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Abstract
Multi-focus image fusion (MFIF) enhances depth of field in
photography by generating an all-in-focus image from mul-
tiple images captured at different focal lengths. While deep
learning has shown promise in MFIF, most existing methods
overlooked the physical properties of defocus blurring in their
network design, limiting their interoperability and general-
ization. This paper introduces a novel framework that inte-
grates explicit defocus blur modeling into the MFIF process,
improving both interpretability and performance. Using an
atom-based spatially-varying parameterized defocus blurring
model, our approach calculates pixel-wise defocus descriptors
and initial focused images from multi-focus source images in a
scale-recurrent manner to estimate soft decision maps. Fusion
is then performed using masks derived from these decision
maps, with special treatment for pixels likely defocused in
all source images or near boundaries of defocused/focused re-
gions. The model is trained with a fusion loss and a cross-scale
defocus estimation loss. Extensive experiments on benchmark
datasets demonstrated the effectiveness of our approach. Our
code is avalible on https://github.com/Tangzitao/DMANet.

Introduction
Defocus blur is a prevalent challenge in photography, often
resulting from a shallow depth of field (DoF) when capturing
scenes with varying depths. This type of blur occurs when
objects in an image fall outside the camera’s focal plane,
yielding a loss of sharpness and detail in the image.

Formally, we can express the object field Z as a sum over
weighted impulses:

Z(x, y) =

∫ ∫
Z(u, v)δ(u− x, y − y)dudv, (1)

where δ denotes the impulse function, corresponding to a
Dirac delta PSF. Then, the image plane field can be calcu-
lated as a superposition over weighted point spread functions
(PSFs) in the image plane using the same weighting function
as in the object plane. As a result, the defocused image Y
with blurring effects can be expressed as

Y (x, y) =

∫ ∫
Z(u, v)Du,v(x− u, y − v)dudv, (2)
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Figure 1: (a)& (b): Input image pair. (c)-(f) MFIF results
obtained from our approach and several existing methods.
Below each image, two zoomed-in regions are shown, cor-
responding to the focused regions of the two input images.
Our approach recovers more details around the boundaries
between defocused and focused regions.

where Du,v represents the per-pixel defocus PSFs (also called
defocus kernels) determined by scene depths.

The challenge of maintaining sharpness across varying
depths is particularly significant in fields such as macro
photography (Gallo, Muzzupappa, and Bruno 2014), med-
ical imaging (Basak, Kundu, and Sarkar 2022), and mi-
croscopy (Zhou et al. 2022), where precision and clarity are
crucial. Traditional methods for extending DoF, such as using
a smaller aperture or employing MFIF, have inherent trade-
offs. While smaller apertures can increase DoF, they also
limit light-gathering ability, introducing noise and diffrac-
tion artifacts (Horn 1968). Multi-focus image fusion (MFIF)
offers an alternative by merging multiple photographs cap-
tured at varying focal lengths into an all-in-focus (AIF) image
with enhanced clarity and detail, particularly applicable to
complex scenes where objects are at various focal distances.

In recent years, deep learning has become a dominant ap-
proach for MFIF, which can be classified into decision-based
methods or reconstruction-based methods. Decision-based
methods cast MFIF as a pixel-wise binary classification prob-



lem, producing a decision map indicating “focused” or “defo-
cused” labels on image pixels; see e.g. Liu et al. (2017); Wang
et al. (2023); Xiao, Wu, and Bi (2021); Ma et al. (2020a); Li
et al. (2020). Reconstruction-based methods perform fusion
on features extracted from input images and then reconstruct
the AIF image from the fused features, typically done by
an end-to-end deep neural network (DNN); see e.g. Li et al.
(2019); Zhang et al. (2020); Li et al. (2024); Wang et al.
(2021a). For both types of methods, extraction of defocus-
blur-related features plays a critical role.

By capturing the underlying physics, the physical model of
defocus blur accurately represents defocus blur and encodes
its essential features. For instance, a focused region corre-
sponds to a Dirac delta PSF while a defocused region with se-
vere blur corresponds to a large-support defocus PSF (Aslan-
tas and Toprak 2017; Ma et al. 2020b; Chen et al. 2024).
However, this crucial model is ignored in the DNNs of most
existing deep learning-based MFIF methods, limiting their in-
terpretability and generalization performance. Therefore, we
are motivated to explicitly incorporate the defocus blurring
model (2) into our DNN design for MFIF.

In this paper, we propose an end-to-end MFIF DNN called
Defocus Model Aware Network (DMANet). Levering a pa-
rameterized linear combination model of per-pixel defocus
PSFs to address computational issues, the DMANet first esti-
mates pixel-wise defocus descriptors as well as initial focused
images from the input multi-focus images. This defocus blur
estimator is constructed as a coarse-to-fine module to exploit
multi-scale analysis and cross-scale similarity of defocus blur
for improvement. The estimated defocus descriptors capture
essential cues of defocus blur and the initial focused images
partially mitigate the blur effects in input images, both bene-
fiting the fusion process. Built upon these estimation results,
a decision map estimator forms decision maps that indicate
pixel-wise focus level on input images. Finally, built upon
the decision maps, image fusion is performed using masks
produced by an uncertainty-aware fusion module, giving a
specific treatment to pixels that exhibit indefinite focus prop-
erties in the decision maps. These pixels probably correspond
to the ones that are defocused in all source images or around
boundaries between defocused and focused regions. For these
pixels, the fusion utilizes the estimated initial focused images.

Experimental results on benchmark datasets have demon-
strated the superior performance of our DMANet over state-
of-the-art techniques. See Fig. 1 for an illustration. In sum-
mary, this paper makes the following contributions:
• A physical-model-driven cross-scale defocus blur esti-

mator produces defocus descriptors and initial focused
images from multi-focus images, enhancing decision map
estimation and image fusion.

