
Phase Unwrapping via Fully Exploiting Global and

Local Spatial Dependencies

Yuhui Quana, Xin Yaoa, Zhifeng Chenb,∗, Hui Jic

aSchool of Computer Science and Engineering, South China University of

Technology, Guangzhou, 510000, Guangdong, China
bSchool of Physics and Materials Science, Guangzhou University, Guangzhou,

Guangdong 510006, Guangzhou, 510000, Guangdong, China
cDepartment of Mathematics, National University of Singapore, 119076, Singapore

Abstract

Phase unwrapping (PU) is the process of extracting the authentic phase im-

age from its noisy wrapped measurements, playing a crucial role in scienti�c

imaging techniques. PU requires solving a challenging non-linear ill-posed

problem. particularly in the presence of noticeable noise. In recent years,

deep learning has emerged as a promising approach for PU. Inspired by the

success of convolutional neural networks (CNNs) in image restoration, many

existing works trained CNNs for PU. However, due to the locality of convo-

lutional kernels, CNNs are not e�cient in capturing global spatial dependen-

cies, a critical cue for PU. As an alternate, recent studies employed recurrent

neural networks (RNNs) de�ned on handcrafted pixel paths. Nonetheless, a

limited number of pre-de�ned pixel paths cannot fully exploit global spatial
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dependencies existing in complex phase structures. In this paper, we intro-

duce a vision transformer (ViT) model that e�ectively captures both global

and local spatial dependencies using a hierarchical structure with a multi-

scale process. The proposed ViT model employs a series of global transformer

blocks to capture global spatial dependencies at the roughest scale. The re-

sulting global features are used to guide a set of local transformer blocks

to analyze local spatial dependencies in a coarse-to-�ne progressive manner

for unwrapping. Extensive experiments show that, our proposed ViT model

produces higher-quality unwrapped phases over existing CNN/RNN-based

methods, while maintaining a lightweight nature.

Keywords: Phase Unwrapping; Transformer Models; Deep Learning; Phase

Imaging

1. Introduction

Phase Unwrapping (PU) is a fundamental problem in image sensing,

whose goal is to retrieve authentic phases from the wrapped ones; see Fig. 1

for an illustration. Due to their inherent operational characteristics, many

image sensing systems produce wrapped phase measurements, typically con-

strained in [−π, π). For example, quantitative phase imaging techniques such

as phase-contrast microscopy and digital holography [1; 2], magnetic reso-

nance imaging through quantitative susceptibility mapping [3], 3D scanning

using fringe projection pro�lometry (FPP) [4; 5; 6; 7; 8; 9], Doppler radar

imaging [10], and interferometric synthetic aperture radar imaging [11; 12],

among others. Particularly, PU plays an critical role in FPP, a widely used

optical technique for 3D shape measurement. Various FPP methods dif-
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fer in how they acquire the wrapped phase, which results in di�erent for-

mation of wrapped phase. Thus, Di�erent FPP methods employ distinct

approaches to project, capture, and process fringe patterns. Representative

methods include Fourier Transform Pro�lometry (FTP), Phase-Shifting Pro-

�lometry (PSP), MoirePro�lometry (MP), Computer-Generated MoirePro-

�lometry (CGMP), Modulation Measuring Pro�lometry (MMP), and Phase-

Di�erencing Pro�lometry (PDP).

In FTP [13; 14], a single fringe pattern is projected onto the object, and

the deformed fringe pattern is captured. The wrapped phase is then ob-

tained by applying a Fourier transform to the captured image, �ltering out

unwanted frequencies, and performing an inverse Fourier transform. The

wrapped phase is then extracted from the resulting complex image. PSP

[15] involves projecting a series of fringe patterns with known phase shifts

(typically three or more) onto the object. Then, the wrapped phase is calcu-

lated from pixel intensity variations across these patterns. MP [16] generates

the wrapped phase by analyzing interference patterns (Moire fringes) formed

by superimposting grating on two sets of gratings (one on the object and

one as a reference), where the modulating phase of the moire pattern caused

by the object's surface geometry encodes the wrapped phase. An exten-

sion of MP, CGMP [17; 18] allows precise digitial control of the reference

grating. MMP [19; 20] focuses on analyzing the modulation changes in the

projected fringe patterns due to surface topography, typically combined with

phase-shifting techniques for improved accuracy. Finally, PDP [21] employs

number-theoretical Temporal PU method [22] to compute phase-shifting de-

formed patterns, that are both computational e�cient and robust, particu-
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Figure 1: PU task and methodology/results of existing RNN-based methods: PURNN [23]

and SQD-LSTM [24], and our approach. our approach models hierarchical interactions

via blending global connections with localized interactions.

larly in high-speed 3D measurement. In all these FPP methods, resolving the

ambiguities in wrapped phases via PU is essential for accurately capturing

and processing images, which are critical for the precise reconstruction of 3D

shapes.

Although PU is of great importance, it remains a challenging task. Chal-

lenges such as measurement noise, inherent system inconsistencies, and abrupt

phase variations, can introduce noticeable errors during unwrapping, leading

to inaccurate phase restoration. Let ϕ(p) ∈ R denote the true phase on the
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vector coordinate p and ψ(p) ∈ [−π, π) be its noisy wrapped version. They

are related by

ψ[p] = w(ϕ(p) + ϵ(p))), (1)

where ϵ denotes measurement noise. The operator w denotes the wrapping

operator which maps any phase θ ∈ R to the range [−π, π):

w(θ) = [(θ + π) mod 2π]− π,

where [· mod 2π] denotes the modulo operation with a modulus of 2π. An-

other often-used formulation of phase wrapping is based on the wrap count,

which is expressed as:

ψ[p] = ϕ(p) + 2π · k(p)− pi+ ϵ̄(p), (2)

where ϵ̄ denotes noise depending on both truth phase θ and measurement

noise ϵ. The operator k = round(ϕ−ψ
2π

) ∈ Z denotes the map of wrap counts,

indicating the number of times a phase value has been wrapped around by

2π.

Clearly� the solution to (2) is non-unique, underscoring ill-posedness of

the PU problem. Furthermore, PU is highly sensitive to noise. Any naive

approach, such as direct integration of wrapped phases can lead to erroneous

results, primarily stemming from the accumulation of noise through the in-

tegration path.

