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Abstract

Snapshot compressive hyperspectral imaging necessitates the reconstruction
of a complete hyperspectral image from its compressive snapshot measure-
ment, presenting a challenging inverse problem. This paper proposes an en-
hanced deep unrolling neural network, called EDUNet, to tackle this problem.
The EDUNet is constructed via the deep unrolling of a proximal gradient de-
scent algorithm and introduces two innovative modules for gradient-driven
update and proximal mapping reflectivity. The gradient-driven update mod-
ule leverages a memory-assistant descent approach inspired by momentum-
based acceleration techniques, for enhancing the unrolled reconstruction pro-
cess and improving convergence. The proximal mapping is modeled by a sub-
network with a cross-stage spectral self-attention, which effectively exploits
the inherent self-similarities present in hyperspectral images along the spec-
tral axis. It also enhances feature flow throughout the network, contributing
to reconstruction performance gain. Furthermore, we introduce a spectral
geometry consistency loss, encouraging EDUNet to prioritize the geometric
layouts of spectral curves, leading to a more precise capture of spectral in-
formation in hyperspectral images. Experiments are conducted using three
benchmark datasets including KAIST, ICVL, and Harvard, along with some
real data, comprising a total of 73 samples. The experimental results demon-
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strate that EDUNet outperforms 15 competing models across four metrics
including PSNR, SSIM, SAM, and ERGAS.

Keywords: Hyperspectral imaging, Snapshot compressive imaging, Image
reconstruction, Deep unrolling networks

1. Introduction

Hyperspectral imaging aims at capturing a hyperspectral image (HSI)
in the form of a 3D cube of intensities representing the integrals of radi-
ance of a real scene across a wide range of spectral bands. HSIs provide
rich spectral characteristics of objects or scenes, which are useful for finding
objects, identifying materials, or detecting processes. As a result, hyperspec-
tral imaging finds various applications in science and industry, such as remote
sensing [1, 2], mineral exploration [3], medical diagnosis [4] and environment
monitoring [5].

One key part in hyperspectral imaging is image reconstruction, i.e., how
to efficiently and accurately reconstruct HSIs from measurement data. This
reconstruction process is tied with the scanning technology. There are many
scanning technologies in hyperspectral imaging, and a popular one is the
snapshot compressive spectral imaging, often referred to as coded aperture
snapshot spectral imaging (CASSI) [6], which leverages compressive sensing
for rapid and efficient acquisition of HSIs.

Different from traditional techniques that use sensor arrays to measure ob-
jects at multiple spectral bands, CASSI captures hyperspectral cubes in just
a single coded 2D snapshot. This snapshot measures objects modulated by
a physical mask and a disperser, creating a mixture of different wavelengths.
Subsequently, a reconstruction algorithm is employed to reconstruct the 3D
HSI from the 2D compressive snapshot.

The CASSI-based HSI reconstruction is a challenging ill-posed inverse
problem. In recent years, deep learning has emerged as a prominent approach
for developing powerful solutions to this problem; see e.g. [7, 8, 9, 10, 11, 12].
Many of these methods utilize neural networks (NNs) to model the inverse
mapping from a snapshot to its corresponding HSI, which are then learned
over extensive datasets. This paper focuses on tackling the CASSI-based HSI
reconstruction problem.
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1.1. Motivation and Main Idea

Among the existing designs of NN architectures, deep unrolling network
(DUN) has become the most popular one for HSI reconstruction due to its
capability of incorporating imaging physics as well as its interpretability,
which can mitigate possible overfitting. A typical DUN unfolds an iterative
scheme that solves a regularized variational model of hyperspectral imaging,
where the regularization-related components are replaced by learnable NN
modules. This unfolding process can be interpreted as a sequence of updating
steps and refinement steps:

· Update−−−−→ · Refine−−−→ · Update−−−−→ · Refine−−−→ · · · .

Despite extensive studies on DUNs, there is still a practical need for higher
reconstruction accuracy. In this paper, we propose an enhanced DUN for
CASSI-based HSI reconstruction, which exhibits improved performance com-
pared to existing deep NNs.

Our proposed DUN is built upon the proximal gradient descent (PGD)
algorithm [13, 14, 15], a widely used iterative numerical scheme for solving
regularization models related to inverse problems in imaging. The PGD
algorithm alternates between the following two steps:

1. A gradient descent step to update the image estimate;

2. A proximal mapping step for refining the estimate by exploiting specific
characteristics of latent images.

Contrary to many existing DUNs that utilize half-quadratic splitting (HQS)
(e.g. [8]) or the alternating direction method of multipliers (ADMM) (e.g. [16]),
whose update step requires computing an exact solution of a large linear sys-
tem arsing from the fidelity term of the unrolled model, our approach adopts
a PGD-based update which only employs a single-step gradient descent. This
simplification significantly reduces the computational complexity. Further-
more, our proposed DUN sets itself apart from existing models with three
specific enhancements tailored for HSI reconstruction. These enhancements
refine the main steps above and the training loss, offering substantial advan-
tages over existing techniques. Detailed discussions of these enhancements
are provided below.
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Momentum inspired memory-assistant gradient-based update. In most exist-
ing DUNs, the updating step involves a predefined, non-learnable process,
such as gradient-based updates. However, these updates are based on the
first-order gradient which tends to follow a zig-zag direction, which slows
down the movement towards the minima. Moreover, they exhibit slow con-
vergence near the minima or saddle points, as the gradient magnitude rapidly
vanishes in those regions. To address this, popular techniques like momen-
tum are utilized, for instance, in RMSProp [17], Adam [18] and SUM [19].
Instead of relying solely on the current gradient, momentum accumulates
the gradients from past steps to determine the direction of movement. This
accumulation helps accelerate convergence by dampening zig-zag oscillations
and building up speed towards the minima, allowing quicker convergence.

Motivated by the advantages of momentum for gradient-based updates,
we introduce a novel approach that incorporates the concept of momentum
into our DUN-based model for gradient-driven updates. To retain the ef-
fectiveness of momentum, which relies on the memory of past gradients, we
design a neural block with a memory-assistant mechanism. This mechanism,
implemented using convolutional long short-term memory (ConvLSTM) [20]
allows utilizing gradient descents from previous stages. ConvLSTM not only
leverages the gradients’ memory but also potentially exploits the local struc-
ture of the measurement matrix, related to the update steps, providing ad-
ditional benefits for our approach. By introducing the memory-assistant
mechanism through ConvLSTM, our approach enhances the gradient-driven
updates without compromising the interpretability of DUNs.

Cross-stage self-attention for refinement steps. An HSI exhibits specific phys-
ical characteristics, one of which is self-similarity and strong correlation along
the spectral axis. The spectral axis entries represent the same object region
at different wavelengths. To effectively exploit these characteristics for better
performance and reduced overfitting, we propose a sub-NN equipped with a
self-attention (SA) module along the spectral axis for the proximal mapping
step. Although SA [21] is not a new concept, our design stands out from
existing approaches by introducing a cross-stage mechanism.