• An uncertainty-aware fusion module that gives a sepa-
rate treatment to uncertain pixels in decision maps that
are probably defocused in all source images or around
boundaries between defocused and focused regions.

Related Work
There are plenty works on MFIF. Below, we only review
those most relevant to our study, while a discussion of tradi-

tional methods is provided in the supplemental materials. A
comprehensive overview can be referred to Liu et al. (2020);
Bhat and Koundal (2021); Zhang (2022a).

Decision-based MFIF This type of methods treats MFIF
as a pixel-wise classification task, training DNNs to predict
decision maps that segment focused and defocused regions,
guiding the fusion process; see e.g. Duan, Luo, and Zhang
(2023); Wang et al. (2024, 2023); Wu et al. (2023); Zhao
et al. (2023); Bouzos, Andreadis, and Mitianoudis (2023);
Duan, Luo, and Zhang (2024). Existing works typically use
convolutional network architectures that have shown success
in classification and segmentation tasks (Liu et al. 2017; Tang
et al. 2018; Guo et al. 2019; Ma et al. 2020a; Xu et al. 2020a;
Ma et al. 2022; Amin-Naji, Aghagolzadeh, and Ezoji 2019;
Xu et al. 2020b; Huang et al. 2020). For enhancement, multi-
scale features (Li et al. 2020; Wang et al. 2021b; Liu et al.
2021) and global context (Xiao, Wu, and Bi 2021; Xiao et al.
2021; Nie, Hu, and Gao 2022; Chen et al. 2024; Li et al.
2023) have been exploited.

Reconstruction-based MFIF This kind of methods learns
an end-to-end DNN that maps source images to a fused image,
typically using an encoder-decoder architecture that sequen-
tially performs feature extraction, feature fusion, and image
reconstruction; see e.g. Zhao, Wang, and Lu (2019); Li et al.
(2019); Zhang et al. (2020); Wang et al. (2021a); Marivani
et al. (2022); Li et al. (2024). Pre-training on large datasets
using pre-text tasks such as image reconstruction (Li and
Wu 2019; Mustafa, Yang, and Zareapoor 2019; Luo et al.
2023a; Zhang et al. 2021b; Cheng et al. 2021) and block-
masking (Liang et al. 2022) significantly benefits these meth-
ods. Recently, generative MFIF methods based on generative
adversarial network (GAN) (Huang et al. 2020) and diffusion
models (Li et al. 2024) have shown superior performance.

Joint methods Both types of methods above have their
strengths and limitations. Decision-based methods are more
interpretable and better at preserving sharpness, but they
often introduce artifacts at boundaries between focused and
defocused areas and are not good at handling regions that are
not in focus through all input images. Reconstruction-based
methods alleviate these issues by directly regressing AIF
images, producing more natural boundary effects. However,
they often result in fidelity loss in regions where focused
parts are available in input images. To marry the merits of
both types of methods, Liu et al. (2022) proposed a two-stage
DNN, first reconstructing an initial fused image and then
refining it via a decision-based approach. Zhang et al. (2024)
constructed a dual-branch DNN with parallel reconstruction
and decision branches, fusing their results for final output.

All aforementioned methods have not utilized an explicit de-
focus blurring model in their DNN design. In comparison,
our DMANet has an explicit integration of a parameterized
defocus blurring model, leading to not only higher inter-
pretability but also better performance, even without utilizing
pre-trained models on large datasets.
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Figure 2: Overview of DMANet for MFIF. The process begins with feeding the multi-scale versions of the multi-focus source
image pair (Y1,Y2) into the Defocus Blur Estimator, generating defocus descriptors ({Cn,1}n, {Cn,2}n) and initial focused
images (Z1,Z2), operating in a multi-scale fashion. Using these estimation results, the Decision Map Estimator predicts decision
maps (M1,M2) that distinguish between focused and defocused regions on source images. Eventually, the Uncertainty-Aware
Fuser composites the source images and the initial focused images using the decision maps to obtain the AIF images Z∗

1 ,Z
∗
2 .

Methodology
MFIF aims to form an AIF image Z ∈ RH×W×C by merg-
ing S source images {Ys ∈ RH×W×C}Ss=1, each captured
with a different focal plane. In accordance with the existing
literature, we assume S = 2. A more general formulation is
provided in supplemental materials. The overall framework
of our proposed DMANet is depicted in Figure 2, consist-
ing of three parts: Defocus Blur Estimator (DBE), Decision
Map Estimator (DME), and Uncertainty-Aware Fuser (UAF).
Firstly, the input source images are processed through the
DBE, outputting defocus blur descriptors and initial focused
images. Secondly, based on DBE’s estimation results, the
DME predicts decision maps that indicate pixel-wise focus
levels on the source images. Finally, the UAF generates the
fusion result by utilizing both the DME’s and the DBE’s
outputs, as well as the source images.