PU can be categorized into spatial (SPU) and temporal (TPU) meth-

ods. In the past, various SPU approaches were developed, including path-

following, �ltering, and optimization techniques. Similarly, numerous TPU

methods were proposed, such as gray code, phase coding, phase shifting, and
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fringe amplitude encoding algorithms. Each approach has its strengths and

limitations, particularly regarding noise handling and path selection.

Recently, inspired by the potent modeling capability of Deep Neural

Networks (DNNs), an increasing number of studies have utilized DNNs for

PU [25], showing advantages in terms of accuracy and e�ciency over tradi-

tional handcrafted methods. There are mainly two methodologies in existing

studies on DNN-based PU: regression-based methods (e.g. [26; 24; 27; 28])

that train a DNN to directly predict unwrapped phases from the wrapped

input, using a loss function measuring pixel-wise errors between predicted

and authentic phases; and classi�cation-based methods (e.g. [29; 30; 31; 32])

that trains a DNN to predict wrap counts via a pixel-wise classi�cation loss

function that interprets wrap counts as class labels, thereby turning PU into

a segmentation-like problem.

The majority of existing DNN-based PU methods employ convolutional

neural networks (CNNs); see e.g. [26; 33; 29; 30; 28; 27; 2; 31; 3; 2; 6; 34].

While CNNs excel at extracting local spatial features due to their convolu-

tional layers with localized receptive �elds, they are not e�cient for modeling

global dependencies, due to the linear growth of a CNN's receptive �eld with

added layers. This diminishes CNNs' suitability to PU for which a holistic

understanding of the entire image is crucial. Indeed, the accurate unwrapping

on a given pixel needs to understand not just its immediate neighborhood,

but also how that region relates to distant parts of the image, as the phase

values in one region can be in�uenced by the phase jumps/wraps occurring

in far-o� regions. As a result, global dependencies are critical for PU, par-

ticularly when handling complex phase structures.
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Emerging as an alternative to better grasping global dependencies, re-

current neural networks (RNNs) are leveraged by [23; 24] to model distant

regional information. Yet, their performance has often been constrained to

the manually speci�ed traveling paths within feature spaces (see Fig. 7). This

manual path selection introduces signi�cant simpli�cation, given the complex

and variable characteristics of spatial dependencies of phase images. Simply

put, a limited number of prede�ned paths cannot adequately encompass the

intricate spatial relationships. Meanwhile, incorporating an extensive array

of traveling paths for comprehensive coverage becomes computationally pro-

hibitive.

An ideal DNN architecture for PU must e�ciently capture and leverage

both local and global spatial dependencies within a phase image. Toward

this end, we explore the exploitation of the strong capability of transform-

ers [35] in capturing global spatial dependencies. Unlike classi�cation which

concerns global contexts and semantics, most classic image restoration tasks,

such as denoising and super-resolution, care more about local structures and

details. Together with the high computational cost of employing a global

attention mechanism, existing Vision Transformers (ViT) employed in these

tasks typically restrict their attention to local regions and rarely employ

position encoding. However, PU di�ers much from these tasks. While it rec-

ognizes the importance of local dependencies, PU also necessitates a global

attention mechanism to tap into global dependencies for resolving ambigu-

ities. Hence, a transformer tailored for PU is needed to e�ciently exploit

global dependencies without an excessive computational cost.

In response to the demands on both computational e�ciency and inte-
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gration of global-and-local dependencies, we introduce a ViT model called

PUTFormer (PU TransFormer), employing a multi-scale strategy that seam-

lessly integrates joint global and local analysis while maintaining computa-

tional e�ciency. Our PUTFormer processes tokens across various scales, de-

rived from a multi-scale patch embedding mechanism. On the coarser scales,

global dependencies are discerned using global transformer blocks, which are

used subsequently to guide local transformer blocks in predicting features

of unwrapped phases in a coarse-to-�ne progression. In essence, it implic-

itly establishes a hierarchical spatial relationship graph (see Fig. 1), blending

global connections with localized spatial interactions. This obviates the ne-

cessity for the manual path de�nitions commonly found in the RNN-based

methodologies.

Furthermore, recognizing the pivotal role of spatial order in PU, we in-

tegrate positional encoding into PUTFormer. This imparts a natural under-

standing of spatial orientation, distinguishing it from the ViT models used

in many other image reconstruction tasks where positional encoding is often

omitted. Following the same practice of [29; 24], the PUTFormer is trained

using a gradient-domain loss that bypasses the instability issue caused by

the equivalent class of ground-truth (GT) phases. Extensive experiments

under di�erent settings have demonstrated the advantages of PUTFormer

over existing works, in terms of both unwrapping accuracy (see Fig. 1) and

computational e�ciency.

To conclude, there are three contributions in this paper:

� Introducing the �rst ViT model tailored for PU;

� Proposing a specialized hierarchical design to optimize the performance
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and e�ciency of ViT for PU;

� Developing a lightweight DNN for PU that achieves state-of-the-art

results.

The rest of this paper is organized as follows. Section 2 performs a literature

review. Section 3 presents the details of our proposed PUTFormer. Section 4

is devoted to experimental evaluation. Finally, Section 5 draws a conclusion.

2. Related Work

2.1. Non-deep-learning Methods for PU

PU can be roughly categorized into spatial (SPU) and temporal (TPU).

Early studies tackled SPU primarily using three conventional methods: path-

following, �ltering, and optimization. Path-following-based methods (e.g. [36;

37; 11; 38; 39; 40; 41]) perform PU by integrating along chosen paths. For

example, diamond (rthombus) type strategy [42] employs a diamond stencil

is often employed to evaluate phase di�erences between neighboring pixels,

and curtain-type strategy [36] unwraps the phase in a sweeping manner,

either horizontally or vertically across the image. However, both the imper-

fectness of path selection and the noise can result in ampli�ed errors during

path integration. Aiming for better noise robustness, �ltering-based methods

(e.g. [43; 44]) adapt non-linear denoising �lters for concurrent PU and denois-

ing. In a di�erent vein, optimization-based methods (e.g. [45; 46; 47; 48; 49])

recast SPU as an optimization problem regularized by some handcrafted im-

age priors for improving noise robustness and guiding path selection. Never-

theless, optimization-based methods are likely to diminish the dynamic range
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of phase values [50], and the used handcrafted priors may be over-simplistic

for complex phase structures.