The cross-stage SA module serves an additional purpose of exploiting the
similarities among features learned at different stages. These similarities arise
from the consistent role of the refinement step across various stages. By form-
ing a path between two different stages, the cross-stage SA efficiently delivers
features across stages and facilitates interactions among features from differ-
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ent stages. The benefits of leveraging such feature similarities are twofold.
First, it streamlines the feature delivery process across stages, promoting
more efficient information flow and enhancing the model’s ability to leverage
valuable information throughout the DUN. Second, it brings certain regular-
ization by establishing similarity relation of distinct stages.

Spectral geometry consistency loss for training HSI reconstruction NNs. In
addition to the standard ℓ1 loss, we propose a spectral geometry consistency
loss for training the model. This loss encourages the model to focus more on
the profile of spectral changes during the reconstruction process, effectively
regularizing the NN and empirically improving reconstruction accuracy.

1.2. Contributions

See below for a summary of our technical achievements:

1. We introduce a momentum-motivated memory-assistant learnable mod-
ule that effectively models the gradient descent steps of the PGD algo-
rithm without compromising its interpretability.

2. We propose a cross-stage spectral self-attentive NN, specifically de-
signed to model the proximal mapping. It enables the exploitation
of characteristics of HSIs and enhances the efficiency of feature flow
throughout the whole DUN.

3. Our training scheme incorporates a spectral geometry consistency loss,
which effectively regularizes the learning process by leveraging the spe-
cific characteristics of HSIs.

These advancements lead to a lightweight DUN with superior performance
over existing HSI reconstruction methods. As a result, this work not only
enriches the technical aspects, but also broadens the practical applicability
of CASSI-based hyperspectral imaging.

2. Related Work

2.1. Regularization-Based Methods with Pre-Defined Image Priors

Regularization, which imposes specific priors on HSIs, is a prevalent
method in HSI reconstruction. Several representative image priors initially
proposed for natural images in digital photography have been extended to
HSIs. For instance, the sparsity prior [22] assumes that the gradients of

5



an HSI are sparse. The self-similarity prior [23, 24, 25, 26, 27] assumes that
patches of an HSI tend to repeat themselves throughout the image. However,
these priors often fall short of accurately representing HSIs with complex
structures, limiting their effectiveness in high-accuracy reconstruction.

Recent studies have shifted from introducing image priors as variational
models to embedding them within pre-trained denoising NNs. For instance,
Plug-and-Play methods [22, 28, 29] utilize denoising NNs pre-trained on HSIs
or natural images to regularize the reconstruction process. While these de-
noising NN-based priors show improved accuracy compared to pre-defined
priors, their generalizability is constrained. This limitation stems from the
fact that ideal priors used in reconstruction are typically aimed at mitigating
residual errors during the reconstruction process, rather than random noise
which is the primary focus of a denoising NN.

An alternative strategy involves self-supervised learning, as outlined in
the studies [30, 31], which leverages the implicit image prior encoded in an
untrained NN. This strategy employs an untrained NN to re-parameterize
a latent HSI, subsequently training it to align with observed snapshot. Al-
though this online learning approach is promising, it incurs significant com-
putational costs due to the necessity of NN re-training for each snapshot in
test time.

In comparison to all aforementioned methods, our approach leverages an
end-to-end trained NN, which can learn powerful data-driven yet generaliz-
able priors to handle unseen HSIs with complex structures, while avoiding
the costly test-time training.

2.2. End-to-End Deep Learning-Based Methods

An increasingly prominent approach for HSI reconstruction is end-to-end
training of a deep NN that maps a snapshot to the corresponding latent HSI.
This approach has been widely explored in the literature; see e.g. [9, 32, 33,
34, 35, 36]. These studies primarily concentrate on the design of architecture,
often neglecting the physical model of CASSI. This missing utilization of
physics of CASSI can result in overfitting, particularly when the training
data is not comprehensive enough. To utilize the physical model of CASSI
for alleviating possible overfitting, some DUNs have been proposed to achieve
physics awareness (e.g. [12, 37, 38]). A DUN typically consists of paired steps:
one step for updating the estimate of the latent HSI and the other step for
refining the estimate with a learnable prior. Most existing works focus on the
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latter step, which can be viewed as a denoising NN exploiting various data-
adaptive image priors, e.g., spatial-spectral prior [8], non-local self-similarity
prior [10], and patch-level Gaussian scale mixture prior [39]. In the following,
we review the key techniques used in existing DUNs that are closely-related
to our work.

Learning updating steps in DUNs. Zhang et al. [12] proposed a method that
replaces the operators Φ,Φ⊤ involved in the gradient descent step of PGD,
by convolutions and residual blocks. They incorporated channel attention
to estimate the step size in PGD from the output of the previous stage.
In contrast, motivated by the momentum-based acceleration, our approach
differs in that we do not learn these operators but rather utilize them to
achieve a more effective update step. It is worth noting that Mou et al. [40]
used residual blocks to estimate gradient descent steps for natural image
recovery. The methods above predominantly concentrate on independently
optimizing the PGD step within each individual stage. They overlooked the
potential advantages of integrating the information flow of gradient-based
updating steps across various stages, which could significantly improve the
PGD optimization process. In contrast, we employ ConvLSTM to exploit
the inter-stage dependencies for an accurate estimation of the update step.

Self-attention for HSI reconstruction. Existing works on HSI reconstruction
have extensively explored the use of SA. For instance, Miao et al. [9] utilized a
generative adversarial network with SA for the initial stage. Meng et al. [41]
employed three spatial-spectral SA modules to exploit the spatial-spectral
correlation of HSIs, while Hu et al. [35] developed a spatial-spectral attention
module with efficient feature fusion. Cai et al. [42] proposed a coarse-to-fine
transformer, employing a spectra-aware screening mechanism for selecting
coarse patches and using a customized spectra-aggregation hashing multi-
head SA for fine pixel clustering and self-similarity capturing.

Unlike the aforementioned methods which define spatial features as tokens
and ignore the correlation between feature channels, our approach adopts a
different perspective that treats channel maps as tokens for SA, allowing
effectively capturing inter-dependencies among different HSI channels which
are critical for reconstruction. This idea aligns with a parallel work [36],
which also treats spectral maps as tokens in a transformer-based model.
However, this work as well as others primarily emphasize the correlations of
features within the same stage while disregarding feature similarities across
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various stages. In contrast, our approach differs in using SA in a cross-stage
manner, significantly enhancing the feature flow throughout the DUN.