Defocus Blur Modeling and Estimation
The defocus blur modeling is based on the spatially-varying
convolution model often see in single-image defocus deblur-
ring (e.g., (Quan, Wu, and Ji 2021, 2023; Quan, Yao, and Ji
2023; Quan et al. 2024)). Let Y ,Z denote the defocused and
AIF images in the discrete case. We can express (2) as

Y (p, q) =
∑
i,j

Z(i, j)Di,j(p− i, q − j), (3)

where Di,j denotes the pixel-wise defocus PSFs. As Di,j

can be sufficiently large, the spatially-varying convolution

process (3) is time-costly and involves many parameters
encoded in {Di,j}i,j to estimate. To alleviate these issues,
the spatially-varying PSF Di,j is expressed using a set of
spatially-invariant PSF atoms {An}Nn=1 as:

Di,j =

N∑
n=1

ci,jn An, (4)

where ci,jn are the linear combination coefficients. Substitut-
ing (4) into (3), we have

Y (p, q) =
∑
i,j

Z(i, j)

N∑
n=1

ci,jn An =

N∑
n=1

(Cn ⊙Z)⊗An,

(5)

where Cn = [ci,jn ]i,j ∈ RH×W denotes the coefficient ma-
trix w.r.t. PSF atom An, ⊙ the element-wise product, and ⊗
the discrete convolution operation. We can see that the origi-
nal spatially-varying convolution process in (3) now turns to
a simple form that involves element-wise product and con-
volution operations. The parameters to estimate are reduced
to N coefficients matrices. As N is set to a relatively small
number compared to the size of Di,j , the computational cost
and number of parameters are reduced.

Based on (5), we define the defocus blur operator B by

B : Z →
N∑

n=1

(Cn ⊙Z)⊗An. (6)



Then we can obtain an initial focused image using the 1st-
order expansion of B−1 : Y → Z as

B−1 ≈ E + (E − B), (7)

where E denotes an identity map. Let B−1
† denote the approx-

imate inverse operator, i.e.,

B−1
† : Y → Y + (Y −

N∑
n=1

(Cn ⊙ Y )⊗An). (8)

By applying B−1
† , one can have an initial focused image.

Structure of DBE The coefficient matrices {Cn}n above
are deemed as the defocus blur descriptors to estimate in our
approach. The DBE is devoted to estimating these descriptors
from multiple source images, as well as producing initial
focused images by utilizing (8):

DBE : {Ys}s → {Cn,s,Zs}n,s, (9)

where Cn,s ∈ RH×W ,Zs ∈ RW×H×C denote the defo-
cus blur descriptors and the initial focused image on the
s-th source image, respectively. For enhanced efficiency,
the DBE employs a coarse-to-fine scale-recurrent structure.
Firstly, multi-scale versions of source images, denoted by
Y

(1)
s , · · · ,Y (T )

s , are formed via downsampling with factors
2T−1, ..., 20, respectively. At each scale t, the DBE estimates
the defocus descriptors {C(t)

n,s}n,s and the initial focused im-
ages {Z(t)

s }s, utilizing the results from the previous scale as
well as the input images at the current scale.

Since defocus blur has strong cross-scale similarity in blur
shape, C(t)

n,s is estimated by a scale-recurrent module (SRM)
implemented based on ConvLSTM, as shown in Figure 2.
Afterward, Z(t)

s is calculated based on (8). This process can
be expressed as: for t = 1, · · · , T ,

{C(t)
n,s}n,s = SRM({Y (t)

s ,Ct−1
n,s ↑2,Zt−1

s ↑2}n,s), (10)

Z(t)
s = B−1

† (Y (t)
s ; {C(t)

s,n}n, {An}n) (11)

= 2Y (t)
s −

∑
n

(
C(t)

s,n ⊙ Y (t)
s

)
⊗An, (12)

where Z(t)
s = Y

(1)
s , and ↑2 denotes the upsampling operation

by factor 2. Regarding the kernel atoms, we define An to be
a Gaussian kernel with size n × n. The standard deviation
parameters {σn}n of the Gaussian kernels are defined as
learnable parameters, initialized as σn = 0.5(n − 1). The
results at the finest scale T are used as the output of DBE:

Cn,s = C(T )
n,s , Zs = Z(T )

s , ∀n, s. (13)

The detailed SRM is provided in the supplemental material.

Decision Map Estimation and Image Fusion
Structure of DME Using the estimated defocus blur de-
scriptors {Cn,s}n,s and initial focused images {Zs}s as
input, the DME generates a soft decision map Ms ∈
[0, 1]H×W for each source image, measuring focus level on
each pixel location in the source image:

DME : {Zs,Cn,s}n,s → {Ms}s. (14)

As shown in Figure 2, the DME first concatenates its inputs
and then processes them using an encoder-decoder structure.
Concretely, the DME sequentially contains three convolu-
tional encoder blocks (EBs) with downsampling and three
convolutional decoder blocks (DBs) with upsampling. Each
EB and its corresponding DB are also connected to a skip-
connection block composed of convolutional layers. Finally,
a 1 × 1 Conv layer with a Sigmoid activation is applied to
obtain the decision maps.

Structure of UAF The UAF fuses the source images {Ys}s
and the initial focused results {Zs}s by utilizing the decision
maps {Ms}s, resulting in an AIF image Z:

UAF : {(Ys,Zs,Ms)}s → Z. (15)

Given Ms, we form three masks M f
s,M

n
s ,M

u
s as follows:

M f
s(i, j) = I(Ms(i, j) ≤ 0.5− γ), (16)

M n
s (i, j) = I(Ms(i, j) ≥ 0.5 + γ), (17)

M u
s (i, j) = I(Ms(i, j) ∈ (0.5− γ, 0.5 + γ)), (18)

where I denotes an indicator function outputting 1 if the con-
dition holds and 0 otherwise, and γ ∈ (0, 0.5) is a threshold.
Based on Ms, the three masks identify three types of regions:
focused regions in Y1, focused regions in Y2, and uncertain
regions that are challenging to distinguish whether focused
or defocused in Y1 or Y2. The uncertainty is measured by the
confidence level in the decision map, i.e., whether Ms(i, j)
falls into the range [0.5− γ, 0, 5 + γ].