There are also extensive studies on TPU. Gray code algorithms [51; 52],

use sequential binary patterns to uniquely encode phase shifts for robust

unwrapping. Phase coding algorithms [53; 54] enhance accuracy by encoding

phase with stair-like patterns to reduce ambiguity. Phase shifting algorithms

[7; 55] use multiple sinusoidal fringe patterns to compute phase shifts for

high-resolution 3D reconstruction. Fringe amplitude encoding algorithms [56]

extract absolute phase information by encoding fringe intensity modulations,

improving robustness against noise and discontinuities.

2.2. DNN-based Methods for PU

2.2.1. Regression-based methods

Regression-based DNNs are tailored for the end-to-end prediction of un-

wrapped phases. Dardikman et al. [26] used residual CNNs. Wang et al. [28]

and Qin et al. [27] used U-shaped CNNs. Peng et al. [6] used both residual

and U-shaped CNNs. To exploit global spatial dependencies, these methods

necessitate stacking many layers for a su�ciently large receptive �eld. To

make this e�cient, Zhang et al. [32] inserted an edge-enhanced self-attention

(SA) into the bottleneck of a U-shaped CNN.

To better exploit global dependencies, Ryu et al. [23] constructed an

RNN de�ned across pixels. Further, Perera et al. [24] introduced an RNN

enhanced by Long Short-Term Memories (LSTM) [57]. These methods need

to pre-de�ne several paths for RNN construction. Given computational con-

straints, this limited number of paths cannot fully harness the global spatial

dependencies inherent in a phase image. In contrast, the PUTFormer is a
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transformer with a specialized structure, optimizing spatial dependency ex-

traction while maintaining computational e�ciency.

2.2.2. Classi�cation-based methods

Rather than directly predict unwrapped phases, classi�cation-based meth-

ods such as [3; 2] train a DNN to predict wrap counts. This strategy recasts

PU as a segmentation task, treating neighboring pixels with identical wrap

counts as segments. Consequently, established segmentation DNNs can be

employed for PU. However, this strategy may be susceptible to noise. Thus,

Zhang et al. [30] inserted a denoiser before wrap count prediction. Alterna-

tively, Zhang et al. [31] introduced a re�nement module to post-process the

errors caused by noise. Similarly, Spoorthi et al. [33; 29] applied Gaussian

�ltering to the phases unwrapped by a densely-connected CNN. In addition

to the necessity of dedicated denoising modules, classi�cation-based meth-

ods can grapple with the extensive array of resultant classes for phases with

wide-range values.

2.2.3. Blending DNNs with conventional techniques

Luo et al. [58] employed a classi�cation DNN speci�cally to remove in-

valid data points, enhancing the robustness of PU. Jiang et al. [50] merged

a semantic segmentation DNN with path-following and non-linear �ltering

techniques. Instead of learning an end-to-end mapping, Yang et al. [1] utilized

an untrained CNN to re-parameterize the latent phase image and optimized

it to match the measurements. This method is costly as it trains individual

CNNs for di�erent samples.
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2.3. ViT Models for Image Restoration

Building on their success in image classi�cation, ViT models have recently

been proposed for a variety of image restoration and reconstruction tasks; see

e.g. [59; 60; 61; 62; 63; 64; 65; 66]. These tasks often deal with high-resolution

images. Applying ViT models then can be computationally intensive due to

the global attention computation. Moreover, as these tasks focus on under-

standing the local structures and details rather than the global content, most

existing ViT models used in these tasks restricted their attention mechanisms

in local windows. Di�erent from those classic image restoration tasks, PU

necessitates a global attention mechanism to exploit global dependencies, as

a critical step toward resolving ambiguities in PU. Our proposed PUTFormer

e�ectively bridges this gap without imposing high computational costs.

3. Methodology

As illustrated in Fig. 2, the PUTFormer is architecturally crafted to pre-

dict the true unwrapped phase image from an input wrapped phase image.

Central to its design is the integration of multi-resolution analysis, allow-

ing for comprehensive phase insights from di�erent scales, while optimizing

computational e�ciency. Speci�cally, we have

1) Multi-Scale Patch Embedding. For multi-resolution analysis, the

multi-scale patch embedding module is proposed for generating tokens

that represent the input at multiple scales. Following this token gen-

eration, each token undergoes Positional Encoding (PE), ensuring that

spatial relationships within the input data are preserved and under-

stood by subsequent transformer blocks.
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2) Global analysis using Global Transformer Blocks (GTBs). For

understanding global dependencies, GTBs are employed for discern-

ing and capturing long-range dependencies across the input image, de-

ployed at the coarsest scale for computational e�ciency.

3) Progressive Local Analysis with Local Transformer Blocks

(LTBs). Guided by the global understanding from the GTBs, the

PUTFormer architecture transitions to a coarse-to-�ne unwrapping pro-

cess, executed by the LFBs in a progressive manner. The guidance from

global features ensure the stability of the unwrapping process.
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Figure 2: Diagram for illustrating the architecture of PUTFormer.

3.1. Multi-Scale Patch Embedding with PE

The essence of the multi-scale patch embedding lies in its capability to

tokenize image patches across varying scales within the feature space. This

is achieved using a succession of 3 × 3 convolutional layers, each employing

a stride of 2 for downsampling. With every convolutional layer, tokens cor-

responding to patches at di�ering scales are generated. The features derived

from deeper layers represent coarser scales. For each spatial location, to-

ken extraction is streamlined by taking the feature vector along the channel

13



dimension as a token.

Incorporating positional information into extracted tokens is very helpful,

especially for PU where spatial dependencies signi�cantly impact outcomes.

This is achieved through PE. Given an input tensor Z ∈ RH×W×D, the PE

layer, denoted by PE : RH×W×D → RH×W×D, is formulated as follows:

P [x, y, d] = sin(x/ω2d/D) + cos(y/ω2d/D), (3)

PE(Z) = Z + P , (4)

where ω = 104 in our implementation. Here (x, y) denotes the row and col-

umn indices of the 2D grid, and d is the index along the encoding dimension.

3.2. Exploiting Global Dependencies with GTBs

GTBs serve a critical role in PUTFormer by processing tokens at the

coarsest scale. Their objective is twofold: (i) to interpret the overall spatial

layout of a phase image; and (ii) to discern relations between regions with

varying wrap counts. A GTB, denoted by TG, is a traditional transformer

block comprised of a layer normalization (LayerNorm) [67], a multi-head

self-attention (MHSA), and a feed-forward network (FFN), which can be

expressed as:

X ′ =X +MHSA(LayerNorm(X)), (5)

TG(X) =X ′ + FFN(LayerNorm(X ′)). (6)

Within these operations, LayerNorm normalizes the feature by computing

their mean and variance, then scales and shifts them using learnable param-

eters. This aids in stabilizing and accelerating training.