Loss functions for HSI reconstruction. Most existing NNs for HSI reconstruc-
tion are trained using the standard ℓ2 or ℓ1 loss. Hu et al. [35] introduced a
frequency-domain loss to reduce the frequency-domain discrepancy between
network predictions and ground truths. However, the spectral geometrical
characteristics are usually ignored in these loss functions. In contrast, we in-
troduce a loss function that focuses on narrowing the discrepancy in spectral
geometric changes, bring improvement in performance and generalizability.

Memory DUNs for low-level vision. Song et al. [43, 44] proposed a memory-
augmented DUN for compressed sensing, although it was not tested on HSI
reconstruction. Their approach incorporated LSTM [45] into the denoising
sub-networks during the refinement steps to enhance feature flow. Zhou et
al. [46] presented a memory-augmented DUN for super-guided image super-
resolution, where LSTM units and a non-local cross-modality module were
employed to improve information representation. These works utilize mem-
ory modules for improving the feature flow of the refinement steps, but ignore
the feature flow of the updating steps. In contrast, we utilize ConvLSTM
for the update steps, not the refinement steps. Additionally, instead of using
LSTM, we employ cross-stage SA to enhance feature flow in the refinement
steps, which also effectively exploits the self-similarity of an HSI.

3. Proposed Approach

3.1. Problem Formulation

For ease of reference, Table 1 lists the symbols used for describing our
approach. Let X ∈ RM×N×Λ denote an HSI with spatial indices m and n,
and spectral index λ. Generally, the snapshot from a CASSI device can be
expressed as follows [37, 41, 39]:

Y (m,n) =
Λ∑

λ=1

ρ(λ)φ(m− J(λ), n)X(m− J(λ), n, λ), (1)

where Y ∈ RM×N denotes the snapshot, ρ(·) the spectral response of the
camera, φ(·, ·) the coded aperture pattern, and J(·) the dispersive function.
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This expression can be re-formulated in a matrix-vector form while consid-
ering measurement noise:

y = Φx + n, (2)

where Φ denotes the measurement matrix determined by ρ and ψ, n the
measurement noise, and x,y the vectorized form of X,Y ,N , respectively.
As the linear system (2) is under-determined, HSI reconstruction requires
solving an ill-posed linear inverse problem.

Table 1: Symbol list for proposed approach.

X Latent HSI h(k) Hidden state of ConvLSTM
Y Snapshot c(k) Cell state of ConvLSTM
ρ Spectral response fk Forget gate vector of ConvLSTM
φ Coded aperture pattern i(k) Input gate vector of ConvLSTM
J Dispersive function o(k) Output gate vector of ConvLSTM
Φ Measurement matrix g(k) Intermediate result in cell state
x,y Vectorized form of X,Y W Convolutional layer kernel
n Measurement noise b Bias term
R Regularization function K Keys in SA
λ Regularization weight Q Queries in SA
γ(k) Step size in PGD V Values in SA
u(k) Intermediate variable after GD d Length of a key/query/value vector
x(k) Intermediate estimate of HSI D Geometry map
Prox Proximal mapping γ Weight of SGC loss
x′ Generic vectorized HSI α Threshold value in spectral dimension
R+ Set of positive real numbers MX Mask constructed for X

u(k) Gradient map X̂ Ground-truth HSI

3.2. Network Architecture via Deep Unrolling

Our proposed NN, named EDUNet (Enhanced Deep Unrolling Network),
is constructed via unrolling the PGD solver of the following optimization
model:

min
x

∥y −Φx∥22 + λR(x), λ ∈ R+, (3)

where R is a functional for regularization. The PGD algorithm [13, 14, 15]
consists of two alternative steps: the gradient descent (GD) step, used for
updating the estimate; and the proximal mapping (PM) step, employed to
refine the estimate by fitting the functional R with an image prior. The PGD
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iterations are performed as follows: for k = 1, · · · , K,

GD: u(k) = x(k−1) + γ(k)Φ⊤(y −Φx(k−1)), (4)

PM: x(k) = argmin
x′

∥x− u(k)∥22 + 2γ(k)R(u(k)), (5)

where γ(k) denotes the step size and λ denotes the hyper-parameter for bal-
ancing regularization and fitting. These two steps are then mimicked by NN
modules, forming the EDUNet.

Remark 1. Various numerical methods are available for solving Eq. (3), in-
cluding HQS [8] and ADMM [16]. In these methods, the update step necessi-
tates finding an exact solution to the linear system associated with the matrix
Φ⊤Φ, a process that is time-consuming due to the large size of Φ⊤Φ. Even an
approximate solution via iterative solvers demands extensive iterations and
significant time. Conversely, the PGD-based update, leveraging single-step
gradient descent, provides a markedly more efficient computational alterna-
tive. Further details on this approach can be found in existing literatures
(e.g. [47]).

Concretely, the GD step (4) is mimicked by the Memory-Assistant De-
scent (MAD) block, and the PM step (5) is mimicked by the Cross-stage At-
tentive Proximal (CAP) sub-network. As a result, the EDUNet is composed
of K stages, each containing a MAD block for gradient-driven updating and
a CAP sub-network for refinement/denoising. See Figure 1 for an overview
of EDUNet. The EDUNet accepts the snapshot measurement y and the
measurement matrix Φ as input, passes them to the K stages, and uses the
reconstructed HSI from the last stage as its final output: x̂ = x(K).

Inspired by the momentum-based acceleration technique widely used in
gradient descent-based methods, the MAD block leveraging ConvLSTM acts
as a gradient descent mechanism across different stages. This results in a
more efficient update process compared to solely relying on the first-order
gradient at the current stage. At the same time, the CAP sub-network lever-
ages self-similarities present in an HSI via a cross-stage SA module, enabling
the exploitation of special characteristics unique to HSIs and facilitating the
rapid flow of features through the whole DUN.

Remark 2. Most existing DUNs mainly focus on modeling the PM step (5)
using a deep sub-NN to learn a data-driven prior. The GD step (4) is gen-
erally kept unchanged, with γ(k) being either a fixed or learnable parameter.
Such a design is not optimal for reconstruction.
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Figure 1: Overview of proposed EDUNet for CASSI-based HSI reconstruction.The overall
architecture consists of K stages (top), each consisting of a MAD block that mimics the
GD step (4) and a CAP sub-network that mimics the PM step (5).

Remark 3. Many existing DUNs are developed by incorporating sub-NNs in
an optimization algorithm to neutralize the refinement steps associated with
the regularization term. In contrast, our approach also focuses on neutralizing
the updating step associated with the fidelity term by employing a learnable
NN module, leading to more-effective updates. This NN module can be seen
as a neuralization of the momentum-based acceleration technique commonly
used in gradient descent methods. Note that our approach is not the first to
replace the updating step with an NN; previous works like [9] and [41] have
also explored this idea. However, the key distinction lies in our approach
being the first to utilize momentum-based acceleration, as well as specific
characteristics of the problem, in the updating step.