Afterward, the UAF calculates the AIF result Z∗
s :

Z∗
s = M f

s ⊙ Y1 +M n
s ⊙ Y2 +M u

s ⊙Zs, (19)

where ⊙ represents element-wise multiplication. That is, for
regions being focused in source images with high confidence,
we directly utilize the source image pixels for fusion. Other-
wise, we leverage the initial focused image Zs to enhance the
fusion result. The reason is, that those uncertain pixels are
likely to be defocused on all source images or lie around the
boundaries between focused/defocused images. Intuitively,
using the initial focused images for these pixels is a better
choice. During training, supervision is imposed on Z∗

s . In
inference, we can take either Z∗

1 or Z∗
2 , or directly average

them, as the final output. In practice, we found not noticeable
performance effects on these schemes. For a faster speed, we
define Z = Z∗

1 as the final AIF result.

Loss Function
The training loss is defined by

Ltotal = Lfusion + βLdefocus, (20)

where β ∈ R+ is a weight balancing the fusion loss Lfusion
and the defocus estimation loss Ldefocus. The fusion loss
Lfusion measures the fusion accuracy by comparing the ground
truth (GT) AIF image Zgt with the predictions {Z∗

s }s:

Lfusion :=

S∑
s=1

∥Z∗
s −Zgt∥2F. (21)

The defocus estimation loss Ldefocus measures the accuracy
of DBE by measuring the difference between the predicted



Table 1: Quantitative comparison on MFI-WHU dataset and computational complexity comparison.

Method PSNR(dB) SSIM LPIPS NMI QG QM MI QY ARank Size(M) Time(s)

IFCNN 37.155 0.9911 0.0078 0.8993 0.6624 0.7920 6.5535 0.9416 5.50 0.084 0.02
GACN 36.623 0.9962 0.0099 1.1954 0.7404 2.4860 8.7133 0.9875 3.13 0.069 0.15

GRFusion 37.062 0.9969 0.0078 1.1633 0.7182 2.3681 8.4824 0.9723 3.25 9.857 0.97
FusionDiff 37.309 0.9952 0.0049 1.0316 0.6927 1.3589 7.5189 0.9623 4.13 26.915 135.91
DB-MFIF 38.202 0.9968 0.0067 1.0711 0.6799 1.6495 7.8116 0.9472 3.75 2.700 0.01
DMANet 42.898 0.9980 0.0042 1.2225 0.7387 2.5281 8.9069 0.9895 1.13 4.065 0.03

initial focused image Z(t)
s and the GT across scales. Let Z(t)

gt
denote GT’s downsampled version at scale t. We define

Ldefocus :=

S∑
s=1

T∑
t=1

λ(t)∥Z(t)
s −Z

(t)
gt ∥2F. (22)

For simplicity, we set the weight λ(t) = 1 for all t.

Experiments
Experimental Setup
Datasets Following Wang et al. (2023), model training is
done on 10000 synthesized image pairs sourced from Agusts-
son and Timofte (2017) and Wang et al. (2019). The perfor-
mance is then evaluated on the following five benchmark
datasets: MFI-WHU (Zhang et al. 2021a), Lytro (Nejati,
Samavi, and Shirani 2015), SIMIF (also termed TSAI) (Tsai
2024), MFFW (Xu et al. 2020c), and OR-PAM (Zhou et al.
2022). The former four are natural image datasets, and the
last one is a biological image dataset.
Metrics When GTs are unavailable, we adopt five GT-
independent metrics from Wang et al. (2023): Normal-
ized Mutual Information (NMI) (Hossny, Nahavandi, and
Creighton 2008), Mutual Information (MI) (Qu, Zhang, and
Yan 2002), QG (Xydeas, Petrovic et al. 2000), QM (Wang
and Liu 2008), and QY (Li, Hong, and Wu 2008), measuring
fusion performance from different aspects. NMI and MI rely
on information theory, QM on feature similarity, and QY (Li,
Hong, and Wu 2008) is based on structural similarity. When
GTs are available, we also calculate three full-reference per-
formance metrics: Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) defined on AlexNet. For all metrics,
higher scores indicate better performance. In addition, we
compute the rank of a method among all compared methods
for each metric, and the average rank score over all metrics,
denoted as ARank. In the tables on performance comparison,
we use RED and BLUE to denote the best and second-best
results, respectively.
Compared methods Six supervised MFIF techniques are
chosen for experimental comparison: IFCNN (Zhang et al.
2020), GACN (Ma et al. 2022), EAY-Net (Wang et al.
2023), GRFusion (Li et al. 2023), FusionDiff (Li et al.
2024), and DB-MFIF (Zhang et al. 2024). Due to space
limit, comparisons with traditional spatial domain-based
methods (DSIFT (Liu, Liu, and Wang 2015) and MFF (Li,
Li, and Zhang 2015)) and transform domain-based ones
(MWGF (Zhou, Li, and Wang 2014) and GFF (Li, Kang,

Table 2: Quantitative comparison on Lytro dataset.

Method NMI QG QM MI QY ARank

IFCNN 0.9374 0.6634 0.9484 6.9018 0.9471 6.2
GACN 1.1668 0.7258 2.4589 8.6112 0.9776 4.0

EAY-Net 1.1853 0.7271 2.5376 8.7483 0.9781 2.8
GRFusion 1.1879 0.7263 2.6397 8.9203 0.9866 2
FusionDiff 0.9223 0.6555 0.7601 6.9166 0.9461 6.8
DB-MFIF 1.0589 0.6908 1.7154 7.9532 0.9646 5.0
DMANet 1.1897 0.7278 2.6251 8.9338 0.9870 1.2

and Hu 2013)) are shown in the supplementary materials.
As the original training data vary across these methods, we
retrain GACN, GRFusion, and FusionDiff using the same
data as ours for a fair comparison. For IFCNN and DB-MFIF,
we use their published models to obtain results, as no training
code is available. For EAY-Net, we quote its results from
literature whenever possible; otherwise, we leave its results
blank as neither the trained model nor the code is available.