14



For a set of tokens stored as Z = [z1; · · · ; zL] ∈ RL×D, the MHSA seeks to

derive new token representations by assessing interdependence among every

pair of input tokens. For the h-th of H attention head, all tokens undergo

a linear transform resulting in Qh,Kh,Vh ∈ RL×D, which represent queries,

keys and values respectively:

(Qh,Kh,Vh) = (ZWQ
h ,ZWK

h ,ZW V
h ), (7)

whereWQ
h ,WK

h ,W V
h are learnable matrices. Subsequently, attention weights

are derived, determining the extent to which each token interacts with its

counterparts. This is achieved through the calculation of similarity scores

between queries and keys, leading to:

Headh = softmax(QhK
T
h /

√
D)Vh. (8)

To consolidate results from all attention heads, the MHSA output is given

by

MHSA(Z) = concat([Head1,Head2, · · · ,HeadH ])WO, (9)

whereWO is a learnable matrix dedicated to fusing the results of the di�erent

attention heads.

To infuse the model with increased non-linearity, we utilize an FFN struc-

ture used in [60]:

FFN(X) = (GELU(XW ⊙XW2)XW3, (10)

where W1,W2,W3 are learnable matrices, GELU(·) is the Gaussian Error

Linear Unit [68], and ⊙ denotes element-wise multiplication.
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Overall, the computational �ow of the global transformer stage with N

global transformer blocks can be expressed as:

XG = T
(N)
G ◦ T (N−1)

G ◦ · · ·T (1)
G (PE(X)), (11)

where T
(n)
G denotes the n-th global transformer block.

3.3. Retrieving Local Dependencies via LTBs

High-resolution embedding tokens are hypothesized to convey essential

low-level information, enhancing the network's ability to retrieve intricate lo-

cal details and dependencies. Similar to [69] [70], for high-resolution features

of dimension H×W×C, we adopt a partitioning strategy by reshaping these

features into tensors of dimensions H/p×W/p×p2×C. Within each window,

spatial inter-dependencies are then retrieved through p2 feature points. Our

empirical observations show that this granular modeling approach improves

the PU process, leading to the retrieval of more local details.

It's worth noting that the design of LTB mirrors its global counterpart

in many respects. However, a distinguishing feature lies in the application of

the SA mechanism, which is executed within each window. A LTB, denoted

by TL(X), can be expressed as

X ′ =X +MHSA(Norm(Partition(X))), (12)

TL(X) =X ′ + FFN(X ′), (13)

where Partition(·) is the aforementioned partition operation.

3.4. Cross-Scale Modulator

To materialise the bene�t from the guidance of global dependencies cap-

tured in GTBs, it needs to appropriately handle the features from di�erent
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scales. We identify two feature types: the global feature XG and the lo-

cal feature XL. The di�erence between two feature types is more than just

spatial granularity. That is, XG represents a coarser, globally-consistent un-

wrapping, emphasizing overall phase consistency, whereasXL embodies �ner

local details, though wrapped and potentially cluttered with noise. The e�ec-

tive interplay between these features can improve the unwrapping accuracy

by having the best of both worlds: global consistency and local precision.

Toward this end, we introduce a Cross-scale Modulator (CSM) to inte-

grate these two types of features. Note that the coarser unwrapped XG

typically exhibits a richer spectrum of phase values in contrast to the tightly

wrapped nature of XL. Leveraging this disparity, we �rst modulate XL's

phase spectrum to align more closely with that of XG:

α = fθ1(XG), β = fθ2(XG), (14)

XL := α⊙XL + β. (15)

Subsequently, we mine XL for local details, extracted via high-pass �ltering

operations (implemented through residual blocks), and infuse them intoXG.

By this way, the CSM iteratively adjusts and re�nes local details.

3.5. Loss Function

Consider a true/wrapped phase image pair (ϕ,ψ). Let Fθ denote our

PUTFormer parameterized by θ. For any ψ, note that ϕ + 2πc (∀c ∈ Z)

retains the structural consistency of ϕ and results in the same wrapped image,

ϕ. Hence, the solution to PU corresponds to an equivalence class:

Φ = {ϕ+ 2πc : ∀c ∈ Z}. (16)
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As a result, directly training Fθ to predict ϕ challenges this inherent nature,

potentially leading to issues with training stability and generalization. For

instance, given two training pairs (ϕ,ψ) and (ϕ+2π,ψ), the NN trained to

approximate both ϕ and ϕ + 2π could make the convergence di�cult and

may result in an undesired average prediction.

Sharing a similar spirit with [29; 24], we avoid such issues by employing

a training loss that quanti�es prediction errors within the gradient domain:

L(θ) := ∥∇xϕ−∇xFθ(ψ)∥22 + ∥∇yϕ−∇yFθ(ψ)∥22, (17)

where ∇x and ∇y denote the gradient operators along the x and y axes,

respectively. In comparison to [29; 24], we use a purely gradient-domain loss.

In essence, our approach leverages only the relative values of the true phase

image for guidance. Due to the invariance of the gradient operators to a

constant pixel value shift, i.e., ∇(ϕ + c) = ∇ϕ, we can e�ectively resolve

those issues linked to the solution set Φ.

4. Experiments

4.1. Data, Protocol, and Implementation Details

In supervised learning, the quality of the training data plays a critical

role in determining the model's performance. Following the approach in [24],

we synthesize unwrapped phase images by generating a mixture of randomly

distributed Gaussian blobs with varying parameters. The phase wrapping

operation is then simulated as described in Eq. 1. In practice, unwrapped

phase patterns exhibit signi�cant variation, making it challenging to create a

training dataset that accounts for all possible phase patterns. To ensure an

18



accurate evaluation of the generalization performance of the proposed and

compared methods, all methods are tested across diverse testing datasets

that di�er from the training data. These include real-world datasets such as

RME [28] and InSAR, in addition to the synthetic Gaussian mixture model.

For a better evaluation, we make two modi�cations on the scheme of [24].