3.3. Memory-Assistant Descent Blocks

The MAD blocks consist of a series of ConvLSTM units [20] positioned at
each stage of the NN. These ConvLSTM units utilize long-range dependencies
among all cascading stages to assist in momentum-driven gradient updates.
Within each MAD block at the k-stage, the gradient map u(k) is defined by:

u(k) = Φ⊤(y −Φx(k−1)) (6)

where x(k−1) denotes the estimate from the previous stage. The gradient map
u(k) is taken as input for the k-th ConvLSTM unit, introducing information
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on gradient descent. Each ConvLSTM unit comprises a hidden state, denoted
as h(k), and a cell state, denoted as c(k), at the k-th stage. The hidden state
h(k) has the same size as x(k). The MAD block is defined as follows:

[h(k), c(k)] = ConvLSTM(u(k),x(k−1), c(k−1)), (7)

for k = 1, · · · , K,
In contrast to the original ConvLSTM units, which use the previous hid-

den state h(k−1) as input, we replace h(k−1) with x(k−1), which is the output
from the CAP sub-network of the previous stage. The motivation behind
this change is to utilize the current gradient descent defined over x(k−1). The
resulting h(k) is then used as input for the CAP sub-network, while c(k) is
fed into the MAD block at the next stage, serving as an accumulator of state
information.

In the k-th stage, the ConvLSTM unit calculates hk, ck by the LSTM
rules [45] as follows:

c(k) = fk ⊙ c(k−1) + i(k) ⊙ tanh(g(k)), (8)

h(k) = o(k) ⊙ tanh(c(k)), (9)

where ⊙ denotes Hadamard product, and ik, fk, ok, gk denote the input gate,
forget gate, output gate, and the intermediate result, respectively, which are
calculated using the standard scheme of [20] as follows:

i(k) = sigmoid(Wmi ⊗ u(k) + Wxi ⊗ x(k−1) + bi), (10)

f (k) = sigmoid(Wmf ⊗ u(k) + Wxf ⊗ x(k−1) + bf), (11)

g(k) = Wmg ⊗ u(k) + Wxg ⊗ x(k−1) + bg, (12)

o(k) = sigmoid(Wmo ⊗ u(k) + Wxo ⊗ x(k−1) + bo), (13)

where ⊗ denotes a convolutional layer with 3×3 kernels W∗∗, and b* denotes
a bias term.

3.4. Cross-stage Self-Attentive Proximal Sub-Networks

The CAP block serves as a learnable PM step (5), refining the estimate
obtained from the MAD block. It can also be perceived as a denoising NN,
with the estimation residual being interpreted as noise.

Starting with h(k) (of the same size as x) from the MAD block as input,
the CAP block maps it to a feature tensor z(k) using a convolutional layer.
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This tensor is then processed by a cross-stage SA module. Subsequently, the
results are passed through a sequence of convolutional layers with rectified
linear units (ReLUs), and a triplet attention mechanism [48] is integrated to
better exploit spatial-channel dependencies. The output, having the same
size as x, is combined with the input h(k) through a skip connection, ul-
timately generating the reconstructed HSI x(k) at the current stage. See
Figure 1 for the details.

Recall that SA [21] establishes relationship between input feature to-
kens to compute a refined feature representation. It begins by generating a
key/query/value vector of length d from each token, and these vectors are
collectively stored as K, Q, and V , respectively. The SA operation is then
calculated as follows:

SA(Q,K,V ) = softmax
( 1√

d
QK⊤)V , (14)

where
√
d is used as a normalization factor for the stability of training. We

treat each feature channel as a token so as to exploit the self-similarities
among feature channels. These tokens are aligned due to natural alignment
of spectral slices of an HSI. In the kth stage, rather than use the feature
z(k) at current stage to calculate K(k),Q(k),V (k), we only use z(k) for Q(k)

while using the feature z(k−1) of previous stage for K(k),V (k). Concretely,
we calculate

Q(k) = W
(k)
Qd ⊗W

(k)
Qp ⊗ z(k), (15)

K(k) = W
(k)
Kd ⊗W

(k)
Kp ⊗ z(k−1), (16)

V (k) = W
(k)
Vd ⊗W

(k)
Vp ⊗ z(k−1), (17)

where W
(k)
(∗p),W

(k)
(∗d) correspond to 1 × 1 convolutions and 3 × 3 depth-wise

convolutions respectively for encoding spatial-channel context.
The motivation behind the cross-stage strategy is as follows. In the DUN

architecture, there is an alternating scheme between the update and refine-
ment stages. As the CAP sub-networks at different stages fulfill the role of
refinement, the features they extract should exhibit a high correlation. Ad-
ditionally, the features extracted from the previous stage can serve as good
initializations for the corresponding features at the next stage. However, the
aforementioned existing pipeline does not leverage such correlations for more
efficient training, which can potentially create a bottleneck for features as
they flow through the entire DUN.
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To address this limitation, our proposed cross-stage SA scheme estab-
lishes a direct path between two stages, improving the flow of features across
stages. This enables efficient feature transmission and enhances feature in-
teractions during inference. Moreover, it establishes a relation between two
adjacent stages, providing implicit regularization during training. This leads
to more effective and smoother feature propagation within the DUN, facili-
tating better overall performance.

The multi-head strategy [21] is adopted for the cross-stage SA. We split

the key/query/value matrices into H heads: Q(k) = [Q
(k)
1 , · · · ,Q(k)

H ], K(k) =

[K
(k)
1 , · · · ,K(k)

H ], and V (k) = [V
(k)
1 , · · · ,V (k)

H ], along channel dimension.
Then, the output is calculated as

O(k) =
H⋃

h=1

SA(Q
(k)
h ,K

(k)
h V

(k)
h ), (18)

where
⋃

denotes concatenation. Afterward, O(k) is reshaped for subsequent
processing.

3.5. Loss Functions for Training

To enhance the generalization of a deep NN for HSI reconstruction, we
propose the use of an auxiliary loss termed the Spectral Geometry Consis-
tency (SGC) loss, which is motivated by the physical characteristics of HSI
images. For an HSI X ∈ RM×N×Λ, we define the geometry map D(X) by

D(X) = ∇c(sign(∇cX)) ∈ {−1, 0, 1}M×N×Λ, (19)

where ∇c calculates the gradient along the spectral axis, and sign(·) denotes
the element-wise sign function. For a spatial location (m0, n0), D(X)[m0, n0, ·]
indicates the wavelengths where the monotony of spectral values changes,
representing an inherent geometrical property of the spectral curve. Lever-
aging D, the SGC loss places emphasis on ensuring the geometrical layout
consistency between the reconstructed HSI and the ground truth. This ad-
ditional loss aids in promoting more accurate spectral structure preservation
during the training process, leading to improved generalization capabilities
of the NN for HSI reconstruction.