Performance Evaluation
Quantitative comparison Table 1 presents the quantitative
results on MFI-WHU which includes GTs. Our DMANet
achieves the best ARank and excels across most metrics, par-
ticularly showcasing a significantly higher PSNR compared
to other methods. Tables 2,4,3, and 5 display the results on
Lytro, MFFW, SIMIF, and OR-PAM, respectively, where
GTs are unavailable. Our DMANet consistently ranks first
in terms of ARank across all datasets, demonstrating its ro-
bust performance. Furthermore, it consistently ranks first in
a majority of individual metrics and at least second in oth-
ers, indicating its ability to strike a superior balance across
diverse image quality aspects. Notably, DMANet excels on
SIMIF which comprises high-resolution images, achieving
the highest scores across five metrics. Interestingly, while
DMANet demonstrates consistent top performance, the next
best-performing method varies across datasets: GRFusion on
Lytro, EAY-Net on SIMIF and MFFW, and GACN on OR-
PAM. This observation underscores the diverse challenges
posed by different datasets and further highlights the robust-
ness and generalization of our approach.

Qualitative comparison Figure 3 visually validates our
method’s superiority on the MFI-WHU dataset. DMANet
produces cleaner and more accurate object boundaries, evi-
dent in the minimal errors observed in the difference maps
compared to the GT. Its advantage is evident in the accurate



Source #1 Source #2 GACN GRFusion

FusionDiff DB-MFIF DMANet (Ours) GT

Figure 3: Fused images by different methods on a sample from MFI-WHU. Behind each image, a zoomed-region and its
difference from GT are provided.

Table 3: Quantitative comparison on SIMIF dataset.

Method NMI QG QM MI QY ARank

IFCNN 1.0382 0.6748 0.9423 7.7098 0.9304 6.2
GACN 1.2930 0.7568 2.5497 9.5533 0.9724 3.8

EAY-Net 1.3042 0.7570 2.5669 9.6268 0.9739 2.6
GRFusion 1.2899 0.7581 2.6120 9.5785 0.9770 2.6
FusionDiff 1.0353 0.6771 0.8508 7.7313 0.9405 6
DB-MFIF 1.1470 0.6728 1.7421 8.5749 0.9145 5.8
DMANet 1.3149 0.7622 2.6432 9.7668 0.9840 1

Table 4: Quantitative comparison on MFFW dataset.

Method NMI QG QM MI QY ARank

IFCNN 0.8205 0.5890 0.6577 5.5283 0.8777 6.0
GACN 1.0820 0.6722 2.4375 7.3923 0.9333 3.4

EAY-Net 1.1777 0.6983 2.5238 7.9861 0.9824 1.6
GRFusion 1.0823 0.6590 2.3715 7.7050 0.9073 3.6
FusionDiff 0.8164 0.5848 0.6012 5.7824 0.8795 6.4
DB-MFIF 1.0589 0.6908 1.7154 7.9532 0.9646 5.6
DMANet 1.1494 0.6987 2.5271 8.2002 0.9578 1.4

fusion of the focused traffic pole (source image #1) with
the in-focus background (source image #2), even revealing
finer details than individual source images. Figure 4 further
demonstrates our method’s robustness across diverse datasets
lacking GTs. The difference maps, generated against the
zoom-in regions of partially focused source image #2, illus-
trate our approach’s ability to accurately identify and merge
in-focus regions, even in challenging edge cases. For example,
the first two examples showcase scenarios with intertwined
focused/defocused regions: the doll’s hair (defocused) and

Table 5: Quantitative comparison on OR-PAM dataset.

Method NMI QG QM MI QY ARank

IFCNN 0.4057 0.5272 0.2719 2.2872 0.8170 4.6
GACN 0.8434 0.6826 2.3648 4.7866 0.9640 1.8

EAY-Net n/a n/a n/a n/a n/a n/a
GRFusion 0.8089 0.6626 2.1754 4.6187 0.9367 3.0
FusionDiff 0.4346 0.5147 0.2099 2.4587 0.8129 5.0
DB-MFIF 0.3928 0.4952 0.2492 2.2438 0.8208 5.4
DMANet 0.9406 0.6936 2.4111 5.3699 0.9533 1.2

hand (focused) in the first, and the closer red flowers (fo-
cused) and farther purple flowers (defocused) in the second.
Despite these challenges, our method accurately identifies
the in-focus areas, as evidenced by the black regions in the
difference maps. In all examples, the proposed DMANet con-
sistently produces sharper boundaries (e.g., the doll’s hand
and clear hair contours in the first sample), more realistic
edges (e.g., detailed flower petals in the second sample), and
fewer artifacts (e.g., the cleaner rendering of the biological
tissue in the third sample) compared to other methods. The
minimal artifacts and noise in our difference maps highlight
our approach’s robustness.

Computational complexity comparison Table 1 also re-
ports the computational complexity in terms of the number
of model parameters and the inference time as well as the
number of floating-point operations (FLOPs) in processing
an image pair of size 512×512. Our DMANet model is much
smaller than GRFusion and FusionDiff, and its speed is much
smaller than GACN, GRFusion, and FusionDiff. These re-
sults indicate that the performance gains of our proposed
approach mainly comes from its architecture design, rather



Source #1 Source #2 GACN GRFusion FusionDiff DB-MFIF DMANet (Ours)

Figure 4: Fused images by different methods on the samples from on Lytro, MFFW, and OR-PAM datasets (from top to bottom).
Below each image, a zoomed-region and its difference from the focused region in Source #2 are provided.