First, we increase the diversity and complexity of phase patterns, by enlarging

the maximal Gaussian cluster number P from 4 to 16. Second, we widen the

range of phase values from [−7 · 2π, 7 · 2π] to [−10 · 2π, 10 · 2π], increasing
the challenge. Totally 5000 paired samples are generated for training, with

SNRs uniformly sampled from {0, 5, 10, 20, 60}. The resolution of all wrapped
phase images is 256× 256.

A set of DNN-based PU methods is chosen for performance comparison:

PURNN [23], PhaseNet2.0 [29], SQD-LSTM [24], and EESANet [32]. Addi-

tionally, we include three representative transformer DNNs for general image

restoration tasks, including SwinIR [71], Uformer [61] and Restormer [60],

as references. For these three transformer models as well as SQD-LSTM, we

retrain them using their o�cial codes. The other three methods do not have

public codes. We faithfully implement them according to the instructions in

the literature, reproducing their results. Following [24], we use Normalized

Root Mean Square Error (NRMSE) as the accuracy metric, which is de�ned

as

NRMSEϕ′,ϕ =
∥ϕ′ − ϕ∥2√

WH
(
max(ϕ)−min(ϕ)

) , (18)

where ϕ′ ∈ RH×W is the predicted unwrapped phase image. Before calcula-

tion, min-max normalization is applied to ϕ′ so that ϕ′ has the same range

of values as ϕ. For convenience, all NRMSE values are reported in the units
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of 10−2.

We train the PUTFormer using the Adam optimizer [72] with an initial

learning rate of 1× 10−3. The learning rate is halved every 5× 104 iterations

and the total iteration number is 3× 105. The whole training process takes

nearly 10 hours on an Nvidia GTX 1080Ti GPU. Our PyTorch code will be

released on GitHub upon paper's acceptance.

4.2. Performance Evaluation

To have a comprehensive evaluation from di�erent perspectives, we con-

struct seven test cases detailed as follows.
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Figure 3: Visual inspection of residual images under different test settings.

See Table 1 for the results. PUTFormer consistently performs the best
across all noise settings, including the unseen SNRs of 2 and ∞. The aver-
age NRMSE of PUTFormer is around 1/3 of SQD-LSTM, the top competitor
among the compared PU-dedicated DNNs, and also noticeably better than
Restormer, a general transformer-based model. Additionally, PUTFormer
shows smaller performance decrease when handling noisier data, compared
to other methods. See Fig. 3 for visual inspection of the results for a sam-
ple case. For easier inspection, the residual images are shown. Apparently,
PUTFormer is better in recovering both global structures and local pat-
terns, attributed to its capability of exploiting both global and local spa-
tial dependencies for PU. In comparison, SQD-LSTM only exploits spatial
dependencies along a few pre-defined regular paths, thus less effective and
generalizable. In addition, our method shows good robustness to large noise,
e.g., SNR=-2, as shown in Fig. 3.

4.2.2. Generalization test against higher complexities
We construct a test set following Sec. 4.1 and change the range of the

Gaussian glob number to four cases, respectively: 1∼4, 4∼16, 16∼32 and
32∼64. The last two settings form phase structures with higher complexity

15

Figure 3: Visual inspection of residual images under di�erent test settings.

20



4.2.1. Robustness test against various noise strengths

Test data is constructed following Sec. 4.1 but with a wider range of noise

strengths, additionally including a nosier case with SNR=-2 and a noise-free

case with SNR=∞ (i.e. n = 0). We generate 1000 test samples per noise

strength.

See Table 1 for the results. PUTFormer consistently performs the best

across all noise settings, including the unseen SNRs of 2 and ∞. The aver-

age NRMSE of PUTFormer is around 1/3 of SQD-LSTM, the top competitor

among the compared PU-dedicated DNNs, and also noticeably better than

Restormer, a general transformer-based model. Additionally, PUTFormer

shows smaller performance decrease when handling noisier data, compared

to other methods. See Fig. 3 for visual inspection of the results for a sam-

ple case. For easier inspection, the residual images are shown. Apparently,

PUTFormer is better in recovering both global structures and local pat-

terns, attributed to its capability of exploiting both global and local spa-

tial dependencies for PU. In comparison, SQD-LSTM only exploits spatial

dependencies along a few pre-de�ned regular paths, thus less e�ective and

generalizable. In addition, our method shows good robustness to large noise,

e.g., SNR=-2, as shown in Fig. 3.

4.2.2. Generalization test against higher complexities

We construct a test set following Sec. 4.1 and change the range of the

Gaussian glob number to four cases, respectively: 1∼4, 4∼16, 16∼32 and

32∼64. The last two settings form phase structures with higher complexity

than the training data. We generate 1000 test samples per range.

As shown in Table 2, PUTFormer ranks the �rst among all the competi-
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Table 1: NRMSE results under various SNRs.

Method ∞ 60 20 10 5 0 -2 Average

PURNN [23] 2.45 2.40 2.47 2.44 2.59 3.86 6.11 3.19

PhaseNet2.0 [29] 9.90 9.86 9.78 9.74 9.98 9.79 10.08 9.88

SQD-LSTM [24] 0.88 0.82 0.86 0.85 0.86 1.27 3.27 1.26

EESANet [32] 9.78 10.34 10.04 10.05 10.93 11.81 15.96 11.27

SwinIR [71] 7.56 7.41 7.42 7.67 7.80 8.85 11.55 8.32

Uformer [61] 0.96 0.96 0.97 0.97 0.94 1.16 1.87 1.12

Restormer [60] 0.84 0.85 0.87 0.86 0.80 0.87 1.56 0.95

PUTFormer 0.13 0.13 0.13 0.14 0.16 0.36 1.19 0.32

tors, with noticeably superior performance. Overall, its average NRMSE is

around 1/5 of SQD-LSTM (top-performer of compared PU-dedicated DNNs).

When more Gaussian globs are introduced, the performance drop of PUT-

Former is less than SQD-LSTM. The reason is probably that, spatial de-

pendencies become much richer as the phase complexity increases, which

cannot be fully captured by SQD-LSTM that uses a limited number of �xed

regular paths. In contrast, PUTFormer is path-free and exploits spatial de-

pendencies with a pair-wise manner, thereby more generalizable to complex

phase structures. See also Fig. 3 for a visual inspection. Additionally, even

compared to the general Restormer model, PUTFormer still achieves better

results, demonstrating the e�ectiveness of its architecture.