Considering HSIs exhibit high spatial sparsity, the irrelevant dark re-
gions are omitted for robustness. This is achieved by constructing a mask
MX that thresholds the maximal density along the spectral dimension:
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MX(m,n, λ) = 1 if maxλX(m,n, λ) ≥ α; and 0 otherwise. Then, the SGC
loss is defined as

Lsgc ≜ ∥MX ⊙D(X) −MX̂ ⊙D(X̂)∥1. (20)

where X, X̂ denote the reconstructed HSI and its ground truth respectively,
and D(X),D(X̂) denote their respective geometry maps.

By minimizing Lsgc, the predicted HSI is encouraged to align with the
ground truths in terms of wavelength-density trends, effectively mitigating
potential overfitting. The overall loss, incorporating a weighted factor γ ∈
R+, is then defined as:

L = ∥X − X̂∥1 + γ∥MX ⊙D(X) −MX̂ ⊙D(X̂)∥1. (21)

where X, X̂ denote the reconstructed HSI and its ground truth respectively.
Additionally, D(X) and D(X̂) denote their respective geometry maps, and
MX and MX̂ denote their respective masks. The parameter γ is a hyper-
parameter for balancing the fidelity term and the SGC loss.

4. Experiments

We implement EDUNet with PyTorch [49]. Throughout all the experi-
ments, we consistently use the same set of hyper-parameters to ensure uni-
formity and comparability in the results. See Table 2 for a summary of the
hyper-parameter setting of EDUNet. Unless specified, the kernel sizes are
all set to 3 × 3 on all convolutional layers, and all the strides and padding
sizes are set to 1. The stage number K is set to 6. The head number H
for the SA in CAP blocks is set to 8. Regarding the training loss, we set
α = 5

255
for MX as pixels with intensities less than 5 are usually perceived

as dark pixels, and we set γ = 0.1 for Eq. (21) to make the two terms in L
have the same scale. We initialize x(0) by Φ⊤y and the model weights by the
Kaiming method. The training is done via the Adam optimizer with a fixed
learning rate of 10−4, batch size of 4, and a maximal epoch number of 200.
The same data augmentation scheme as [39] is adopted, including rotation
and flipping. The training process converges after 180 epochs. Our code will
be released on GitHub upon the paper’s acceptance.

Following [39], Peak-Signal-to-Ratio (PSNR) and Structured SIMilarity
(SSIM) index are adopted as the metrics for quantitative evaluation. In
addition, following [50, 10, 51], spectral angle mapper (SAM) and relative
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Table 2: Hyper-parameters used in the proposed method.

NN Training

Stage Number K 6 α 5/255
Kernel Size 3× 3 γ 0.1
Stride 1 Learning Rate 10−4

Padding Size 1 Epcoh Number 200
Head Number H 8 Batch Size 4

dimensionless global error in synthesis (ERGAS) are also used as the quanti-
tative metrics. The performance evaluation is conducted using three settings
of training/test data. Table 3 presents a summary of the characteristics of
the training/test data. See also Figure 2 for some samples from different
datasets. In all experiments, the results of the compared baseline methods
are quoted from existing literature if applicable. When retraining is neces-
sary, we meticulously adhere to the hyperparameters specified in the original
publications, for maintaining the integrity of our comparative analysis. For
the other hyperparameters not specified in the original publications, we make
the effort to report the best performance we can have.

Table 3: Training and test datasets of all experiments.

Training Dataset Test Dataset
Name Size # Wavelength Name Size # Wavelength

CAVE 256× 256× 28 32 450-650nm KAIST 256× 256× 28 10 450-650nm
ICVL 1300× 1392× 31 151 400-700nm ICVL 256× 256× 31 50 400-700nm

Harvard 512× 512× 31 41 400-700nm ICVL 256× 256× 31 9 400-700nm

4.1. Evaluation on Synthetic Data

4.1.1. CAVE and KAIST datasets

Following [41, 39], we use the 32 HSIs of the CAVE dataset [52] for
training, and the 10 HSIs of the KAIST dataset [22] for test. Same as [41, 39]
for a fair comparison, all these HSIs are cropped into patches with a spatial
size of 256 × 256 and reduced to 28 wavelengths ranging from 450nm to
650nm via spectral interpolation. The snapshot measurements are generated
by the 256 × 256 mask of CASSI used in [41].

Fifteen existing methods are chosen for comparison, including (a) one
conventional method: DeSCI [24]; (b) one self-supervised deep learning-based
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CAVE KAIST

ICVL Harvard

Figure 1: Four examples of CAVE (top left), KAIST (top right) ICVL (bottom left) and
Harvard (bottom right) respectively.

1

Figure 2: Samples from four datasets. As HSIs are difficult to visualize due to their cube
form, we show the RGB references of the samples.

method: PnP-DIP [30]; and (c) twelve supervised learning-based methods:
λ-Net [9] HSSP [8], DNU [10], TSA-Net [41], ADMMNet [37], GAP-Net [44],
DGSMP [39], MADUN [43], MAPUN [44], HDNet [35], HDNet-SINR [53],
MST-L [36] and CST-L [42]. The HSSP, DNU, GAP-Net, DGSMP and
MADNU and MAPUN are based on DUNs. The HDNet, MST-L and CST-L
are from the three latest works accepted in a very recent conference.

The quantitative results are listed in Table 4 , which are quoted from [36,
35] whenever possible. It can be seen that our approach significantly outper-
forms the compared ones. Specifically, EDUNet shows remarkable superior
performance over other DUNs. It also surpasses CST-L, MST-L and HD-
Net (i.e. three latest methods) with an average PSNR gain of more than
0.2dB, 1dB, and 2dB, respectively. Also note that compared to MADUN
and MAPUN which use LSTM for the denoising NN, EDUNet has a notice-
able PSNR gain. See Table 5 for the results in terms of SAM and ERGAS,
where the methods with released pre-trained models are used for comparison.
Our EDUNet still performs the best among the compared methods.

Table 6 compares the model complexity of different methods accord-
ing to the number of parameters, number of Giga floating-point operations
(GFLOPs) and overall running time on a single NVIDIA GTX 1080 Ti GPU.
Although EDUNet contains ConvLSTM and SA blocks, it is still kept com-
pact to maintain a relatively-low model complexity. Among all compared
methods, EDUNet has the smallest number of GFLOPs, and its size is smaller
than all other models except DNU. Regarding running time, EDUNet is faster
than DNU, DGSMP, MADNU, MAPUN, MST-L and CST-L, while compa-
rable to TSA-Net. It is slower than λ-Net and HDNet, but with noticeably
better performance. The reason is there is no advanced acceleration support
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from GPU for the SA of EDUNet (same for TSA-Net, MST-L and CST-L),
unlike standard convolutional layers. This is also one reason that EDUNet
has the smallest number of GFLOPs but is not the fastest. To conclude,
EDUNet achieves the best trade-off between performance and model com-
plexity. Its performance gain is from architecture design rather than increase
model complexity.