Table 6: Results of ablation studies on Lytro dataset.

NMI QG QM MI QY ARank

1-scale 1.1879 0.7273 2.6276 8.9198 0.9865 2
w/o DBE 1.1862 0.7251 2.5479 8.9070 0.9858 4.8
w/o SR 1.1865 0.7270 2.6174 8.9099 0.9856 4.2

w/o Ldefocus 1.1878 0.7272 2.6306 8.9189 0.9858 2.6
Original 1.1897 0.7278 2.6251 8.9338 0.9870 1.4

than significantly increasing model complexity.

Ablation Studies
We constructed several baseline methods to evaluate the con-
tributions of different components in our approach: (a) 1-
scale: only one scale is used the DBE, with the ConvLSTM
replaced a convolutional block with a similar size; (b) w/o
DBE: remove the DBE from DMANet and the DME accepts
the source images as input. (c) w/o SR: discard the self-
recurrent (SR) structure by replacing the ConLSTM in SRM
with a convolutional block of a similar size. (d) w/o Ldefocus:
remove the defocus estimation loss. The results of these base-
lines on the Lytro dataset are listed in Table 6, where all
baselines show a noticeable performance decrease. These
observations confirm that each component in our approach
contributes noticeably to the performance.

Conclusion

In this work, we proposed DMANet, a deep learning-based
MFIF method that integrates explicit defocus blur modeling
into its network design. DMANet consists of three main com-
ponents: the DBE employs a coarse-to-fine scale-recurrent
structure to generate defocus blur descriptors and initial fo-
cused images, done by introducing a parameterized defocus
blurring model; the DME utilizes the DBE’s results to pro-
duce soft decision maps; and the UAF generates final fusion
result by identifying focused regions in the source images,
with a specific treatment on the uncertain regions utilizing the
focused images produced by DME. Our approach achieved
state-of-the-art results on five benchmark datasets.
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Related Traditional Methods
Traditional approaches to extending DoF face inherent trade-
offs. While smaller apertures can increase DoF, they reduce
light gathering capability and introduce noise and diffraction
artifacts (Horn 1968). Early methods based on focus stack-
ing required specialized hardware configurations and densely
sampled images, leading to increased capture time and com-
putational overhead (Burt and Adelson 1985; Kutulakos and
Hasinoff 2009; Levoy et al. 2006; Agarwala et al. 2004; Hasi-
noff et al. 2009). Recent work has explored optimizing focus
distance selection to reduce data requirements (Lee and Tai
2016; Luo et al. 2023b; Zhang 2022b).

Pioneering MFIF methods generally fall into two cate-
gories: Transform domain methods decompose source im-
ages in alternative feature spaces before fusion. While these
approaches achieve smooth transitions near focus boundaries,
they often sacrifice sharpness in regions distant from these
boundaries (Rockinger 1997; Hill et al. 2002; Li, Kang, and
Hu 2013; Zhou, Li, and Wang 2014). Spatial domain meth-
ods analyze local features at pixel, block, or region levels
to generate focus decision maps (Zhan et al. 2019; Li, Li,
and Zhang 2015; Nejati, Samavi, and Shirani 2015; Liu, Liu,
and Wang 2015). Though these methods demonstrate strong
performance overall, they struggle to handle transitions be-
tween focused and defocused regions effectively. Traditional
MFIF methods to extend the DoF, such as using a smaller
aperture or focus stacking, come with trade-offs. Smaller
apertures reduce light gathering ability, introducing noise
and diffraction artifacts (Horn 1968). MFIF offers a more
sophisticated solution but often relies on densely sampled
images, increasing capture time, data storage, and computa-
tional costs (Burt and Adelson 1985; Kutulakos and Hasinoff
2009; Levoy et al. 2006; Agarwala et al. 2004; Hasinoff et al.
2009). In the last decades, research explore how to capture
fewer images at strategically chosen focus distances in order
to reduce data volume and processing overhead (Lee and
Tai 2016; Luo et al. 2023b; Zhang 2022b). Traditional MFIF
methods are primarily categorized into transform domain
and spatial domain approaches. Transform domain methods
first transform the source images into a different feature do-
main, where decomposition takes place. The decomposed
coefficients are then merged based on specific fusion crite-
ria, and the fused image is reconstructed using an inverse
transform (Rockinger 1997; Hill et al. 2002; Li, Kang, and
Hu 2013; Zhou, Li, and Wang 2014). They typically produce
smooth and natural transitions near focus-defocus boundaries,
though their results tend to lose sharpness in areas farther

from these boundaries compared to the original input images.
Spatial domain methods, by contrast, rely on spatial features
and typically divide the source images into pixels, blocks, or
regions to measure activity levels, which are then used to gen-
erate decision maps that indicate focus properties (Zhan et al.
2019; Li, Li, and Zhang 2015; Nejati, Samavi, and Shirani
2015; Liu, Liu, and Wang 2015). Although these advanced
methods show strong performance, managing the intersection
between focused and defocused regions remains a challenge
for most spatial domain techniques.