4.2.3. Generalization test on unseen phase ranges

In this experiment, the test samples are generated as described in Sec. 4.1,

but with extended phase ranges of [−15 · 2π, 15 · 2π], [−20 · 2π, 20 · 2π],
and [−25 · 2π, 25 · 2π], respectively. For each range, 1,000 test samples are
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Table 2: NRMSE results under various ranges of cluster numbers.

Method 1-4 4-16 16-32 32-64 Average

PURNN [23] 1.34 1.57 2.17 2.77 1.96

PhaseNet2.0 [29] 9.48 9.60 9.83 10.16 9.82

SQD-LSTM [24] 0.83 0.92 1.04 1.10 1.00

EESANet [32] 10.73 11.46 10.78 10.49 10.87

SwinIR [71] 6.03 6.03 6.47 7.12 6.41

Uformer [61] 0.86 0.99 1.27 1.47 1.15

Restormer [60] 0.93 0.97 0.95 0.98 0.96

PUTFormer 0.16 0.19 0.23 0.24 0.21

generated.

The quantitative results in Table 3 indicate that PUTFormer generalizes

e�ectively across a wide range of phase values and consistently outperforms

the compared methods, including Restormer. The improvement is especially

notable compared to other PU-dedicated methods. The visual comparison

for an example case is shown in Fig. 3, where the output from PUTFormer

is visibly closer to the GT compared to the baselines. For example, when

the phase value range becomes much larger than the original one, e.g., [−20 ·
2π, 20 · 2π] and [−25 · 2π, 25 · 2π], SQD-LSTM fails to recover the phases,

while the PUTFormer still works well.

The performance gain of PUTFormer largely come from its ability to

e�ectively utilize global consistency when unwrapping the phase, which is

crucial as the phase values deviate further from the training range. Further-

more, this global consistency is well balanced with local features through

modulating schemes, enabling a robust recovery aross di�erent phase ranges.
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Table 3: NRMSE results under various phase ranges.

Method ±10 · 2π ±15 · 2π ±20 · 2π ±25 · 2π Average

PURNN [23] 1.55 3.85 7.03 11.25 5.92

PhaseNet2.0 [29] 10.04 10.47 10.29 11.16 10.49

SQD-LSTM [24] 0.94 1.63 3.37 6.08 3.01

EESANet [32] 11.40 11.16 12.24 13.47 12.07

SwinIR [71] 6.08 6.46 6.92 8.34 6.95

Uformer [61] 0.98 1.49 2.67 4.53 2.42

Restormer [60] 0.85 1.02 1.63 2.78 1.57

PUTFormer 0.24 0.34 0.89 1.82 0.81

4.2.4. Generalization test on unseen phase patterns

We use a di�erent scheme, the one employed in [28], to generate test

samples with unseen phase patterns. This scheme creates a GT phase image

by interpolating and rescaling a small random matrix sampled from U(0,1).
The wrapping process follows Sec. 4.1, with 1000 samples generated per SNR.

As observed in Table 4, directly evaluating pre-trained models on the

unseen patterns results in performance drop for all methods. Yet, our PUT-

Former still performs better than other PU-dedicated DNNs. Compared to

Restormer, it performs better on 3/5 noise strengths. We also retrain all

models using 5000 samples generated with the scheme of [28]. The results

are also listed in Table 4. We can see that the results of all models be-

come better after retraining. In this case, PUTFormer is top-1 on 4/5 noise

strengths. See also Fig. 3 for a qualitative comparison.
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Table 4: NRMSE of pre-/re-trained models on unseen patterns.

Method 60 20 10 5 0 Average
P
re
-t
ra
in
ed

PURNN [23] 12.79 12.70 12.86 13.22 15.27 13.37

PhaseNet2.0 [29] 12.86 12.90 12.79 12.93 14.42 13.18

SQD-LSTM [24] 9.64 9.63 9.62 10.04 12.97 10.38

EESANet [32] 25.92 25.61 25.19 25.33 27.76 25.96

SwinIR [71] 9.45 9.65 9.52 9.83 11.39 9.97

Uformer [61] 6.48 6.50 6.53 6.71 9.49 7.14

Restormer [60] 5.93 5.94 6.35 6.43 9.12 6.75

PUTFormer 5.90 5.91 6.20 6.47 9.33 6.76

R
e-
tr
a
in
ed

PURNN [23] 2.05 2.05 2.14 2.30 4.31 2.57

PhaseNet2.0 [29] 9.99 9.77 9.74 9.94 10.29 9.95

SQD-LSTM [24] 2.03 2.01 2.01 2.06 3.58 2.34

EESANet [32] 4.42 4.32 4.18 4.27 5.18 4.47

SwinIR [71] 4.73 4.74 4.70 4.77 5.11 4.81

Uformer [61] 1.33 1.30 1.38 1.60 1.96 1.51

Restormer [60] 0.82 0.80 0.81 0.80 0.93 0.83

PUTFormer 0.51 0.50 0.52 0.68 1.75 0.79

4.2.5. Generalization test on InSAR data

InSAR is one important application of PU. However, public InSAR data

is scarce. For generalization test, we generate InSAR data using the eleva-

tion maps collected from the Internet and form the wrapped data following

Sec. 4.1. See Table 5 for the NRMSE results, where PUTFormer achieves the

best results in 4/5 cases and produces better unwrapped images. The supe-

rior performance of PUTFormer is also re�ected in the visual results provided

in Fig. 3. All these comparisons have demonstrated the better generalization
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Table 5: NRMSE results on InSAR data.

Method 60 20 10 5 0 Average

PURNN [23] 12.23 12.47 12.60 13.17 14.22 12.94

PhaseNet2.0 [29] 12.64 12.64 12.87 12.82 13.52 12.90

SQD-LSTM [24] 8.85 8.99 8.99 9.29 10.19 9.26

EESANet [32] 27.79 27.53 27.20 28.08 29.99 28.12

SwinIR [71] 17.44 17.35 17.3 17.51 17.86 17.49

Uformer [61] 6.35 6.36 6.38 6.42 7.06 6.51

Restormer [60] 5.69 5.82 5.93 5.94 6.53 5.98

PUTFormer 5.51 5.54 5.53 5.87 6.97 5.88

of PUTFormer to phase data from a di�erent domain, compared to others.

4.2.6. Application on Fringe Projection Pro�lomeries

An important application of PU, Fringe Projection Pro�lometry (FPP),

is included to further assess the performance of the proposed method in

practice. In this experiment, we use the dataset proposed in [73] for this

evaluation. The NRMSE results are presented in Table 6, which shows that

the proposed method performs competitively in this application. Visual com-

parisons in Figure 4 demonstrate that the proposed method yields globally

more accurate results than the other approaches.

