ax|+ n,

where | · | denotes absolute value and A denotes a sensing matrix composed of Discrete Fourier
transform and bipolar (or uniform) random masks; See more details in [59]. Following the
same setting as [59], we set the noise level of the measurement data in terms of its SNR. Note
that the absolution operator in phase retrieval is not differentiable everywhere. But the set of
points at which L(θ) or LDIP(θ) is not differentiable is a zero probability measure. The gradient
can be computed using the PyTorch library, where the subgradient is used when applicable.
Same as the experiments on sparse-view CT image reconstruction, the comparison includes
other existing works on phase retrieval: non-learning Wirtinger flow (WF) method [17], two
plug-and-play deep learning method: prDeep [59], prGMAP [60] and three self-supervised
learning methods: DIP [86], SBNN [65] and the baseline Adam which directly minimizing the
objective.

The impact of weight decay parameter to the results. In this section, we conduct an exper-
iment to demonstrate the impact of different weight decay parameters on the overall perfor-
mance. For this purpose, we test the weight decay parameters from a set {1E+0, . . . , 1E−9}
at three SNR levels (i.e., 10, 15 and 20) for phase retrieval experiment on atural-6 dataset.
Please refer to Table 5.4 for a comparison of performance using different values of the weight
decay parameters. The optimal weight decay for phase retrieval varies depending on the noise
levels. In other words, finding the optimal weight decay setting requires prior knowledge of
the noise level in the data.

Table 5.4
Performance of Adam-LD for phase retrieval with different weight decay parameters

SNR 1E+00 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09

N
at
.-
6 10 15.14 15.17 15.18 25.91 24.01 20.67 19.01 18.45 18.44 18.35

15 15.45 15.49 15.50 25.00 29.86 28.30 25.89 24.68 24.55 24.55
20 15.26 15.30 15.31 25.15 30.92 32.76 31.86 30.88 30.50 30.47

Quantitative and visual results. See Table 5.5 for a quantitative comparison of different
methods over two datasets. The Wirtinger flow, in fact, optimizes the nonlinear least
squares objective in the pixel domain using the measurement data. In scenarios with noiseless
data, this nonconvex objective exhibits a benign loss landscape, making optimization towards
global minima less problematic [81]. Since the gradient flow occurs in the pixel domain, the
algorithm converges much faster, resulting in good performance. Thus, for noiseless data, the
gradient descent (Wirtinger flow) method is the best performer and the proposed Adam-LD is
the second best. However, for noisy data, Adam-LD is the best performer with a large gap to
the second best performer. The absence of regularization in the Wirtinger flow leads to inferior
results when dealing with noisy data. This indicates practical value of the proposed Adam-
LD method as noise is unavoidable in real-world data. See Figure 5.8 for visual comparison
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of an exemplary instance with zoomed-in regions. See Figures 5.9 and 5.10 for visualization
comparison of sample data from noisy measurements. It can be seen that the advantage of
the proposed Adam-LD method remains in terms of visual quality. Due to the absence of
proper regularization, the WF results in erroneous reconstructions, except in the noiseless
case. Both the DIP and Adam methods produce erroneous reconstructions, indicating that
the early stopping strategy does not yield a satisfactory result. On the other hand, the plug-
and-play PrDeep approach leads to oversmoothed reconstructions, likely due to the utilization
of a generic CNN-based denoiser. Similarly, the SBNN algorithm also produces oversmoothed
reconstructions, similar to PrDeep. Furthermore, the reconstructions from SBNN exhibit
erroneous artifacts around the silent edge.

Table 5.5
Average PSNR(dB) value of the results of different phase retrieval methods w.r.t. different SNR. Adam-LD

with α = β = 1e− 2 runs 5000 iterations with 2000 burn-in iteration.