Following [41], we also evaluate performance on noisy cases. The mea-
surements in training data are corrupted with 11-bit shot-noise while the
ones in test data are corrupted with 11-bit,12-bit and 13-bit shot noise re-
spectively. Table 7 lists the results of four recent methods and ours. All the
compared models are retrained on the noisy measurements. It can be seen
that our method still performs the best in noisy cases.

4.1.2. ICVL and Harvard Datasets

We also conduct experiments on the ICVL dataset [54] and the Harvard
dataset [55], respectively. The ICVL dataset consists of 201 HSIs of real-
world objects, each with a spatial size of 1300 × 1392, 31 spectral bands
collected from 400nm to 700 nm at a 10nm step. The Harvard dataset
consists of 50 outdoor scenes, each with a spatial size of 512×512, 31 spectral
bands collected from 420nm to 720nm at a 10nm step. Following the protocol
of [8, 56], 50 HSIs in the ICVL dataset and 9 HSIs in the Harvard dataset
are used for test respectively, and the rest samples are used for training.
Same as [8, 56] for fair comparison, all HSIs for training and test are cropped
into patches with a spatial size of 48 × 48, while keeping the band number
unchanged. The snapshot measurements are generated by the 48 × 48 mask
of CASSI used in [8].

Six existing methods are selected for comparison, including (a) two con-
ventional methods: SSNR [23] and ADLTR [27]; (b) six supervised learning-
based methods: HSCNN [7], λ-Net [9], DNU [10], DTLP [56], HDNet [35] and
CST-L [42]. DNU and DTLP use DUNs, HDNet and CST-L are the latest
two methods. Following [56], two additional quantitative metrics including
SAM and ERGAS are introduced for evaluation.

See Table 8 for quantitative comparison. The results of the compared
methods are cited from [56], except for HDNet and CST-L. These two meth-
ods have no published results on the dataset and thus we train their models
using their officially released codes, with their loss weights tuned for bet-
ter performance. The proposed one outperformed all other methods, with
more than 0.6db PSNR improvement on both datasets. Such noticeable per-
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Table 4: Quantitative results in PSNR(dB) (even rows) and SSIM (odd rows) on KAIST
dataset in a noiseless setting. Best results are boldfaced.

Method Metrics #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Mean

DeSCI
PSNR 27.13 23.04 26.62 34.96 23.94 22.38 24.45 22.03 24.56 23.59 25.27
SSIM 0.748 0.62 0.818 0.897 0.706 0.683 0.743 0.673 0.732 0.587 0.721

λ-net
PSNR 30.1 28.49 27.73 37.01 26.19 28.64 26.47 26.09 27.5 27.13 28.53
SSIM 0.849 0.805 0.87 0.934 0.817 0.853 0.806 0.831 0.826 0.816 0.841

HSSP
PSNR 31.48 31.09 28.96 34.56 28.53 30.83 28.71 30.09 30.43 28.78 30.35
SSIM 0.858 0.842 0.823 0.902 0.808 0.877 0.824 0.881 0.868 0.842 0.852

DNU
PSNR 31.72 31.13 29.99 35.34 29.03 30.87 28.99 30.13 31.03 29.14 30.74
SSIM 0.863 0.846 0.845 0.908 0.833 0.887 0.839 0.885 0.876 0.849 0.863

PnP-DIP
PSNR 32.68 27.26 31.3 40.54 29.79 30.39 28.18 29.44 34.51 28.51 31.26
SSIM 0.890 0.833 0.914 0.962 0.900 0.877 0.913 0.874 0.927 0.851 0.894

TSA-Net
PSNR 32.03 31.00 32.25 39.19 29.39 31.44 30.32 29.35 30.01 29.59 31.46
SSIM 0.892 0.858 0.915 0.953 0.884 0.908 0.878 0.888 0.890 0.874 0.894

ADMM.
PSNR 34.12 33.62 35.04 41.15 31.82 32.54 32.42 30.74 33.75 30.68 33.58
SSIM 0.918 0.902 0.931 0.966 0.922 0.924 0.896 0.907 0.915 0.895 0.918

GAP-Net
PSNR 33.62 30.08 33.07 40.94 30.77 33.60 27.41 31.25 33.56 30.36 33.58
SSIM 0.926 0.914 0.944 0.966 0.925 0.936 0.915 0.18 0.937 0.914 0.929

DGSMP
PSNR 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63
SSIM 0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917

MADNU
PSNR 34.73 35.32 35.10 40.17 32.32 34.42 33.09 32.62 34.75 32.17 34.46
SSIM 0.918 0.903 0.927 0.961 0.898 0.912 0.887 0.933 0.924 0.931 0.919

HDNet
PSNR 34.95 32.52 34.52 43.00 32.49 35.96 29.18 34.00 34.56 32.22 34.34
SSIM 0.948 0.953 0.957 0.981 0.957 0.965 0.937 0.961 0.958 0.950 0.957

HDN-SINR
PSNR 35.08 32.85 35.06 43.21 32.69 36.01 29.31 34.09 35.06 32.16 34.55
SSIM 0.949 0.956 0.963 0.985 0.958 0.966 0.942 0.963 0.959 0.950 0.959

MAPUN
PSNR 35.11 36.11 36.40 41.92 32.78 35.07 33.98 33.03 35.81 32.81 35.30
SSIM 0.945 0.950 0.953 0.973 0.952 0.959 0.931 0.956 0.957 0.946 0.952

MST-L
PSNR 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 32.50 35.18
SSIM 0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.948

CST-L
PSNR 35.96 36.84 38.14 42.44 33.25 35.72 34.86 34.34 36.51 33.09 36.12
SSIM 0.949 0.955 0.962 0.975 0.955 0.963 0.944 0.961 0.957 0.945 0.957

EDUNet
PSNR 36.48 37.65 37.19 42.85 34.29 35.70 35.37 34.18 36.81 33.46 36.40
SSIM 0.951 0.961 0.963 0.981 0.962 0.966 0.949 0.962 0.960 0.951 0.961

19



Table 5: Quantitative results in SAM/ERGAS on KAIST dataset in a noiseless setting.
Best results are boldfaced.

Metric λ-Net TSA-Net DGSMP HDNet MAPUN MST-L CST-L EDUNet

SAM 19.71 8.75 8.94 6.68 6.19 7.47 5.81 5.42
ERGAS 108.63 90.78 31.50 25.64 24.56 27.72 22.92 10.07

Table 6: Comparisons on parameter numbers, FLOPs and time on KAIST dataset in a
noiseless setting.