Generalized Formulation
Given S source images {Ys ∈ RH×W×C}Ss=1 captured

with different focal planes, our goal is to form an AIF image
Z ∈ RH×W×C . For each pixel position (i, j), we have S

decision maps {Ms(i, j)}Ss=1 where
∑S

s=1 Ms(i, j) = 1
(which can be achieved by using a softmax operation).
Firstly, We analyze the confidence of focus decisions us-
ing a variance-based uncertainty measure. We use M u to
identify pixels with low-confidence decisions

M u(i, j) = I( 1
S

S∑
s=1

(Ms(i, j)−
1

S
)2 ≤ γ), (23)

where γ denotes a variance threshold. For pixels in certain
regions (M u(i, j) = 0):

Z∗(i, j) = Ys∗(i,j)(i, j) (24)

where s∗(i, j) = argmaxs Ms(i, j) selects the source im-
age with highest confidence. For pixels in uncertain regions
(M u(i, j) = 1), we use a weighted fusion approach:

Z∗(i, j) =

S∑
s=1

ws(i, j)Zs(i, j) (25)

where

ws(i, j) =
exp(τMs(i, j))∑S
k=1 exp(τMk(i, j))

(26)

Here, τ is a temperature parameter controlling the sharp-
ness of the weight distribution, and {Zs}Ss=1 are the initial
focused predictions. This formulation naturally reduces to
the dual-image case when S = 2, where the variance mea-
sure simplifies to a function of the difference between two
decision maps.



Supplemental Details
Details of SRM
As illustrated in the bottom left of Figure 2 in the main
text, the SRM comprises an encoder-decoder backbone CNN
for feature extraction and a modified ConvLSTM for scale-
recurrent processing.

Encoder-decoder backbone The progressive encoder-
decoder backbone CNN consists of an input convolutional
block, two encoder blocks, a progressive convolutional block,
and two decoder blocks.
• Input convolutional block: This block contains a convo-

lutional layer followed by a residual block (“ResBlock”
in the bottom middle of Figure 2 of in the main text) with
two convolutional layers and residual connections.

• Encoder/Decoder blocks: Each block comprises a con-
volutional layer with downsampling/upsampling, respec-
tively, followed by a residual block. Downsampling is
achieved using a convolutional layer with a stride of 2.

• Progressive convolutional block: This block gradually
increases the number of residual blocks as the scale
increases. This design enhances the network’s expres-
sive power by exploring both common and unique fea-
tures across different scales, leading to better predictions.
Specifically, at the smallest scale, the block has one convo-
lutional layer. An additional convolutional layer is added
for each doubling of the input scale.

Modified ConvLSTM The ConvLSTM is adopted with
modifications, containing two branches. One branch mainly
consists of a ConvLSTM layer, with downsampling before
and upsampling after to introduce local smoothness into the
predicted defocus coefficient maps. The ConvLSTM captures
dependencies among blur amounts at different scales. Its
hidden states progressively refine the estimation of defocus
coefficient maps as the scale increases by aggregating infor-
mation from various scales. The other branch utilizes a single
convolutional layer without downsampling or upsampling
to preserve fine details. The final defocus coefficient map is
obtained by summing the outputs from both paths.

Additional Implementation Details
Our approach is implemented using PyTorch and run on an
NVIDIA GTX 1080Ti GPU in an end-to-end manner. We
use T = 3 scales and N = 20 kernel atoms in DBE, γ = 0.1
in UAF, and β = 0.5 in the loss function. The model weights
are initialized by Xavier. The training employs Adam with
40 epochs, batch size 4, and learning rate 2×10−4.

The summation in B−1
† is implemented using a 1× 1 con-

volution. For color images, the same atom An is applied
independently to the R, G, B channels.

Details of Compared Methods
Due to the high resolution of images in the SIMIF dataset,
GRFusion encounters an “Out of memory” error when run
directly, even on a 4090 GPU with 24GB memory. To obtain
the reported results, the input image is uniformly divided into
four parts, processed separately, and the results are merged
into a single image.

Details of Datasets
The MFI-WHU dataset is a synthetic dataset comprising 120
pairs of out-of-focus images with manually generated deci-
sion maps. This dataset provides GT data for evaluation. The
Lytro dataset contains 20 image pairs, each of size 520× 520
pixels, captured with a Lytro camera. The MFFW dataset
consists of 13 image pairs sourced from the Internet and vari-
ous devices, characterized by bokeh effects. The SIMIF (also
called TSAI) dataset includes 12 pairs of high-resolution
multi-focus images. The OR-PAM dataset is a biological
image dataset containing microvascular images of leaf phan-
toms, mouse liver, and brain captured using optical-resolution
photoacoustic microscopy.

Supplemental Results
Visualization of the Coefficient
Figure 5 illustrates the SRM outputs Cn for an image pair

from the MFI-WHU dataset. For sharp pixels, the absolute
values of Cn (n ∈ 1, . . . , N ) are relatively small (10−3 to
10−5), while blurred pixels exhibit larger absolute values (0.1
to 1). This pattern aligns with DBE’s residual learning mech-
anism, where near-zero Cn values indicate minimal network
adjustments. The visualization demonstrates DBE’s effective-
ness in capturing defocus blur information and enhancing
decision map estimation.

(a) Y1 (b) Y2

(c) Cn,1 (d) Cn,2

Figure 5: Visualization of SRM coefficients Cn. (a) and
(b) denote near-focus image Y1 and far-focus image Y2,
respectively, while (c) and (d) denote their corresponding
SRM output Cn,1 and Cn,2. The grayscale images in (c) and
(d) represent the sum of absolute Cn values for each pixel.
Brighter regions indicate larger absolute coefficient values,
corresponding to areas with more significant defocus blur.

Visualization of the PSFs
Figure 6 illustrates the PSFs D for both blurred and clear

image points. The PSF of blurred points exhibits radial sym-
metry with larger spatial extent and higher intensity values,
while the PSF of clear points remains concentrated near the



Table 7: Ablation study of dual mask prediction during training on the MFI-WHU dataset.

Method PSNR(dB) SSIM LPIPS NMI QG QM

Ours 42.898 0.9980 0.0042 1.2225 0.7387 2.5281
w/o M2 42.347 0.9969 0.1554 1.2219 0.7382 2.5242

Table 8: Quantitative comparison with traditional methods on MFI-WHU dataset.