It is interesting to see that for FPP data, classi�cation-based methods

(e.g., PhaseNet2.0) in general outperform most regression-based methods.

One likely reason is that FPP data has high signal-to-noise ratio, in compar-

ison to the data simulated in the other experiments. For the data with high

signal-to-noise-ratio, predicting the wrap count will be very robust which

26



Table 6: NRMSE results on FPP data

Metric
PURNN

[23]

PhaseNet2.0

[29]

SQD-LSTM

[24]

EESANet

[32]

SwinIR

[71]

Uformer

[61]

Restormer

[60]
PUTFormer

NRMSE 5.31 3.12 3.91 4.36 5.47 3.76 3.48 2.59

lead to more accurate results that directly predicting unwrapped phase. De-

spite the advantage of classi�cation-based methods on data with high signal-

to-noise ratio, our method, a regression-based method, remains to be very

compeititive against classi�cation-based methods.
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Figure 4: Visual inspection of residual images of Fringe Projection Profilomeries.

Table 7: Comparison in computational complexity.

Metric PURNN
[23]

PhaseNet2.0
[29]

SQD-LSTM
[24]

EESANet
[32]

SwinIR
[71]

Uformer
[61]

Restormer
[60] PUTFormer

#Para (M) 1.07 1.15 0.90 23.88 0.90 20.60 11.72 1.03
Time (ms) 323.71 23.05 15.62 24.73 295.18 69.28 177.51 10.04

4.2.8. Visual comparison with other transformer models
To better demonstrate the superior performance of our PUTFormer over

other transformer models, we show three examples in Fig. 5 to compare
PUTFormer with SwinIR, Uformer, and Restormer. It can be seen that our
PUTFormer shows advantages on handling phase images with dense phase
changes, in comparison to other transformer models.

4.3. Ablation Studies
We construct and retrain several variants of PUTFormer for ablation

studies. (i) w/o GTB: Discarding all GTBs. (ii) w/o LTB: Discarding all
LTBs. (iii) w/o GTB & LTB: Replacing all GTBs and LTBs by standard 3×3
convolutional layers, resulting in a U-shaped CNN. (iv) w/o PE: Removing
PE from all GTBs and LTBs. (iv) w/o CSM: Removing all CSMs. The
feature channel numbers of these variants are adjusted to maintain the model
size for fair comparison.

20

Figure 4: Visual inspection of residual images of Fringe Projection Pro�lomeries.

4.2.7. Comparison of computational cost

Table 7 compares di�erent methods in terms of the number parameters

and the test time on a 256 × 256 phase image. PUTFormer has both the

second smallest model size and the shortest inference time. These advan-
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Table 7: Comparison in computational complexity.

Metric
PURNN

[23]

PhaseNet2.0

[29]

SQD-LSTM

[24]

EESANet

[32]

SwinIR

[71]

Uformer

[61]

Restormer

[60]
PUTFormer

#Para (M) 1.07 1.15 0.90 23.88 0.90 20.60 11.72 1.03

Time (ms) 323.71 23.05 15.62 24.73 295.18 69.28 177.51 10.04

Table 8: NRMSE results in ablation studies.

Settings
w/o

GTB

w/o

LTB

w/o

GTB & LTB

w/o

PE

w/o

CSM
Original

#1 5.23 1.75 12.47 2.28 1.60 1.19

#2 4.93 2.70 6.02 3.63 2.23 1.75

tages not only show its higher practical value, but also demonstrate that its

superiority is from a better architecture design, not an increase of model com-

plexity. Particularly, PUTFormer is much smaller and faster than Restomer

while showing better performance in previous experiments. This has demon-

strated the superiority of our DNN architecture design.

4.2.8. Visual comparison with other transformer models

To better demonstrate the superior performance of our PUTFormer over

other transformer models, we show three examples in Fig. 5 to compare

PUTFormer with SwinIR, Uformer, and Restormer. It can be seen that our

PUTFormer shows advantages on handling phase images with dense phase

changes, in comparison to other transformer models.

4.3. Ablation Studies

We construct and retrain several variants of PUTFormer for ablation

studies. (i) w/o GTB: Discarding all GTBs. (ii) w/o LTB: Discarding all
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Figure 5: Visual comparison with transformer variants.

Table 8: NRMSE results in ablation studies.

Settings w/o
GTB

w/o
LTB

w/o
GTB & LTB

w/o
PE

w/o
CSM Original

#1 5.23 1.75 12.47 2.28 1.60 1.19
#2 4.93 2.70 6.02 3.63 2.23 1.75

Two settings are tested: Setting #1 follows Section 4.2.1-1 with SNR=-
2; and Setting #2 follows Section 4.2.4-4 with SNR=0. From the results
listed in Table 8, we make the following remarks. (i) The GTBs capturing
global spatial dependencies play a crucial role to the accuracy of PU. See also
Fig. 6 for a visual example, where non-local distortion occurs when GTBs are
removed. (ii) The LTBs also have noticeable contribution to the performance.
As shown in the visual example of Fig. 6, LTBs bring local refinement during
unwrapping. (iii) A pure CNN without GTBs and LTBs performs much
worse. (iv) PE is quite useful, even more beneficial than LTBs. This is mainly
due to that spatial order provides natural and informative constraints for PU.
(iv) The CSMs are effective in fusing features of local and global semantics,
leading to further performance gain.

We vary the model size of PUTFormer by changing the channel number
in each module. See Table9 for the results of these variants on the two
settings used above. We observe that even with a smaller model with a half
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Figure 5: Visual comparison with transformer variants.

LTBs. (iii) w/o GTB & LTB: Replacing all GTBs and LTBs by standard 3×3

convolutional layers, resulting in a U-shaped CNN. (iv) w/o PE: Removing

PE from all GTBs and LTBs. (iv) w/o CSM: Removing all CSMs. The

feature channel numbers of these variants are adjusted to maintain the model

size for fair comparison.

Two settings are tested: Setting #1 follows Section 4.2.1-1 with SNR=-

2; and Setting #2 follows Section 4.2.4-4 with SNR=0. From the results

listed in Table 8, we make the following remarks. (i) The GTBs capturing

global spatial dependencies play a crucial role to the accuracy of PU. See also

Fig. 6 for a visual example, where non-local distortion occurs when GTBs are

removed. (ii) The LTBs also have noticeable contribution to the performance.