λ-Net ADMMNet DNU PnP-DIP TSA-Net DGSMP

#Param. 62.64M 4.27M 1.19M 33.85M 44.25M 3.76M
#FLOPs 117.98G 78.58G 163.48G 64.42G 110.06G 646.65G
Time 0.01s 0.70s 1.64s 9.79h 0.16s 1.39s

MADNU HDNet MAPUN MST-L CST-L EDUNet
#Param. 2.58M 2.35M 3.01M 2.03M 3.00M 1.51M
#FLOPs 134.17G 154G 117.9G 28.15G 40.10G 24.24G
Time 0.26s 0.02s 0.24s 0.41s 1.05s 0.15s

Table 7: PSNR(dB) results (mean±std.) on KAIST dataset with shot noise, obtained via
50 runs. Best results are boldfaced.

Noise λ-Net TSA-Net DGSMP HDNet MST-L CST-L EDUNet

10bit 27.01±0.07 28.02±0.03 29.30±0.08 31.02±0.05 31.12±0.04 32.09±0.04 32.23±0.04
11bit 27.36±0.05 28.34±0.03 29.89±0.07 31.09±0.03 31.53±0.03 32.41±0.04 32.80±0.03
12bit 27.56±0.06 28.58±0.02 29.16±0.05 31.21±0.03 31.77±0.03 32.76±0.03 33.02±0.02

formance gains of EDUNet over other DUNs have again demonstrated the
effectiveness of our NN architecture.

4.1.3. Visual Inspection

See Figure 3 for the visualization of HSI reconstruction results on two
samples from the KAIST and Harvard datasets respectively. The spectral
curves (density versus wavelength) correspond to the points marked by green
boxes in the RGB references. In the legends of both figures, we provide the
curve correlation value between the result of a compared method and the
ground truth. Those values show that the HSIs reconstructed by the proposed
EDUNet have the highest correlation to the ground truths. We also visualize
three spectral channels of an entire reconstructed HSI and zoom in on the
selected regions marked by yellow boxes. It can be seen that the results of
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Table 8: Quantitative results on ICVL and Harvard datasets. Best results are boldfaced.

Metric SSNR HSCNN λ-Net DNU ADLTR DTLP HDNet CST-L EDUNet

IC
V
L

PSNR 30.40 28.45 29.01 32.61 - 34.53 36.38 36.23 37.60
SSIM 0.943 0.934 0.946 0.966 - 0.977 0.981 0.981 0.985
SAM 1.83 1.83 2.52 2.21 - 1.72 1.07 1.12 0.69

ERGAS 50.60 61.57 50.70 37.53 - 30.07 9.37 6.09 5.54

H
ar
va
rd

PSNR 31.14 27.60 29.37 31.11 31.67 32.43 34.26 34.50 34.97
SSIM 0.942 0.895 0.909 0.929 0.935 0.941 0.948 0.952 0.956
SAM 4.58 6.24 7.62 5.78 5.31 5.16 4.67 3.16 2.53

ERGAS 74.91 105.89 62.51 73.53 71.08 62.51 32.45 27.89 25.21

EDUNet are more visually pleasing than that of other compared methods,
with a better reconstruction of structures.

4.1.4. Further Analysis and Summary

Overall, in terms of average performance metrics, our EDUNet shows a
notable improvement over prior models. While EDUNet delivers the best av-
erage reconstruction performance on KAIST, as shown in Table 4, there are
instances where individual test samples exhibit performance slightly below
the top values in terms of PSNR. This variance can largely be attributed to
two factors: (a) the training samples not providing a sufficient coverage of
the full characteristics of the test images; and (b) the various characteris-
tics and out-of-distribution samples of test data. As a result, the observed
performance variations of our EDUNet and other compared models can be
attributed to the inherent diversity of dataset characteristics and the adap-
tivity capacity of each method to different image features/patterns. This
phenomenon is not exclusive to our approach; similar performance variations
have been reported in experiments with other HSI reconstruction methods
such as [42, 44, 53]. These variations across different instances suggest that
each method is particularly adept within a certain range of image patterns.
Our experiments demonstrate that our EDUNet performs exceptionally well
in the majority of instances, showcasing the widest adaptability range to
image features and patterns.

Nevertheless, the instances where EDUNet is outperformed by other mod-
els provide valuable insights into potential areas for further refinement and
optimization of our approach. In Table 4, the least favorable outcome for
EDUNet occurs for the third instance; see Figure 4 for a visualization of re-
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Figure 1: Visual comparison of HSI reconstruction on two samples from KAIST and Harvard datasets respectively. Left: spectra
curves of the selected regions marked by green boxes. Right: reconstruction on the spectral channels.Figure 3: Visual comparison of HSI reconstruction on three samples from KAIST, ICVL
and Harvard datasets respectively. Left: spectra curves of the selected regions marked by
green boxes. Right: reconstruction on the spectral channels.
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construction results of EDUNet and its top competitor, CST-L. We observe
that this instance contains more flat black regions than other instances. It
is likely that the cross-stage SA employed in EDUNet cannot fully utilize its
advantages, leading to over-smoothed result with lower PSNR, likely due to
involving information from the flat black regions to reconstruct the HSI. It is
noteworthy that, despite achieving a higher PSNR value, CST-L introduces
numerous artifacts. Consequently, our EDUNet achieves a higher SSIM value
than CST-L, indicating better structural integrity in the reconstruction.

In terms of the other two metrics, SAM and ERGAS, EDUNet per-
forms the best in all cases in Table 5. In addition, EDUNet is the only one
that achieves the best performance in all metrics on the ICVL and Harvard
datasets, as shown in Table 8. These results demonstrate the superiority of
EDUNet in performance. Furthermore, Table 6 highlights that the EDUNet
demonstrates a relatively-low model complexity in terms of the number of
parameters, in comparison to existing methods. This aspect, coupled with
the superior overall performance of EDUNet, suggests that our technique
strikes an effective balance between accuracy and efficiency, both of which
are important for practical applications.

CST-L EDUNet Ground Truth CST-L EDUNet Ground Truth

Figure 1: Visual comparison of reconstruction on #3 instance from KAIST dataset.

1

Figure 4: Visual comparison of reconstruction results on instance #3 of KAIST dataset.

4.2. Evaluation on Real Data

We also conduct a test on the real snapshots of spatial size 660 × 714
from [39, 41], which are captured by a real system with 28 wavelengths
ranging from 450nm to 650nm and with 54-pixel dispersion in the column
dimension. Following [39, 41], we use the mask associated with that real
system to generate snapshots on both the CAVE and KAIST datasets, and
then we inject 11-bit shot noise to the snapshots for simulating real situa-
tions. The resulting data is used to retrain our model. Due to the lack of
ground truths in test data, we only compare the qualitative results of differ-
ent methods. See Figure 5 for the reconstruction results on some real scenes.
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The performance of EDUNet is also good on the real data. This indeed has
demonstrated the good generalization performance of our model.