Method PSNR(dB) SSIM LPIPS NMI QG QM MI QY

DMANet 42.898 0.9980 0.0042 1.2225 0.7387 2.5281 8.9069 0.9895
DSIFT 39.396 0.9962 0.0057 1.2208 0.7398 2.5434 8.8962 0.9887
MFF 27.716 0.9539 0.1770 0.7373 0.6114 0.3321 5.3697 0.9152

MWGF 38.700 0.9904 0.1603 1.1489 0.7277 2.3029 8.3713 0.9862
GFF 36.018 0.9951 0.0108 1.1213 0.7250 1.9123 8.1736 0.9759

center with minimal spread. For visualization clarity, we ap-
plied uniform scaling to both PSF representations.

(a) Blur point (b) Clear point

Figure 6: Visualization of PSFs D computed as weighted
(Cn) combinations of Gaussian kernels (An) for (a) a blurred
point and (b) clear point, respectively.

Ablation Studies
To analyze the effectiveness of UAF, we decrease its threshold
γ from 0.1 to 0. Note that when γ = 0, the fusion becomes
using binary masks without uncertainty awareness The corre-
sponding PSNR results on the MFI-WHU dataset are shown
in Table 9. As γ decays, the PSNR performance decreases,
demonstrating the effectiveness of UAF.

Table 9: PSNR result w.r.t. varied γ on MFI-WHU dataset.

γ 0.1 0.08 0.06 0.04 0.02 0

PSNR(dB) 42.898 42.885 42.863 42.833 42.798 42.781

Table 7 evaluates the effectiveness of dual mask prediction
(M1 and M2) during training, while maintaining Z∗

1 as the
final prediction target. The results show that incorporating
M2 prediction yields a significant 0.55 dB improvement in
PSNR. This enhancement can be attributed to the network’s
improved discrimination between defocused and focused
regions when leveraging both input and output information.
For computational efficiency, only M1 is utilized during the
testing phase.

Table 10: Effect of PSF atom parameter N on PSNR perfor-
mance using the MFI-WHU dataset.

N 14 20 26

Param.(M) 4.026 4.065 4.137
PSNR(dB) 42.219 42.898 42.904

Table 10 analyzes the impact of PSF atom parameter N
on model performance. While increasing N shows marginal
improvements in performance, with peak results at N =
26, we selected N = 20 as the optimal value to maintain
an effective balance between computational complexity and
fusion quality.

Figure 7 showcases results from our proposed method with
and without uncertainty awareness (UA) in the UAF module,
alongside the estimated uncertainty map. Incorporating UA
improves the quality of fusion, particularly in challenging
boundary regions where focused and defocused areas are
difficult to distinguish. For instance, observe the left contour
of the brown desk: the method with UA produces a sharper
and more accurate boundary compared to the version without
UA. This highlights how uncertainty-aware fusion contributes
to preserving fine details and enhancing the overall visual
fidelity of the fused images.

Quantitative Comparisons with Traditional
Methods

Table 8 presents the quantitative results on the MFI-WHU
dataset. Our method outperforms all evaluated traditional ap-
proaches, including both transform domain methods (MWGF
and GFF) and spatial domain methods (DSIFT and MFF).
These results demonstrate the effectiveness of our approach,
which achieves superior performance compared to both tradi-
tional and deep learning-based methods. Specifically, our
method shows improvements in terms of both structural
preservation and detail retention, as evidenced by the higher
scores across all evaluation metrics.



Source #1 Source #2 GT Uncertainty map w/o UA w/ UA (Ours)

Figure 7: Visual comparison to demonstrate the impact of uncertainty awareness (UA) in our UAF module. It showcases results
from our proposed method with and without UA, alongside the estimated uncertainty map in the fourth column.

Visual Comparisons
Figures 8 and 9 present additional visual comparison re-
sults, showcasing our method’s performance against four
supervised MFIF techniques: IFCNN, GACN, FusionDiff,
and DB-MFIF. As shown in Fig. 8, both our method and
GACN successfully identify the focused regions, such as
the closer flowers in the first example and the background
in the second example. However, our method demonstrates
higher accuracy, evident in the larger correctly identified re-
gions within the difference maps compared to the GT. Fig. 9
illustrates results across a diverse set of datasets. Notably,
our method consistently and accurately identifies the focused
regions in Source #1 across all examples, as seen in the post-
card (Row#1), the back of the doll (Row#2), the red flowers
(Row#3), the cup with blue covers in the front (Row#4), and
the textured wall (Row#5). While GACN partially identifies
the focused regions in Rows#2 and #4, it falls short of the
consistent accuracy achieved by our method. These results
further emphasize the robustness and superior performance
of our approach across different challenging scenarios.

Limitations
Despite the promising results achieved, our approach cannot
consistently perform the best across all GT-independent met-
rics. This is indeed a limitation of existing methods. It comes
from that, without utilizing GTs, those metrics measure MFIF
accuracy in diverse aspects. As a result, it is challenging to
strike a balance among these metrics. We will investigate
effective approaches to win the trade-off.
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FusionDiff DB-MFIF DMANet (Ours) GT

Source #1 Source #2 IFCNN GACN

FusionDiff DB-MFIF DMANet (Ours) GT

Figure 8: Fused images by different methods on two samples from the MFI-WHU dataset. Behind each image, a zoomed region
and its difference from GT are provided.



Source #1 Source #2 IFCNN GACN FusionDiff DB-MFIF DMANet (Ours)

Figure 9: Fused images by different methods on the samples from the Lytro (Row#1), MFFW (Row#2-#3), and SIMIF (Row#3-
#4) datasets. Behind each image, a zoomed region and its difference from Source #1 are provided.
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