As shown in the visual example of Fig. 6, LTBs bring local re�nement during

unwrapping. (iii) A pure CNN without GTBs and LTBs performs much
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Figure 6: Results of PUTFormer w/ or w/o GTBs/LTBs.

size, our PUTFormer still achieves promising results and performs better
than the most competitive PU-dedicated method, SQD-LSTM, as well as the
most competitive transformer model, Restormer. Furthermore, increasing
the model size leads to further gain in performance, yet not significant.

4.4. Visualization and Analysis on Attention
We use Fig. 7 to visualize the attention maps at different heads of multi-

head attention in two GTBs of PUTFormer. As the number of self-attention
maps is very large, we only show the ones regarding the center, i.e., each
attention map encodes the attention strength on each spatial location when
unwrapping the phase at the central point. We have the following observa-
tions. (i) The heads within the same GTB capture different types of spatial
dependencies. For instance, the attention maps produced by Head #1 of
both GTBs focus on boundaries while the ones by Head #2 focus on inner
regions. (ii) The attention performs selection on regions to unwrap. For
instance, there are holes in the attention maps produced by Head #3. These
holes correspond to the wrapped cluster regions with frequent wrap count
changes, which are unrelated and even harmful to the unwrapping at the
center point. Using the produced attention maps can bypass these regions.
(iii) The attention maps tend to have more-global structures at the latter
GTB.

4.5. Limitation Analysis
The statistical characteristics of measurement noise of phase wrapping

varies across different scenarios. For instance, in InSAR, the electronic noise
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Figure 6: Results of PUTFormer w/ or w/o GTBs/LTBs.

worse. (iv) PE is quite useful, even more bene�cial than LTBs. This is mainly

due to that spatial order provides natural and informative constraints for PU.

(iv) The CSMs are e�ective in fusing features of local and global semantics,

leading to further performance gain.

We vary the model size of PUTFormer by changing the channel number

in each module. See Table9 for the results of these variants on the two

settings used above. We observe that even with a smaller model with a half

size, our PUTFormer still achieves promising results and performs better

than the most competitive PU-dedicated method, SQD-LSTM, as well as the

most competitive transformer model, Restormer. Furthermore, increasing

the model size leads to further gain in performance, yet not signi�cant.

4.4. Visualization and Analysis on Attention

We use Fig. 7 to visualize the attention maps at di�erent heads of multi-

head attention in two GTBs of PUTFormer. As the number of self-attention

maps is very large, we only show the ones regarding the center, i.e., each

30



Wrapped
Input GT Head #1 Head #2 Head #3 Head #4 Head #1 Head #2 Head #3 Head #4

———————————————- ———————————————-
1st GTB 4th GTB

Figure 7: Visualization of self-attention maps (regarding the central point) generated by
different attention heads of two GTBs.

Table 9: Performance of PUTFormer with varied model size.
Setting 0.58M 1.03M (Original) 1.60M SQD-LSTM Restormer

#1 1.97 1.19 1.04 3.27 1.56
#2 2.66 1.75 1.59 6.08 2.78

in radar systems is typically close to Gaussian noise, whereas in optical inter-
ferometry, imperfections or dust on optical components can introduce spike
noise. For supervised learning methods, optimal performance is achieved
when the network is trained on data with noise characteristics similar to
those of the testing data. A mismatch between the noise distributions in the
training and testing data often leads to a noticeable decrease in generalization
performance. While one could train the network on multiple datasets with
varying noise distributions, its performance would significantly worse than
the same network but trained specifically on data with a noise distribution
that matches the testing data. Our approach also shares this limitation: to
achieve the best performance, it requires prior knowledge of the noise distri-
bution in the testing data to construct training samples with matching noise
characteristics. This limitation is well known among supervised methods for
image processing. In future work, we will explore how to efficiently adapt a
model trained for one specific noise distribution to another.
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Figure 7: Visualization of self-attention maps (regarding the central point) generated by

di�erent attention heads of two GTBs.

attention map encodes the attention strength on each spatial location when

unwrapping the phase at the central point. We have the following observa-

tions. (i) The heads within the same GTB capture di�erent types of spatial

dependencies. For instance, the attention maps produced by Head #1 of

both GTBs focus on boundaries while the ones by Head #2 focus on inner

regions. (ii) The attention performs selection on regions to unwrap. For

instance, there are holes in the attention maps produced by Head #3. These

holes correspond to the wrapped cluster regions with frequent wrap count

changes, which are unrelated and even harmful to the unwrapping at the

center point. Using the produced attention maps can bypass these regions.

(iii) The attention maps tend to have more-global structures at the latter

GTB.
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Table 9: Performance of PUTFormer with varied model size.

Setting 0.58M 1.03M (Original) 1.60M SQD-LSTM Restormer

#1 1.97 1.19 1.04 3.27 1.56

#2 2.66 1.75 1.59 6.08 2.78

4.5. Limitation Analysis

The statistical characteristics of measurement noise of phase wrapping

varies across di�erent scenarios. For instance, in InSAR, the electronic noise

in radar systems is typically close to Gaussian noise, whereas in optical inter-

ferometry, imperfections or dust on optical components can introduce spike

noise. For supervised learning methods, optimal performance is achieved

when the network is trained on data with noise characteristics similar to

those of the testing data. A mismatch between the noise distributions in the

training and testing data often leads to a noticeable decrease in generalization

performance. While one could train the network on multiple datasets with

varying noise distributions, its performance would signi�cantly worse than

the same network but trained speci�cally on data with a noise distribution

that matches the testing data. Our approach also shares this limitation: to

achieve the best performance, it requires prior knowledge of the noise distri-

bution in the testing data to construct training samples with matching noise

characteristics. This limitation is well known among supervised methods for

image processing. In future work, we will explore how to e�ciently adapt a

model trained for one speci�c noise distribution to another.
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5. Conclusion

In this paper, we proposed a transformer model tailored for PU, which is

capable of capturing and exploiting rich global spatial dependencies within

a phase image for unwrapping. Leveraging an e�cient coarse-to-�ne multi-

resolution analysis architecture, our proposed model achieved noticeable per-

formance gain over existing PU-dedicated DNNs and a popular transformer-

based DNN, while using a lightweight model. Our future work will study

further improvement on the generalization performance on unseen phase pat-

terns.
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