Ref. λ-Net TSA-Net DGSMP HDNet MST-L CST-L EDUNet

Figure 1: Visual comparison of HSI reconstruction on real data, in terms of two spectral channels.
Figure 5: Visual comparison of HSI reconstruction on real data, in terms of two spectral
channels.

4.3. Ablation Studies

Ablation studies are conducted on the KAIST dataset. We form some
baselines by removing one or more main components of our approach. Con-
cretely, we consider (a) “MAD→GD”: replacing the MAD blocks by the GD
steps in Eq. (4); (b) “MAD→Conv”: replacing the MAD blocks with three
convolutional layers, with u(k) and x(k−1) concatenated as the input. (c)
“SA→ Conv”: replacing the cross-stage SA with the same number of convo-
lutional layers without cross-stage connections; (d) “Inner SA → Cross SA:
replacing the cross-stage SA in the CAP network with the inner-stage SA
which uses the features at current stage to calculate K(k),Q(k),V (k) in (15);
(e) “w/o Lsgc” removing the SGC loss Lsgc. For fair comparison, each baseline
is configured to have (nearly) the same number of parameters as the original
model, by uniformly increasing channel numbers of convolutional layers.

The results are listed in Table 9. To facilitate the comparison, we also
include the competitive baseline, CST-L, in the table. It can be seen that
each main component in our approach plays an important role. (a) Using
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the MAD blocks as an alternate to GD steps can improve PSNR by almost
1db. (b) When implementing the learnable descent updating steps using
plain convolutional layers instead of memory units, the performance will have
around 0.92dB PSNR. This is probably because unlike our MAD blocks,
convolutional layers cannot exploit the long-term dependencies among the
descent updating steps. (c) When the whole cross-stage SA is disabled,
further performance decrease is observed.(d) Benefiting from the power of
SA, the cross-stage SA brings noticeable PSNR gain. The SA utilized in
the cross-stage manner leads to around 0.44dB improvement in PSNR over
that utilized in the inner-stage manner. (e) The SGC loss also has a solid
contribution to the performance. See Figure 6 for an illustration of the effect
of the SGC loss, where training with Lsgc makes the tendency of the predicted
spectral curves closer to ground truths. We would like to mention that the
triplet attention used in the CAP sub-networks also brings some PSNR gain
(around 0.13dB). Its results are not listed in Table 9 as it is not a main
contribution to this work.

Table 9: Results in ablation studies on KAIST dataset.

Metric
MAD MAD SA Cross SA

w/o Lsgc
Original

CST-L→GD →Conv →Conv →Inner SA EDUNet

PSNR(dB)35.35/1.05↓ 35.48/.92↓ 35.81/.59↓ 36.16/.44↓ 35.98/.42↓ 36.40 36.12
SSIM 0.947/.014↓0.949/.012↓0.956/.005↓0.959/.002↓0.958/.003↓ 0.961 0.957

Time(s) 0.33/.18↑ 0.38/.13↑ 0.43/.06↑ 0.51/.00 0.51/.00 0.51 1.05
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Figure 1: Spectra of selected regions on Scene#1, Scene#2, Scene#5 and Scene#9 (From left to right) of KAIST dataset.
Figure 6: Spectra of selected regions on Scene#1, Scene#2, Scene#6, Scene#7 and
Scene#10 (From left to right) of KAIST dataset.

To evaluate the influence of stage number K in EDUNet, we vary it
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from 1 to 7 and then test the performance. Note that when K = 1 there
is no cross-stage link. In this case, we replace the cross-stage SA with the
standard SA and the ConvLSTM with three convolutional layers of a similar
size. The PSNR results on KAIST dataset are listed in Table 10. It can be
seen that, as the stage number K increases, the reconstruction performance
of EDUNet is continuously improved, and meanwhile the model size of EDUN
is also increased. The increase of model size is not significant which suggests
that EDUN is computationally scalable to the stage number. To balance
both performance and computational complexity, we take K = 6 in the
previous experiments, and using K = 7 may lead to further improvement.
In addition, we also constructed two additional baselines by reducing the
stage number to K = 2, 4 respectively, while increasing the channel number
to keep the model size close to the original one. The PSNR results (not
listed in Table 10 to avoid confusion) are 32.56dB (K = 2) and 34.17dB
(K = 4) respectively, in comparison to the original one 36.40dB (K = 6).
Such a PSNR decrease along with the decrease of K implies the memory-
based update steps potentially benefit more from larger stage numbers, i.e.,
the MAD blocks can well exploit the long-term dependencies among different
stages to bring improvement for DUNs.

Table 10: Average PSNR on KAIST dataset and parameter numbers w.r.t. different stage
numbers.

Metric K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

PSNR(dB) 28.74 31.48 32.83 33.89 35.37 36.40 37.03
#Param.(M) 0.25 0.50 0.76 1.00 1.26 1.51 1.76

To better compare the performance of our proposed EDUNet with that
of other DUNs, we plot the PSNR-GFLOPs curves w.r.t. the stage number
of the DUN; see Fig. 7. We can see that with the increase of stage numbers,
the PSNR increment of EDUNet is faster than that of other DUNs, and
the overall performance and computational complexity of EDUNet is better
than that other DNUs. Such advantages come from the proposed memory-
assistant descent updating steps and the cross-stage SA modules.

5. Conclusion

In this work, we investigated enhancements of DUNs for CASSI-based HSI
reconstruction. Our proposed model, EDUNet, incorporates three key aug-
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Figure 7: PSNR-GFLOPs curves w.r.t. stage of number of a DUN. Each curve is for a
DUN. The sequential numbers under each curve denote the corresponding stage number.

mentations: ConvLSTM-assistant gradient-driven update steps inspired by
momentum-based acceleration, cross-stage self-attentive NNs for efficiently
exploring inherent self-similarities in HSIs, and a spectral geometry consis-
tency loss function for better regularization. The integration of these en-
hancements resulted in a light-weight model that exhibited a noticeable im-
provement in reconstruction accuracy over state-of-the-art methods. This im-
provement was demonstrated through extensive experiments on three bench-
mark datasets using four quantitative metrics, as well as on several real
samples using visual inspection.

The findings of this paper directly contribute to the field by addressing
the practical challenge of reconstructing high-quality HSIs from compressed
data, a crucial step for the various applications of hyperspectral imaging.
This advancement not only enriches the technical aspects of hyperspectral
imaging but also significantly broadens its practical applicability in the in-
dustry. While our approach is tailored for CASSI-based HSI reconstruction,
the underlying concept holds potential for applications in other compressive
imaging problems. We will explore these possibilities in our future research.
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