Method GD plug-and-play (Un)Self-supervised learning

Dataset SNR
WF prDeep prGAMP DIP SBNN

Adam Adam-LD
[17] [59] [60] [86] [65]

U
n
n
at
.-
6 10 20.37 30.2 30.04 28.71 29.99 28.26 31.23

15 26.18 32.13 32.88 32.08 31.89 31.34 34.29
20 31.47 35.44 35.87 32.49 32.22 35.05 37.48
∞ 53.32 51.13 50.76 41.24 41.86 41.94 43.16

N
at
u
ra
l-
6 10 15.33 26.11 25.38 24.54 24.65 23.68 25.91

15 21.12 28.79 28.23 28.59 29.52 26.35 29.86
20 26.42 31.33 30.97 31.17 30.19 29.79 32.76
∞ 50.99 46.38 46.01 41.96 38.09 39.14 44.24

5.4. The marginal posterior standard deviation of the inference. The proposed sampler
methods provide samples that allow us to calculate the marginal posterior standard deviation,
measured by the variance of these samples. We compared the marginal posterior standard
deviation from the three samplers. In the experiments, SGLD and SGm-LD can not achieve
the close-to-stationary regime with our iteration configuration. Thus for fair comparison, we
set the MMSE estimate to the ground truth in the posterior standard variance computation for
all three samplers. Please refer to Figures 5.11 and 5.12 for the visualization of the marginal
posterior standard deviation estimation of the reconstruction of a sample for sparse-view CT
and phase retrieval, respectively.

Note that there may exist a bias between the ground truth and the MMSE estimate
associated to the target distribution. Moreover, a high standard deviation does not necessarily
indicate a bad model or undesirable performance. Instead, it simply signifies a higher level
of uncertainty in the predictions, which can be a valuable insight in certain scenarios. It is
interesting to observe that the values of the uncertainty map, represented by the standard
deviation, align qualitatively with the reconstruction quality. One notable observation is that,
for all methods, regions with salient structures exhibit larger standard deviations than those
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Figure 5.8. Phase retrieval results with bipolar masks and sample data with SNR=10 for ‘cameraman’.
Adam-LD with α = β = 1e− 2 runs 5000 iterations with 2000 burn-in iteration.

with smooth regions. This observation is consistent with a well-known fact in practice, smooth
regions are easier to estimate than regions with salient structures in image reconstruction. The
difficulty arises from distinguishing abrupt changes caused by salient edges or noise. Moreover,
the results obtained from data with low noise levels exhibit smaller standard deviation values
compared to those obtained from data with high noise levels. This observation is also in line
with the fact that, for a given method, higher noise levels in the measurement generally lead
to more erroneous results. Overall, the uncertainty map from the Adam-LD method shows
the smallest standard deviation value among all methods under the same configuration. This
suggests that the Adam-LD method is likely to provide more reliable and less uncertain
reconstructions.

6. Conclusion and future work. This paper presented an self-supervised deep learning
method for solving inverse problems in imaging. The basic idea is to re-parameterize an
image by a deep network for exploiting the deep image prior and then derive an algorithm
which is motivated by approximating its MMSE estimator via an MC sampling method.
The key of such an approach is an effective MC sampler, and we proposed a Langevin MC
method motivated by the idea behind Adam optimizer widely used in deep learning. The
proposed method is applied to solve two image reconstruction problems: sparse-view CT
image reconstruction and phase retrieval. The experiments showed that in most cases, the
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Figure 5.9. Comparison of the reconstructions produced by different methods over the dataset [59] for the
phase retrieval inverse problem with SNR = 10. Adam-LD with α = β = 1e− 2 runs 5000 iterations with 2000
burn-in iteration. A bipolar is mask is applied on the Fourier measurement.
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Figure 5.10. Comparison of the reconstructions produced by different methods over the dataset [59] for the
phase retrieval inverse problem with SNR = 15. Adam-LD with α = β = 1e− 2 runs 5000 iterations with 2000
burn-in iteration. A bipolar is mask is applied on the Fourier measurement.
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Figure 5.11. The marginal posterior standard deviation of three samplers for sparse-view CT from a sample
data with SNR=50, 70 respectively.

SNR=10

SNR=15

SGm-LD p-LD Adam-LD

Figure 5.12. The marginal posterior standard deviation of three samplers for phase retrieval from a sample
data with SNR=10, 15 respectively.

proposed self-supervised approach outperforms existing non-learning and dataset-free deep
learning methods by a large margin.

One limitation of our proposed method is that the noise level needs to be provided in
advance. In the future, we aim to study self-supervised deep learning methods for image re-
construction that are blind to the noise level, eliminating the need for its explicit specification.
Additionally, it remains a challenging question how to derive an effective Langevin MC sam-
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pling method that can provide accurate estimates for MMSE estimation, within reasonable
computational cost, In the future, we will delve into investigating this question and exploring
approaches to achieve more precise and reliable MMSE estimates through improved sampling
techniques.
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